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The aggregation of private information and the dynamics of liquidity supply and demand are

closely intertwined in financial markets. In dealer markets, informed and uninformed investors

trade via market orders and, thus, take liquidity, while dealers provide liquidity and try to extract

information from the arriving order flow (e.g., as in Kyle (1985) and Glosten and Milgrom (1985)).

However, in limit order markets — the dominant form of securities market organization today

— the relation between who has information and who is trying to learn it and who supplies and

demands liquidity is not well understood theoretically.1 Recent empirical research highlights the

role of informed traders not only as liquidity takers but also as liquidity suppliers. O’Hara (2015)

argues that fast informed traders use market and limit orders interchangeably and often prefer limit

orders to marketable orders. Fleming, Mizrach, and Nguyen (2017) and Brogaard, Hendershott,

and Riordan (2016) find that limit orders play a significant empirical role in price discovery.2

Our paper presents the first rational expectations model of a dynamic limit order market with

asymmetric information and history-dependent Bayesian learning. In particular, learning is not

constrained to be Markovian in the limit order book. The model represents a trading day with

market opening and closing effects. Our model lets us investigate the information content of different

types of market and limit orders, the dynamics of who provides and demands liquidity, and the

non-Markovian information content of the order history. In addition, we study how changes in the

amount of adverse selection — in terms of both asset-value volatility and the arrival probability of

informed investors — affect equilibrium trading strategies, liquidity, price discovery, and welfare.

We have four main results:

• Increased adverse selection does not always worsen market liquidity as in Kyle (1985). Li-

quidity can improve if informed traders with better information trade more aggressively by

submitting more limit-orders at the inside quotes rather than by using market orders.

1See Jain (2005) about the prevalence of limit order markets. See Parlour and Seppi (2008) for a survey of
theoretical models of limit order markets. See Rindi (2008) and Boulatov and George (2013) for models of informed
traders as liquidity providers.

2Gencay, Mahmoodzadeh, Rojcek, and Tseng (2016) investigate brief episodes of high-intensity/extreme behavior
of quotation process in the U.S. equity market (bursts in liquidity provision that happen several hundreds of time a
day for actively traded stocks) and find that limit orders during these bursts significantly impact prices.
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• The information content of arriving orders can be opposite both order direction and aggress-

iveness. These patterns happen in markets in which value-shock volatility is small relative to

the price grid, and when informed investors have private value shocks as well as information.

• The learning dynamics are non-Markovian in that the order history has information in addi-

tion to the current state of the limit order book.3 In particular, the incremental information

content of arriving limit and market orders is history-dependent.

• The conditional price impact of market and limit order flow (as estimated in Hasbrouck VARs)

can depend on time, the current standing limit order book, and the prior order history.

Dynamic limit order markets with uninformed investors are studied in a large literature. This

includes Foucault (1999), Parlour (1998), Foucault, Kadan, and Kandel (2005), Goettler, Parlour,

and Rajan (2005) and Roşu (2009). There is some previous theoretical research that allows informed

traders to supply liquidity. Kumar and Seppi (1994) is a static model in which optimizing informed

and uninformed investors use profiles of multiple limit and market orders to trade. Kaniel and

Liu (2006) extend the Glosten and Milgrom (1985) dealership market to allow informed traders

to post limit orders. Aı̈t-Sahalia and Saglam (2013) also allow informed traders to post limit

orders, but they do not allow them to choose between limit and market orders. Moreover, the

limit orders posted by their informed traders are always at the best bid and ask prices. Goettler,

Parlour, and Rajan (2009) allow informed and uninformed traders to post limit or market orders,

but their model is stationary and assumes Markovian learning. Roşu (2016b) studies a steady-

state limit order market equilibrium in continuous-time also assuming Markovian learning with

some additional information-processing restrictions. These last two papers are closest to ours. Our

model differs from them in two ways: First, they assume Markovian learning in order to study

dynamic trading strategies with order cancellation, whereas we simplify the strategy space (by

not allowing dynamic order cancellations and submissions) in order to investigate non-Markovian

