Introduction 000 Model 00000 Identification

Estimation

Conclusion O

Identification and Estimation of a Regression Model using Network Data

Eric Auerbach

Department of Economics Northwestern University Identification

Estimation 000000000

Getting at social influence using network data

- In many settings agent behavior is shaped by social influence.
- Often the nature of this influence is not observed by the researcher.
- Instead the researcher observes a network linking pairs of agents.
- Understanding how agents form links in the network reveals underlying information about the unobserved social influence.

1

Introduction

Identification

Estimation 000000000 Conclusion O

Three examples from the literature

- 1. Bramoullé, Djebbari, and Fortin (2009) study classroom peer effects in which a student's activities depends on that of his or her peers.
- 2. Banerjee, Chandrasekhar, Duflo, and Jackson (2013) study program participation in which information about the program spreads by word-of-mouth.
- 3. Ductor, Fafchamps, Goyal, and van der Leij (2014) study research productivity in which research quality depends on a researcher's professional relationships.

In each example a sample of social connections between agents characterize the relevant social influence.

 Specifies a joint model of agent behavior (regression model) and network formation.

• Establishes sufficient conditions for the parameters of the regression model to be identified using network data.

• Proposes a new procedure to estimate the parameters of the regression model: codegree differencing.

Introduction	Model	Identification	Estimation	Conclusion
000	00000	0000000	00000000	0

Model

Identification

Estimation

Conclusion

The regression model

$$\mathbf{y}_i = \beta \mathbf{x}_i + \lambda(\mathbf{w}_i) + \varepsilon_i \quad \mathbf{E}[\varepsilon_i | \mathbf{x}_i, \mathbf{w}_i] = \mathbf{0}$$

- *y_i* scalar outcome (college quality)
- *x_i* observed explanatory variable (enrolls in college prep course)
- *w_i* latent social factors (ability, ambition)
- $\lambda(w_i)$ social influence (expectations about college attendence)

Examples

•
$$\lambda(\mathbf{w}_i) = \sum_{k=1}^{K} \alpha_k \mathbb{1}\{\mathbf{w}_i = k\}$$
 "group fixed effects"

• $\lambda(w_i) = \gamma E[y_i | w_i] + \delta E[x_i | w_i]$ "linear-in-means peer effects" (Manski 1993)

The social factors are unobserved

The researcher observes a random sample {y_i, x_i}ⁿ_{i=1}, but <u>not</u> the corresponding social factors {w_i}ⁿ_{i=1}.

- Instead, the researcher observes a collection of network links $D:=\{D_{ij}\}_{1\leq i\neq j\leq n}$ where

 $D_{ij} = 1$ {"agents *i* and *j* have a social connection"}

 Identification requires a stance as to how the network links *D* and the social factors {*w_i*}^{*n*}_{*i*=1} are related.

Introduction	Model	Identification	Estimation	Conclusion
000	0000	0000000	00000000	0

The social factors drive observed linking activity

$$D_{ij} = \mathbb{1}\{\eta_{ij} \leq f(w_i, w_j)\} \times \mathbb{1}\{i \neq j\}$$

- $f(w_i, w_j)$ is the latent intensity of the relationship between *i* and *j*.
- η_{ij} is an idiosyncratic shock.
- D_{ij} is a noisy signal of the link intensity $f(w_i, w_j)$.

Examples

- $f(w_i, w_j) = 1 (w_i w_j)^2$ "homophily model"
- $f(w_i, w_j) = (w_i + w_j)/2$ "degree heterogeneity model"

Introduction	Model	Identification	Estimation	Conclusion
000	00000	0000000	00000000	0

Two interpretations of the network formation model

- As a random utility model of link formation: Hoff, Raftery, and Handcock (2002); Goldsmith-Pinkham and Imbens (2013); Jackson (2014); Graham (2015); Dzemski (2016); Candelaria (2017); Toth (2017)
- As a network density function:
 - In a network formation game with strategic interaction: Leung (2015); Sheng and Ridder (2016); Menzel (2016); Mele and Zhu (2017)
 - For link prediction: Bickel and Chen (2009); Bickel, Chen and Levina (2011); Bickel, Choi, Chang, Zhang (2013); Chatterjee (2015); Zhang, Levina, Zhu (2016)

Introduction	Model	Identification	Estimation	Conclusion
000	00000	0000000	00000000	0

A review of the model with additional details

$$y_i = \beta x_i + \lambda(w_i) + \varepsilon_i$$
$$D_{ij} = \mathbb{1}\{\eta_{ij} \le f(w_i, w_j)\} \times \mathbb{1}\{i \ne j\}$$

•
$$\{x_i, w_i, \varepsilon_i\}_{i=1}^n$$
 iid with $E[\varepsilon_i | x_i, w_i] = 0$

