Trade and Productivity Dynamics during Sudden Stops

Felipe Benguria
University of Kentucky

Hidehiko Matsumoto
Bank of Japan

Felipe E. Saffie
University of Maryland

January 5, 2019

Very Preliminary

The views expressed in this paper are those of the author(s) and do not necessarily reflect the official views of the Bank of Japan.
Introduction

- Sudden stops in developing countries:
 - Reversal of net export and current account
 - Sharp drops in output, consumption, investment, and asset prices
 - Modeled in DSGE framework by Mendoza (2010) and subsequent literature

- Recent studies on sudden stops show:
 - Persistently lower output suggests slowdown of productivity growth
 - Exchange rate depreciation has differential impacts on imports and exports

- This paper:
 - Incorporate growth and trade dynamics into DSGE model
 - Study welfare implications of growth and trade dynamics
This Paper

Model features:

- Endogenous sudden stops by collateral constraint (Mendoza (2010))
- Endogenous firm dynamics and productivity growth (Ates and Saffie (2014), Matsumoto (2017))
- Endogenous exporting decisions (Alessandria and Choi (2018))
- Calibrated to product-level firm-size distribution in Chile

Result preview:

- Sudden stops slow down productivity growth, causing persistently lower output
- Real depreciation causes expansion of extensive margin of exports
- 38% of welfare loss by sudden stops comes from lower productivity
- Expansion of extensive margin of exports mitigates welfare loss by 36%
Model
Model Overview

- Small open economy with tradable and non-tradable sector
- Occasionally binding borrowing constraint triggers sudden stops
Model Overview

- Intermediate goods can be imported and exported
- Firm dynamics determine productivity growth and trade margins
Final Tradable Sector

- Production function:
 \[Y_T^T = \exp(\varepsilon^A_t) \exp \left[\int_0^1 \ln(y_t(i)) \, di \right] \]

- Borrow from abroad on behalf of households

- Own and rent productive asset \((L_t = 1)\) to intermediate firms

\[
\max_{\{\{y_t(i)\}_{i=0}^1, B_t, L_t\}} \quad \mathbb{E}_0 \sum_{t=0}^{\infty} \left[\beta^t \lambda_t \Pi_T^T \right]
\]

\[
\Pi_T^T = Y_T^T - \int_0^1 p_t(i) y_t(i) \, di - B_t + R_{t-1} B_{t-1} - Q_t L_t + (Q_t + R_t^L) L_{t-1}
\]

- Borrowing constraint: \(-B_t + \phi \left[\int_0^1 p_t(i) y_t(i) \, di \right] \leq \kappa Q_t L_{t-1}\)
Final Tradable Sector: FOCs

- Demand for each type of intermediate good \(i \):

\[
y_t(i) = \frac{Y_t^T}{p_t(i)} \frac{1}{1 + \phi \mu_t / \lambda_t}
\]

 - When constraint binds, \(\mu_t > 0 \), and demand falls

- FOC w.r.t. asset \(L_t \):

\[
Q_t = \beta E_t \left[\lambda_{t+1} \left(Q_{t+1} + R_{t+1}^L \right) + \kappa \mu_{t+1} Q_{t+1} \right] \frac{1}{\lambda_t}
\]

 - When constraint binds, \(\lambda_t \uparrow \), and asset price \(Q_t \) drops

 \(\rightarrow \) Tightens borrowing constraint, and triggers amplification effect
Intermediate Sector: Overview

- Each firm is a collection of product lines
- Production function: \(y_t(i) = a_t(i) (\ell_t(i))^\alpha (h_t(i))^{1-\alpha} \)
Exporting Innovation

- Domestic firms invest in their own lines to start exporting
- Exporting lines sell products both in domestic and foreign market

![Graph showing productivity and product lines with labels: domestic firm 1, domestic firm 2, importing line, and equations involving a0(D).]
Domestic Innovation

- Domestic innovation replaces other firms for product lines
- Size of domestic firms endogenously expands and shrinks

![Diagram showing productivity levels for domestic firms and importing lines.](image_url)
Foreign Innovation

- Some types of intermediate goods are imported
- Foreign innovation happens exogenously

Productivity

(1 + σ_X) a_1(X)
(1 + σ_D) a_3(D)
(1 + σ_X) a_5(M)
a_6(M)

