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Revealed preference theory

Pioneered by Samuelson (1938)

Consumer theory: Afriat (1967)

General equilibrium theory: Brown and Matzkin (1996)

Industrial organization: Carvajal et al. (2013)

Matching theory: Echenique et al. (2013)

among many others.



Research question in its simplest form

Suppose A = {x , y , z}. The observer observes that the DM chooses x .

=⇒ x � y , x � z

What if the observer only observes that the DM’s choice is in {x , y}?

=⇒ x � z or y � z

Investigate the observable restriction of economic models including

Rational choice with imperfect observation

Multiple preferences

Monotone multiple preferences

Minimax regret
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Model

X : any arbitrarily fixed nonempty set.

X : the collection of all nonempty subsets of X .

O = {(Ai ,Bi )}ni=1: coarse data set where

Ai ∈ X is a feasible set,

Bi is a nonempty subset of Ai for each i .

To simplify the statements below, we write

Ci := Ai \ Bi ,

A(O′) := ∪(Ai ,Bi )∈O′ Ai ,

C (O′) := ∪(Ai ,Bi )∈O′ Ci .
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For this talk, we focus on coarse rationalizability by a linear order.

P: a linear order (complete, transitive, anti-symmetric).

max(A, P): the maximal element in A according to P.

Definition

A coarse data set O is coarsely rationalizable by a linear order if ∃ P such
that

max(Ai , P) ∈ Bi

for all i .
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Example

A coarse data set including four observations:

A1 = {x1, x2, x3, x4},B1 = {x1, x2};

A2 = {x2, x3, x4, x5},B2 = {x2, x3};

A3 = {x3, x4, x5, x1},B3 = {x3, x4};

A4 = {x4, x5, x1, x2},B4 = {x4, x5}.



Example

Suppose that the data set is rationalizable by a linear order.

A1 = {x1, x2, x3, x4},B1 = {x1, x2};

=⇒ (1a) x1P
∗x2, x1P

∗x3, x1P
∗x4, or (1b) x2P

∗x1, x2P
∗x3, x2P

∗x4;

A2 = {x2, x3, x4, x5},B2 = {x2, x3};

A3 = {x3, x4, x5, x1},B3 = {x3, x4};

A4 = {x4, x5, x1, x2},B4 = {x4, x5}.



Example

Suppose that the data set is coarsely rationalizable by a linear order.

(1a) x1P
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(2a) x2P
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∗x4, x2P
∗x5, or (2b) x3P

∗x2, x3P
∗x4, x3P

∗x5;

(3a) x3P
∗x1, x3P

∗x4, x3P
∗x5, or (3b) x4P

∗x1, x4P
∗x3, x4P

∗x5;

(4a) x4P
∗x1, x4P

∗x2, x4P
∗x5, or (4b) x5P

∗x1, x5P
∗x2, x5P

∗x4.

Considering all 2|O| possible combinations?
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Suppose that O is coarsely rationalizable by a linear order.

(Ai ,Bi ) ∈ O

=⇒ the maximal element in Ai is not contained in Ci .

Consider any nonempty subcollection O′ = {(Akj ,Bkj )}mj=1 of O.

=⇒ the maximal element in Akj is not contained in Ckj , ∀j

=⇒ the maximal element in A(O′) is not contained in C (O′).
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Necessary condition for coarse rationalizability that we call Coarse SARP:

Coarse SARP. For any ∅ 6= O′ ⊆ O, A(O′) \ C (O′) 6= ∅.



Example

A coarse data set including four observations:

A1 = {x1, x2, x3, x4},B1 = {x1, x2},C1 = {x3, x4};

A2 = {x2, x3, x4, x5},B2 = {x2, x3},C2 = {x4, x5};

A3 = {x3, x4, x5, x1},B3 = {x3, x4},C3 = {x5, x1};

A4 = {x4, x5, x1, x2},B4 = {x4, x5},C4 = {x1, x2}.

A(O) \ C (O) = ∅

=⇒ Violation of Coarse SARP

=⇒ Not coarsely rationalizable by a linear order.



Coarse SARP is also a sufficient condition.

Theorem

A coarse data set is coarsely rationalizable by a linear order

if and only if

it satisfies the Coarse SARP property.