3To be clear about terminology, we say a stochastic process followed by a set of variables x is non-Markovian
if the conditional probability distributions f [xsjxt; xt−1; : : :] and f [xsjxt] are different for some times t and s > t.
If a summary function g(xt−1; : : :) exists such that f [(xs; g(xs−1; : : :))j (xt; g(xt−1; : : :)); (xt−1; g(xt−2; : : :)); : : :] =
f [(xs; g(xs−1; : : :))j(xt; g(xt−1; : : :)], then we say the augmented process (x; g) is Markovian but not that the unaug-
mented process x is Markovian.
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learning (i.e., our model has a larger state space with full order histories). Second, we model a non-

stationary trading day with opening and closing effects. Market opens and closes are important daily

events in the dynamics of liquidity in financial markets. Bloomfield, O’Hara, and Saar (2005) show

in an experimental market analysis that informed traders sometimes provide more liquidity than

uninformed traders. Our model provides equilibrium examples of liquidity provision by informed

investors.

A growing literature investigates the relation between information and trading speed (e.g., Biais,

Foucault, and Moinas (2015); Foucault, Hombert, and Roşu (2016); and Roşu (2016a)). However,

these models assume Kyle or Glosten-Milgrom market structures and, thus, cannot consider the

roles of informed and uninformed traders as endogenous liquidity providers and demanders. We

argue that understanding price discovery dynamics in limit order markets is an essential precursor

to understanding speedbumps and cross-market competition given the real-world prevalence of limit

order markets.

1 Model

We consider a limit order market in which a risky asset is traded atN discrete times tj ∈ {t1; : : : ; tN}

over a trading day. The fundamental value of the asset at the end of the day after time tN is

ṽ = v0 + ∆ =

8>>>><>>>>:
v̄ = v0 + � with Pr(v̄) = 1

3

v0 with Pr(v0) = 1
3

v
�

= v0 − � with Pr(v
�
) = 1

3

(1)

where v0 is the ex ante expected asset value, and ∆ is a symmetrically distributed value shock. The

limit order market allows for trading through two types of orders: Limit orders are price-contingent

orders that are collected in a limit order book. Market orders are executed immediately at the best

available price in the limit order book. The limit order book has a price grid with four prices,

Pi ∈ {A2; A1; B1; B2}, two each on the ask and bid sides of the market. The tick size is equal to

� > 0, and the ask prices are A1 = v0 + �
2 , A2 = v0 + 1:5�, ; and by symmetry the bid prices are
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B1 = v0 − �
2 , B2 = v0 − 1:5�. For simplicity, we normalize the tick size to � = 1.

Order execution follows time and price priority. Thus, at each time tj , seven possible actions

xtj are available to investors: One possibility is to submit a market order MBAitj
or MSBitj

to

buy or sell immediately at the best available ask Aitj
or bid Bitj

(indexed by itj ) in the limit order

book at time tj . A subscript itj = 1 indicates that the best standing quote at time tj is at an inside

price A1 or B1, and itj = 2 means the best quote is at an outside price A2 or B2. Alternatively, the

investor can submit one of four possible limit orders LBBi and LSAi to buy or sell at the different

prices on the ask or bid side of the book. A subscript i = 1 denotes an aggressive limit order posted

at the inside quote, and i = 2 is a less aggressive limit order at the outside quotes.4 Yet another

alternative is to do nothing (NT ).

Two types of investors trade in the market. The first are a sequence of arriving active traders

with potential gains-from-trade due to private information and/or random private values. One

active investor arrives at each time tj . They are risk-neutral and asymmetrically informed. The

active investor arriving at time tj is informed with probability � and uninformed with probability

1 − �. Informed investors know the realized value shock ∆ perfectly. A generic informed investor

is denoted as I. When we want to make explicit the specific information known by the informed

investor, then we denote the informed investor as I�v if the value shock is positive (∆ = �), as Iv
�

if

the shock is negative (∆ = −�), and as Iv0 if the shock is zero (∆ = 0). Informed investors arriving

at different times during the day all have the identical asset-value information (i.e., there is only one

realized ∆). Uninformed investors do not know ∆, so they use Bayes’ Rule and their knowledge of

the equilibrium to learn about ∆ from the observable order history over time. Uninformed investors

are denoted as U .

