Cottage Industry to Factories? The Effects of Electrification on the Macroeconomy

Stephie Frieda and David Lagakosb

aArizona State University, bUCSD and NBER

Econometric Society Winter Meetings
January 4-6, 2019
Electric Generation Capacity Per Capita in 2000

- ETH: 6.4 Megawatts/(million people)
- SSA: 40.1 Megawatts/(million people)
Electric Generation Capacity Per Capita in 2000

<table>
<thead>
<tr>
<th>Country</th>
<th>Megawatts/(million people)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETH</td>
<td>6.4</td>
</tr>
<tr>
<td>SSA</td>
<td>40.1</td>
</tr>
<tr>
<td>USA</td>
<td>2583.8</td>
</tr>
</tbody>
</table>
Increase in Generation Capacity Per Capita Since 2000

Cottage Industry to Factories?
January 2019, Fried and Lagakos
Increase in Generation Capacity Per Capita Since 2000

Cottage Industry to Factories?

January 2019, Fried and Lagakos
Generation Capacity in Ethiopia: 1970-2014

![Graph showing the generation capacity in Ethiopia from 1970 to 2014. The graph indicates a steady increase in generation capacity, particularly after the year 2000.](image-url)
What Are the Macro Effects of Electrification?

1. Intensive margin

- Firms with grid connections get more electricity
- Fewer power outages
What Are the Macro Effects of Electrification?

1 Intensive margin
 - Firms with grid connections get more electricity
 - Fewer power outages

2 Extensive margin
 - Entry
 - More firms produce with electricity
What Are the Macro Effects of Electrification?

1. Intensive margin
 - Firms with grid connections get more electricity
 - Fewer power outages

2. Extensive margin
 - Entry
 - More firms produce with electricity

3. Capital accumulation
 - Electricity increases $MP_k \Rightarrow$ HHs accumulate more capital
 - More capital \Rightarrow higher labor productivity
What We Do

• General equilibrium macro model with all three channels
• Calibrate to match the Ethiopian economy in 2000
• Simulate the observed increases in electricity from 2000-2014
Micro Studies of the Effects of Electrification

1 Intensive margin
 - Allcott, Collard-Wexler, O’Connell (2016)
 - Effects of power outages on manufacturing firms in India
 - Eliminating outages increases revenue 5-10 percent
Micro Studies of the Effects of Electrification

1 Intensive margin
 - Allcott, Collard-Wexler, O’Connell (2016)
 - Effects of power outages on manufacturing firms in India
 - Eliminating outages increases revenue 5-10 percent

2 Extensive margin
 - Kassem (2018)
 - Effects of grid expansions in Indonesia on firm entry and exit
 - Substantial increases in the number of manufacturing firms
Micro Studies of the Effects of Electrification

1. Intensive margin
 - Allcott, Collard-Wexler, O’Connell (2016)
 - Effects of power outages on manufacturing firms in India
 - Eliminating outages increases revenue 5-10 percent

2. Extensive margin
 - Kassem (2018)
 - Effects of grid expansions in Indonesia on firm entry and exit
 - Substantial increases in the number of manufacturing firms

3. Regional analyses
 - Lipscomb, Mobarak, Barham (2013)
 - County-level effects of increase in hydropower dams in Brazil
 - Large effects on housing prices and HDI
 - Migration \Rightarrow can’t infer aggregate effects
Model: Three Key Features

1 Structural change

- Traditional sector: produce output with capital and labor
- Modern sector: produce output with capital, labor, electricity
Model: Three Key Features

1 Structural change
 - Traditional sector: produce output with capital and labor
 - Modern sector: produce output with capital, labor, electricity

2 Grid electricity is rationed
 - Prices do not adjust to clear markets
 - Demand > supply ⇒ power outage
Model: Three Key Features

1. Structural change
 - Traditional sector: produce output with capital and labor
 - Modern sector: produce output with capital, labor, electricity

2. Grid electricity is rationed
 - Prices do not adjust to clear markets
 - Demand > supply ⇒ power outage

3. Firms can generate their own electricity
 - More expensive
 - Perfect substitute (a kwh is a kwh, regardless of the source)
Agents

1. Measure 1 of identical households
 - Infinitely lived
 - Consume final good and save

2. Measure N_t of heterogeneous entrepreneurs
 - Live for one period
 - Produce final good

3. Government
 - Produces grid electricity
 - Natural monopoly; geopolitical externalities; appropriation risk
Entrepreneur Productivity and Entry

Pay entry cost to operate: $A\Omega$

- Cost scales with TFP (Bollard, Klenow, and Li 2016)
Entrepreneur Productivity and Entry

