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Introduction

We propose an IV approach to the estimation of dynamic models,
both single and multiple agent, allowing for an economically
meaningful treatment of endogenous market structure. We can
handle models that are incomplete and/or set identified because of
some combination of initial conditions, multiple equilibria and
discrete data.

The approach has close connections to “two-step” methods that
build on Hotz-Miller as well as to more computationally based
methods that lead to MLE estimation.
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I.I.D. Shocks

Much of the existing empirical dynamic literature models
unobserved shocks as

I independently distributed over time

I private information

This greatly simplifies estimation methods, as outlined in papers
including Rust (1987), Hotz and Miller (1993) Bajari, Benkard and
Levin (2007) , Pakes, Ostrovsky, and Berry (2007) and Pesendorfer
and Schmidt-Dengler (2008).
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Independent Private Shocks in Dynamic Models

Given independent private information, current states do not reflect
any (persistently) unobserved factors, only accumulated past luck.
So, the current state is econometrically exogenous.

This leads naturally to the two-step Hotz-Miller style approaches:

1. first identify the dynamic policy function, “directly from the
data” and then

2. use this plus Bellman’s equation to identify structural
parameters of the single-period return function.

For formal identification, see Magnac and Thesmar (2002) and
related literature.
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Problems with Exogenous States

Econometrically exogenous states are greatly at odds with the
“static entry” literature, which emphasizes the econometric
endogeneity of market structure.

Possible states in an IO model: past entry, number of firms or
outlets, capital, quality . . .. Each is associated with a dynamic
decision: entry, store opening, investment in capital or quality. In
each case, it’s likely that persistent unobservables are correlated
with both the current decision and the current observed
state.
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Serial Correlation in Optimizing Dynamic Models

I Keane and Wolpin (1997) (single agent discrete-type, no strict
identification proofs, moderately computational intensive)

I Arcidiacono and Miller (2011) (oligopoly with mixture models
and possible multiple equilibria, computationally intensive, no
strict identification proofs, but see Kasahara and Shimotsu
(2009).)

I Pakes and Ericson (1996) (oligopoly; similar to us, but “fit to
ergodic distribution” for us becomes “fit to IV restrictions”).

I Kalouptsidi, Scott, and Souza-Rodrigues (2018) (single-agent
special case, same intuition for IV with simple linear
implementation)

Literatures on “less structural” dynamic panel models include
important work on persistent heterogeneity vs. state dependence
and on initial conditions problems
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An IV Alternative

Our approach is similar to the 2-step CCP but we identify (or at
least restrict) the policy function via generalized instrumental
variable (“GIV”) methods following the exposition in Chesher and
Rosen (2017).

Chesher and Rosen (2017) builds on a very large prior & on-going
literature, including many early papers on incomplete models by
Manski (e.g. 2003) and/or Tamer, work on discrete entry models
by Tamer and also work on sharply identified sets such as by
Beresteanu, Molinari, and Molchanov (2011) & Galichon and
Henry (2011).

Chesher and Rosen (2017) is useful to us both because of the
generality of the approach but also largely for the exposition that
focuses on IV intuition in a broad class of models with discrete
outcomes and incomplete models.
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IV Intuition

The IV intuition is that past exogenous variation will be correlated
with current states. E.g. if Detroit was large and rich 50 years ago,
it may have many Sears stores today. Past macro shocks may
effect today’s market structure, and these may interact with
market-level characteristics. Past regulatory regimes may be
correlated with market structure (consider hospitals).

In general, natural IVs include past exogenous cost and demand
shifters that (in the presence of sunk costs, etc) have led to the
present endogenous state.
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Outline

Today

I Dynamic Model (notation & examples)

I GIV restrictions

I Identified Set of Policies

I Example: Single Firm Entry

I Identified sets as serial correlation, IV strength & T vary

I Inference example

I Oligopoly

I Broad Idea

I Worked example with both serially correlated public and i.i.d
private info (skip today)

I A simple data example, using Collard-Wexler data
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Model

We begin with a single firm model. We see a large set of markets,
each with a single firm, for a small fixed T .