An investor arriving at time tj may also have an additive random personal private-value trading

motive �tj . Non-informational private-value motives include preference shocks, hedging needs, and

taxation. The absence of a non-informational trading motive would lead to the Milgrom and Stokey

(1982) no-trade result. In our analysis, the factor �tj at time tj is drawn from a truncated-Normal

distribution, Tr[N (�; �2)], with support over the interval [−10; 10], which corresponds to private

4For tractability, it is assumed investors cannot post buy limit orders at A1 and sell limit orders at B1. This is
one way in which the investor action space is simplified in our model.
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valuations of up to plus or minus 10 ticks. The mean, � = 0, is a neutral private factor. The

parameter � determines the dispersion of an investor’s private-value factor �tj , as shown in Figure

1, and, thus, the probability of large private gains-from-trade due to extreme private valuations.

The sequence of arriving active investors is independently and identically distributed in terms of

whether investors are informed or uninformed and in terms of their individual private-value factors

�tj . In one specification of our model, only uninformed investors have private valuations, while in

a second richer specification both informed and uninformed investors have private valuations.

Figure 1: Distribution of Investor Private-Value Factors - � ∼ Tr[N (�; �2)]: This figure
shows the truncated-Normal probability density function (PDF) of trader private-value factors �tj with a mean � = 0
and three different possible values of dispersion �.
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The second type of investors in the market are a group of passive liquidity providers with no

active motive to trade. These investors, who we call the trading crowd, submit limit orders to

provide liquidity. By assumption, the crowd just posts single limit orders at the outside prices A2

and B2. The market opens with an initial book submitted by the crowd at time t0. After the

order-submission by the arriving active investor at each time tj , the crowd replenishes the book at

the outside prices, as needed, when either side of the book is empty. Otherwise, if there are limit

orders on both sides of the book, the crowd does nothing. The trading crowd effectively establishes

a lower bound on the liquidity available in the market.5

5The trading crowd can endogenized as HFT investors in a Budish, Cramton, and Shim (2015) style model with
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For tractability, we make four additional simplifying assumptions. First, limit orders cannot

be modified or canceled after submission. Thus, each arriving investor has one and only one

opportunity to submit an order. Second, there is no quantity decision. Orders are to buy or

sell one share. Third, arriving active investors can only submit one single order. Fourth, limit

orders by the active investors have priority over limit orders from the crowd. The focus of our

model is on market dynamics involving information and liquidity given the behavior of optimizing

informed and uninformed investors. We justify this departure from time priority relative to the

crowd in that we want arriving active investors to have a non-trivial choice between aggressive and

less aggressive limit orders (as well as between market and limit orders) and because the crowd is

simply a modeling device to insure it is always possible for arriving active investors to trade with

market orders if they so choose.6 Taken together, these assumptions let us express the action set for

arriving active investors at time tj as Xtj = {MSBitj
; LSA1; LSA2; NT; LBB2; LBB1;MBAitj

},

where each of the orders denotes an order for one share.7

Our model is intentionally non-stationary over the trading day in order to capture market

opening and closing effects and intraday dynamics. When the market opens at t1, the only standing

limit orders in the book are those at prices A2 and B2 from the trading crowd.8 At the end of the

day all unexecuted limit orders are cancelled. The state of the limit order book at a generic time

tj during the day is

Ltj = [qA2
tj
; qA1
tj
; qB1
tj
; qB2
tj

] (2)

where qAi
tj

and qBi
tj

indicate the total depths at prices Ai and Bi at time tj . The limit order book

changes over time due to the arrival of new limit orders (which augment the depth of the book)

and market orders (which remove depth from the book) from arriving informed and uninformed

picking-off risk due to immediate public intraday shocks to v0 that is in addition to the terminal shock ∆ that is
private information during the day.

6In a richer model, we could assume the crowd submits limit orders at prices three ticks from the unconditional
common value v0 and that their limit orders also have time priority.

7The action space Xtj of orders that can be submitted at time tj includes market orders at the standing best bid
or offer at time tj . Our notation MSBitj

and MBAitj
reflects the fact that the bid or offer at time tj is not a fixed

number but rather depends on the incoming state of the limit order book. There is no time script in the limit order
notation LSA1, ... because these are just limit orders at particular fixed prices A1; : : : in the price grid.

