Normal Approximation in Strategic Network Formation

Michael P. Leung Hyungsik Roger Moon

University of Southern California

ASSA 2019

Introduction

Goal

We develop a CLT for network statistics,

$$\frac{1}{n}\sum_{i=1}^{n}\psi(X_{i},\mathcal{X}_{n},W,A),$$

where

- ▶ X_i is a vector of homophilous attributes of node i,
- $\mathcal{X}_n := \{X_1, ..., X_n\},$
- W is the set of all other node attributes,
- $A = [A_{ij}]$ is the observed network on *n* nodes.
- A simple example is

$$\psi(X_i, \mathcal{X}_n, W, A) = \sum_{j \neq i} A_{ij}.$$

Introduction

Contributions

We derive conditions under which

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n} (\psi_i - \mathbf{E}[\psi_i]) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2).$$

- A key high level condition for the large-network CLT for dynamic network moments is (i) "stabilization" condition (e.g. Penrose (2007), Penrose and Yukich (2005), and Leung (2018)) and (ii) bounded moments of ψ_i.
- We apply our results to
 - nonparametric bounds on the average structural function of dynamic network formation,
 - network regressions (not today),
 - treatment effects with network spillovers (not today).
- We provide lower level conditions for "stabilization" in each application.
- We also propose inference procedures for $\mathbf{E}[\psi_i]$ (not today).

Related Literature

- Leung (2018), Menzel (2016): Law of large numbers for static models with strategic interactions.
- Estimation of subgraph and exponential random graph models: Boucher and Mourifié (2015), Chandrasekhar and Jackson (2015).
- Estimation of dyadic link formation without strategic network formation: Dzemski (2014), Graham (2017).
- Estimation static models of strategic network formation: Leung (2015), Ridder and Sheng (2016)
- Bayesian approaches: Christakis et al. (2010), Mele (2017).
- Large matching models: Agarwal and Diamond (2017), Fox (2017), Menzel (2016).
- Dynamic network models: Kuersteiner and Prucha (2018, dynamic spatial panels), Graham (2016, point identification, parametric)
- Proof of CLT draws heavily from techniques in Penrose (2003) and Penrose and Yukich (2001, 2003).

Outline

Application to Dynamic Model

Setup and Object of Interest Weak Dependence

Main Result

Dynamic Network Formation Model I

Notations:

- $\mathcal{N}_n := \{1, ..., n\}$ is the set of nodes.
- Each node *i* is endowed with a type (X_i, Z_i) .
- X_i ∈ ℝ^d: "position" of node i. It is a latent, continuously distributed, time invariant characteristic.
- $Z_i := (Z_{i0}, ..., Z_{iT})$: observed, potentially time varying attributes.
- Each node pair (i, j) are endowed with a random shock ζ_{ij} .

Network on *n* nodes evolves from period t - 1 to *t* according to myopic best-response dynamics: for every $i, j \in N_n$

$$A_{ij,t} = \mathbf{1}\{V(r_n^{-1}||X_i - X_j||, \underbrace{(A_{ij,t-1}, \max_k A_{ik,t-1}A_{jk,t-1})}_{S_{ij,t}}, Z_{it}, Z_{jt}, \zeta_{ij,t}) > 0\}.$$

Here,

Dynamic Network Formation Model II

- $V(\cdot)$:
 - $V(\cdot)$: is unknown.
 - $V(\cdot)$ is strictly monotonic in $\zeta_{ij,t}$.
 - homophily: V is decreasing in $r_n^{-1} ||X_i X_j||$.
- Homophily:
 - Nodes homophilous $(-r_n^{-1} ||X_i X_j||)$ in position.
 - sparsity: $r_n \rightarrow 0$ at a certain rate.
 - Examples: income, geographic location.
 - Can also interpret more abstractly as positions in latent social space, following latent space models (Hoff et al., 2002).
- ► *A_{ij,t-1}* : captures state dependence.
- $\max_k A_{ik,t-1}A_{jk,t-1}$: generates network clustering.
- Examples in literature include

Dynamic Network Formation Model III

- risk-sharing networks in the rural Phillippines (Fafchangps and Gubert, 2007)
- research partnerships in the biotechnology industry (Powell et al, 2005)
- Graham (2016) discusses the policy implications of distinguishing between incentives based on assortative matching (homophily) and those based on strategic interactions.
- Network formation models are also useful for forecasting the effects of counterfactual interventions (Mele, 2017) and as selection models for social interactions (Badev, 2013).