- w_i and η_{ij} have $\mathcal{U}[0, 1]$ marginals. $E[D_{ij}|w_i, w_j] = f(w_i, w_j)$
- $\{\eta_{ij}\}_{i,i=1}^{n}$ and $\{x_i, w_i, \varepsilon_i\}_{i=1}^{n}$ have mutually independent entries.
- Goldsmith-Pinkham and Imbens (2013); Chan (2014); Jackson (2014); Hsieh and Lee (2014, 2016); Arduini, Patacchini, and Rainone (2016); Johnsson and Moon (2016); c.f. Badev (2017), Griffith (2017)

Introduction	Model	Identification	Estimation	Conclusion
000	00000	0000000	00000000	0

Model

Identification

Estimation

Conclusion

Introduction	Model	Identification	Estimation	Conclusion
000	00000	•000000	00000000	0

A typical differencing argument when w_i is observed

- Focus first on β . Recall $y_i = \beta x_i + \lambda(w_i) + \varepsilon_i$.
- Suppose w_i is observed with finite support. Then

$$(\mathbf{y}_i - \mathbf{y}_j) \mathbb{1}_{\mathbf{w}_i = \mathbf{w}_j} = \beta (\mathbf{x}_i - \mathbf{x}_j) \mathbb{1}_{\mathbf{w}_i = \mathbf{w}_j} + (\varepsilon_i - \varepsilon_j) \mathbb{1}_{\mathbf{w}_i = \mathbf{w}_j}$$

• The parameter β is identified if $E\left[(x_i - x_j)^2 \mathbb{1}_{w_i = w_i}\right] > 0$ with

$$\beta = E\left[(y_i - y_j)(x_i - x_j)\mathbb{1}_{w_i = w_j}\right] / E\left[(x_i - x_j)^2\mathbb{1}_{w_i = w_j}\right]$$

• When w_i has continuous support and λ is continuous can replace $\mathbb{1}_{w_i = w_i}$ with $\mathbb{1}_{w_i \approx w_i}$ where $w_i \approx w_j$ means $|w_i - w_j|$ is close to 0.

D cannot determine if $w_i \approx w_j$ when *f* is unrestricted

The distribution of D_{ij} = 1{η_{ij} ≤ f(w_i, w_j)} does not generally contain information about whether w_i ≈ w_j.

- The problem is that there always exists f' and (w'_i, w'_i) such that
 - $D_{ij} = \mathbb{1}\{\eta_{ij} \le f'(w'_i, w'_j)\}$
 - $w'_i \not\approx w'_j$ and $w_i \approx w_j$
- The implication is that when *f* is unrestricted *D* cannot determine whether $|w_i w_j|$ is close to 0.

When can *D* determine if $\lambda(w_i) \approx \lambda(w_j)$?

• The distribution of *D* cannot tell us anything about $|w_i - w_j|$ when *f* is unrestricted.

• Suppose $\lambda(w_i)$ has finite support. Then

$$(\mathbf{y}_i - \mathbf{y}_j) \mathbb{1}_{\lambda(\mathbf{w}_i) = \lambda(\mathbf{w}_j)} = \beta(\mathbf{x}_i - \mathbf{x}_j) \mathbb{1}_{\lambda(\mathbf{w}_i) = \lambda(\mathbf{w}_j)} + (\varepsilon_i - \varepsilon_j) \mathbb{1}_{\lambda(\mathbf{w}_i) = \lambda(\mathbf{w}_j)}$$

• Under what assumptions can *D* tell us something about $|\lambda(w_i) - \lambda(w_j)|$?

Model

Identification

Estimation 000000000 Conclusion O

The main identification condition

• Agents with different social influences make different linking decisions.

• That is $\lambda(w_i) \neq \lambda(w_j)$ implies $f(w_i, w_t) \neq f(w_j, w_t)$ for some agent *t*.

• Equivalently $f(w_i, w) = f(w_j, w)$ for (almost) every w implies that $\lambda(w_i) = \lambda(w_j)$.

Introduction	Model	Identification	Estimation	Conclusion
000	00000	00000000	00000000	0

The main identification condition using network distance

$$d(w_i, w_j) = \left(\int (f(w_i, \tau) - f(w_j, \tau))^2 d\tau\right)^{1/2} = \|f(w_i, \cdot) - f(w_j, \cdot)\|_2$$

- $f(w_i, \cdot)$ is agent *i*'s linking function.
- $d(w_i, w_j)$ compares the linking functions of agents *i* and *j*
- The main identification condition is then

$$d(w_i, w_j) = 0 \implies |\lambda(w_i) - \lambda(w_j)| = 0$$

duction	Model	Identification	Estimation	Conclusio
C	00000	00000000	00000000	0

How to interpret the main identification condition

- The social influence function λ is continuous with respect to the network distance *d*.
- This condition is automatically satisfied when
 - 1. The social factors are identified by the agent's distribution of network links. That is $d(w_i, w_j) = 0 \implies w_i = w_j$.
 - Social influence only depends on the social factors through the agent's distribution of network links. That is λ(w_i) = φ(f(w_i, ·)).

