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Overview

• We consider inference in regression models with an endogenous covariate
and weak instruments.

• The random errors of the structural equation and of the first stage can
be heteroskedastic.

• The random errors of the structural equation and those of the first stage
can be correlated between observations.

• The random errors of the structural equation and those can be correlated
for each observation (endogenous covariate), but also across observations.

• In summary: the errors of the first-stage and structural equation are
heteroskedastic and autocorrelated (HAC).



• Inference for the regression coefficient of an endogenous variable using
weak instruments is fundamentally different in the HAC case.

• Current tests for this case can result in low power c.q. wide confidence
intervals, because tests available in statistical software as STATA ignore
important information in the HAC case.

• We propose a new test that has high power in cases where current tests
fail.

• In a simple model for earnings with endogenous education and peer effects
we show that errors are HAC with a rather complicated variance matrix.



Heteroskedastic Errors in the Return to Education

• Model of earnings function with endogenous education as in Card (2001).

• Individual maximizes lifetime utility log c(t) with c(t) consumption sub-
ject to a lifetime budget constraint.

• Net income while at school is 0, earnings grows at constant rate g, and
φ(t) the disutility of attending school.

• FOC for education beyond compulsory level is

f ′(S)

f(S)
= R− g − ρe−ρSφ(S)

with R the interest rate at which the individual can borrow/lend and ρ

the subjective discount factor.

• The LHS is the relative return to education and the RHS is the marginal
cost of education d(S).



• The marginal return and the marginal cost depend of (un)observed char-
acteristics of the individual

f ′(Si)

f(Si)
= bi + β′Xi d(Si) = ri + ρXi + k2Si

with bi, ri the unobserved heterogeneity in the marginal return and the
marginal cost of education.

• Integration of this expression and assuming that the log earnings yi of i
with work experience Ei = t− Si is log yi = log f(Si) + λiEi, we find for
the earnings function

log yi = ai + α̃′Xi + biSi + β′XiSi + λiEi

with ai + α̃′Xi the integration constant.



• The optimal level of education is

Si =
bi − ri
k2

+
(β − ρ)′

k2
Xi

• This demand function for education can be identified if we have an ex-
ogenous shock to the marginal cost of education

ri = ci + γ′Zi

Card (2001), Table 2 lists instruments used in 11 studies.

• Substitution results in the first-stage model

Si = π′Zi+δ
′Xi+ηi π = −γ/k2 δ = (β−ρ)/k2 ηi = (bi−b−ci)/k2

• Si depends on bi and is therefore endogenous in the earnings function.
Also ai, bi may be correlated.



• The reduced form of this model is

log yi = a+ bπ′Zi + α′Xi + (β ⊗ π)′(Xi ⊗ Zi) + (β ⊗ δ)′(Xi ⊗Xi) + λEi + ζi
(1)

Si = Z ′iπ + δ′Xi + ηi (2)

with b = E(bi), λ = E(λi)

a = E(ai) + E((bi − b)ηi) α = α̃ + bδ

• The error that reflects the unobserved heterogeneity in the model is

ζi = ai−E(ai)+bηi+(bi−b)ηi−E((bi−b)ηi)+ηiβ′Xi+(bi−b)π′Zi+(bi−b)δ′Xi+

+(λi − λ)Ei

• This model can be used to estimate the average return to education b.
Mean independence of ηi, ai − E(ai)) and bi − E(bi)) of Zi, Xi, Ei is not
sufficient and we need full independence because E[(bi − b)ηi|Zi] may
change with Zi (Card(2001)).



• ζi is heteroskedastic and the covariance of ηi and ζi depends on Zi, Ei, Xi.
This is typical for a structural model with unobserved heterogeneity.
There is no correlation across observations.



Peer Effects and HAC Errors in the Return of Education

• Following Graham (2008) we assume that an individual’s return to edu-
cation depends on the peer group average

bi − b = νp + (τ − 1)(bp − b) + ξi

with νp peer-group characteristics.

• The first-stage error is

ηi =
νp
k2

+
τ − 1

k2
(bp − b) +

ξi − ci
k2

• The error of the earnings function is

ζi = (ai−E(ai))+bηi+ηiβ
′Xi+(λi−λ)Ei+ηiνp+(τ−1)(bp−b)ηi+ξiηi+

+νp(π
′Zi + δ′Xi) + (τ − 1)(bp − b)(π′Zi + δ′Xi) + ξi(π

′Zi + δ′Xi)



• Note that the peer effect in the return to education induces a peer effect
in the choice of the level of education (positive dependence on bp if τ >
1, k2 > 0).

• The error of the earnings equation is still heteroskedastic. In addition
the errors of the reduced form are correlated within, but not across peer
groups. Most importantly for inference, the ζi and ηj are correlated
within peer groups (and the correlation depends Xi, Zi).

• Conclusion: introducing peer effects in Card’s prototypical model of
schooling level choice and earnings produces a triangular linear system
with HAC errors. We consider inference in such a system.