Initial Network

▶ Simple example: A₀ follows dyadic regression model,

$$A_{ij,0} = \mathbf{1} \left\{ V_0(r_n^{-1} || X_i - X_j ||, Z_{i0}, Z_{j0}, \zeta_{ij,0}) > 0 \right\}.$$
 (1)

- Interpret as random meeting process prior to creatation of social connections.
- More generally, we can allow for strategic interactions similar to dynamic model, except S_{ij,0} depends on A₀, not a lagged network. (Not today)

Application: ATE of Network Formation - I

• Goal: inference on ASF $\mu(\mathbf{s}, \mathbf{z}, \mathbf{z}')$, where

$$\mu(\mathbf{s}, \mathbf{z}, \mathbf{z}') = \int \mathbf{1} \{ V(\delta, \mathbf{s}, \mathbf{z}, \mathbf{z}', \zeta) > \mathbf{0} \} \, \mathrm{d}F(\delta, \zeta),$$

where F is the joint distribution of $(r_n^{-1} || X_i - X_j ||, W_{ij,t})$.

For notational simplicity, assume that V does not depend on (Z_{it}, Z_{jt}) .

• Recall
$$S_{ij,t} = (A_{ij,t-1}, \max_k A_{ik,t-1}A_{jk,t-1}).$$

- Examples of parameters of interests:
 - (i) $(\mu(1,0)) \mu(0,0))/\mu(0,0)$: nonparametric measure of state dependence.
 - (ii) $(\mu(0,1))-\mu(0,0))/\mu(0,0)$: nonparametric measure of transitivity.
- In general, these objects are not point-identified (e.g., Chernozhukov et al. (2013)).

Application: ATE of Network Formation - II

- We follow the idea in Chernozhukov et al. (2013).
- $S_t(\mathbf{s})$ is the set of values of $\mathbf{S}_{ij} = (\mathbf{S}_{ij,t_0}, ..., \mathbf{S}_{ij,\tau})$ for which the *t*th component first equals \mathbf{s} at time *t*.
- $\bar{S}(\mathbf{s})$ is the set of values of \mathbf{S}_{ij} for which \mathbf{s} is never reached between t_0 and T.
- Define

$$\hat{A}_{ij}(\mathbf{s}) = \sum_{t=t_0+1}^{T} \mathbf{1}\{\mathbf{S}_{ij} \in \mathcal{S}_t(\mathbf{s})\} A_{ij,t},$$
(2)

$$P_{ij}(\mathbf{s}) = \mathbf{1}\{\mathbf{S}_{ij} \in \bar{\mathcal{S}}(\mathbf{s})\}.$$
(3)

Chernozhukov et al. (2013) showed that

$$\mu_{\ell}(\mathbf{s}) \leqslant \mu(\mathbf{s}) \leqslant \mu_{u}(\mathbf{s}), \tag{4}$$

for $\mu_{\ell}(\mathbf{s}) = \mathbf{E}[\hat{A}_{ij}(\mathbf{s})]$ and $\mu_{u}(\mathbf{s}) = \mu_{\ell}(\mathbf{s}) + \mathbf{E}[P_{ij}(\mathbf{s})].$

Application: ATE of Network Formation - III

Using (4), we obtain the following upper and lower bounds on percentage marginal effects:

$$\frac{\mu_{\ell}(\mathbf{s}') - \mu_{u}(\mathbf{s})}{\mu_{u}(\mathbf{s})} \leqslant \frac{\mu(\mathbf{s}') - \mu(\mathbf{s})}{\mu(\mathbf{s})} \leqslant \frac{\mu_{u}(\mathbf{s}') - \mu_{\ell}(\mathbf{s})}{\mu_{\ell}(\mathbf{s})}.$$

 We estimate the lower and upper bounds on the ASF using their scaled sample analogs

$$\hat{\mu}_{\ell}(\mathbf{s}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j \neq i} \hat{A}_{ij}(\mathbf{s}) \quad \text{and} \quad \hat{\mu}_{u}(\mathbf{s}) = \hat{\mu}_{\ell}(\mathbf{s}) + \frac{1}{n} \sum_{i=1}^{n} \sum_{j \neq i} P_{ij}(\mathbf{s}).$$
(5)

• Both $\hat{\mu}_{\ell}(\mathbf{s})$ and $\hat{\mu}_{u}(\mathbf{s})$ can be written as averages

$$\frac{1}{n}\sum_{i=1}^n\psi_i$$

For example, for $\hat{\mu}_{\ell}(\mathbf{s})$, $\psi_i = \sum_j \hat{A}_{ij}(\mathbf{s})$, a weighted degree of node *i*.

Application: ATE of Network Formation - IV

- We prove a CLT for general averages of node statistics {\u03c6\u03c6_i}_{i=1} of this type under new restrictions on the model primitives that ensure weak dependence.
- ATE of network formation: Fernandez-val and Weidner (2016) and Chen, Fernandez-val and Weidner (2018) - parametric dense network formation without network externality.

Outline

Application to Dynamic Model Setup and Object of Interest Weak Dependence

Main Result

4

Dependence Structure I

- For simplicity, we consider a two-period case, where $t_0 = 0$ and T = 1, and the node statistic is the degree in period 1, $\psi_i = \sum_i A_{ij,1}$.
- We consider asymptotics where T is fixed and network size $n \to \infty$.
- The key component in establishing asymptotics is understanding and handling "dependence" between ψ_i and ψ_j .
- An example:

Dependence Structure II

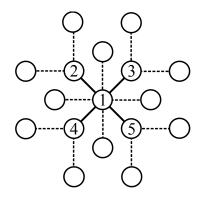


Figure: Dashed lines depict A_0 , solid lines A_1 .