Introduction	Model	Identification	Estimation	Conclusion
000	00000	00000000	00000000	0

An additional condition gives the identification of β

• Suppose
$$d(w_i, w_j) = 0 \implies |\lambda(w_i) - \lambda(w_j)| = 0$$

Then

$$(y_i - y_j)\mathbb{1}_{d(w_i, w_j)=0} = \beta(x_i - x_j)\mathbb{1}_{d(w_i, w_j)=0} + (\varepsilon_i - \varepsilon_j)\mathbb{1}_{d(w_i, w_j)=0}$$

• The parameter β is identified if $E\left[(x_i - x_j)^2 \mathbb{1}_{d(w_i, w_j)=0}\right] > 0$ with

$$\beta = E\left[(y_i - y_j)(x_i - x_j)\mathbb{1}_{d(w_i, w_j) = 0}\right] / E\left[(x_i - x_j)^2\mathbb{1}_{d(w_i, w_j) = 0}\right]$$

 Identification
 Estimation
 Conclusion

 00
 000000
 00000000
 000000000
 0

A review of the identification conditions for β

Assumptions (Identification)

1. If $d(w_i, w_j) = 0$ then $|\lambda(w_i) - \lambda(w_j)| = 0$

2.
$$E[(x_i - x_j)^2 \mathbb{1}_{d(w_i, w_j)=0}] > 0$$

· The identification conditions imply

$$\beta = E\left[(y_i - y_j)(x_i - x_j)\mathbb{1}_{d(w_i, w_j) = 0}\right] / E\left[(x_i - x_j)^2\mathbb{1}_{d(w_i, w_j) = 0}\right]$$

• Estimate β by regressing $(y_i - y_j) \mathbb{1}_{\widehat{d(w_i, w_j) \approx 0}}$ on $(x_i - x_j) \mathbb{1}_{\widehat{d(w_i, w_j) \approx 0}}$

Introduction	Model	Identification	Estimation	Conclusion
000	00000	0000000	00000000	0

Model

Identification

Estimation

Conclusion

Direct estimation of the network distance is difficult

• Identification conditions suggest estimating β by regressing $(y_i - y_j) \mathbb{1}_{\widehat{d(w_i, w_j) \approx 0}}$ on $(x_i - x_j) \mathbb{1}_{\widehat{d(w_i, w_j) \approx 0}}$.

• A complication is that $d(w_i, w_j)$ is difficult to estimate because it requires an approximation of the unknown function *f*.

The usual trick is to estimate f(w_i, w_j) by local averaging. That is, average D_{kl} for k, l such that w_i ≈ w_k and w_j ≈ w_l.

• But we introduced $d(w_i, w_j)$ because $|w_i - w_j|$ was not identified...

Introduction	Model	Identification	Estimation	Conclusion
000	00000	0000000	0000000	0

I propose an alternative based on agent-pair codegrees

- Recall $f(w_i, w_t) = E[D_{it}|w_i, w_t]$ is the (conditional) probability that agents *i* and *t* are linked.
- f(w_i, w_t)f(w_j, w_t) = E[D_{it}D_{jt}|w_i, w_j, w_t] is the probability that agents *i* and *j* are both linked to agent *t*.
- p(w_i, w_j) = E[D_{is}D_{js}|w_i, w_j] is the probability that agents *i* and *j* are both linked to a randomly drawn agent.
- Equivalently, *p*(*w_i*, *w_j*) is the inner product of agent *i* and *j*'s linking functions: ∫ *f*(*w_i*, τ)*f*(*w_j*, τ)*d*τ

Introduction	Model	Identification	Estimation	Conclusion
000	00000	0000000	0000000	0

Codegree distance as an alternative to network distance

$$\delta(\mathbf{w}_i, \mathbf{w}_j) = \left(\int \left(\boldsymbol{p}(\mathbf{w}_i, \tau) - \boldsymbol{p}(\mathbf{w}_j, \tau)\right)^2 d\tau\right)^{1/2} = \|\boldsymbol{p}(\mathbf{w}_i, \cdot) - \boldsymbol{p}(\mathbf{w}_j, \cdot)\|_2$$

- $p(w_i, \cdot)$ is agent *i*'s codegree function.
- $\delta(w_i, w_j)$ compares the codegree functions of agents *i* and *j*.

troduction

.

Nodel

Identification

Estimation 000000000 Conclusion O

Two key results about codegree distance

I propose using codegree distance δ as an alternative to network distance d for two reasons:

• Result 1: $\delta(w_i, w_j) \approx 0$ (almost always) implies $d(w_i, w_j) \approx 0$.

