Intertemporal Elasticity of Substitution with Leisure Margin

Takeshi Yagihashi, Ph.D. ${ }^{1}$; Juan Du, Ph.D. ${ }^{2}$
${ }^{1}$ Ministry of Finance Japan, ${ }^{2}$ Old Dominion University

Abstract

This paper investigates whether the estimation of the intertemporal elasticity of substitution of consumption (IES) would be affected when leisure time is allowed to vary. To this end, we adopt a utility specification that allows interactions between consumption and leisure and estimate IES using a pair of Euler equations. We find that the IES estimates that allow leisure to respond to the market interest rate are consistently lower than the IES estimates using the conventional method that keeps leisure constant. We show that time spent on home production explains majority of the difference between the two IES estimates due to the higher substitutability of home production time, particularly the childcare component, compared with other leisure time. When we exclude home production from nonmarket time, we find the IES estimates become larger. Our findings demonstrate the importance of time allocation when individuals make decisions on consumption and saving.

Motivation

Why leisure margin? Existing studies typically estimate IES while holding leisure constant or ignore the role of leisure by assuming additively separable utility function. Heckman (1974) argues that nonzero cross-partial of marginal utility for consumption and leisure $u_{c l}$, is the key to understanding the humpshaped life-cycle profile of consumption.

1. Joint decision on consumption and leisure: people adjust both consumption and leisure time in response to the interest rate. Allowing adjustment at the leisure margin may effectively lower the response of consumption. IES with leisure held constant would not capture this margin (\rightarrow Fig. 1a).
2. Leisure is not the same as nonmarket time: leisure time is heterogeneous in nature and the strength of substitution between consumption and leisure time is also different, with childcare and housework showing the strongest substitution and exercise showing the weakest (\rightarrow Fig. 1b)

Main Result

Leisure-varying IES $\theta^{c l}$ is lower than leisure-held-constant IES $\theta(\rightarrow$ Tab. 1a). Robust to different controls (\rightarrow Tab. 1b).
Leisure-varying IES estimated using "nonwork time" (nonmarket time less home production) is larger than the IES estimated using nonmarket time. We find childcare time is highly substitutable with consumption (\rightarrow Tab. 1c, Fig. 2).

Tab. 1b. Result with Different Controls

$9^{\text {at }}$	${ }_{0}^{(20)}$	${ }_{\text {b }}^{\text {(b) }}$	${ }_{0}^{\text {(c) }} 0.113^{\text {a }}$	${ }_{\text {d }}^{\text {(d) }}$	${ }_{\text {col }}^{\text {(a) }}$
	${ }^{(0.000)}$.	(0.000)	(0.00)	(10.009)	(0.009)
${ }^{\theta}$	${ }_{\text {cosem }}^{0.304}$		come		
x	3,358*		cince	${ }^{2} 7080$	${ }^{2} .828 .3$
$\Delta \ln ($ adutin		0.241 +	0.035	0.031	0.001
$\Delta \ln ($ adinf		(0.000)	(0.496)	(0.454)	(0.086)
$\Delta \ln$ (children)		-0.022"]	-0.023	-0.030	-0.024*'
Asingle			$0_{0} .525^{\prime \prime}$	0.375	$0.829 . \cdots$
			(10.00)	(0.090)	(0.000)
\triangle spouse fultime			-0.203**	-0.148\%	
\triangle spouse nommk			$\underset{\substack{-1.818 \ldots \\ \text { (0.000) }}}{ }$	$\xrightarrow{-2.060 .}$	
\triangle spouse salary				-0.107"\%	
\triangle ather CU salary					-0.0390]
Sargan eritrion	$\begin{aligned} & 61.107 \\ & 0.070) \\ & \hline 107 \end{aligned}$		${ }_{\text {coin }}^{\text {60.867 }}$ (0.77)		$\begin{aligned} & 62.011 \\ & (0.712) \end{aligned}$
${ }_{\substack{\text { Concave utility? } \\ C \\ C \text { and } I \text { arc }}}$	${ }_{\text {Yes }}^{\text {Yes }}$	$\underset{\text { Yos }}{\substack{\text { Yes }}}$	$\underset{\text { Yos }}{\substack{\text { Yes }}}$	Yes	$\underset{\text { Yes }}{\substack{\text { Yes }}}$
$\underset{\substack{C \text { and } \\ \text { surce } \\ \text { substutes? }}}{ }$			Yes	Yes	Yes

Tab. 1a. Comparing $\theta^{c l}$ with θ

Leisure-varying IES $\theta^{\text {cl }}$	Leisure-constant IES θ
$0.115^{* * *}$	$0.327^{* * *}$

Tab. 1c. Estimates of $\theta^{c l}$ with different leisure measures

Benchmark Using nonmkt time	Using nonmkt less housework	Using nonmkt less childcare	Using nonwork time
$0.115^{* * *}$	$0.133^{* * *}$	$0.190^{* * *}$	$0.240^{* * *}$