Pay entry cost to operate: $A\Omega$

- Cost scales with TFP (Bollard, Klenow, and Li 2016)

After entry, draw productivity z from a Pareto distribution

$$G(z) = 1 - \left(\frac{1}{z}\right)^\lambda$$
Entrepreneur Productivity and Entry

Pay entry cost to operate: $A\Omega$

- Cost scales with TFP (Bollard, Klenow, and Li 2016)

After entry, draw productivity z from a Pareto distribution

$$G(z) = 1 - \left(\frac{1}{z}\right)^\lambda$$

Modern sector entry

- Pay entry cost again to operate in the modern sector
- Otherwise, operate in the traditional sector
Production Technology

Traditional sector

\[y_t = Az^1_{i \eta} (k_1^{\alpha} l_1^{1-\alpha}) \eta \]

• Hassler, Krusell, and Olovsson (2018)

Cottage Industry to Factories?

January 2019, Fried and Lagakos
Production Technology

Traditional sector

\[y_i^t = A z_i^{1-\eta} (k_i^{\alpha} l_i^{1-\alpha})^\eta \]

Modern sector:

\[y_i^m = A^m z_i^{1-\eta} \left[\min(k_i^{\alpha} l_i^{1-\alpha}, \mu e_i) \right]^\eta \]

- Hassler, Krusell, and Olovsson (2018)
Production Technology

Traditional sector

\[y_i^t = A z_i^{1-\eta} (k_i^\alpha / l_i^{1-\alpha})^\eta \]

Modern sector:

\[y_i^m = A^m z_i^{1-\eta} \left[\min(k_i^\alpha / l_i^{1-\alpha}, \mu e_i) \right]^\eta \]

- Hassler, Krusell, and Olovsson (2018)
Two Ways an Entrepreneur Can Get Electricity

1. Purchase electricity from the national electric grid, e_i^g
 - Limited and un-predictable
 - Grid electricity is available fraction ν of the period

 \[\text{electricity supply} = (\text{electricity demand}) \times \nu \]
Two Ways an Entrepreneur Can Get Electricity

1. Purchase electricity from the national electric grid, e_i^g
 - Limited and un-predictable
 - Grid electricity is available fraction ν of the period
 \[\text{electricity supply} = (\text{electricity demand}) \times \nu\]

2. Generate their own electricity: e_i^s
 - Generator capital: k_i^s
 - Units of final good: y_i^s
 \[e_i^s = A^s \min[k_i^s, \chi y_i^s]\]
 - Variable of self-generated electricity \geq price of grid electricity
Profits

Traditional sector

\[\pi_i^t = y_i^t - wl_i - Rk_i \]
Profits

Traditional sector

\[\pi_t^i = y_t^i - w_l^i - Rk_i \]

Modern sector

\[\pi_m^i = y_m^i - w_l^i - Rk_i - Rk_s^i - y_s^i - p^g e_i^g \]
Profits

Traditional sector

\[\pi^t_i = y^t_i - w_l i - Rk_i \]

Modern sector

\[\pi^m_i = y^m_i - w_l i - Rk_i - Rk^s_i - y^s_i - p^g e_i^g \]
Entrepreneurs with $z_i > z^*$ enter the modern sector:

$$\pi^t(z^*) = \pi^m(z^*) - A\Omega$$
Government Produces Grid Electricity

Invests in grid capital and produces electricity

\[K_{t+1}^g = (1 - \delta) K_t^g + I_t^g \quad E^g = A^g K^g \]

Fixed grid electricity price

\[p^g = MC \]

Government finances investment with lump-sum taxes on HHs

\[I^g = p^g E^g + T \]
Household Optimization

\[
\max_{c_t, k_{t+1}} \sum_{t=0}^{\infty} \beta^t \left(\frac{c_t^{1-\sigma}}{1-\sigma} \right)
\]

subject to

\[
c_t = w_t + (R_t + 1 - \delta)k_t - k_{t+1} + \pi^t + \pi^m - A\Omega(N_t + N_t^m) - T_t
\]
Calibration

Goal

• Match the Ethiopian economy in 2000

Two steps

1. Take some parameters directly from data/literature

2. Choose other parameters to match a set of targets
Direct Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span of control: η</td>
<td>0.85</td>
<td>Midrigan and Xu (2014)</td>
</tr>
<tr>
<td>Capital share: α</td>
<td>0.33</td>
<td>Gollin (2002)</td>
</tr>
<tr>
<td>Depreciation: δ</td>
<td>0.06</td>
<td>Data</td>
</tr>
<tr>
<td>Entry cost: Ω</td>
<td>1</td>
<td>Assumption</td>
</tr>
<tr>
<td>Grid productivity: A^g</td>
<td>1</td>
<td>Assumption</td>
</tr>
</tbody>
</table>
Main Data