Then we consider the oligopoly case.
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Single Period Return
Monopoly Model

Panel data for a (fixed) T periods, with the periods denoted
t = 1, . . . ,T . The full set of variables are not necessarily available
for any prior history of the firm, t < 1, although there may be
some partial history.

Single Period Profits for market i : π (ait , xit ,wit , uit ; θπ)

I xit endogenously chosen state(s)

I ait choice (policy) variable(s) (action)

I wit exogenous profit shifter(s)

I uit ∈ R, unobserved (to us) serially correlated unobservable

Any additional exogenous variables correlated with xit (i.e. policy
prior to t = 1) are denoted ri . Could extend (at cost) to multiple
unobservables (esp. with multiple actions).
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Further notation

xi = (xi1, . . . , xiT ) ∈ X
ai = (ai1, . . . , aiT ) ∈ A
wi = (wi1, . . . ,wiT ) ∈W
ui = (ui1, . . . , uiT ) ∈ U
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Transitions
Classic setup with added serial correlation

Endogenous States:
Γ(xit+1|ait , xit)

Could be deterministic (degenerate) or stochastic state
transitions.

Exogenous Observed States

Λ(wit+1|wit)

Unobserved (by us) States

Φ̄(ui ; θu)

our leading case is first order Markov

Φ(uit+1|uit ; θu)

Assume Γ, Λ are known and/or identified from data, but θu is
unknown.
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Examples

Table: Some Single Agent IO Examples

State, xit Action, ait A(xit) Transition

Capital Investment R+ xit+1 = λxit + ait
Out/In Entry/Exit {0, 1} xit+1 = ait
Retail # of Stores I+ xit+1 = ait
Quality R&D R+ xit+1 ∼ f (xit , ait)
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IV Assumption

zi = (ri ,wi1,wi2, . . . ,wiT ).

ui = (ui1, ui2, . . . , uiT ).

Independence of the instrument and the unobservables:

zi ⊥ ui .

15



Possible Instruments?

State Example IVs?

Capital Past investment cost, past productivity shock
Out/In of Market past market population, past zoning
# of Stores distance from headquarters, interacted with time?
Quality Past R&D shocks, age of firm
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Dynamic Problem

Bellman Equation:
V (xit ,wit , uit) =

max
ait∈A(xit)

(
π (ait , xit ,wit , uit , θπ)+δE [V (xit+1,wit+1, uit+1) |ait , xit ,wit , uit ]

)
.

where
E
[
V
(
x ′,w ′, u′

)
|a, x ,w , u

]
=∫ ∫ ∫

V
(
x ′,w ′, u′

)
dΓ(x ′|a, x)dΛ(w ′|w)dΦ(u′|u; θu).
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Policy function

In the true model (and therefore the data), the policy function
takes the form

ait = σ (xit ,wit , uit) ∈ F .

There may be qualitative restrictions (monotonicity) embodied in
the set of functions F .

For a particular θ = (θπ, θu), the policy function derived from
known transitions and Bellman’s equation is:

ait = σθ(xit ,wit , uit) .
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Identification

For identification, say we observe the true data generating process,
across firms or agents, denoted

P(ai , xi ,wi , ri ).

This is equivalent to seeing T period panel on a very large (in fact,
infinite) cross-section of firms or agents.

The unknowns are the parameters of profits θπ and θu. Nothing in
our general discussion of identification requires these to be finite
dimensional, but in practice we consider only finite-dimensional
parametric models (including fully flexible profit functions with
discrete (ai , xi ,wi )).
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Incomplete Model

aiT = σ (xiT ,wiT , uiT )

xit ∼ Γ (xiT−1, aiT−1) ,

aT−1 = σ (xiT−1,wiT−1, uT−1)

xT−1 ∼ Γ (xiT−2, aT−2) ,

...

a1 = σ (xi1,wi1, ui1) .

But: there is no model of the endogenous xi1, which is inherited
from unobserved prior history. If period 1 was the “birth” of the
agent, we might have a model for xi1, which would complete the
single agent model. (Of course, this still doesn’t guarantee
identification.) Oligopoly will introduce a second source of
incompleteness: multiple equilibria.
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Chesher and Rosen GIV

Idea: (set) identify the policy function from classic instrumental
variables conditions, extended to “Generalized IV” (GIV) to deal
with

1. incomplete model (we only have necessary or sufficient
conditions on the unobservables, not necessary and sufficient)
and

2. discrete variables, as in entry/exit models

3. lack of point identification of the parameters, even in the
absence of problems 1 and 2.

