Coarse Revealed Preference

Gaoji Hu Jiangtao Li John K.-H. Quah Rui Tang

4 Jan 2019
North American Winter Meeting

Revealed preference theory

Pioneered by Samuelson (1938)
Consumer theory: Afriat (1967)
General equilibrium theory: Brown and Matzkin (1996)
Industrial organization: Carvajal et al. (2013)
Matching theory: Echenique et al. (2013)
among many others.

Research question in its simplest form

Suppose $A=\{x, y, z\}$. The observer observes that the DM chooses x.

$$
\Longrightarrow x \succ y, x \succ z
$$

Research question in its simplest form

Suppose $A=\{x, y, z\}$. The observer observes that the DM chooses x.

$$
\Longrightarrow x \succ y, x \succ z
$$

What if the observer only observes that the DM's choice is in $\{x, y\}$?

$$
\Longrightarrow x \succ z \text { or } y \succ z
$$

Research question in its simplest form

Suppose $A=\{x, y, z\}$. The observer observes that the DM chooses x.

$$
\Longrightarrow x \succ y, x \succ z
$$

What if the observer only observes that the DM's choice is in $\{x, y\}$?

$$
\Longrightarrow x \succ z \text { or } y \succ z
$$

Investigate the observable restriction of economic models including
Rational choice with imperfect observation
Multiple preferences
Monotone multiple preferences
Minimax regret

Outline

Model

Theory

Applications
Related literature

Model
X : any arbitrarily fixed nonempty set.

Model

X : any arbitrarily fixed nonempty set.
\mathcal{X} : the collection of all nonempty subsets of X.

Model

X : any arbitrarily fixed nonempty set.
\mathcal{X} : the collection of all nonempty subsets of X.
$\mathcal{O}=\left\{\left(A_{i}, B_{i}\right)\right\}_{i=1}^{n}:$ coarse data set where $A_{i} \in \mathcal{X}$ is a feasible set,
B_{i} is a nonempty subset of A_{i} for each i.

Model

X : any arbitrarily fixed nonempty set.
\mathcal{X} : the collection of all nonempty subsets of X.
$\mathcal{O}=\left\{\left(A_{i}, B_{i}\right)\right\}_{i=1}^{n}:$ coarse data set where $A_{i} \in \mathcal{X}$ is a feasible set,
B_{i} is a nonempty subset of A_{i} for each i.

To simplify the statements below, we write

$$
\begin{aligned}
& C_{i}:=A_{i} \backslash B_{i}, \\
& A\left(\mathcal{O}^{\prime}\right):=\cup_{\left(A_{i}, B_{i}\right) \in \mathcal{O}^{\prime}} A_{i}, \\
& C\left(\mathcal{O}^{\prime}\right):=\cup_{\left(A_{i}, B_{i}\right) \in \mathcal{O}^{\prime}} C_{i} .
\end{aligned}
$$

For this talk, we focus on coarse rationalizability by a linear order.

For this talk, we focus on coarse rationalizability by a linear order.
P : a linear order (complete, transitive, anti-symmetric).

For this talk, we focus on coarse rationalizability by a linear order.
P : a linear order (complete, transitive, anti-symmetric).
$\max (A, P)$: the maximal element in A according to P.

For this talk, we focus on coarse rationalizability by a linear order.
P : a linear order (complete, transitive, anti-symmetric).
$\max (A, P)$: the maximal element in A according to P.

Definition

A coarse data set \mathcal{O} is coarsely rationalizable by a linear order if $\exists P$ such that

$$
\max \left(A_{i}, P\right) \in B_{i}
$$

for all i.

Example

A coarse data set including four observations:

$$
\begin{aligned}
& A_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, B_{1}=\left\{x_{1}, x_{2}\right\} ; \\
& A_{2}=\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}, B_{2}=\left\{x_{2}, x_{3}\right\} ; \\
& A_{3}=\left\{x_{3}, x_{4}, x_{5}, x_{1}\right\}, B_{3}=\left\{x_{3}, x_{4}\right\} ; \\
& A_{4}=\left\{x_{4}, x_{5}, x_{1}, x_{2}\right\}, B_{4}=\left\{x_{4}, x_{5}\right\} .
\end{aligned}
$$

Example

Suppose that the data set is rationalizable by a linear order.