• Denote $\mathcal{N}_{A_t}(i, K)$ is the *K*-neighborhood of node *i* in the network A_t .

Dependence Structure III

- Evidently, ψ_1 depends directly on $\mathcal{N}_{A_1}(1,1) = \{2,3,4,5\}$, but its actual "dependency neighborhood" is larger due to strategic interactions.
- ▶ For example, consider the link $A_{12,1}$. By the model specification, its realization depends only on (X_1, Z_1) , (X_2, Z_2) , $\zeta_{12,1}$, and A_0 , the latter only through $\mathcal{N}_{A_0}(1,1) \cup \mathcal{N}_{A_0}(2,1)$, which are those in the figure connected by dotted lines to either node 1 or 2.
- Furthermore, if we were to remove all nodes from the network other than those in $\mathcal{N}_{\mathcal{A}_0}(1,1) \cup \mathcal{N}_{\mathcal{A}_0}(2,1)$, this would not change the set of links formed by nodes 1 and 2 in \mathcal{A}_0 .
- It follows that $A_{12,1}$ is invariant to the removal of $\mathcal{N}\setminus(\mathcal{N}_{A_0}(1,1)\cup\mathcal{N}_{A_0}(2,1))$ from the network. The same reasoning applies to $A_{1k,1}$ for k = 3, 4, 5.

Dependence Structure IV

- The realization of ψ_i is invariant to the removal of all nodes from the model, other than members of the set

$$J_i \equiv \mathcal{N}_{A_1}(i,1) \cup \bigcup_{j \in \mathcal{N}_{A_1}(i,1)} \mathcal{N}_{A_0}(j,1),$$
(6)

which are all the nodes depicted in the figure.

- We call J_i the *relevant set* for ψ_i .
- Under a sparsity condition, the sizes of 1-neighborhoods are asymptotically bounded.

 \rightarrow Hence, for any *i*, $|J_i| = O_p(1)$.

- Since J_i effectively represents a dependency neighborhood, {ψ_i}ⁿ_{i=1} ought to be "weakly dependent" (like a moving average in time series).
- We will show that ψ_i does satisfy one such notion, known as "stabilization," for which we can prove a CLT.

Dependence Structure V

- > Two crucial properties used in this argument are that $T < \infty$ and the initial conditions model has no strategic interactions.
- Finiteness of *T* is important.
 - If $T = \infty$, then even under sparsity, $|J_i| = \infty$ a.s.
 - > In the general model, we accommodate the "long-run" $T = \infty$ case by modeling the initial condition as a draw from a static strategic network-formation model, which informally represents a draw from the stationary distribution.
 - Also, $T < \infty$ is important because it justifies the claim used above that potential links in A_0 do not depend on the states of other potential links in that network.
 - With strategic interactions, potential links in A₀ are now dependent, so we require an additional weak-dependence condition that controls the strength of strategic interactions.

Outline

Application to Dynamic Model Setup and Object of Interest Weak Dependence

Main Result

General Set up I

Recall the general network formation model

$$A_{ij,t} = \mathbf{1} \left\{ V\left(r_n^{-1} ||X_i - X_j||, S_{ij,t}, Z_{it}, Z_{jt}, \zeta_{ij,t} \right) > 0 \right\}.$$

•
$$\zeta_{ij} := (\zeta_{ij,0}, \ldots, \zeta_{ij,T}).$$

- ► $\{(X_i, Z_i)\}_{i \in \mathbb{N}}$ and $\{\zeta_{ij}\}_{i,j \in \mathbb{N}}$ are ~ i.i.d. and mutually independent.
- $\mathcal{X}_n := \{X_i\}_{i=1}^n$ and $W := \{(Z_i, Z_j, \zeta_{ij}) : i, j \in \mathcal{N}_n\}.$
- For a universal constant $\kappa > 0$, define the sparsity parameter $r_n := (\kappa/n)^{1/d}$, where *d* is the dimension of X_i .
- ► X_i are continuously distributed with density f.

Main Goal I

We prove a CLT for statistics of the form

$$\Lambda(r_n^{-1}\mathcal{X}_n,W) \equiv \sum_{X \in \mathcal{X}_n} \xi(r_n^{-1}X,r_n^{-1}\mathcal{X}_n,W),$$

where the *node statistic* ξ has range \mathbb{R}^m , specifically

$$n^{-1/2} \left(\Lambda(r_n^{-1}\mathcal{X}_n, W) - \mathbf{E}[\Lambda(r_n^{-1}\mathcal{X}_n, W)] \right) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \Sigma)$$

as $n \to \infty$.

