A Structural Approach to Dynamic Energy Pricing and Consumer Welfare

Matthew Harding, Jerry Hausman, Kyle Kettler

January 2019

Harding, Hausman, Kettler

Dynamic Pricing and Consumer Welfare

1-2019 1 / 14

Dynamic Pricing

- Increasing availability in US over past 5 years
- Well studied: many RCTs estimate average treatment response
- Few studies of welfare effects

Identification Problems:

- Low price variation during off-peak hours
 - Hausman, Kinnucan, McFadden (1979) A Two-Level Electricity Demand Model
- Average Welfare with unobserved heterogeneity
 - Hausman and Newey (2016) Individual Heterogeneity and Average Welfare

Contribution

- High Frequency Household consumption data from RCT
- Methodology for causal analysis using ML to generate counterfactuals, matches
- Policy analysis of specific dynamic rate that was adopted by Utility

Findings

- High variation in price elasticity of demand throughout day
- In this experiment, consumer welfare gain during off-peak hours exceeds consumer welfare loss for all but the highest peak prices

Rate Structure

Dynamic Price - Treated Group

- Price per KW during off-peak hours is constant: \$0.045
 - Off-Peak Hours: 12 a.m. 2 p.m., 7 p.m. 12 a.m.
- Price per KW during peak hours for all treated households is chosen by Utility each day: \$0.045, \$0.113, \$0.23, \$0.46
 - Peak Hours: 2 7 p.m.

Standard Block Rate - Control Group

- Constant price per KW each day
 - Price per KW: \$0.083 for the first 1400 KW used in a month
 - \$0.096 per KW for additional usage

Experiment

Consumption Data

- Consumption observed in 15 minute increments for 2010, 2011
- Household Behavior observed in 2010 was before households enrolled in Experiment
 - Control Households experience no change in technology or price
 - Treated Households exposed to new technology and new price
 - Treated Households' behavior observed under both policies

	2010	2011	
Control	Standard Rate	\rightarrow	Standard Rate
Treatment	Standard Rate	\rightarrow	Dynamic Rate

2,146,464 observations of hourly household consumption

Difference in Difference

- Ideally we could regress quantity on observed price, controlling for weather to account for endogenous price setting decision
- Identification problem: only one price observed during off-peak hours (\$0.045/KWH)
- Can simulate behavior of treated households in 2011 using pretreatment data from 2010

Counterfactuals - Lasso Prediction

see Burlig, Knittlel, Rapson, Reguant, and Wolfram 2018

- Model consumption in 2010 as a function of observed variables in 2010
- Use penalized regression (Lasso, Ridge, Elastic Net) to select model with best fit for 2010 data
- Predict consumption in 2011 by using observations of variables in 2011 in function with parameters chosen in (2)

Variable Pool

- Temperature
- Humidity
- Dewpoint
- Previous Day Cooling Degrees

- Average consumption among similar households
- Month and Day-of-week fixed effects

Counterfactuals - Vertical Regression + Lasso

see Athey, Bayati, Doudchenko, Imbens, and Khosravi 2018

• Consider J control units and K = 2 treated units Y_{N-1}, Y_N :

Pre Treatment		Post Treatment		
$Y_{1,1}$	<i>Y</i> _{1,2}	<i>Y</i> _{1,3}	<i>Y</i> _{1,4}	
	•••	•••	•••	
$Y_{J,1}$	$Y_{J,2}$	$Y_{J,3}$	$Y_{J,4}$	
$Y_{N-1,1}$	$Y_{N-1,2}$?	?	
$Y_{N,1}$	$Y_{N,2}$?	?	

- Use shrinkage estimator to select from among many possible control households J as covariates
- Solution Impute counterfactual untreated behavior behavior of Y_{N-1} , Y_N during treated periods:

$$\hat{Y_{N,t}} = \hat{\beta}_0 + \sum_{i=1}^N \hat{\beta}_i Y_{i,t}$$

Predictions

Predictions

Constant Elasticity Specification

$$ln(Q_{i,h}^{2011}) = ln(a) + \gamma ln(p_h) + \sum_{j=-1}^{j=+1} \delta_j ln(T_j) + \varepsilon_{i,h}$$
(1)

- Constant Elasticity specification allows one-step estimation of price elasticity conditional on temperature
- Temperature Control accounts for omitted variable bias stemming from correlation between high price and high consumption on hottest days of summer.

Analytic Solution

$$\Delta CS_{h} = a * T_{h-1}^{\hat{\delta}_{1,h}} * T_{h}^{\hat{\delta}_{2,h}} * T_{h+1}^{\hat{\delta}_{3,h}} * \frac{[p_{2}^{1+\hat{\gamma}_{h}} - p_{1}^{1+\hat{\gamma}_{h}}]}{1+\hat{\gamma}_{h}}$$
(2)

- Consumer Surplus increases in off-peak hours where price falls from control rate \$0.083 to off-peak price \$0.045
- Consumer Surplus decreases in on-peak hours where price rises to either \$0.113, \$0.23, or \$0.46

Estimation: Consumer Surplus

Hourly Change in Consumer Surplus

Average Household Effects

- Off-peak price more than compensates for consumer surplus loss on days with medium and high peak prices
- Critical price days are net reductions in consumer surplus
- In 2011, with 23 low, 30 medium, 22 high, and 12 critical price days, average change in consumer surplus is \$4.63 per household

	Daily Change in Consumer Surplus	Peak Hours Only	Off-Peak Hours Only	Average Ratio Peak:Off-Peak
Low Peak Price	\$0.15	0.0269	0.1234	-
Medium Peak Price	\$0.10	-0.0218	0.1239	-0.1759
High Peak Price	\$0.01	-0.1106	0.1240	-0.9064
Critical Peak Price	-\$0.17	-0.2964	0.1241	-2.4844

Methodology

- ML forecasts trained on pretreatment data forecast counterfactual (untreated) behavior
- Counterfactual predictions identify household specific price elasticity of demand
- Identification strategy evades problems with unobserved individual heterogeneity

Policy

- Household consumer surplus effects are small but positive
- Utility could have offered a less drastic discount without reducing consumer welfare