$$
\begin{aligned}
A_{1} & =\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, B_{1}=\left\{x_{1}, x_{2}\right\} ; \\
\Longrightarrow & (1 \mathrm{a}) x_{1} P^{*} x_{2}, x_{1} P^{*} x_{3}, x_{1} P^{*} x_{4}, \text { or }(1 \mathrm{~b}) x_{2} P^{*} x_{1}, x_{2} P^{*} x_{3}, x_{2} P^{*} x_{4} ; \\
A_{2} & =\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}, B_{2}=\left\{x_{2}, x_{3}\right\} ; \\
A_{3} & =\left\{x_{3}, x_{4}, x_{5}, x_{1}\right\}, B_{3}=\left\{x_{3}, x_{4}\right\} ; \\
A_{4} & =\left\{x_{4}, x_{5}, x_{1}, x_{2}\right\}, B_{4}=\left\{x_{4}, x_{5}\right\} .
\end{aligned}
$$

Example

Suppose that the data set is coarsely rationalizable by a linear order.
(1a) $x_{1} P^{*} x_{2}, x_{1} P^{*} x_{3}, x_{1} P^{*} x_{4}$, or (1b) $x_{2} P^{*} x_{1}, x_{2} P^{*} x_{3}, x_{2} P^{*} x_{4}$;
(2a) $x_{2} P^{*} x_{3}, x_{2} P^{*} x_{4}, x_{2} P^{*} x_{5}$, or (2b) $x_{3} P^{*} x_{2}, x_{3} P^{*} x_{4}, x_{3} P^{*} x_{5}$;
(3a) $x_{3} P^{*} x_{1}, x_{3} P^{*} x_{4}, x_{3} P^{*} x_{5}$, or (3b) $x_{4} P^{*} x_{1}, x_{4} P^{*} x_{3}, x_{4} P^{*} x_{5}$;
(4a) $x_{4} P^{*} x_{1}, x_{4} P^{*} x_{2}, x_{4} P^{*} x_{5}$, or (4b) $x_{5} P^{*} x_{1}, x_{5} P^{*} x_{2}, x_{5} P^{*} x_{4}$.

Example

Suppose that the data set is coarsely rationalizable by a linear order.
(1a) $x_{1} P^{*} x_{2}, x_{1} P^{*} x_{3}, x_{1} P^{*} x_{4}$, or (1b) $x_{2} P^{*} x_{1}, x_{2} P^{*} x_{3}, x_{2} P^{*} x_{4}$;
(2a) $x_{2} P^{*} x_{3}, x_{2} P^{*} x_{4}, x_{2} P^{*} x_{5}$, or (2b) $x_{3} P^{*} x_{2}, x_{3} P^{*} x_{4}, x_{3} P^{*} x_{5}$;
(3a) $x_{3} P^{*} x_{1}, x_{3} P^{*} x_{4}, x_{3} P^{*} x_{5}$, or (3b) $x_{4} P^{*} x_{1}, x_{4} P^{*} x_{3}, x_{4} P^{*} x_{5}$;
(4a) $x_{4} P^{*} x_{1}, x_{4} P^{*} x_{2}, x_{4} P^{*} x_{5}$, or (4b) $x_{5} P^{*} x_{1}, x_{5} P^{*} x_{2}, x_{5} P^{*} x_{4}$.

Considering all $2^{|\mathcal{O}|}$ possible combinations?

Suppose that \mathcal{O} is coarsely rationalizable by a linear order.

Suppose that \mathcal{O} is coarsely rationalizable by a linear order.
$\left(A_{i}, B_{i}\right) \in \mathcal{O}$
\Longrightarrow the maximal element in A_{i} is not contained in C_{i}.

Suppose that \mathcal{O} is coarsely rationalizable by a linear order.
$\left(A_{i}, B_{i}\right) \in \mathcal{O}$
\Longrightarrow the maximal element in A_{i} is not contained in C_{i}.

Consider any nonempty subcollection $\mathcal{O}^{\prime}=\left\{\left(A_{k_{j}}, B_{k_{j}}\right)\right\}_{j=1}^{m}$ of \mathcal{O}.
\Longrightarrow the maximal element in $A_{k_{j}}$ is not contained in $C_{k_{j}}, \forall j$
\Longrightarrow the maximal element in $A\left(\mathcal{O}^{\prime}\right)$ is not contained in $C\left(\mathcal{O}^{\prime}\right)$.

Necessary condition for coarse rationalizability that we call Coarse SARP:

Coarse SARP. For any $\emptyset \neq \mathcal{O}^{\prime} \subseteq \mathcal{O}, A\left(\mathcal{O}^{\prime}\right) \backslash C\left(\mathcal{O}^{\prime}\right) \neq \emptyset$.