- In the dynamic model,
 - $Z_i = (Z_{i0}, ..., Z_{iT})$ and $\zeta_{ij} = (\zeta_{ij,0}, ..., \zeta_{ij,T})$.
 - Recall that the sample analogs of the ASF bounds are determined by $n^{-1}\sum_{i=1}^{n}\psi_i$, where $\psi_i \equiv (\sum_{j\neq i} \hat{A}_{ij}(\mathbf{s}), \sum_{j\neq i} P_{ij}(\mathbf{s}))$.

Main Result

Main Goal II

• Write as $\psi(r_n^{-1}X_i, r_n^{-1}\mathcal{X}_n, W, A)$, where $A = (A_0, \ldots, A_T)$ is the full history of the network time series. The first argument of ψ functions as the label *i*, since $r_n^{-1}X_i$ is a.s.

unique to *i* given that positions are continuously distributed.

- ▶ Observe that A is a deterministic functional of r_n⁻¹X_n and W, since positions only enter the model either directly through the differences r_n⁻¹||X_i − X_j|| or indirectly through attributes W.
- ▶ We can then define $\xi(r_n^{-1}X_i, r_n^{-1}X_n, W) \equiv \psi(r_n^{-1}X_i, r_n^{-1}X_n, W, A)$ and

$$\Lambda(r_n^{-1}\mathcal{X}_n,W) \equiv \sum_{X \in \mathcal{X}_n} \psi(r_n^{-1}X,r_n^{-1}\mathcal{X}_n,W,A).$$

Stabilization Conditions I

- Let X denote a generic element of \mathcal{X}_n .
- Let Q(x, r) be the cube in \mathbb{R}^d centered at x with side length r.
- ► Also for any $H \subseteq \mathbb{R}^d$, define $W_H = \{(Z_i, Z_j, \zeta_{ij}) : i, j \in \mathcal{N}_n, r_n^{-1}X_i, r_n^{-1}X_j \in H\}.$
- ▶ We define $\mathbf{R}_{\xi}^{*}(r_{n}^{-1}X, r_{n}^{-1}X_{n}, W) \in \mathbb{R}_{+}$ is a radius of stabilization for the node statistic $\xi(r_{n}^{-1}X, r_{n}^{-1}X_{n}, W)$ if for any $H \supseteq Q(r_{n}^{-1}X, \mathbf{R}_{\xi}^{*}(r_{n}^{-1}X, r_{n}^{-1}X_{n}, W))$,

$$\xi(r_n^{-1}X,r_n^{-1}\mathcal{X}_n,W) = \xi(r_n^{-1}X,r_n^{-1}\mathcal{X}_n \cap H,W_H) \quad \text{a.s.}$$

• The radius of stabilization defines a "relevant set" of nodes $r_n^{-1}\mathcal{X}_n \cap Q(r_n^{-1}X, \mathbf{R}_{\xi}^*(r_n^{-1}X, r_n^{-1}\mathcal{X}_n, W))$ (or more precisely, their positions) such that the removal of nodes outside of this set does not affect the value of the statistic ξ .

Stabilization Conditions II

• Given a radius of stabilization \mathbf{R}_{ξ}^{*} , we say ξ is \mathbf{R}_{ξ}^{*} -exponentially stabilizing if for some $\tilde{n}, c, \epsilon > 0$,

$$\sup_{n>\tilde{n}} \mathsf{P}\left(\mathsf{R}^*_{\xi}(r_n^{-1}X, r_n^{-1}X_n, W) \ge r\right) \le c \exp\left\{-cr^{\epsilon}\right\}.$$

This implies $\mathbf{R}^*_{\xi}(r_n^{-1}X, r_n^{-1}\mathcal{X}_n, W) = O_p(1).$

• We say ξ is \mathbf{R}_{ξ}^* -externally stabilizing for radius of stabilization $\mathbf{R}_{\xi}^*(\cdot)$ if for all *n*, there exists $\mathbf{R}_n(X) \ge 0$ such that (a) $\mathbf{R}_n(X) = O_p(1)$, and (b) for *n* sufficiently large,

$$Q\left(r_n^{-1}X',\mathbf{R}_{\xi}^*(r_n^{-1}X',r_n^{-1}\mathcal{X}_n,W)\right) \subseteq Q(r_n^{-1}X,\mathbf{R}_n(X))$$

for all $X' \in \mathcal{X}_n$ such that $r_n^{-1}X \in Q\left(r_n^{-1}X', \mathbf{R}_{\xi}^*(r_n^{-1}X', r_n^{-1}\mathcal{X}_n, W)\right)$ and

$$\xi\left(r_n^{-1}X', r_n^{-1}\mathcal{X}_n \cap Q(r_n^{-1}X', \mathbf{R}_{X'}), W_{Q(r_n^{-1}X', \mathbf{R}_{X'})}\right)$$

$$\neq \xi\left(r_n^{-1}X', r_n^{-1}(\mathcal{X}_n \setminus \{X\}) \cap Q(r_n^{-1}X', \mathbf{R}_{X'}), W_{Q(r_n^{-1}X', \mathbf{R}_{X'}) \setminus \{r_n^{-1}X\}}\right)$$
(7)

