Interest Rates, Market Power, and Financial Stability

David Martinez-MieraRafael RepulloUC3M and CEPRCEMFI and CEPR

American Economic Association Annual Meeting Atlanta, 4 January 2019

Introduction (i)

- Question: How do interest rates affect financial stability?
 - \rightarrow Focus on bank risk-taking
 - \rightarrow Using simple theoretical model
 - \rightarrow Based on "Search for Yield" paper (*Econometrica* 2017)
- In a competitive setting (like in "Search for Yield")
 - \rightarrow Lower safe rates lead to higher risk-taking
 - → What happens when we introduce market power?

Introduction (ii)

- Why do safe rates affect banks' risk-taking?
 - \rightarrow Safe rates affect banks' funding costs
 - \rightarrow Impact on loan rates and intermediation margins
 - \rightarrow Impact on banks' monitoring incentives
 - \rightarrow Impact on loans' probability of default
- Why is competition relevant?
 - \rightarrow It affects **pass-trough** of funding costs to loan rates
 - \rightarrow It affects margins and monitoring incentives

Main results (i)

- Two cases
 - \rightarrow When banks compete with other banks
 - \rightarrow When banks also compete with market sources of finance
- With **inside competition**: lower safe rates lead to
 - \rightarrow Higher risk-taking in competitive environments
 - → Lower risk-taking in monopolistic environments

Main results (ii)

- With **outside competition**: lower safe rates lead to
 - \rightarrow Higher risk-taking in competitive environments
 - \rightarrow Lower or higher risk-taking in monopolistic environments
 - \rightarrow Which case obtains depends on level of safe rate
 - \rightarrow For low rates higher risk-taking obtains

Part 1

Cournot model of bank competition

Model setup

- Two dates (t = 0, 1)
- Three types of risk-neutral agents
 - \rightarrow Entrepreneurs have projects that require bank finance
 - \rightarrow **Banks** have to raise funds from (uninsured) investors
 - \rightarrow **Investors** require expected return R_0 (the safe rate)

Entrepreneurs (i)

• Continuum of penniless entrepreneurs have risky projects

Unit investment
$$\rightarrow$$
 Return =
$$\begin{cases} A, \text{ with prob. } 1 - p + m \\ 0, \text{ with prob. } p - m \end{cases}$$

 $\rightarrow p$ is probability of failure without monitoring $\rightarrow m \in [0, p]$ is monitoring intensity of lending bank

\rightarrow Monitoring reduces probability of failure

Entrepreneurs (ii)

• Assumption 1: Decreasing returns to aggregate investment L

A(L) = a - bL

• Assumption 2: Single aggregate risk factor

 \rightarrow Perfectly correlated project returns (for any given *m*)

• Assumption 3: Free entry of entrepreneurs

 \rightarrow Enter the loan market until A(L) = R (loan rate)

 $\rightarrow A(L)$ is the inverse loan demand function

Banks (i)

• There are *n* identical banks that compete à la Cournot

 \rightarrow Strategic variable of bank *j* is its lending l_j to entrepreneurs

 \rightarrow Total amount of lending is

$$L = \sum_{j=1}^{n} l_{j}$$

Banks (ii)

• Assumption 1: Banks have no (inside) capital

 \rightarrow Entirely funded with uninsured deposits (outside capital)

• Assumption 2: Bank monitoring is not contractible

 \rightarrow Moral hazard problem

• Assumption 3: Bank monitoring is costly

 \rightarrow Cost of monitoring

$$c(m_j) = \frac{\gamma}{2} m_j^2$$

Structure of the game

- Three stages
 - 1. Each bank *j* sets supply of loans $l_j \rightarrow L = \sum_{j=1}^n l_j$ \rightarrow This determines the loan rate R = A(L)
 - 2. Banks offer interest rate B(L) to investors
 - 3. Banks (privately) choose monitoring m(L)

Characterization of equilibrium (i)

• Banks' choice of monitoring (given *L*)

$$m(L) = \arg \max_{m} \left[(1 - p + m) [A(L) - B(L)] - c(m) \right]$$

• Investors' participation constraint

$$[1-p+m(L)]B(L) = R_0$$

• Two equations with two unknowns

 \rightarrow Solution gives B(L) and m(L)

Characterization of equilibrium (ii)

• Banks' choice of monitoring requires solving

$$\max_{m} \left[(1-p+m)[A(L)-B(L)] - c(m) \right]$$

 \rightarrow First-order condition

$$\underbrace{A(L) - B(L)}_{= c'(m) = \gamma m}$$

Intermediation margin

 \rightarrow Monitoring intensity is proportional to margin

Characterization of equilibrium (iii)

• Banks' profits per unit of loans

$$\pi(L) = [1 - p + m(L)][A(L) - B(L)] - c(m(L))$$

• Symmetric Cournot equilibrium condition

$$l^* = \arg \max_{l_j} \left[\pi (l_j + (n-1)l^*) l_j \right]$$

Preliminary result

• Effect of changes in number of banks *n* on banks' risk-taking

$$\frac{dm^*}{dn} < 0$$

 \rightarrow where $m^* = m^*(L^*)$

• Negative effect of competition on financial stability

 \rightarrow Standard "charter value" result

• What's the intuition?