Quantity and cost of electric power generation

- PLATTS World Power Plants Data Base
Main Data

Quantity and cost of electric power generation

- PLATTS World Power Plants Data Base

Ethiopia manufacturing surveys: 2001/2002

- Medium and large scale manufacturing
- Small scale manufacturing
- Cottage/handicraft manufacturing
Main Data

Quantity and cost of electric power generation

- PLATTS World Power Plants Data Base

Ethiopia manufacturing surveys: 2001/2002

- Medium and large scale manufacturing ← Modern
- Small scale manufacturing ← Modern
- Cottage/handicraft manufacturing
Main Data

Quantity and cost of electric power generation

- PLATTS World Power Plants Data Base

Ethiopia manufacturing surveys: 2001/2002

- Medium and large scale manufacturing ← Modern
- Small scale manufacturing ← Modern
- Cottage/handicraft manufacturing ← Traditional
Method of Moments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator efficiency: χ</td>
<td>4.73</td>
<td>(variable self)/$p^g = 1.9$</td>
</tr>
<tr>
<td>Generator productivity: A^s</td>
<td>1.05</td>
<td>(AC self)/$p^g = 3.18$</td>
</tr>
<tr>
<td>Grid capital: K^g_{2000}</td>
<td>0.09</td>
<td>$K^g/K = 0.0249$</td>
</tr>
<tr>
<td>Leontief parameter: μ</td>
<td>0.90</td>
<td>Modern electricity share $= 0.16$</td>
</tr>
<tr>
<td>Pareto parameter: λ</td>
<td>2.50</td>
<td>Frac modern labor$= 0.13$</td>
</tr>
<tr>
<td>Modern productivity: A^m</td>
<td>1.43</td>
<td>Frac modern firms$= 0.033$</td>
</tr>
<tr>
<td>Discount rate: β</td>
<td>0.96</td>
<td>$r = 0.04$</td>
</tr>
</tbody>
</table>
Method of Moments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator efficiency: χ</td>
<td>4.73</td>
<td>(variable self)/$p^g = 1.9$</td>
</tr>
<tr>
<td>Generator productivity: A^s</td>
<td>1.05</td>
<td>(AC self)/$p^g = 3.18$</td>
</tr>
<tr>
<td>Grid capital: K_{2000}^g</td>
<td>0.09</td>
<td>$K^g/K = 0.0249$</td>
</tr>
<tr>
<td>Leontief parameter: μ</td>
<td>0.90</td>
<td>Modern electricity share = 0.16</td>
</tr>
<tr>
<td>Pareto parameter: λ</td>
<td>2.50</td>
<td>Frac modern labor = 0.13</td>
</tr>
<tr>
<td>Modern productivity: A^m</td>
<td>1.43</td>
<td>Frac modern firms = 0.033</td>
</tr>
<tr>
<td>Discount rate: β</td>
<td>0.96</td>
<td>$r = 0.04$</td>
</tr>
</tbody>
</table>
Method of Moments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator efficiency: χ</td>
<td>4.73</td>
<td>((\text{variable self})/p^g = 1.9)</td>
</tr>
<tr>
<td>Generator productivity: A^s</td>
<td>1.05</td>
<td>((\text{AC self})/p^g = 3.18)</td>
</tr>
<tr>
<td>Grid capital: K_{2000}^g</td>
<td>0.09</td>
<td>$K^g/K = 0.0249$</td>
</tr>
<tr>
<td>Leontief parameter: μ</td>
<td>0.90</td>
<td>Modern electricity share = 0.16</td>
</tr>
<tr>
<td>Pareto parameter: λ</td>
<td>2.50</td>
<td>Frac modern labor = 0.13</td>
</tr>
<tr>
<td>Modern productivity: A^m</td>
<td>1.43</td>
<td>Frac modern firms = 0.033</td>
</tr>
<tr>
<td>Discount rate: β</td>
<td>0.96</td>
<td>$r = 0.04$</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td>Target</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Generator efficiency: χ</td>
<td>4.73</td>
<td>(variable self)/$p^g = 1.9$</td>
</tr>
<tr>
<td>Generator productivity: A^s</td>
<td>1.05</td>
<td>(AC self)/$p^g = 3.18$</td>
</tr>
<tr>
<td>Grid capital: K^g_{2000}</td>
<td>0.09</td>
<td>$K^g/K = 0.0249$</td>
</tr>
<tr>
<td>Leontief parameter: μ</td>
<td>0.90</td>
<td>Modern electricity share = 0.16</td>
</tr>
<tr>
<td>Pareto parameter: λ</td>
<td>2.50</td>
<td>Frac modern labor = 0.13</td>
</tr>
<tr>
<td>Modern productivity: A^m</td>
<td>1.43</td>
<td>Frac modern firms = 0.033</td>
</tr>
<tr>
<td>Discount rate: β</td>
<td>0.96</td>
<td>$r = 0.04$</td>
</tr>
</tbody>
</table>
Quantitative Exercise