Stabilization Conditions III

- a.s., where $\mathbf{R}_{X'} = \mathbf{R}_{\xi}^*(X', r_n^{-1}\mathcal{X}_n, W).$
 - It states that removing the node positioned at X only affects an asymptotically bounded number of other nodes' statistics.
 - ► The "affected" nodes are those positioned at X' in part (b);
 - ▶ the requirement $r_n^{-1}X \in Q(r_n^{-1}X', \mathbf{R}_{\xi}^*(X', r_n^{-1}X_n, W))$ states that X lies in the relevant set of X',
 - (7) states that the node statistic of X' is affected by the removal of X.
- Whereas exponential stabilization limits the degree to which alters affect the ego's statistic, external stabilization limits the degree to which the ego affects alters' statistics.
- A radius of stabilization R^{*}_ξ is increasing if for any n sufficiently large and H ⊆ ℝ^d,

$$\mathbf{R}^*_{\xi}(r_n^{-1}X, r_n^{-1}\mathcal{X}_n, W) \geqslant \mathbf{R}^*_{\xi}(r_n^{-1}X, r_n^{-1}\mathcal{X}_n \cap H, W_H) \quad \text{a.s.}$$

Stabilization Conditions IV

This says that removing nodes can only shrink the radius of stabilization, which will be trivially satisfied in our applications.

High Level Conditions I

The first is our main weak dependence condition.

- Stabilization There exists an increasing radius of stabilization \mathbf{R}_{ξ}^* such that ξ is \mathbf{R}_{ξ}^* -exponentially and -externally stabilizing.
- This implies that ξ(r_n⁻¹X_i, r_n⁻¹X_n, W) will only depend on its arguments through a "relevant set" of nodes J_i ⊆ N_n whose size has exponential tails, uniformly in n.
- Relevant sets in our applications will consist of unions of the network components of nodes in the K-neighborhood of i with respect ot a certain latent network.

The remaining two assumptions are regularity conditions.

- Bounded Moments $\sup_{n} \mathbf{E}[\xi(r_{n}^{-1}X, r_{n}^{-1}\mathcal{X}_{n}, W)^{8}] < \infty$.
- ▶ Polynomial Bound There exists c > 0 such that for any n, $|\xi(X, r_n^{-1} \mathcal{X}_n, W)| \leq cn^c$ a.s.

Main Result

Limit Variance I

- Let $\mathcal{P}_{\kappa f(x)}$ be a homogeneous Poisson point process on \mathbb{R}^d with intensity $\kappa f(x)$.
- Let $G \in \{\{x, y\}, \{x\}, \emptyset\}$ for $x, y \in \mathbb{R}^d$.
- Let \mathcal{X} denote a random, at-most countable subset of \mathbb{R}^d .
- ▶ Conditional on \mathcal{X} , we draw i.i.d. node-level attributes $\{Z(x') : x' \in \mathcal{X}\}$ and i.i.d. pair-level shocks $\{\zeta(x', y') : x', y' \in \mathcal{X}\}$ independently of the attributes.
- Let $W^{\infty}(\mathcal{X}) = \{(Z(x'), Z(y'), \zeta(x', y')) : x', y' \in \mathcal{X}\}.$
- The asymptotic variance will depend on node statistics of the form $\xi(x, \mathcal{P}_{\kappa f(x)} \cup G, W^{\infty}).$
- Define the "add-one cost"

$$\Xi_{x} = \Lambda \left(\mathcal{P}_{\kappa f(x)} \cup \{x\}, W^{\infty} \right) - \Lambda \left(\mathcal{P}_{\kappa f(x)}, W^{\infty} \right).$$
(8)

This measures the change in the network moments due to the addition of a single node positioned at x.

►

Limit Variance II

► Let

$$\alpha = \int \mathbf{E}[\Xi_x] f(x) \, dx,$$
► Define

$$\sigma^2$$

$$= \int_{\mathbb{R}^d} \mathbf{E} \left[\xi(x, \mathcal{P}_{\kappa f(x)}, W^{\infty})^2 \right] f(x) \, dx$$

$$+ \kappa \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \left(\mathbf{E} \left[\xi(x, \mathcal{P}_{\kappa f(x)} \cup \{x, y\}, W^{\infty}) \xi(y, \mathcal{P}_{\kappa f(x)} \cup \{x, y\}, W^{\infty}) \right] \right)$$

$$- \mathbf{E} \left[\xi(x, \mathcal{P}_{\kappa f(x)} \cup \{x\}, W^{\infty}) \right] \mathbf{E} \left[\xi(y, \mathcal{P}_{\kappa f(x)} \cup \{y\}, W^{\infty}) \right] \right) f(x)^2 \, dx dy.$$

Main Theorem

Theorem (CLT)

$$n^{-1/2}\left(\Lambda(r_n^{-1}\mathcal{X}_n,W)-\mathsf{E}\big[\Lambda(r_n^{-1}\mathcal{X}_n,W)\big]\right)\overset{d}{\longrightarrow}\mathcal{N}\left(0,\sigma^2-\alpha^2\right).$$

Moreover, if Ξ_x has a non-degenerate distribution for any $x \in supp(f)$, then $\sigma^2 > \alpha^2$.