We may have all or none of these problems. Discrete actions
naturally lead to conditions on sets of unobservables that give a
particular policy ait .
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Necessary Conditions
a familiar step

If the sequence (xi ,wi , ai ) occurs, then ui must be in the inverse
image set

U(ai ,wi , xi , σ) = {ui : σ(xit ,wit , uit) = ait , ∀t}

The condition {ui ∈ U(ai ,wi , xi , σ)} is then a necessary condition
for event (xi , ai ).
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Policy Functions consistent with IV conditions

Using Cheshire-Rosen style notation, a pair (σ(xit ,wit , uit), θu) is
then in the identified set iff for all closed sets S ∈ U and ∀z

Pr
(
U(ai , xi ,wi , σ) ⊆ S |z

)
≤ Φ(S; θu) (1)

The LHS is the conditional probability of the outcomes
yi = (ai , xi ) that, according to σ, have {ui : ui ∈ S} as a necessary
condition. For a given σ and z , this probability is observed in the
data. The RHS is the probability of that necessary condition wrt
the distribution of ui . The RHS is determined by the distribution
of ui , which by assumption does not depend on z .

But what “test sets” S to use?
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Chesher and Rosen Sharply Identified Policy Functions

CR show that to obtain the sharply identified θ set we only need to
check certain sets S ∈ Q(σ,wi ).

The collection of sets Q(σ,wi ) is the “core determining set” as
defined in CR (2017) and earlier work, the minimal collection of
closed sets S ∈ U that yields the sharp identified set for θ. These
include the overlapping sets of U(ai , xi ,wi , σ), excluding cases of
strict subsets. For simple low dimensional discrete problems,
Q(σ, zi ) can be easy to compute and not “too big”, but it can
otherwise grow very (indeed infinitely) large.

This result tells us the necessary conditions we need to check to
get sharp identification. Perhaps most useful for smaller problems
and to build intuition in examples.
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Equalities and Complete Models

In some cases, some of the inequalities in (1) are equalities,
because the necessary conditions are necessary and sufficient for
particular (sets of) actions.

In a complete model, all of the conditions would be equalities.
However, as usual, this does not guarantee that the parameters are
point identified.
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Policies identified by GIV Alone

For a given θu, denote by

ΣIV (θu) ⊆ F .

the set of σ functions identified from the data and the IV
restrictions—i.e. those that satisfy condition (1) ∀S ∈ Q(σ, z) and
∀z .

The sets ΣIV are determined exclusively by the IV conditions and
the data, with no use of the dynamic model.
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Identified Set of Structural Parameters

For any θ = (θπ, θu), we can use the Bellman equation to compute
the implied policy σθ(xit ,wit , uit). For θ = (θπ, θu), this policy
is

σθ(xit ,wit , uit) ≡

argmax
ait∈A(xit)

(
π(ait , xit ,wit , uit)+δE

[
V (xit+1,wit+1, uit+1)|ait , xit ,wit , uit

])
.

The sharply identified set of parameters is then

ΘID ≡ {θ = (θπ, θu) : σθ(xit ,wit , uit) ∈ ΣIV (θu)} (2)

This imposes both the dynamic model and the GIV restrictions.
This is the sharply identified set because any θ in this set generates
a policy function that cannot be rejected by the data plus the IV
condition.
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Connection to Two Step Models

We could follow a “classic” 2-step approach:

1. identify a (set of) policy function(s) that are consistent with
the data and the IV restrictions and then

2. see which structural parameters are consistent with the
identified policy function(s). These are the identified θ.

Complications include the presence of parameters for the
unobservables (necessary at least to model the degree of serial
correlation) and the IV methods in the first step, as opposed to
directly “fitting the policy to data.”
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Connection to Two Step Models
Continued

It’s possible that one might point identify the policy function in
step 1. In this case, our procedure is just like a 2-step CCP
method, except for running a GIV first stage.