Product line

i ∈ [0,1]
Domestic Entry

- Domestic entry replaces incumbent firms for a product line
- A new firm starts with a single domestic line

Productivity

- $a_2(D)$
- $(1 + \sigma_D)a_3(D)$
- $a_4(X)$
- $(1 + \sigma_D)a_5(M)$
- $(1 + \sigma_D)a_6(D)$

Product line $i \in [0,1]$

- Domestic firm 1
- Domestic firm 2
- Importing line
- Domestic firm 3
Intermediate Sector: Profit

- **Profit in the domestic market:**

\[
\pi^s_t(i) = \left(1 - \frac{MC_t(i)}{\bar{MC}_t(i)}\right) Y_t^T \frac{1}{1 + \phi \mu_t / \lambda_t} = \left(\frac{\sigma_s}{1 + \sigma_s}\right) Y_t^T \frac{1}{1 + \phi \mu_t / \lambda_t}
\]

 - \bar{MC}_t: marginal cost for domestic rival firms
 - $1 + \sigma_s$: productivity lead by productivity leader over follower, $s = D, X$

- **Profit in the foreign market:**

\[
\pi^*_t(i) = \left(1 - \frac{MC_t(i)}{\bar{MC}_t(i)}\right) Y_t^* = \left(1 - \frac{(1 + \xi) (R^L_t)^{\alpha} (W_t)^{1-\alpha}}{(1 + \sigma_X) (R^*_t)^{\alpha} (W^*_t)^{1-\alpha}}\right) Y_t^*
\]

 - \bar{MC}_t: marginal cost for foreign rival firms
 - Cheaper factor prices $R^L_t, W_t \rightarrow$ Higher profit
Firms invest final tradable goods for innovation:

- Domestic: $i^D_t(Z^D_t)E_t[\Lambda_{t,t+1}V_{t+1}^D] = 1$

- Exporting: $(1 - d_t)i^X_t(Z^X_t)(E_t[\Lambda_{t,t+1}V_{t+1}^X] - E_t[\Lambda_{t,t+1}V_{t+1}^D]) = 1$

Non-tradable goods are produced using labor

Households consume C_t^T, C_t^N, supply labor, receive profits from firms, and invest to start new firms.
Quantitative Analysis
Calibration: Firm-Level Data in Chile

- One period is one year
- Standard parameters are set to standard values
- Target product-level firm data in Chilean economy

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Target</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>η^E</td>
<td>1.98</td>
<td>Share of single-good non-exporters 38.3%</td>
<td>39.6%</td>
</tr>
<tr>
<td>η^D</td>
<td>4.05</td>
<td>Non-exporters' average products 2.07</td>
<td>2.01</td>
</tr>
<tr>
<td>η^X</td>
<td>1.42</td>
<td>Share of single-good exporters 14.9%</td>
<td>15.1%</td>
</tr>
<tr>
<td>σ^D</td>
<td>0.06</td>
<td>Average growth rate 2.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>σ^X</td>
<td>0.38</td>
<td>Relative profits non-exporters/exporters 26.2%</td>
<td>26.1%</td>
</tr>
<tr>
<td>Y^*</td>
<td>0.79</td>
<td>Export revenue share for exporters 35.9%</td>
<td>34.3%</td>
</tr>
</tbody>
</table>

- Shocks: TFP of final tradable production ε^A_t and interest rate ε^R_t
 - Taken from Mendoza (2010)
 - 2-state joint Markov process with negative correlation
Product-Level Firm-Size Distribution

Non-exporters’ product distribution

Exporters’ product distribution

Benguria, Matsumoto, Saffie

Trade Dynamics during Sudden Stops

Calibration 12
Simulation and Sudden Stops

- Simulate 10,000 periods with stochastic shocks, drop first 1,000 periods

- Sudden stops:
 - Current account-to-GDP is more than two standard deviations above its mean
 - Unconditional probability is 7.7%, in line with other papers
Large capital inflows and economic boom precede sudden stops

Reversal of goods shocks to bad shocks trigger sudden stops
• Lower marginal cost boosts exporting innovation during SS
• Expansion of extensive margin of exports, in line with empirical fact
Productivity and Welfare Loss