- Begin in year 2000 steady state
- Shock economy each year from 2000-2014 with observed per capita increase in grid electricity capital
- Transition to new SS with 2014 levels of electricity per capita
Aggregate Effects of Electrification (1)
Aggregate Effects of Electrification (1)

Grid Capital Per Worker

Intensive Margin: Power Outages

Percent Modern Entrepreneurs

Capital Accumulation

Cottage Industry to Factories?

January 2019, Fried and Lagakos
Aggregate Effects of Electrification (1)

Grid Capital Per Worker

Intensive Margin: Power Outages

Extensive Margin: Structural Change

Cottage Industry to Factories? January 2019, Fried and Lagakos 24
Aggregate Effects of Electrification (1)

Grid Capital Per Worker

Intensive Margin: Power Outages

Extensive Margin: Structural Change

Capital Accumulation

Cottage Industry to Factories?

January 2019, Fried and Lagakos 24
Aggregate Effects of Electrification (2)

Output Per Worker

Consumption Per Worker

Cottage Industry to Factories?

January 2019, Fried and Lagakos
Welfare Effects of Electrification

Consumption Equivalent Variation

<table>
<thead>
<tr>
<th>Steady State</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.20</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Steady State Effects

<table>
<thead>
<tr>
<th></th>
<th>% ΔY^t</th>
<th>% ΔY^m</th>
<th>% ΔY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>-19.8</td>
<td>135.0</td>
<td>6.9</td>
</tr>
</tbody>
</table>
Decomposition

Steady State Effects

<table>
<thead>
<tr>
<th></th>
<th>% ΔY^t</th>
<th>% ΔY^m</th>
<th>% ΔY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>-19.8</td>
<td>135.0</td>
<td>6.9</td>
</tr>
<tr>
<td>Intensive margin</td>
<td>-2.4</td>
<td>17.3</td>
<td>1.8</td>
</tr>
</tbody>
</table>

- **Intensive margin:** $v = v_{2014}, \ N^t = N^t_{2000}, \ N^m = N^m_{2000}$
Decomposition

Steady State Effects

<table>
<thead>
<tr>
<th></th>
<th>% ΔY^t</th>
<th>% ΔY^m</th>
<th>% ΔY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>-19.8</td>
<td>135.0</td>
<td>6.9</td>
</tr>
<tr>
<td>Intensive margin</td>
<td>-2.4</td>
<td>17.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Extensive margin</td>
<td>-15.5</td>
<td>104.3</td>
<td>3.4</td>
</tr>
</tbody>
</table>

• Intensive margin: $\nu = \nu_{2014}$, $N^t = N^t_{2000}$, $N^m = N^m_{2000}$

• Extensive margin: $\nu = \nu_{2000}$, $N^t = N^t_{2014}$, $N^m = N^m_{2014}$
Comparison to Micro Studies

Allcott, Collard-Wexler, O’Connell (2016) experiment

- Reduce power outages by 7.2 percentage points
- Partial equilibrium: hold prices and entry constant
- Modern firms only

Increase in modern firm output (percent)

<table>
<thead>
<tr>
<th></th>
<th>Ethiopia</th>
<th>Allcott et al. (2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.9</td>
<td>5-10</td>
</tr>
</tbody>
</table>
The Effects of Electrification on the Macroeconomy

- Substantial increases in output per worker

- Intensive margin: existing modern firms get more electricity
 - Explains $\approx 1/4$ of increase in output per worker

- Extensive margin: entry into modern production
 - Explains $\approx 1/2$ of increase in output per worker
The Effects of Electrification on the Macroeconomy

- Substantial increases in output per worker
- Intensive margin: existing modern firms get more electricity
 - Explains $\approx 1/4$ of increase in output per worker
- Extensive margin: entry into modern production
 - Explains $\approx 1/2$ of increase in output per worker

Thank you!