Example

A coarse data set including four observations:

$$
\begin{aligned}
& A_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, B_{1}=\left\{x_{1}, x_{2}\right\}, C_{1}=\left\{x_{3}, x_{4}\right\} ; \\
& A_{2}=\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}, B_{2}=\left\{x_{2}, x_{3}\right\}, C_{2}=\left\{x_{4}, x_{5}\right\} ; \\
& A_{3}=\left\{x_{3}, x_{4}, x_{5}, x_{1}\right\}, B_{3}=\left\{x_{3}, x_{4}\right\}, C_{3}=\left\{x_{5}, x_{1}\right\} ; \\
& A_{4}=\left\{x_{4}, x_{5}, x_{1}, x_{2}\right\}, B_{4}=\left\{x_{4}, x_{5}\right\}, C_{4}=\left\{x_{1}, x_{2}\right\} .
\end{aligned}
$$

$A(\mathcal{O}) \backslash C(\mathcal{O})=\emptyset$
\Longrightarrow Violation of Coarse SARP
\Longrightarrow Not coarsely rationalizable by a linear order.

Coarse SARP is also a sufficient condition.

Theorem
A coarse data set is coarsely rationalizable by a linear order
if and only if
it satisfies the Coarse SARP property.

Illustrating the proof using an example

Example

Consider the following coarse data set including five observations:

	A_{i}	B_{i}	C_{i}
$i=1$	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{3}, x_{4}\right\}$
$i=2$	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{2}, x_{3}\right\}$	$\left\{x_{4}, x_{5}\right\}$
$i=3$	$\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}$	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{5}, x_{6}\right\}$
$i=4$	$\left\{x_{4}, x_{5}, x_{6}, x_{7}\right\}$	$\left\{x_{4}, x_{5}\right\}$	$\left\{x_{6}, x_{7}\right\}$
$i=5$	$\left\{x_{5}, x_{6}, x_{7}, x_{1}\right\}$	$\left\{x_{5}, x_{6}, x_{7}\right\}$	$\left\{x_{1}\right\}$

Let $\mathcal{O}_{1}:=\mathcal{O}$.

	A_{i}	B_{i}	C_{i}
$i=1$	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{3}, x_{4}\right\}$
$i=2$	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{2}, x_{3}\right\}$	$\left\{x_{4}, x_{5}\right\}$
$i=3$	$\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}$	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{5}, x_{6}\right\}$
$i=4$	$\left\{x_{4}, x_{5}, x_{6}, x_{7}\right\}$	$\left\{x_{4}, x_{5}\right\}$	$\left\{x_{6}, x_{7}\right\}$
$i=5$	$\left\{x_{5}, x_{6}, x_{7}, x_{1}\right\}$	$\left\{x_{5}, x_{6}, x_{7}\right\}$	$\left\{x_{1}\right\}$

Then $A\left(\mathcal{O}_{1}\right) \backslash C\left(\mathcal{O}_{1}\right)=\left\{x_{2}\right\}$.
Let $P_{1}:=A\left(\mathcal{O}_{1}\right) \backslash C\left(\mathcal{O}_{1}\right)=\left\{x_{2}\right\}$.
Rank x above y if $x \in P_{1}$ and $y \in A(\mathcal{O}) \backslash P_{1}$.

Let $\mathcal{O}_{2}:=\left\{\left(A_{i}, B_{i}\right) \in \mathcal{O}_{1}: A_{i} \cap P_{1}=\emptyset\right\}$.

	A_{i}	B_{i}	C_{i}
$i=3$	$\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}$	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{5}, x_{6}\right\}$
$i=4$	$\left\{x_{4}, x_{5}, x_{6}, x_{7}\right\}$	$\left\{x_{4}, x_{5}\right\}$	$\left\{x_{6}, x_{7}\right\}$
$i=5$	$\left\{x_{5}, x_{6}, x_{7}, x_{1}\right\}$	$\left\{x_{5}, x_{6}, x_{7}\right\}$	$\left\{x_{1}\right\}$

Repeat this logic...
\mathcal{O} is finite...
Strict partial order \rightarrow linear order.

Coarse SARP and the classical SARP

In the special case that B_{i} is a singleton set for each i,
Coarse SARP reduces to the classcial SARP.
Both directions are easy to verify.

Application 1: Rational choice with imperfect observation

We represent the observed behavior of the DM by (Σ, f), where
$\Sigma \subset \mathcal{X}$,
$f(A)$ is superset of the choice of the DM in $A \in \Sigma$.

Application 2: Multiple preferences

The DM has a set \triangleright of strict preferences, and she chooses

$$
f_{\triangleright}(A):=\{x \in A: x=\max (A, \succ) \text { for some } \succ \in \triangleright\}
$$

from each feasible set A.

See, for example, Salant and Rubinstein (2008).

We represent the choice behavior of the DM by (Σ, f), where
$\Sigma \subseteq \mathcal{X}$,
$f(A)$ is the set of all alternatives that the DM chooses in $A \in \Sigma$.