For example, when the choice variable is continuous, point
identification of the policy is attained under the assumptions in
Chernozhukov and Hansen (2005), even using only one
transition.

With discrete choice variables, often we’ll get only partial
identification of the policy (Chesher (2010); Chesher, Rosen and
Smolinski (2013)).
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Connection to Two Step Models
Continued

As a computational alternative, one could search over the space of
θ’s, for each possible θ

1. computing σθ(xit ,wit , uit) via the contraction mapping and
then

2. testing whether σθ survives the IV restrictions applied to the
data. If so, that particular θ is in the identified set, otherwise
not.
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Example: Single Firm “Entry / Exit”
A minimal model to think about dynamics.

ait ∈ (0, 1)

State is In/Out in the prior period

xit ∈ (0, 1)

Single period payoffs, π(ait , xit), have a random shock, εit , plus a
scalar sunk entry cost, γ.

π(0, 1) ≡ π(0, 1) = 0,

π(1, 1) = π̄ − εit , with
π(1, 0) = π(1, 1)− γ, and

εit = ρεi ,t−1 + νit ,

where νit ∼ N (0, 1). Think of uit as the quantile of εit .

3 structural parameters: π̄, γ, ρ.
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Policy Function in the Example.

Policy function:
ait = σ(xit , uit)

where uit ∼ unif(0, 1).

The dynamic model generates a monotonicity result that σ is
weakly increasing in x and weakly decreasing in u.
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Policies Identified by GIV from only One Transition
single firm entry/exit example

This is a binary choice style model a la Chesher (2010), using only
the marginal distribution of u, which is independent of some
instrument.

uit
0 τ0 τ1 1

Figure: Policy Cut-offs in the Example

As an example of identification, we look at restrictions only
involving the marginal distribution of u, next consider IV
restrictions on the joint distribution across periods.
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Restrictions Using Only One Choice

Table: Inverse image sets for the Binary-Binary Marginal Example

a x U(a, x)

1 1 (0, τ1)
1 0 (0, τ0)
0 1 (τ1, 1)
0 0 (τ0, 1)

Table: Restrictions via Elemental Sets for the Binary-Binary Marginal
Example

S Pr
(
U(ai , xi , σ) ⊆ S |z

)
≤ Φ(S; θu)

U(1, 1) Pr((1, 1)|z) + Pr((1, 0)|z) ≤ τ1
U(1, 0) Pr((1, 0)|z) ≤ τ0
U(0, 1) Pr((0, 1)|z) ≤ 1− τ1
U(0, 0) Pr((0, 0)|z) + Pr((0, 1)|z) ≤ 1− τ0
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GIV Restrictions From the Binary-Binary Marginal
Example

From the restrictions in the table, get upper & lower bounds for
each z . Let P11(z) ≡ Pr((1, 1)|z).

P11(z) + P10(z) ≤ τ1 ≤ (1− P01(z)) ⇒

max
z

[P11(z) + P10(z)] ≤ τ1 ≤ min
z

[(1− P01(z))] .

Similar result for τ0.

But from one transition there is limited information on the
structural parameters, and these bounds say nothing about serial
correlation.

35



Elemental Inverse Image Sets, T = 2
8 elemental sets U(ai , xi , σ), labeled (xi1, ai1, ai2)

10
0

1

u1

u2

τ1

τ0

τ0

(0, 0, 0)

(0, 0, 1)

(0, 1, 1)

(0, 1, 0)

10
0

1

u1

τ1

τ0

τ1

(1, 0, 0)

(1, 0, 1)

(1, 1, 1)

(1, 1, 0)

For example, from the necessary condition for (0, 0, 0)

Pr(u1 > τ1, u2 > τ1|ρ) ≥ P000(z) + P100(z) = P·00
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Further Core Determining Sets

The core determining set includes unions of the “elemental” sets
U(ai , xi ,wi , σ). The relevant unions are of “partially overlapping”
sets.