- Set initial state at the average of period $t - 1$ in previous simulations

- Compare two economies:
 - Economy 1: feed a good shock at period 1
 - Economy 2: feed a bad shock at period 1, which triggers a sudden stop

- Random simulation for the following periods

- Compare the average productivity paths and expected welfare
Productivity and Welfare Loss

- Productivity level falls below trend by 0.19% on impact, and slow recovery

<table>
<thead>
<tr>
<th>Economy</th>
<th>Welfare Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>-0.068%</td>
</tr>
</tbody>
</table>
Productivity and Welfare Loss

<table>
<thead>
<tr>
<th>Economy</th>
<th>welfare loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>-0.068%</td>
</tr>
<tr>
<td>g_t from no SS</td>
<td>-0.042%</td>
</tr>
</tbody>
</table>

- Take productivity growth g_t from no-SS economy and feed into SS economy
- Lower productivity accounts for 38% of welfare loss by sudden stop
Productivity and Welfare Loss: Domestic Innovation

- Take domestic innovation i_t^D from no-SS economy and feed into SS economy
- Lower domestic innovation accounts for most of productivity and welfare loss

<table>
<thead>
<tr>
<th>Economy</th>
<th>Welfare Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>$-0.068%$</td>
</tr>
<tr>
<td>g_t from no SS</td>
<td>$-0.042%$</td>
</tr>
<tr>
<td>i_t^D from no SS</td>
<td>$-0.046%$</td>
</tr>
</tbody>
</table>
Productivity and Welfare Loss: Exporting Innovation

Exporting innovation helps productivity recovery and reduces welfare loss
Conclusion

- Small-open-economy model with following features:
 - Endogenous sudden stops by collateral constraint
 - Endogenous firm dynamics and growth
 - Endogenous extensive margins of trade
 - Product-level distribution matches the data

- Sudden stop dynamics:
 - Sudden stops cause persistently lower productivity and output
 - Extensive margin of exports expands through real depreciation
 - 38% of welfare loss by sudden stops comes from lower productivity
 - Expansion of export extensive margin reduces welfare loss by 36%
Appendix
Maximization problem:

$$\max_{\{y_t(i)\}_{i=0}^1, B_t, L_t} \quad \mathbb{E}_0 \sum_{t=0}^{\infty} [\beta^t \lambda_t \Pi^T_t]$$

$$\Pi^T_t = Y^T_t - \int_0^1 p_t(i) y_t(i) di - B_t + R_{t-1}B_{t-1} - Q_tL_t + (Q_t + R^L_t)L_{t-1}$$

Output - cost

Net foreign asset

Asset holding and return

$$-B_t + \phi \left[\int_0^1 p_t(i) y_t(i) di \right] \leq \kappa Q_t L_{t-1}$$

FOCs:

$$y_t(i) = \frac{Y^T_t}{p_t(i)} \frac{1}{1 + \phi \mu_t / \lambda_t}$$

$$\lambda_t - \mu_t = \beta R_t \mathbb{E}_t [\lambda_{t+1}]$$

$$Q_t = \frac{\beta \mathbb{E}_t [\lambda_{t+1} (Q_{t+1} + R^L_{t+1}) + \kappa \mu_{t+1} Q_{t+1}]}{\lambda_t}$$
Intermediate Firms’ Profit

- Marginal cost for production:
 \[MC_t(i) = \frac{1}{a_t(i)} \alpha^{-\alpha}(1 - \alpha)^{-(1-\alpha)} \left(R_t^L \right)^\alpha (W_t)^{1-\alpha} \]

- Intermediate firms’ profit:
 \[\pi_t^s(i) = p_t(i)y_t(i) - R_t^L \ell_t(i) - W_t h_t(i) \]

- Using optimal price \(p_t(i) = \widehat{MC}_t(i) \) and demand function \(y_t(i) = Y_t^T / p_t(i) \)

 \[\pi_t^s(i) = p_t(i)y_t(i) - MC_t(i)y_t(i) = Y_t^T - MC_t(i) \frac{Y_t^T}{p_t(i)} \]

 \[= \left(1 - \frac{MC_t(i)}{\widehat{MC}_t(i)} \right) Y_t^T \]
Domestic Product Line

- Value of a firm satisfies:

\[V_t (n^D, n^X) = n^D V_t (1, 0) + n^X V_t (0, 1) \]