Inference with HAC errors and weak instruments

• Triangular system with single endogenous variable and k possibly weak
instruments and n observations

y1 = y2β + u

y2 = Zπ + v2

Goal is to do inference (test, confidence interval) on β.

• The errors in u, v2 can be correlated, both within (endogeneity) and be-
tween observations, and can be heteroskedastic.

• Correlation between observations occurs in time-series data (HAC, see
e.g. Newey and West (1987)), in spatial data (spatial HAC, see e.g.
Conley (1999)) and in data with a group structure (clustering, see e.g.
Cameron and Miller( 2015)).

• We consider the implication of correlation of the errors between observa-
tions on weak-instrument robust inference.



• With Y = [y1 y2] and a = (β 1)′ the reduced form is

Y = Zπa′ + V (3)

• We pre-multiply the reduced form by (Z ′Z)−1/2Z ′ and defineR = (Z ′Z)−1/2Z ′Y

so that
R = µa′ + Ṽ (4)

with µ = (Z ′Z)1/2 π and Ṽ = (Z ′Z)−1/2 Z ′V .

• The variance matrix of vec(Ṽ ) is the 2k × 2k matrix Σ

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
is unrestricted.



• Σ is estimated as in Newey and West (1987) (HAC), Conley (1999) (spa-
tial HAC) or with a White (1980) type estimator.

• The cluster-robust estimator (White (1980)) is

Σ̂pq = (Z ′Z)−1/2
G∑
g=1

Z ′gv̂pgv̂
′
qgZg(Z

′Z)−1/2

• We ignore the details of estimation of Σ but focus on the impact of
features of this variance matrix on inference.



Current practice

• Instead of R we consider equivalent statistics S, T .

• Current practice for testing H0 : β = 0 is to use one of the following
tests, implemented in STATA (Finlay and Magnusson(2009)).

• LM test

LM1 =
S ′T

(T ′T )1/2
, (5)

• Anderson-Rubin (AR) test

AR = S ′S

• CQLR test

CQLR =
AR− T ′T +

√
(AR− T ′T )2 + 4LM · T ′T

2



• Power curves show the performance of these tests with simulated data.

• The LM1 and CQLR tests are behaving poorly with power equal to size.

• The AR test does better, but it will behave worse if the number of in-
struments increases (AR is optimal choice if k = 1).

• The poor performance is only in the case of weak instruments. If the
instruments are strong the LM1 test dominates the other tests.

• The DGP for which the LM1 and CQLR tests do poorly only occur if the
errors are HAC.

• To be specific the DGP have

µ′Σ−1
11 Σ12Σ

−1
11 µ = 0



• A necessary and sufficient condition for this is that the eigenvalues of the
covariance matrix of the reduced-form and first-stage errors are not all
negative or positive.

• With time-series regressions of consumption on asset returns we found
that for 9 out of 11 countries the eigenvalues of Σ12 + Σ′12 or of opposite
signs.



Using additional information

• A further diagnosis shows that the relevant information in the data is in
the statistics S ′S, S ′T, T ′T if the errors are homoskedastic and uncorre-
lated between observations.

• The LM1, AR, and CQLR tests all depend on these statistics.

• This follows from the fact that the model does not change if the data are
transformed in certain way so that the test should not change either.

• The model with HAC errors at first sight changes with the data trans-
formation. However if we consider Σ as a parameter but also as part
of the data then there is again a transformation that leaves the model
unchanged.

• The statistics S ′S, S ′T, T ′T no longer contain all relevant information.



• To take account of the additional information Moreira and Ridder (2018)
propose a new test.

CIL =

∫ ∞
−∞

e
vec(R0)′Σ−1

0 (a∆⊗Ik)((a′∆⊗Ik)Σ−1
0 (a∆⊗Ik))

−1
(a′∆⊗Ik)Σ−1

0 vec(R0)−T ′T

2 (6)

×
∣∣(a′∆ ⊗ Ik)Σ−1

0 (a∆ ⊗ Ik)
∣∣−1/2

.|∆|k−2d∆ .

• This is an integrated likelihoood ratio test where we do not maximize
over ∆ = β − β0, but integrate.

• See power curves for performance.



Conclusion

• Inference with weak instruments is different if errors are homoskedastic
and serially uncorrelated, and if errors are HAC.

• With weak instruments tests that perform well in the homoskedastic case
ignore relevant information in the HAC case.

• That leads to poor performance of these tests for a class of HAC DGP.

• Although an indication that one has such a DGP can be obtained from
the data, there is no test of such DGP-s.

• Therefore practitioners should not use the LM, LM1 and CQLR tests
that are currently implemented in STATA. The AR test is preferred over
these, but performs poorly if the number of instruments is large.

• The CIL test is a promising alternative.

• This advice affects researchers who use IV with time-series, spatial and
grouped data.



Figure 1: Power curves AR, LM, CQLR, and CIL tests for model with HAC errors with c12 = 100, c11 = 1
and c22 = c212 + c−3

12 ; varying instrument strength λ, α = .05.
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Impossible Design, k=10, c 12=100, c11=1, c22=c122+(c12)-3, 2=0,  = 0.05