Main Result

Proof Sketch

- Proof draws on several techniques for proving limit theorems for geometric graphs (Penrose 2003, 2005, 2007; Penrose and Yukich, 2003).
- First prove CLT for "Poissonized" model, where we replace *n* with $N_n \sim \text{Poisson}(n)$, independent of all other primitives.
 - Poissonized model easier to work with because it possesses a spatial independence property.
 - Construct a martingale via spatial projections.
 - Under the "stabilization" condition, we verify the regularity conditions of the martingale CLT and the convergence to the limit variance.
 - In econometrics, Poissonization used to show convergence of bootstrap empirical processes (der Vaart and Wellner, 1996).

Proof Sketch

- Then "de-Poissonize" and prove result for original process.
 - ▶ Poissonized model "close to" original model since $N_n/n \xrightarrow{p} 1$.
 - However, Poissonization increases variance since $Var(n^{-1/2}N_n) = 1.$
 - Need to subtract off appropriate term to obtain correct asymptotic variance.
- Key high-level conditions for both steps are uniform moment conditions and stabilization conditions, which formalize weak dependence in this setting.

CLT for "Poissonized" Model I

Poisson Point Process: \mathcal{X}_{N_n} .

- Step 1: Writing the moments as a martingale difference sequence using the following spatial projection.
 - Let Q(x, r) be the cube centered at x with side length r.
 - Suppose that we partition the support of f into $Q(x_1, r_n), ..., Q(x_{k_n}, r_n)$.
 - Observe that the number of the cubes, k_n , is proportional to n.
 - Let \mathcal{F}_l be the sigma field generated by elements of \mathcal{X}_{N_n} that belong in the set $Q(x_1, r_n) \cup \cdots \cup Q(x_l, r_n)$, where $l = 1, ..., k_n$.
 - Let \mathcal{F}_0 be the trivial sigma field.

CLT for "Poissonized" Model II

 Then by construction, we can represent the centered moments as a telescoping sum

$$\Lambda(r_n^{-1}\mathcal{X}_{N_n},W(\mathcal{X}_{N_n}))-\mathsf{E}(\Lambda(r_n^{-1}\mathcal{X}_{N_n},W(\mathcal{X}_{N_n})))=\sum_{l=1}^{\kappa_n}\delta_l,$$

where

$$\delta_{l} := \mathbf{E}(\Lambda(r_{n}^{-1}\mathcal{X}_{N_{n}}, W(\mathcal{X}_{N_{n}})) \mid \mathcal{F}_{l}) - \mathbf{E}(\Lambda(r_{n}^{-1}\mathcal{X}_{N_{n}}, W(\mathcal{X}_{N_{n}})) \mid \mathcal{F}_{l-1}).$$

By definition of δ_l , $\mathbf{E}(\delta_l | \mathcal{F}_{l-1}) = 0$ for all $l = 1, ..., k_n$.

• Therefore, $(\delta_l, \mathcal{F}_l)_{l=1,...,k_l}$ is a martingale difference sequence with respect to the filtration $\{\mathcal{F}_l\}_{l=0}^{k_n}$.

CLT for "Poissonized" Model III

Step 2: To establish the CLT of the Poissonized Model, we apply the martingale difference CLT by verifying the following conditions:

$$\sup_{n} \mathbf{E}\left(\frac{1}{n} \max_{1 \leqslant l \leqslant k_{n}} \delta_{l}^{2}\right) < \infty$$
(9)

$$n^{-1/2} \max_{1 \le l \le k_n} |\delta_l| = o_p(1),$$
 (10)

$$\frac{1}{n} \sum_{l=1}^{k_n} \delta_l^2 \xrightarrow{p} \sigma^2, \tag{11}$$

• Let \mathcal{X}'_{N_n} be an independent copy of \mathcal{X}_{N_n} and $Q_l = Q(x_l, r_n)$.