8In practice, daily opening limit order books include uncancelled orders from the previous day and new limit
orders from opening auctions. For simplicity, we abstract from these interesting features of markets.
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investors and due to the submission of limit orders from the crowd. The resulting dynamics are:

Ltj = Ltj−1 +Qtj + Ctj j = 1; : : : ; N (3)

where Qtj is the change in the book due to an arriving investor’s action xtj ∈ Xtj at tj :
9

Qtj = [QA2
tj
; QA1

tj
; QB1

tj
; QB2

tj
] =

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

[−1; 0; 0; 0] if xtj = MBA2

[0;−1; 0; 0] if xtj = MBA1

[+1; 0; 0; 0] if xtj = LSA2

[0;+1; 0; 0] if xtj = LSA1

[0; 0; 0; 0] if xtj = NT

[0; 0;+1; 0] if xtj = LBB1

[0; 0; 0;+1] if xtj = LBB2

[0; 0;−1; 0] if xtj = MSB1

[0; 0; 0;−1] if xtj = MSB2

(4)

where “+1” with a limit order denotes the arrival of an additional order at a particular limit price

and “−1” with a market order denotes execution of an earlier BBO limit order and where Ctj is

the change in the limit order book due to any limit orders submitted by the crowd

Ctj =

8>>>><>>>>:
[1; 0; 0; 0] if qA2

tj−1
+QA2

tj
= 0

[0; 0; 0; 1] if qB2
tj−1

+QB2
tj

= 0:

[0; 0; 0; 0] otherwise.

(5)

A potentially important source of information at time tj is the observed history of orders at prior

times t1; ::; tj−1. In particular, when traders arrive in the market, they observe the history of market

activity up through the current standing limit order book at the time they arrive. However, since

orders from the crowd have no incremental information beyond that in the arriving investor orders,

we exclude them from the notation for the portion of the order-flow history used for informational

9There are nine alternatives in (4) because we allow separately for cases in which the best bid and ask for market
sells and buys at time tj are at the inside and outside quotes.
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updating of investor beliefs, which we denote by Ltj−1 = {Qt1 ; : : : ; Qtj−1}.

Investors trade using optimal order-submission strategies given their information and any private-

value motive. If an uninformed investor arrives at time tj , then his order xtj is chosen to maximize

his expected terminal payoff

max
x∈Xtj

wU (x |�tj ;Ltj−1) = E[(v0 + ∆ + �tj − p(x)) f(x)|�tj ;Ltj−1 ] (6)

=

8><>: [v0 + E[∆ |Ltj−1 ; �
x
tj ] + �tj − p(x)]Pr(�xtj |Ltj−1) if x is a buy order

[p(x)− (v0 + E[∆ |Ltj−1 ; �
x
tj ] + �tj )]Pr(�xtj |Ltj−1) if x is a sell order

where p(x) is the price at which order x trades, and f(x) denotes the amount of the submitted order

that is actually “filled.” If x is a market order, then p(x) is the best standing quote on the other side

of the market at time tj , and f(x) = 1 for a market buy and f(x) = −1 for a market sell (i.e., all of

the order is executed). If x is a non-marketable limit order, then the execution price p(x) is its limit

price, but the fill amount f(x) is random variable equal to zero if the limit order is never executed

and equal to 1 if a limit buy is filled and −1 if a limit sell is filled. If the investor does not trade

— either because no order is submitted (NT ) or because a limit order is not filled — then f(x) is

zero. In the second line of (6), the expression �xtj denotes the set of future trading states in which

an order x submitted at time tj is executed.10 This conditioning matters for limit orders because

the sequence of subsequent orders in the market, which may or may not result in the execution of

a limit order submitted at time tj , is correlated with the asset value shock ∆. For example, future

market buy orders are more likely if the ∆ shock is positive (since the average Iv investors will

want to buy but not the average Iv investor). Uninformed investors rationally take the relation

between future orders and ∆ into account when forming their expectation E[∆ |Ltj−1 ; �
x
tj ] of what

the asset will be worth in states in which their limit orders are executed. The second line of (6) also

makes clear that uninformed investors use the prior order history Ltj−1 in two ways: It affects their

beliefs about limit order execution probabilities Pr(�xtj |Ltj−1) and their execution-state-contingent

asset-value expectations E[∆ |Ltj−1 ; �
x
tj ].