Illustrating the proof using an example

Example

Consider the following coarse data set including five observations:

Ai Bi Ci

i = 1 {x1, x2, x3, x4} {x1, x2} {x3, x4}

i = 2 {x2, x3, x4, x5} {x2, x3} {x4, x5}

i = 3 {x3, x4, x5, x6} {x3, x4} {x5, x6}

i = 4 {x4, x5, x6, x7} {x4, x5} {x6, x7}

i = 5 {x5, x6, x7, x1} {x5, x6, x7} {x1}



Let O1 := O.

Ai Bi Ci

i = 1 {x1, x2, x3, x4} {x1, x2} {x3, x4}

i = 2 {x2, x3, x4, x5} {x2, x3} {x4, x5}

i = 3 {x3, x4, x5, x6} {x3, x4} {x5, x6}

i = 4 {x4, x5, x6, x7} {x4, x5} {x6, x7}

i = 5 {x5, x6, x7, x1} {x5, x6, x7} {x1}

Then A(O1) \ C (O1) = {x2}.

Let P1 := A(O1) \ C (O1) = {x2}.

Rank x above y if x ∈ P1 and y ∈ A(O) \ P1.



Let O2 := {(Ai ,Bi ) ∈ O1 : Ai ∩ P1 = ∅}.

Ai Bi Ci

i = 3 {x3, x4, x5, x6} {x3, x4} {x5, x6}

i = 4 {x4, x5, x6, x7} {x4, x5} {x6, x7}

i = 5 {x5, x6, x7, x1} {x5, x6, x7} {x1}

Repeat this logic...

O is finite...

Strict partial order → linear order.



Coarse SARP and the classical SARP

In the special case that Bi is a singleton set for each i ,

Coarse SARP reduces to the classcial SARP.

Both directions are easy to verify.



Application 1: Rational choice with imperfect observation

We represent the observed behavior of the DM by (Σ, f ), where

Σ ⊂ X ,

f (A) is superset of the choice of the DM in A ∈ Σ.



Application 2: Multiple preferences

The DM has a set . of strict preferences, and she chooses

f.(A) := {x ∈ A : x = max(A, �) for some �∈ .}

from each feasible set A.

See, for example, Salant and Rubinstein (2008).



We represent the choice behavior of the DM by (Σ, f ), where

Σ ⊆ X ,

f (A) is the set of all alternatives that the DM chooses in A ∈ Σ.

We say that (Σ, f ) is rationalizable by multiple preferences if there exists a
set . of strict preferences such that

f.(A) = f (A)

for all A ∈ Σ.
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Divide and conquer

For each A ∈ Σ and x ∈ f (A), we construct a coarse data set OA,x

indexed by (A, x) as follows:

OA,x := {(A′, f (A′))}A′∈Σ,A′ 6=A ∪ (A, x).

Let
D := {OA,x}A∈Σ, x∈f (A).

A necessary condition for the data set (Σ, f ) to be rationalizable by
multiple preferences is that each OA,x constructed in this way is
rationalizable by a linear order.



Theorem

(Σ, f ) is rationalizable by multiple preferences

if and only if

each OA,x in D is rationalizable by a linear order.



Application 3: Minimax regret

Let u : X → R be a utility function for the DM.

Under u, the regret of choosing x instead of y is u(y)− u(x).

Given a finite set of utility functions U , the worst-case regret of choosing
x from A ∈ X is

max
y∈A

max
u∈U

[u(y)− u(x)] .

The DM has a finite set of utility functions U defined on X and she
chooses

min
x∈A

{
max
y∈A

max
u∈U

[u(y)− u(x)]

}
.
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We say that (Σ, f ) is rationalizable under the minimax regret model if
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f (A) = arg min
x∈A

{
max
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.

for each A ∈ Σ.

For simplicity, write φ(x , y) = maxu∈U [u(y)− u(x)] .
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Suppose that (Σ, f ) includes the following observation f ({x , y , z}) = x .

It must be the case that

max {φ(y , x), φ(y , z)} > max {φ(x , y), φ(x , z)}

and

max {φ(z , x), φ(z , y)} > max {φ(x , y), φ(x , z)}.

Construct a corresponding coarse data set...



Related Literature

Fishburn (1976)

Partial congruence axiom

de Clippel and Rosen (2018)

Bounded rationality theories under incomplete data

Enumeration procedure

Hu et al. (2018)

Explore related ideas in different settings

Weak order