Note: $\theta^{c l}$ is constructed based on Equation (9) in the main text and for the null hypotheses Ho: $\mathrm{H}^{\mathrm{d} D=}=0$, we
use Wald-type of tests and the dela mod ise Wald-type of tests and the delta method to
estimate the standard errors. The number in the cstimate the standard errors. The number in the
parentheses represents the p-value for the test. $* * *$
$* *$ and $*$ tepresent statisticel singifer $* *$ and $*$ represent statistical significance at the 1%
5%, and 10% level, respectively. The instruments in 5%, and 10% level, respectively. The instruments in
(a)-(c) include the sceond, third, and fourth lags of consumption growth, leisure erowth, nominal inter
rate, inflation, and labor income growth, and the scond and third lag of the number of, and second and third lag of the number of adults,
children, and elderly (those older than 64), number of
carners, single status, whecther the spouse works fullcarrers, single status, whecterer the spouse works fuil-
time, spouses time, spouses nonmarket time, average age, ase
squared, and three seasonal dummies. The squared, and three seasonal dummies. The
instruments in (d)-(e) further include the second instruments in (d)-(c) further include the second,
third, and fourth lags of spouse salary and salary of
other CU members respetively ln dis other CU members, respectively. In addition
variabes presented int the tale, , trecesasonal
dummies are also included in estimation.

1b. Life Cycle Profile
Leisure Measures

Note: The panels plot the average cohort leisure by age. Each line segment represents one cobort and the sample period of
$1996-2014$ in the CEX. All leisure measures are predicted using data from the ATUS and the CEX and apply for employed persons.

Specific Time Use

Methods

Allow nonseparability of consumption C and leisure L

- Assume utility function of King-Plosser-Rebelo form

$$
u\left(C_{t}, L_{t}\right)=(1-\gamma)^{-1} C_{t}^{1-\gamma} L_{t}^{\chi(1-\gamma)}
$$

- Allow leisure to respond to interest rate while wage held constant (cf. Swanson, 2012). IES becomes

$$
\theta^{c l} \equiv[\gamma-\chi(1-\gamma)]^{-1}
$$

Estimate IES combining consumption and estimated leisure using individual data

- Consumer Expenditure Survey (CEX, main data): Sample 1996-2014
- Combine synthetic cohort approach and General Method of Moments a la Attanasio and Weber (1995)
- Sample: individuals who are working, age 21-45 in 1996, quarterly frequency Estimating two Euler equations for consumption and leisure jointly
Check sensitivity of IES using three different leisure measures
Three Leisure measures: nonmarket time less housework, nonmarket time less childcare, nonwork time (=nonmarket time less housework and childcare)
For these additional leisure measures, we used American Time Use Survey (ATUS) to predict the fraction of leisure time over nonmarket time

Additional Findings

Subsample analysis: We confirm that the main findings also apply to the subsamples distinguished by gender, education, and stock-holding status (\rightarrow Fig. 3).
Gender difference: The IES for men (0.02) is lower than IES for women (0.18). For men, the IES falls sharply from 0.11 in the case when nonwork time is used as leisure measure to 0.02 when nonmarket time is used instead. This suggest that men actively substitute consumption and home production. This is not the case for women (\rightarrow Fig. 3, panel (a))
Spouse's leisure: When joint leisure is considered, the leisure-varying IES falls from 0.115 to 0.006 for nonmarket time and from 0.240 to 0.147 for nonwork time, suggesting spouse's leisure serves as an additional channel of consumption smoothing (results shown in the working paper).

Summary

We endogenized leisure in estimating IES, which has not been done by previous studies. Our results show that adjustment at the leisure margin is highly relevant in estimating the IES (0.115 , as opposed to 0.3 or higher). We show that substitutability of home production time (in particular childcare) matters in the IES estimates.

Contact

Takeshi Yagihashi (Presenter)
Policy Research Institute, Ministry of Finance, Japan
Email: takeshi.yagihashi@mof.go.jp
Website: https://sites.google.com/site/takeshiyagihashi/
Juan Du
Economics Department, Old Dominion University
Email: jdu@odu.edu

References

Attanasio, Orazio P. and Guglielmo Weber (1995), "Is Consumption Growth Consistent with Intertemporal Optimization? Evidence from the Consumer Expenditure Survey," Journal of Political Economy, 103(6), 1121 1157.

Heckman, James J. (1974), "Life cycle consumption and labor supply: An explanation of the relationship between income and consumption over the life cycle," The American Economic Review, 64(1), 188-194. Swanson, Eric T. (2012), "Risk aversion and the labor margin in dynamic equilibrium models," The American Economic Review, 102(4), 1663-1691.

