# A Structural Approach to Dynamic Energy Pricing and Consumer Welfare 

Matthew Harding, Jerry Hausman, Kyle Kettler

January 2019

## Motivation

## Dynamic Pricing

- Increasing availability in US over past 5 years
- Well studied: many RCTs estimate average treatment response
- Few studies of welfare effects


## Identification Problems:

- Low price variation during off-peak hours
- Hausman, Kinnucan, McFadden (1979) - A Two-Level Electricity Demand Model
- Average Welfare with unobserved heterogeneity
- Hausman and Newey (2016) - Individual Heterogeneity and Average Welfare


## Motivation

## Contribution

- High Frequency Household consumption data from RCT
- Methodology for causal analysis using ML to generate counterfactuals, matches
- Policy analysis of specific dynamic rate that was adopted by Utility


## Findings

- High variation in price elasticity of demand throughout day
- In this experiment, consumer welfare gain during off-peak hours exceeds consumer welfare loss for all but the highest peak prices


## Experiment

## Rate Structure

Dynamic Price - Treated Group

- Price per KW during off-peak hours is constant: $\$ 0.045$
- Off-Peak Hours: 12 a.m. - 2 p.m., 7 p.m. - 12 a.m.
- Price per KW during peak hours for all treated households is chosen by Utility each day:
\$0.045, \$0.113, \$0.23, \$0.46
- Peak Hours: 2-7 p.m.

Standard Block Rate - Control Group

- Constant price per KW each day
- Price per KW: $\$ 0.083$ for the first 1400 KW used in a month
- \$0.096 per KW for additional usage


## Experiment

## Consumption Data

- Consumption observed in 15 minute increments for 2010, 2011
- Household Behavior observed in 2010 was before households enrolled in Experiment
- Control Households experience no change in technology or price
- Treated Households exposed to new technology and new price
- Treated Households' behavior observed under both policies

|  | 2010 |  | 2011 |
| :---: | :---: | :---: | :---: |
| Control | Standard Rate | $\rightarrow$ | Standard Rate |
| Treatment | Standard Rate | $\rightarrow$ | Dynamic Rate |

$\mathbf{2 , 1 4 6 , 4 6 4}$ observations of hourly household consumption

## Identification Strategy

## Difference in Difference

- Ideally we could regress quantity on observed price, controlling for weather to account for endogenous price setting decision
- Identification problem: only one price observed during off-peak hours (\$0.045/KWH)
- Can simulate behavior of treated households in 2011 using pretreatment data from 2010
$\left[\begin{array}{c|c}W_{0}^{10}: 2010 \text { Control Households } & W_{0}^{11}: 2011 \text { Control Households } \\ \hline Y_{0}^{10}: 2011 \text { Treated Households } & Y_{1}^{11}: 2011 \text { Treated Households }\end{array}\right]$ Identification strategy follows from simulating $\widehat{Y_{0}^{11}}$


## Counterfactuals - Lasso Prediction

## see Burlig, Knittlel, Rapson, Reguant, and Wolfram 2018

(1) Model consumption in 2010 as a function of observed variables in 2010
(2) Use penalized regression (Lasso, Ridge, Elastic Net) to select model with best fit for 2010 data
(3) Predict consumption in 2011 by using observations of variables in 2011 in function with parameters chosen in (2)

## Variable Pool

- Temperature
- Humidity
- Dewpoint
- Previous Day Cooling Degrees
- Average consumption among similar households
- Month and Day-of-week fixed effects


## Counterfactuals - Vertical Regression + Lasso

## see Athey, Bayati, Doudchenko, Imbens, and Khosravi 2018

(1) Consider $J$ control units and $K=2$ treated units $Y_{N-1}, Y_{N}$ :

$\left[\right.$| Pre Treatment | Post |  | Treatment |
| :---: | :---: | :---: | :---: |
| $Y_{1,1}$ | $Y_{1,2}$ | $Y_{1,3}$ | $Y_{1,4}$ |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| $Y_{J, 1}$ | $Y_{J, 2}$ | $Y_{J, 3}$ | $Y_{J, 4}$ |
| $Y_{N-1,1}$ | $Y_{N-1,2}$ | $?$ | $?$ |
| $Y_{N, 1}$ | $Y_{N, 2}$ | $?$ | $?$ |$]$

(2) Use shrinkage estimator to select from among many possible control households J as covariates
(3) Impute counterfactual untreated behavior behavior of $Y_{N-1}, Y_{N}$ during treated periods:

$$
\hat{Y_{N, t}}=\hat{\beta_{0}}+\sum_{i=1}^{N} \hat{\beta}_{i} Y_{i, t}
$$

## Predictions

Low Price Periods


## Predictions

High Price Periods


## Elasticity Estimation

## Constant Elasticity Specification

$$
\begin{equation*}
\ln \left(Q_{i, h}^{2011}\right)=\ln (a)+\gamma \ln \left(p_{h}\right)+\sum_{j=-1}^{j=+1} \delta_{j} \ln \left(T_{j}\right)+\varepsilon_{i, h} \tag{1}
\end{equation*}
$$

- Constant Elasticity specification allows one-step estimation of price elasticity conditional on temperature
- Temperature Control accounts for omitted variable bias stemming from correlation between high price and high consumption on hottest days of summer.


## Computing Consumer Surplus

## Analytic Solution

$$
\begin{equation*}
\Delta C S_{h}=a * T_{h-1}^{\hat{\delta}_{1, h}} * T_{h}^{\hat{\delta}_{2, h}} * T_{h+1}^{\hat{\delta}_{3, h}} * \frac{\left[p_{2}^{1+\hat{\gamma}_{h}}-p_{1}^{1+\hat{\gamma}_{h}}\right]}{1+\hat{\gamma}_{h}} \tag{2}
\end{equation*}
$$

- Consumer Surplus increases in off-peak hours where price falls from control rate $\$ 0.083$ to off-peak price $\$ 0.045$
- Consumer Surplus decreases in on-peak hours where price rises to either $\$ 0.113, \$ 0.23$, or $\$ 0.46$


## Estimation: Consumer Surplus

Hourly Change in Consumer Surplus


## Estimation: Consumer Surplus

## Average Household Effects

- Off-peak price more than compensates for consumer surplus loss on days with medium and high peak prices
- Critical price days are net reductions in consumer surplus
- In 2011, with 23 low, 30 medium, 22 high, and 12 critical price days, average change in consumer surplus is $\$ 4.63$ per household

|  | Daily Change in <br> Consumer Surplus | Peak Hours Only | Off-Peak Hours Only | Average Ratio <br> Peak:Off-Peak |
| ---: | :---: | :---: | :---: | :---: |
| Low Peak Price | $\$ 0.15$ | 0.0269 | 0.1234 | - |
| Medium Peak Price | $\$ 0.10$ | -0.0218 | 0.1239 | -0.1759 |
| High Peak Price | $\$ 0.01$ | -0.1106 | 0.1240 | -0.9064 |
| Critical Peak Price | $-\$ 0.17$ | -0.2964 | 0.1241 | -2.4844 |

## Conclusions

## Methodology

- ML forecasts trained on pretreatment data forecast counterfactual (untreated) behavior
- Counterfactual predictions identify household specific price elasticity of demand
- Identification strategy evades problems with unobserved individual heterogeneity


## Policy

- Household consumer surplus effects are small but positive
- Utility could have offered a less drastic discount without reducing consumer welfare