CLT for "Poissonized" Model IV

Define the resampling cost

$$\Delta_{x_{l}} = \Lambda(r_{n}^{-1}\mathcal{X}_{N_{n}}, W(\mathcal{X}_{N_{n}}))$$

$$-\Lambda\left(r_{n}^{-1}\left((\mathcal{X}_{N_{n}}\backslash Q_{l}) \cap (\mathcal{X}_{N_{n}}' \cap Q_{l})\right), W'(\mathcal{X}_{N_{n}})\right),$$
(12)

where

 $W'(\mathcal{X}_{N_n}) = \{(Z(x), Z(y), \zeta(x, y)) : x, y \in (\mathcal{X}_{N_n} \setminus Q_l) \cap (\mathcal{X}'_{N_n} \cap Q_l)\}.$

- ▶ This is the change in network moments from redrawing the positions of nodes in the cube Q_l. It is quite similar to the add-one cost Ξ_x defined in (8).
- Since \mathcal{X}'_{N_n} is an independent copy of \mathcal{X}_{N_n} , we have

$$\delta_I = \mathbf{E}(\Delta_{x_I} \mid \mathcal{F}_I) \quad I = 1, ..., k_n.$$

CLT for "Poissonized" Model V

To prove (9) and (10),

$$\sup_{n} \mathbf{E}\left(\frac{1}{n}\max_{1\leqslant l\leqslant k_{n}}\delta_{l}^{2}\right)\leqslant \sup_{n}\frac{1}{n}\sum_{l=1}^{k_{n}}\mathbf{E}(\delta_{l}^{2})\leqslant \sup_{n}\frac{k_{n}}{n}\max_{1\leqslant l\leqslant k_{n}}\mathbf{E}[\Delta_{x_{l}}^{2}],$$
$$\mathbf{P}\left(n^{-1/2}\max_{1\leqslant l\leqslant k_{n}}|\delta_{l}|\geqslant \varepsilon\right)\leqslant \sum_{l=1}^{k_{n}}\frac{1}{n^{2}\epsilon^{4}}\mathbf{E}[\delta_{l}^{4}]\leqslant \frac{k_{n}}{n^{2}\epsilon^{4}}\max_{1\leqslant l\leqslant k_{n}}\mathbf{E}[\Delta_{x_{l}}^{4}].$$

We use the stabilization and boundedness assumptions to establish uniform bounds on $\mathbf{E}[\Delta_{x_l}^2]$ and $\mathbf{E}[\Delta_{x_l}^4]$.

• To verify (11), we first approximate δ_l by $\delta_{l,R} = \mathbf{E}[\Delta_{x_l,R} | \mathcal{F}_l]$, where

$$\begin{split} \Delta_{x_l,R} &= \Lambda(r_n^{-1}(\mathcal{X}_{N_n} \cap \mathcal{Q}_{l,R}), \mathcal{W}_{\mathcal{Q}_{l,R}}) \\ &- \Lambda\left(r_n^{-1}\left((\mathcal{X}_{N_n} \cap \mathcal{Q}_{l,R} \backslash \mathcal{Q}_l) \cap (\mathcal{X}_{N_n}' \cap \mathcal{Q}_l)\right), \mathcal{W}_{\mathcal{Q}_{l,R}}'\right), \end{split}$$

where $Q_{l,R} := Q(x_l, Rr_n)$ and $W'_{Q_{l,R}} = \{(Z(x), Z(y), \zeta(x, y)) : x, y \in (\mathcal{X}'_{N_n} \cap Q_l) \cup (\mathcal{X}_{N_n} \cap Q_{l,R} \setminus Q_l)\}.$

CLT for "Poissonized" Model VI

▶ Note that $\Delta_{x_l,R}$ is the resampling cost under the locally restricted Poisson process, $X_{N_n} \cap Q_{l,R}$. Since

$$\frac{1}{n}\sum_{l=1}^{k_n}\delta_l^2 - \sigma^2 = \frac{1}{n}\sum_{l=1}^{k_n}(\delta_l^2 - \delta_{l,R}^2) + \frac{1}{n}\sum_{l=1}^{k_n}\delta_{l,R}^2 - \sigma^2,$$

the required result (11) by showing

$$\lim_{R \to \infty} \lim_{n \to \infty} \mathbf{E} \frac{1}{n} \sum_{l=1}^{k_n} \left| \delta_l^2 - \delta_{l,R}^2 \right| = 0, \tag{13}$$

$$\frac{1}{n}\sum_{l=1}^{k_n}\delta_{l,R}^2 - \sigma^2 \xrightarrow{p} 0.$$
(14)

 For (13) these we use the stabilization and boundedness assumptions.

CLT for "Poissonized" Model VII

▶ For (14) we show

$$\lim_{n \to \infty} \operatorname{Var}\left(\frac{1}{n} \sum_{l=1}^{k_n} \delta_{l,R}^2\right) = 0 \quad \text{for any } R,$$
(15)
$$\lim_{n \to \infty} \lim_{R \to \infty} \frac{1}{n} \sum_{l=1}^{k_n} \mathbf{E}[\delta_{l,R}^2] \to \sigma^2.$$
(16)

 For (15), we use the spatial independence property that disjoint subsets of a Poisson process are independent; that is, for A, B ⊆ ℝ^d with A ∩ B = Ø,

$$\mathbf{E}\left[\sum_{X\in\mathcal{X}_{N_n}}\mathbf{1}\{X\in A\cup B\}\right]$$
$$=\mathbf{E}\left[\sum_{X\in\mathcal{X}_{N_n}}\mathbf{1}\{X\in A\}\right]\mathbf{E}\left[\sum_{X\in\mathcal{X}_{N_n}}\mathbf{1}\{X\in B\}\right]$$