We represent the choice behavior of the DM by (Σ, f), where
$\Sigma \subseteq \mathcal{X}$,
$f(A)$ is the set of all alternatives that the DM chooses in $A \in \Sigma$.

We say that (Σ, f) is rationalizable by multiple preferences if there exists a set \triangleright of strict preferences such that

$$
f_{\triangleright}(A)=f(A)
$$

for all $A \in \Sigma$.

Divide and conquer

For each $A \in \Sigma$ and $x \in f(A)$, we construct a coarse data set $\mathcal{O}_{A, x}$ indexed by (A, x) as follows:

$$
\mathcal{O}_{A, x}:=\left\{\left(A^{\prime}, f\left(A^{\prime}\right)\right)\right\}_{A^{\prime} \in \Sigma, A^{\prime} \neq A} \cup(A, x) .
$$

Let

$$
\mathfrak{D}:=\left\{\mathcal{O}_{A, x}\right\}_{A \in \Sigma, x \in f(A)} .
$$

A necessary condition for the data set (Σ, f) to be rationalizable by multiple preferences is that each $\mathcal{O}_{A, x}$ constructed in this way is rationalizable by a linear order.

Theorem

(Σ, f) is rationalizable by multiple preferences
if and only if
each $\mathcal{O}_{A, x}$ in \mathfrak{D} is rationalizable by a linear order.

Application 3: Minimax regret

Let $u: X \rightarrow R$ be a utility function for the DM.
Under u, the regret of choosing x instead of y is $u(y)-u(x)$.

Application 3: Minimax regret

Let $u: X \rightarrow R$ be a utility function for the DM.
Under u, the regret of choosing x instead of y is $u(y)-u(x)$.

Given a finite set of utility functions \mathcal{U}, the worst-case regret of choosing x from $A \in \mathcal{X}$ is

$$
\max _{y \in A} \max _{u \in \mathcal{U}}[u(y)-u(x)]
$$

Application 3: Minimax regret

Let $u: X \rightarrow R$ be a utility function for the DM.
Under u, the regret of choosing x instead of y is $u(y)-u(x)$.

Given a finite set of utility functions \mathcal{U}, the worst-case regret of choosing x from $A \in \mathcal{X}$ is

$$
\max _{y \in A} \max _{u \in \mathcal{U}}[u(y)-u(x)] .
$$

The DM has a finite set of utility functions \mathcal{U} defined on X and she chooses

$$
\min _{x \in A}\left\{\max _{y \in A} \max _{u \in \mathcal{U}}[u(y)-u(x)]\right\}
$$

We represent the choice behavior of the DM by (Σ, f), where
$\Sigma \subseteq \mathcal{X}$,
$f(A)$ is the alternative that the DM chooses in $A \in \Sigma$

We represent the choice behavior of the DM by (Σ, f), where

$$
\Sigma \subseteq \mathcal{X},
$$

$f(A)$ is the alternative that the DM chooses in $A \in \Sigma$

We say that (Σ, f) is rationalizable under the minimax regret model if there is a finite set of utility functions \mathcal{U} such that

$$
f(A)=\underset{x \in A}{\arg \min }\left\{\max _{y \in A} \max _{u \in \mathcal{U}}[u(y)-u(x)]\right\} .
$$

for each $A \in \Sigma$.

We represent the choice behavior of the DM by (Σ, f), where

$$
\Sigma \subseteq \mathcal{X}
$$

$f(A)$ is the alternative that the DM chooses in $A \in \Sigma$

We say that (Σ, f) is rationalizable under the minimax regret model if there is a finite set of utility functions \mathcal{U} such that

$$
f(A)=\underset{x \in A}{\arg \min }\left\{\max _{y \in A} \max _{u \in \mathcal{U}}[u(y)-u(x)]\right\} .
$$

for each $A \in \Sigma$.

For simplicity, write $\phi(x, y)=\max _{u \in \mathcal{U}}[u(y)-u(x)]$.

Suppose that (Σ, f) includes the following observation $f(\{x, y, z\})=x$.

It must be the case that

$$
\max \{\phi(y, x), \phi(y, z)\}>\max \{\phi(x, y), \phi(x, z)\}
$$

and

$$
\max \{\phi(z, x), \phi(z, y)\}>\max \{\phi(x, y), \phi(x, z)\} .
$$

Construct a corresponding coarse data set...

Related Literature

Fishburn (1976)
Partial congruence axiom
de Clippel and Rosen (2018)
Bounded rationality theories under incomplete data
Enumeration procedure

Hu et al. (2018)
Explore related ideas in different settings
Weak order