(a) (0,0,0)+(1,1,0) (b) (0,0,0)+(1,1,1) (c) (1,1,1)+(0,10,1)

(d) (a)+(b) (e) (b)+(c)

37



Computing the Identified Set of Policy Function
Parameters
True ρ = 0.75, varying IV “strength”, Both 1 and 2 periods of data

(a) IV strength = 0.25 (b) IV strength = 0.56

(Example has π̄ = 0.5, γ = 1.5. IV “strength” is R2 from a regression of xi1 on

zi . ρ is also a “policy” parameter, see next slide. Policy cutoffs τ(ait) are in the

quantiles of ε.)
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Computing the Identified Set of Structural Parameters
True ρ = 0.75, varying IV strength, T=2 or T=10, wit varying or not

(a) IV strength = 0.25 (b) IV strength = 0.56

(c) IV strength = 0.25, varying wit
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Computing the Identified Set of Structural Parameters
True ρ = 0, varying IV strength, 2 transitions in the data

(a) IV strength = 0.25 (b) IV strength = 0.56

(c) IV strength = 1.0
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Inference

We can apply inference procedures from the moment inequalities
literature, simply following on the literature from Chernozhukov,
Hong, and Tamer (2007).

With discrete IVs, we could work with unconditional moment
inequalities (e.g. Andrews and Soares (2010) and Bugni, Canay,
and Shi (2017)).

With continuous IVs, we could use conditional moment inequalities
(e.g. Andrews and Shi (2013)).

With many moment inequalities (likely in this case) we use
Chernozkukov, Chetverikov, and Kato (2018)
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95% Confidence Sets

Figure: ρ=0.75, IV strength=0.56
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Inference on a Counterfactual 50% Increase in Sunk
Costs

Fraction of Markets with an Increase in ait in at
Least 1 Period out of the Next 10 Periods

ρ IV strength True GIV Joint Hotz-Miller

0 0.56 0.44 (0.26,0.58) (0.41,0.51)
0.50 0.56 0.30 (0.13,0.65) (0.49,0.70)
0.75 0.56 0.18 (0.05,0.43) (0.41,0.54)
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Dynamic Games
more preliminary

Our approach can be extended to models of dynamic strategic
interaction. Specifically, consider dynamic games of complete
information and allow for serially correlated unobservables. Let J
be the number of players. Then agent j ′s policy in market i at
time t is given by

ajit = σj (wit , xit , uit) (3)

with wit = (w1it , . . . ,wJit), etc.

Policies now depend on the unobservables of all players.

With serial correlation, complete information is much easier than
private information, but we can add iid private information on top
of serially correlated public info, which makes computation (and
existence) easier.
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Broad Idea of the Games Approach

As in the single agent case, identification comes from combining
the GIV restrictions with the Bellman equation that defines the
“best response” of each firm to the actions of the other.

Computationally, it is often very difficult to solve for the set of
equilibrium strategies. In this case, we can restrict that
computation to those strategies that survive the GIV conditions. In
a favorable case, this would be a small set.

Additional assumptions may simplify the task, e.g. ensuring the
game is symmetric, that strategies are monotonic in some
arguments, etc.
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Computation in the Oligopoly Case

In some case, it may pay to retain the order of the Hotz-Miller
two-step, giving a method that is also close to Ericson and Pakes
(1995) but which rules out many possible policy functions via the
GIV conditions.

1. Find the set of policies that survive the GIV conditions.

2. For each possible structural parameter vector, see if any of
those policies map back into themselves in the dynamic
equilibrium. (by holding the rival’s policy fixed at a
GIV-consistent function and solving the single-firm Bellman
equation for the own-firm policy).
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Computation in the Oligopoly Case
continued

I Various kinds of monotonicity & symmetry can help a lot.

I We have a worked out computational example with private
i.i.d. information plus a discrete serially correlated shock.

I Other good example (not yet computed): continuous oligopoly
investment where one might point-identify the policy.
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An Application

Based on Collard-Wexler (2014), who studies the number of firms
in small-town ready-mix concrete

I data for the years 1994 to 2006, publicly available.

I the N of concrete firms shifted by local construction
employment.

I serially correlated errors but otherwise, like Bresnahan &
Riess, an ordered entry model of N

I parametric policy function, but no estimates of structural
parameters.