De-Poissonization I

It can be shown that under an appropriate coupling that

$$n^{-1/2} \left(\Lambda(r_n^{-1} \mathcal{X}_{N_n}, W(\mathcal{X}_{N_n})) - \mathbf{E}[\Lambda(r_n^{-1} \mathcal{X}_{N_n}, W(\mathcal{X}_{N_n}))] \right)$$

= $n^{-1/2} \left(\Lambda(r_n^{-1} \mathcal{X}_n, W) - \mathbf{E}[\Lambda(r_n^{-1} \mathcal{X}_n, W)] \right) + n^{-1/2} (N_n - n) \alpha + o_p(1).$ (17)

- The left-hand side is asymptotically $\mathcal{N}(\mathbf{0},\sigma^2)$, as previously discussed.
- The second term of the right-hand side is asymptotically $\mathcal{N}(0, \alpha^2)$ by the well-known normal approximation of a Poisson random variable.
- Since $N_n \perp X_n$ (under the right coupling), we have the required result.

CLT of ATE of Dynamic Network Formation I

- Since $\mathbf{S}_{ij,t}$ is finitely supported, there exist $\overline{s}, \overline{z}, \overline{z}'$ such that $V(\delta, \overline{s}, \overline{z}, \overline{z}', \zeta) \ge V(\delta, S_{ij,t}, Z_{it}, Z_{jt}, \zeta)$ a.s. for any δ, ζ .
- Moreover, since V is strictly increasing in its last component, we can define $\tilde{V}^{-1}(\delta, \cdot)$ as the inverse of $V(\delta, \bar{s}, \bar{z}, \bar{z}', \cdot)$.
- Let $\tilde{\Phi}_{\zeta}$ denote the complementary CDF of $\zeta_{ij,t}$.

The key assumptions are

• Tail Condition: There exists a constant c > 0 such that for δ sufficiently large,

$$\tilde{\Phi}_{\zeta}\left(\tilde{V}^{-1}(\delta,0)\right)\leqslant e^{-c\delta}.$$

For the other regularity conditions, let Φ(· | x) be the conditional distribution of Z_i given X_i = x and Φ_t(· | x) the conditional distribution of Z_{it} given X_i = x.

Assume that

CLT of ATE of Dynamic Network Formation

- (a) $\Phi(z | x)$ is continuous in x for any z.
- (b) For all *t*, there exists a distribution Φ_t^* that stochastically dominates $\Phi_t(\cdot | x)$ for all *x*.
- (c) The density f of X_1 is continuous and bounded away from zero and infinity.
- (d) V is continuous in its arguments, and $\zeta_{ij,t}$ is continuously distributed.

Conclusion

- We develop general CLT for network moments.
- Primitive conditions for stabilization in dynamic model: sparsity and weakly dependent initial network.
- Other applications: network regression.
- Work in progress: inference procedures.

Sparsity - I

 $r_n = \left(\frac{\kappa}{n}\right)^{1/d}$ and the tail condition of the distribution of $\zeta_{ij,t}$ imply G_t is "sparse"" for any t.

- Due to finite support of $S_{ij,t}$ and ρ_{ij} , we can define \bar{s} and $\bar{\rho}$ such that $V(\bar{s}, \bar{\rho}, \delta_{ij}, \zeta_{ij,t}) \ge V(S_{ij,t}, \rho_{ij}, \delta_{ij}, \zeta_{ij,t})$ a.s.
- Since V is strictly increasing in its last component, we can define $\tilde{V}^{-1}(\delta_{ij}, \cdot)$ as the inverse of $V(\bar{s}, \bar{\rho}, \delta_{ij}, \cdot)$, that is, $v = V(\bar{s}, \bar{\rho}, \delta_{ij}, \tilde{V}^{-1}(\delta_{ij}, v))$.
- Let $\bar{\Phi}_{\zeta}$ denote the complementary CDF of $\zeta_{ij,t}$.

Sparsity - II

Assumption (Tail Condition)

There exist constants $c_1, c_2, \epsilon > 0$ such that

$$\bar{\Phi}_{\zeta}\left(\tilde{V}^{-1}(\delta,0)\right)\leqslant c_{1}e^{-c_{2}\delta^{\epsilon}}.$$

Then,

$$\frac{1}{n} \sum_{i,j} \mathbf{E}[G_{ij,t}] \leq \frac{1}{n} \sum_{i,j} \mathbf{P}(\zeta_{ij,t} > \tilde{V}^{-1}(\delta_{ij}, 0))$$
$$\rightarrow \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \bar{\Phi}_{\zeta}(\tilde{V}^{-1}(\|x - x'\|, 0)) \kappa f(x)^2 \, \mathrm{d}x' \, \mathrm{d}x$$

Back