Explaining International Business Synchronization: Recursive Preferences and the Terms of Trade Channel

(Forthcoming in: Open Economies Review, 2019) Robert Kollmann, Université Libre de Bruxelles & CEPR

Contact: robert_kollmann@yahoo.com, www.robertkollmann.com

Abstract

 Business cycles of advanced economies are synchronized. Standard models cannot explain this. • This paper: simple two-country model with high endogenous business cycle correlation • Key ingredients: <u>recursive</u> intertemporal preferences (Epstein-Zin-Weil) and <u>muted</u> wealth effect on labor supply (GHH preferences and demand-determined

Intertemporal marginal rate of substitution (IMRS) depends on future life-time utility

$$\rho_{i,t+1} \equiv \beta \frac{\partial u_{i,t+1}}{\partial u_{i,t}} \frac{\partial C_{i,t+1}}{\partial C_{i,t}} \left(\frac{U_{i,t+1}}{(E_t U_{i,t+1}^{1-\gamma})^{1/(1-\gamma)}} \right)^{\sigma-\gamma}$$

Efficient risk sharing $\rho_{H,t+1}/\rho_{F,t+1} = RER_{t+1}/RER_t$

Standard assumption: $\gamma > \sigma = 1/IES$ (preference for early resolution of uncertainty)

employment under rigid wages)

- Key mechanism: recursive preferences magnify termsof-trade response to country-specific shocks
- \Rightarrow A productivity increase in a given country triggers a strong improvement on foreign terms of trade
- \Rightarrow Increase in foreign labor demand
- \Rightarrow With muted labor wealth effect, foreign hours & GDP \uparrow
- \Rightarrow domestic and foreign GDP are synchronized in model!

Endogenous international shock transmission

Not plausible that world business cycle is solely driven by common (world-wide) shocks: demand & supply shocks are LESS correlated across countries than GDP. **E.g., GDP is more correlated internationally than GDP!**

Corr. across US & aggreg. of 13 other OECD countries: **TFP: 0.13. GDP: 0.45 (quarterly growth rates)**

 Unexpected RISE in future life-time utility LOWERS **IMRS:** Consumption & life-time utility are 'substitutes'

- Positive TFP shock in country H: •Relative consumption of country H \uparrow •Relative life-time utility of country H \uparrow •RER of country H <u>depreciates</u> strongly
- \Rightarrow Relative price of good H \downarrow Terms of trade of country H worsen, **Terms of trade of country F improve**

Foreign terms of trade <u>improvement</u> RAISES foreign marginal product of capital & labor, in final good units \Rightarrow Foreign Investment and labor demand \uparrow

Quantitative results

Predicted moments: Flexible wage vs. Rigid wage

Role of: KPR/GHH utility; risk aversion (γ)

	Flexible wage				/	Predet	erm. wage	
	KPR		GHH			KPR	GHH	
	γ =1/IES	γ =50	γ=1/IES	γ =50		γ =50	γ =50	Data
• · · ·	(1)	. ⁽²⁾	(3)	(4)		(5)	(6)	(7)
Standard deviations (%)								
GDP	0.82	0.85	0.90	0.84		1.36	1.36	0.81
Standard deviations relative to GDP								
С	0.22	0.25	0.48	0.39		0.48	0.72	0.66
Labor	0.61	0.63	0.67	0.61		1.07	1.03	0.89
RER	0.37	1.51	0.16	1.53		0.95	0.95	3.03
Cross-country correlations								
GDP	0.23	0.14	0.14	0.35		0.52	0.47	0.45
С	0.13	-0.02	-0.30	0.65		0.69	0.69	0.35
	0.19	0.34	0.21	0.64		0.70	0.54	0.34
Labor	0.38	0.15	0.15	0.62		0.73	0.61	0.43
Hansen-J								
	0.002	0.257	0.002	0.225		0.257	0.225	

 \Rightarrow INTERNAT. BIZ CYCLE SYNCHRONIZATION MUST **PARTLY BE ENDOGENOUS: SYNCHRONIZED DOMESTIC &** FOREIGN RESPONSES TO COUNTRY-SPECIFIC SHOCKS • Problem: existing models do NOT generate strong endogenous international shock transmission. • MODEL HERE GENERATES STRONG INTERNATIONAL TRANSMISSION OF TFP SHOCKS, DUE TO STRONG **TERMS-OF- TRADE CHANNEL**

The model

Simple two-country (Home, Foreign) structure:

- 2 traded goods, local spending bias
- Each country produces 1 traded good (from K & L)
- Complete financial markets
- Exogenous persistent TFP shocks

HJ bound=std(IMRS)/E(IMRS); Sharpe ratio=E(Rx)/std(Rx); SR≤HJ. Rx: excess return; historical SR equity: 0.22

• Period utility $\mathcal{U}_{i,t}(C_{i,t},L_{i,t}) = \frac{1}{1-\sigma} [\psi_{i,t}(C_{i,t},L_{i,t})]^{1-\sigma} \sigma > 0, \sigma \neq 0$ • Recursive EZW intertemporal preferences: $U_{i,t} = \{ (1-\beta) \cdot [\psi_{i,t}(C_{i,t},L_{i,t})]^{1-\sigma} + \beta \cdot [E_t U_{i,t+1}^{1-\gamma}]^{(1-\sigma)/(1-\gamma)} \}^{1/(1-\sigma)}$ σ : 1/IES intertemporal elasticity of substitution (IES) γ : coefficient of risk aversion (CRA) **NB** When $\gamma = \sigma$: time-separable utility

Conclusion

 Paper has developed simple DSGE model that solves the 'international correlation puzzle':

- Country-specific productivity shocks generate sizable cross-country correlations of GDP, investment, Labor.
- Real exchange rate is volatile
- Key ingredients (BOTH are needed!)
- \blacktriangleright recursive intertemporal preferences (\Rightarrow volatile RER)
- \blacktriangleright weak wealth effect on labor supply (\Rightarrow positive international shock transmission, via t.o.t. channel)