I initial conditions set by directly modeling the initial
unobservables

I is no multiple equilibria problem under the Abbring-Campbell
“last in-first out” conditions.
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Our Extension of Collard-Wexler

I variable profit estimated as a function of N from (limited)
public data, outside of the dynamic model.

I a deterministic sunk entry cost & a log-normal per-period
fixed cost

I four unknown structural dynamic parameters: sunk cost &
mean fixed cost, plus the standard deviation & serial
correlation of the unobservable

I We also use the Abbring and Campbell (2010) model of the
number of firms in dynamic oligopoly, with their “refinement”
to unique equilibrium.

I We have an initial conditions problem
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Our Approach

I N ∈ {0, 1, 2}

I For set estimation, we use a large number of inequalities and
employ the inference method of Chernozkukov, Chetverikov,
and Kato (2018)

I moments include all the 2-period transition core sets + over
12 periods “any entry,” “never entry,” “N always = 0”, etc.,
plus unions of these

I For now, we use a coarse grid search, recent computational
methods could be much better.
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IVs in the Data Example

Our instruments for the initial conditions is long-term past income
growth, which would have encouraged a local construction
industry. We assume that current cement profits demand on
current construction profits, which are shifted by construction
employment and the unobservable.

Note also that (discretized) within sample variation in the demand
shifter also aids identification, as does the long times series in the
panel and the multiple levels of N (not just binary entry).
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A Simple Dataset

A balanced panel of 428 markets over the period 1994-2004.

Variable Mean St.Dev. Min Max

Number of plants 0.79 0.69 0.00 2.00
Construction Employment 454 524 3 5,857
Household Income Growth 1969-1989 0.15 0.11 -0.18 0.69

Table: Summary statistics.
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Structural Estimation: Probabilities of Test Sets
simulation

For some test sets, the probabilities are hard to compute, so use a
simulation procedure to obtain test sets. For a given observable
event and a given candidate policy function, we

I take many draws for the unobservables

I obtain the equilibrium number of firms over time implied by
the candidate policy function

I compute the fraction of markets where the event E occurs

This gives us the probability on the r.h.s. of the Chesher-Rosen
inequality. On the l.h.s. we simply have the probability of the
event E , conditional on values of the instruments.
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A Simple Dataset

A balanced panel of 428 markets (smallish towns) over the period
1994-2004.

Variable Mean St.Dev. Min Max

N 0.79 0.69 0.00 2.00
Construction Employment 454 524 3 5,857
Household Income Growth 1969-1989 0.15 0.11 -0.18 0.69

Table: Summary statistics.
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A Descriptive Ordered Probit

Log Construction Employment 0.30∗∗ 0.31∗∗ 0.36∗∗ 0.36∗∗

Income Growth 1969-1989 0.43∗∗ 0.43∗∗ 0.55∗∗ 0.55∗∗

Year Fixed Effects × ×
State Fixed Effects × ×
Likelihood-Ratio Test p-value 0.00 0.00 0.00 0.00

Table: Ordered probit results. Dependent variable is number of plants. ∗∗

denotes significance at the 95% level.
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Confidence Set for 2 of the Parameters

Figure: Autocorrelation and sunk cost: Projection of 95% confidence sets
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Policy Counterfactual Using the Concrete Data

To mimic a technological improvement, we simulate a decrease in
the sunk cost by 0.25, corresponding to 17% of its initial level and
summarize changes after 5 years.

GIV Hotz-Miller

Change in # firms (0.04,0.07) (0.33,0.36)
Old firms exiting (0.08,0.13) (0.29,0.32)
New firms entering (0.12,0.19) (0.64 0.66)

Table: Subsidy to entry (95% confidence intervals)
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Conclusion
I Market structure in dynamic IO models should not be

assumed to be exogenous.

I General IV models are one natural way to handle the
econometric endogeneity of states, while preserving much of
the intuition of existing two-step methods.

I Intuition of IV: past exogenous shifters (and regulation, etc)
are correlated with today’s state.

I May have set-identified policies and/or structural parameters.
The data, the IV restriction and Bellman’s equation together
restrict the identified set.

I Empirical policy applications are feasible using current
methods

Needed: more applications!
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