Interest Rates, Market Power, and Financial Stability

David Martinez-Miera
UC3M and CEPR

Rafael Repullo
CEMFI and CEPR

American Economic Association Annual Meeting
Atlanta, 4 January 2019
Introduction (i)

• Question: How do interest rates affect financial stability?
 → Focus on bank risk-taking
 → Using simple theoretical model
 → Based on “Search for Yield” paper (Econometrica 2017)

• In a competitive setting (like in “Search for Yield”)
 → Lower safe rates lead to higher risk-taking
 → **What happens when we introduce market power?**
Introduction (ii)

• Why do safe rates affect banks’ risk-taking?
 → Safe rates affect banks’ funding costs
 → Impact on loan rates and intermediation margins
 → Impact on banks’ monitoring incentives
 → Impact on loans’ probability of default

• Why is competition relevant?
 → It affects pass-through of funding costs to loan rates
 → It affects margins and monitoring incentives
Main results (i)

• Two cases
 → When banks compete with other banks
 → When banks also compete with market sources of finance

• With inside competition: lower safe rates lead to
 → Higher risk-taking in competitive environments
 → Lower risk-taking in monopolistic environments
Main results (ii)

• With **outside competition**: lower safe rates lead to
 → Higher risk-taking in competitive environments
 → Lower or higher risk-taking in monopolistic environments
 → Which case obtains depends on level of safe rate
 → For low rates higher risk-taking obtains
Part 1

Cournot model of bank competition
Model setup

- Two dates ($t = 0, 1$)
- Three types of risk-neutral agents
 - **Entrepreneurs** have projects that require bank finance
 - **Banks** have to raise funds from (uninsured) investors
 - **Investors** require expected return R_0 (the safe rate)
Entrepreneurs (i)

• Continuum of penniless entrepreneurs have risky projects

 Unit investment → Return = \begin{cases} A, \text{ with prob. } 1 - p + m \\ 0, \text{ with prob. } p - m \end{cases}

→ \(p \) is probability of failure without monitoring
→ \(m \in [0, p] \) is monitoring intensity of lending bank
→ Monitoring reduces probability of failure
Entrepreneurs (ii)

• **Assumption 1**: Decreasing returns to aggregate investment L

\[A(L) = a - bL \]

• **Assumption 2**: Single aggregate risk factor

 → Perfectly correlated project returns (for any given m)

• **Assumption 3**: Free entry of entrepreneurs

 → Enter the loan market until $A(L) = R$ (loan rate)

 → $A(L)$ is the inverse loan demand function
Banks (i)

• There are \(n \) identical banks that compete à la Cournot
 → Strategic variable of bank \(j \) is its lending \(l_j \) to entrepreneurs
 → Total amount of lending is

\[
L = \sum_{j=1}^{n} l_j
\]
Banks (ii)

• **Assumption 1**: Banks have no (inside) capital
 → Entirely funded with uninsured deposits (outside capital)

• **Assumption 2**: Bank monitoring is not contractible
 → Moral hazard problem

• **Assumption 3**: Bank monitoring is costly
 → Cost of monitoring

 \[c(m_j) = \frac{\gamma}{2} m_j^2 \]
Structure of the game

- Three stages

1. Each bank j sets supply of loans $l_j \rightarrow L = \sum_{j=1}^{n} l_j$
 \[\rightarrow \text{This determines the loan rate } R = A(L) \]

2. Banks offer interest rate $B(L)$ to investors

3. Banks (privately) choose monitoring $m(L)$
Characterization of equilibrium (i)

• Banks’ choice of monitoring (given \(L \))

\[
m(L) = \arg \max_m \left[(1 - p + m)[A(L) - B(L)] - c(m) \right]
\]

• Investors’ participation constraint

\[
[1 - p + m(L)]B(L) = R_0
\]

• Two equations with two unknowns

→ Solution gives \(B(L) \) and \(m(L) \)
Characterization of equilibrium (ii)

- Banks’ choice of monitoring requires solving

\[
\max_m \left[(1 - p + m)[A(L) - B(L)] - c(m) \right]
\]

→ First-order condition

\[
\underbrace{A(L) - B(L)}_{\text{Intermediation margin}} = c'(m) = \gamma m
\]