- Value of a domestic product line

\[V_t (1, 0) = \max_{Z^D_t, Z^X_t} \pi_t^D - Z^D_t - Z^X_t \]

\[+ \left[i^D (Z^D_t) + (1 - d_t) \left(1 - i^X (Z^X_t) \right) \right] E_t [\Lambda_{t+1} V_{t+1} (1, 0)] \]

\[+ \left[(1 - d_t) i^X (Z^X_t) \right] E_t [\Lambda_{t+1} V_{t+1} (0, 1)] \]

- FOC w.r.t. \(Z^D_t \):

\[\eta^D \frac{1}{\rho^D} \left(\frac{Z^D_t}{A_t} \right)^{1/\rho-1} \frac{1}{A_t} E_t [\Lambda_{t+1} V_{t+1} (1, 0)] = 1 \]

- FOC w.r.t. \(Z^X_t \):

\[(1 - d_t) \eta^X \frac{1}{\rho^X} \left(\frac{Z^X_t}{A_t} \right)^{1/\rho-1} \frac{1}{A_t} (E_t [\Lambda_{t+1} V_{t+1} (0, 1)] - E_t [\Lambda_{t+1} V_{t+1} (1, 0)]) = 1 \]
Exporting Product Line

- Value of an exporting product line

\[V_t(0, 1) = \max_{Z_t^D} \pi_t^X + \pi_t^* - Z_t^D \]
\[+ i^D(Z_t^D)E_t[\Lambda_{t,t+1}V_{t+1}(1, 0)] \]
\[+ (1 - d_t)E_t[\Lambda_{t,t+1}V_{t+1}(0, 1)] \]

- FOC w.r.t. \(Z_t^D \):

\[\eta^D \frac{1}{\rho^D} \left(\frac{Z_t^D}{A_t} \right)^{1/\rho-1} \frac{1}{A_t} E_t[\Lambda_{t,t+1}V_{t+1}(1, 0)] = 1 \]

- FOC for domestic entry by households:

\[\eta^E \frac{1}{\rho^E} \left(\frac{Z_t^E}{A_t} \right)^{1/\rho-1} \frac{1}{A_t} E_t[\Lambda_{t,t+1}V_{t+1}(1, 0)] = 1 \]
Extensive Margins of Trade

- **Share of domestic lines:**
 \[\theta^D_t = \theta^D_{t-1} + (1 - \theta^D_{t-1}) \left(e_t + \left(\theta^D_{t-1} + \theta^X_{t-1} \right) i^D_t \right) \]
 - entry and domestic innov.
 - on exporting and foreign lines
 \[- \theta^D_{t-1} \left(i^X_t + i^F \right) \]
 - exporting and foreign innov.
 - on domestic lines

- **Share of exporting lines (extensive margin of export):**
 \[\theta^X_t = \theta^X_{t-1} + \theta^D_{t-1} i^X_t \]
 - exporting innov.
 \[- \theta^X_{t-1} \left(e_t + \left(\theta^D_{t-1} + \theta^X_{t-1} \right) i^D_t + i^F \right) \]
 - entry, domestic and foreign innov.
 - on exporting lines

- **Share of importing lines (extensive margin of import):**
 \[1 - \theta^D_t - \theta^X_t\]
Growth in average productivity:

\[
\frac{A_{t+1}}{A_t} = (1 + \sigma^D) e_t + (\theta^{D}_{t-1} + \theta^{X}_{t-1}) i^D_t (1 + \sigma^X) \theta^{D}_{t-1} i^{HX}_{t} (1 + \sigma^X) i^F
\]

Replacement rate:

\[
d_t = (\theta^{D}_{t-1} + \theta^{X}_{t-1}) i^D_t + e_t + i^F
\]