 \rightarrow Higher *n* reduces intermediation margin and monitoring

Main result

• Effect of changes in safe interest rate R_0 on banks' risk-taking

 \rightarrow Depending on the extent of competition in loan market

 \rightarrow Measured by number of banks *n*

- Probability of default is $PD = p m^*$
- Compute effects of R_0 and n on PD

Effects of safe rate and competition on risk

Effects of safe rate and competition on risk

Summing up

• Competition increases banks' risk-taking

 \rightarrow Standard "charter value" result

- With high competition lower rates increase banks' risk-taking
 → "Search for Yield" result
- With low competition lower rates decrease banks' risk-taking
 → Novel result

What's the intuition?

- Refer to literature on **pass-through** in Cournot oligopoly
- With high competition lower costs have little impact on margins
 - \rightarrow In our case positive margins to cover monitoring costs
 - \rightarrow One can show that margins (and monitoring) go down
 - \rightarrow Riskier banks
- With low competition lower costs have large impact on margins
 - \rightarrow In our case margins (and monitoring) go up
 - \rightarrow Safer banks

Part 2

Introducing market finance

Introducing market finance

Intermediated finance

Direct market finance

Introducing market finance

- Suppose that entrepreneurs can also borrow from the market
 → Bond financing
- Assume that market finance entails no monitoring

 \rightarrow Market interest rate R_M satisfies

$$(1-p)R_M = R_0 \rightarrow R_M = \frac{R_0}{1-p}$$

 \rightarrow Upper bound on the rate that banks can charge \rightarrow When will the bound be binding?

Effect of market finance on loan rates

Effect of market finance on loan rates

Effect of market finance on loan rates

Characterization of equilibrium

• When the bound is binding banks will choose L_M such that

$$R_M = R(L_M)$$

• Equilibrium characterized by

 \rightarrow Banks' choice of monitoring

$$m(B) = \arg\max_{m} \left[(1 - p + m)(R_{M} - B) - c(m) \right]$$

 \rightarrow Investors' participation constraint

$$[1-p+m(B)]B=R_0$$

Effects of safe rate and competition on risk

Summing up

- Competition with outside sources of finance
 - \rightarrow Limits bank's market power
 - \rightarrow Reduces equilibrium loan rates and intermediation margins
 - → Reduces monitoring and increases banks' risk-taking
- Constraint is binding when interest rates are low
 - → In such case **lower rates increase banks' risk-taking**
 - \rightarrow Regardless of the degree of competition in loan market

Part 3 Extensions

Extensions

- Effect of alternative funding sources for banks
 - \rightarrow Equity capital [Dell'Ariccia et al. (2014)]
 - \rightarrow Insured deposits
- Effect of competition in deposit market
- Heterogeneous monitoring costs
 - \rightarrow Effect of changes in shares of small and large banks
- Bank entry (and exit)

 \rightarrow Effect of rates that are "too low for too long"

Concluding remarks

Concluding remarks (i)

- Results are consistent with charter value hypothesis
 - \rightarrow Competition increases banks' risk-taking
 - \rightarrow In line with current view of bank supervisors
 - \rightarrow However there are models that predict otherwise

Concluding remarks (ii)

- Results show that you can have higher credit and lower risk
 - \rightarrow With high market power lower rates decrease risk-taking
 - \rightarrow No trade-off between credit and financial stability
- Testable implications

$$Risk = \alpha + \underbrace{\beta_0}_{-} R_0 + \underbrace{\beta_1}_{-} HHI + \underbrace{\beta_2}_{+} R_0 * HHI + Controls$$

 \rightarrow where *HHI* = Herfindahl index = 1/n

Some references

• Adrian, T., and N. Liang (2018), "Monetary Policy, Financial Conditions, and Financial Stability," *International Journal of Central Banking*.

• Boyd, J., and G. De Nicoló (2005), "The Theory of Bank Risk-Taking and Competition Revisited," *Journal of Finance*.

• Dell'Ariccia, L. Laeven, and R. Marquez (2014), "Real Interest Rates, Leverage, and Bank Risk-Taking," *Journal of Economic Theory*.

• Martinez-Miera, D., and R. Repullo (2010), "Does Competition Reduce the Risk of Bank Failure?," *Review of Financial Studies*.

• Martinez-Miera, D., and R. Repullo (2017), "Search for Yield," *Econometrica*.

• Repullo, R. (2004), "Capital Requirements, Market Power, and Risk-Taking in Banking," *Journal of Financial Intermediation*.