→ Monitoring intensity is proportional to margin
Characterization of equilibrium (iii)

- Banks’ profits per unit of loans

\[\pi(L) = [1 - p + m(L)][A(L) - B(L)] - c(m(L)) \]

- Symmetric Cournot equilibrium condition

\[l^* = \arg \max_{l_j} \left[\pi(l_j + (n-1)l^*)l_j \right] \]
Preliminary result

• Effect of changes in number of banks n on banks’ risk-taking

$$\frac{dm^*}{dn} < 0$$

→ where $m^* = m^*(L^*)$

• Negative effect of competition on financial stability

→ Standard “charter value” result

• What’s the intuition?

→ Higher n reduces intermediation margin and monitoring
Main result

• Effect of changes in safe interest rate R_0 on banks’ risk-taking
 → Depending on the extent of competition in loan market
 → Measured by number of banks n

• Probability of default is $PD = p - m^*$

• Compute effects of R_0 and n on PD
Effects of safe rate and competition on risk
Effects of safe rate and competition on risk

PD

Δn

n

R_0
Summing up

• Competition increases banks’ risk-taking
 → Standard “charter value” result

• With high competition lower rates **increase** banks’ risk-taking
 → “Search for Yield” result

• With low competition lower rates **decrease** banks’ risk-taking
 → Novel result
What’s the intuition?

• Refer to literature on **pass-through** in Cournot oligopoly

• With high competition lower costs have little impact on margins
 → In our case positive margins to cover monitoring costs
 → One can show that margins (and monitoring) go down
 → Riskier banks

• With low competition lower costs have large impact on margins
 → In our case margins (and monitoring) go up
 → Safer banks
Part 2

Introducing market finance
Introducing market finance

Intermediated finance

Investors → Banks → Entrepreneurs

Direct market finance
Introducing market finance

• Suppose that entrepreneurs can also borrow from the market
 → Bond financing

• Assume that market finance entails no monitoring
 → Market interest rate R_M satisfies

 $$(1 - p)R_M = R_0 \quad \rightarrow \quad R_M = \frac{R_0}{1 - p}$$

 → Upper bound on the rate that banks can charge
 → When will the bound be binding?
Effect of market finance on loan rates
Effect of market finance on loan rates

\[R \]

\[R_M \]

\[R_0 \]
Effect of market finance on loan rates

R_M
Characterization of equilibrium

• When the bound is binding banks will choose L_M such that

$$R_M = R(L_M)$$

• Equilibrium characterized by
 → Banks’ choice of monitoring

$$m(B) = \arg \max_m [(1 - p + m)(R_M - B) - c(m)]$$

→ Investors’ participation constraint

$$[1 - p + m(B)]B = R_0$$
Effects of safe rate and competition on risk

PD vs R_0

n values:
- 1
- 2
- 5
- 7
- 10
Summing up

• Competition with outside sources of finance
 → Limits bank’s market power
 → Reduces equilibrium loan rates and intermediation margins
 → Reduces monitoring and increases banks’ risk-taking

• Constraint is binding when interest rates are low
 → In such case lower rates increase banks’ risk-taking
 → Regardless of the degree of competition in loan market
Part 3

Extensions
Extensions

• Effect of alternative funding sources for banks
 → Equity capital [Dell’Ariccia et al. (2014)]
 → Insured deposits

• Effect of competition in deposit market

• Heterogeneous monitoring costs
 → Effect of changes in shares of small and large banks

• Bank entry (and exit)
 → Effect of rates that are “too low for too long”
Concluding remarks
Concluding remarks (i)

• Results are consistent with charter value hypothesis
 → Competition increases banks’ risk-taking
 → In line with current view of bank supervisors
 → However there are models that predict otherwise
Concluding remarks (ii)

• Results show that you can have higher credit and lower risk
 → With high market power lower rates decrease risk-taking
 → No trade-off between credit and financial stability

• Testable implications

\[
Risk = \alpha + \beta_0 \ R_0 + \beta_1 \ HHI + \beta_2 \ R_0 \cdot HHI + \text{Controls}
\]

→ where \(HHI = \text{Herfindahl index} = 1/n \)
Some references