Asset and labor allocations:

\[
1 = \theta^{D}_{t-1} \ell^D_t + \theta^{X}_{t-1} \left(\ell^X_t + \ell^*_t \right)
\]

\[
H_t = \theta^{D}_{t-1} h^D_t + \theta^{X}_{t-1} \left(h^X_t + h^*_t \right) + H^N_t
\]
Maximization problem:

$$\max_{\{C^T_t, C^N_t, H_t, Z^E_t\}_{t=0}^\infty} E_0 \sum_{t=0}^\infty \left[\ln \left(C_t - A_t \frac{(H_t)^\omega}{\omega} \right) \right]$$

$$C_t = \left[(\gamma)^{1/\varepsilon} (C^T_t)^{\frac{\varepsilon-1}{\varepsilon}} + (1 - \gamma)^{1/\varepsilon} (C^N_t)^{\frac{\varepsilon-1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon-1}}$$

subject to

$$C^T_t + P_t C^N_t + Z^E_t = W_t H_t + \Pi^T_t + \Pi^N_t + \theta^D_t \left(\pi^D_t - Z^D_t - Z^X_t \right) + \theta^X_{t-1} \left(\pi^X_t + \pi^*_t - Z^D_t \right)$$

FOCs:

$$\frac{C^T_t}{C^N_t} = \frac{\gamma}{1 - \gamma} (P^N_t)^\varepsilon$$

$$A_t (H_t)^{\omega-1} = W_t \left(\gamma \frac{C_t}{C^T_t} \right)^{1/\varepsilon}$$

and \(\lambda_t \) is given by:

$$\lambda_t = \frac{1}{C_t - A_t (H_t)^{\omega}/\omega} \left(\gamma \frac{C_t}{C^T_t} \right)^{1/\varepsilon}$$
\[
TB_t = Y_t^T - C_t^T - Z_t^E - \theta_{t-1}^D \left(Z_t^D + Z_t^X \right) - \theta_{t-1}^X Z_t^D
\]

\[
\text{final tradable output - absorption}
\]

\[\quad + \quad \theta_{t-1}^X Y_t^* \quad - \quad \left(1 - \theta_{t-1}^D - \theta_{t-1}^X \right) \frac{Y_t^T}{1 + \phi \mu_t / \lambda_t}
\]

\[
\text{export of intermediate goods}
\]

\[
\text{import of intermediate goods}
\]

\[
CA_t = TB_t + \left(\exp(\varepsilon_t^R) R - 1 \right) B_{t-1} = B_t - B_{t-1}
\]
<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.96</td>
<td>standard</td>
</tr>
<tr>
<td>R</td>
<td>1.06</td>
<td>standard</td>
</tr>
<tr>
<td>γ</td>
<td>0.31</td>
<td>Bianchi (2011)</td>
</tr>
<tr>
<td>ε</td>
<td>0.6</td>
<td>middle value in literature</td>
</tr>
<tr>
<td>ω</td>
<td>1.455</td>
<td>Mendoza (1991)</td>
</tr>
<tr>
<td>α</td>
<td>0.3</td>
<td>standard</td>
</tr>
<tr>
<td>$1 - \alpha^N$</td>
<td>0.75</td>
<td>Schmitt-Grohe & Uribe (2016)</td>
</tr>
<tr>
<td>ζ</td>
<td>0.21</td>
<td>Anderson & van Wincoop (2004)</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.4</td>
<td>middle value in literature</td>
</tr>
<tr>
<td>κ</td>
<td>0.15</td>
<td>Mendoza (2010)</td>
</tr>
<tr>
<td>ρ</td>
<td>2</td>
<td>Akcigit & Kerr (2015)</td>
</tr>
<tr>
<td>i^F</td>
<td>0.01</td>
<td>small contribution of foreign</td>
</tr>
</tbody>
</table>
Equilibrium of the model economy is defined as follows:

- Initial states $A_{-1}, A^*_1, R_{-1} B_{-1}, \theta^D_{-1}, \theta^X_{-1}$
- Stochastic shocks $\{\varepsilon^A_t, \varepsilon^R_t\}_{t=0}^\infty$
- Tradable producers optimally choose $\{\{y_t(i)\}_{i\in[0,1]}, B_t, L_t\}_{t=0}^\infty$
- Intermediate firms optimally choose $\{p_t(i), \ell^D_t, h^D_t, \ell^X_t, h^X_t, Z^D_t, Z^X_t\}_{t=0}^\infty$
- Non-tradable producers optimally choose $\{H^N_t\}_{t=0}^\infty$
- Households optimally choose $\{C^T_t, C^N_t, H_t, Z^E_t\}_{t=0}^\infty$
- Markets for asset, labor, tradable and non-tradable goods clear
- $\{A_t, A^*_t, \theta^D_t, \theta^X_t\}_{t=0}^\infty$ evolve according to their laws of motion