• Result 2: $\delta(w_i, w_i)$ is straightforward to estimate using *D*.

Introduction 000 Identification

Estimation 000000000

Result 1: Codegree and network distances are related

Lemma (Codegree Identification)

If f is measurable then for any $\epsilon > 0$ there exists an $\epsilon' > 0$ such that

$$\delta(\mathbf{w}_i, \mathbf{w}_j) \leq \epsilon' \implies \mathbf{d}(\mathbf{w}_i, \mathbf{w}_j) < \epsilon$$

with probability at least $1 - \epsilon^2/4$. If f is Lipschitz continuous then

$$d(w_i, w_j) \leq C imes \delta(w_i, w_j)^{1/3}$$

with probability one.

•
$$\beta = E\left[(y_i - y_j)(x_i - x_j)\mathbb{1}_{\delta(w_i, w_j) = 0}\right] / E\left[(x_i - x_j)^2\mathbb{1}_{\delta(w_i, w_j) = 0}\right]$$

Introduction	Model	Identification	Estimation	Conclusion
000	00000	0000000	000000000	0

A sketch of the intuition behind Result 1

$$\delta(w_i, w_j)^2 = 0$$

$$\implies \int (p(w_i, \tau) - p(w_j, \tau))^2 d\tau = 0$$

$$(*) \implies p(w_i, \tau) = p(w_j, \tau) \text{ and } p(w_i, s) = p(w_j, s) \text{ for any } (\tau, s)$$

$$\implies p(w_i, w_i) = p(w_i, w_j) = p(w_j, w_j)$$

$$\implies \int f(w_i, \tau)^2 d\tau = \int f(w_i, \tau) f(w_j, \tau) d\tau = \int f(w_j, \tau)^2 d\tau$$

$$\implies \int (f(w_i, \tau) - f(w_j, \tau))^2 d\tau = d(w_i, w_j)^2 = 0$$

*assuming f (and p) is continuous

Introduction	Model	Identification	Estimation	Conclusion
000	00000	0000000	000000000	0

Result 2: Codegree distance straightforward to estimate using D

Lemma (Codegree Estimation) $\max_{i \neq j} |\hat{\delta}_{ij} - \delta(w_i, w_j)| = o_p (\log(n) / \sqrt{n})$

•
$$\hat{p}_{it} = \frac{1}{n} \sum_{s=1}^{n} D_{is} D_{ts}$$

•
$$\hat{\delta}_{ij} = \left(\frac{1}{n}\sum_{t=1}^{n}\left(\hat{p}_{it}-\hat{p}_{jt}\right)^{2}\right)^{1/2}$$

• $\hat{\delta}_{ij}$ is the root-average-squared difference in the *i*th and *j*th columns of the squared adjacency matrix $(D \times D)$.

The proposed estimator for β based on codegree distance

- Results 1 and 2 suggest estimating β by regressing (y_i − y_j) 1_{δ_{ij}≈0} on (x_i − x_j) 1_{δ_{ij}≈0}.
- This logic is formalized by the pairwise difference estimator

$$\hat{\beta} = \frac{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (y_i - y_j) (x_i - x_j) \mathcal{K}\left(\frac{\hat{\delta}_{ij}}{h_n}\right)}{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (x_i - x_j)^2 \mathcal{K}\left(\frac{\hat{\delta}_{ij}}{h_n}\right)}$$

where h_n is a bandwidth sequence and K is a kernel density function.

Introduction	Model	Identification	Estimation	Conclusion
000	00000	0000000	00000000	0

The proposed estimator for $\lambda(w_i)$ based on codegree distance

- Recall $\lambda(w_i) = E[(y_i \beta x_i) | w_i]$
- Estimate $\lambda(w_i)$ by averaging $(y_j \hat{\beta}x_j)$ for agents such that $\hat{\delta}_{ij} \approx 0$.
- This logic is formalized by the nonparametric regression

$$\widehat{\lambda(\boldsymbol{w}_{i})} = \frac{\sum_{j=1}^{n} \left(\boldsymbol{y}_{j} - \hat{\beta} \boldsymbol{x}_{j} \right) \boldsymbol{K} \left(\frac{\hat{\delta}_{ij}}{h_{n}} \right)}{\sum_{j=1}^{n} \boldsymbol{K} \left(\frac{\hat{\delta}_{ij}}{h_{n}} \right)}$$

where h_n is a bandwidth sequence and K is a kernel density function.

Introduction	Model	Identification	Estimation	Conclusion
000	00000	0000000	00000000	0

Model

Identification

Estimation

Conclusion

• Specifies a joint model of agent behavior and network formation where determinants of social influence also drive link activity.

• Provides sufficient conditions for the parameters of the model of agent behavior to be identified using network data.

• Proposes a new procedure for estimating the parameters of the model of agent behavior: codegree differencing.