10A market orders xtj is executed immediately at time tj and so is executed for sure.
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An informed investor who arrives at tj chooses an order xtj to maximize her expected payoff

max
x∈Xtj

wI(x |v; �tj ;Ltj−1) = E[(v0 + ∆ + �tj − p(x)) f(x)|�tj ;Ltj−1 ] (7)

=

8><>: [v0 + ∆ + �tj − p(x)]Pr(�xtj |v;Ltj−1) if x is a buy order

[p(x)− (v0 + ∆ + �tj )]Pr(�xtj |v;Ltj−1) if x is a sell order

The only uncertainty for informed investors is about whether any limit orders they submit will be

executed. Their belief about order-execution probabilities Pr(�xtj | v;Ltj−1) are conditioned on both

the trading history up through the current book and on their knowledge about the ending asset

value. Thus, informed traders condition on Ltj−1 , not to learn about the value shock ∆ (which they

already know) or about future investor private-value factors �tj (which are i.i.d. over time), but

rather because they understand that the trading history is an input in the trading behavior of future

uninformed investors (with whom they might trade in the future) and, thus, also in the trading

behavior of future informed investors (who will also take history-contingent uninformed-investor

learning behavior into account when deciding whether to undercut earlier limit orders). Our analysis

considers two model specifications for the informed investors. In the first, informed investors have

no private-value motive, so that their � factors are equal to 0. In the second specification, their

� factors are random and are independently drawn from the same truncated-Normal distribution

Tr[N (�; �2)] as the uninformed investors.

The optimization problem in (6) defines sets of actions xtj ∈ Xtj that are optimal for the

uninformed investor at different times tj given different private-value factors �tj and order histories

Ltj−1 . These optimal orders can be unique, or there may be multiple orders which make the

uninformed investor equally well-off. The optimal order-submission strategy for the uninformed

investor is a probability function ’Utj (x|�tj ;Ltj−1) that is zero if the order x is suboptimal and equals

a mixing probability over optimal orders. If an optimal order x is unique, then ’tj (x|�tj ;Ltj−1) = 1.

Mixed strategies are also allowed. Similarly, the optimization problem in (7) leads to an optimal

order-submission strategy ’Itj (x|�tj ; v;Ltj−1) for informed investors at time tj given their factor

�tj , their knowledge about the asset value v, and the order history Ltj−1 .
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Based on the foregoing, our model has four sources of potential order-flow randomness. First,

orders are random due to the random arrival of informed vs uninformed investors. Second, they

are random due to the asset-value shock ∆. Third, orders are random due to randomness in

investors’ personal private values �tj . This is illustrated in Figure 2 for a numerical example of

our model that is considered in detail in Section 2.2 and Appendix A. The plot shows where the

order-submission probabilities come from for an informed investor Iv at time t1 by superimposing

the upper envelope of the expected payoffs for the different optimal orders at time t1 for the case

of good news about a positive value shock � on the truncated Normal � distribution. It shows how

different � subranges correspond to a discrete set of optimal orders delimited by the � thresholds.

Similar constructions at other dates for informed investors and also for uninformed investors who

must update their asset-value beliefs using Bayes Rule. Fourth and lastly, orders are sometimes

random due to possible mixed strategies ’Utj and ’Itj . However, this only happens when an investor

is indifferent between a set of orders.

1.1 Equilibrium

An equilibrium is a set of mutually consistent optimal strategy functions and beliefs for uninformed

and informed investors for each time tj , given each order history Ltj−1 , private-value factor �tj ,

and (for informed traders) private information v. This section explains what “mutually consistent”

means and then gives a formal definition of an equilibrium.

A central feature of our model is asymmetric information. The presence of informed investors

means that, by observing orders over time, uninformed traders can infer information about the

asset value v and use it in their order-submission strategies. More precisely, uninformed traders

rationally learn from the trading history about the probability that v will go up, stay constant,

or go down. However, investors cannot learn about the private values (�) or information status

(I or U) of future traders since, by assumption, these are both i.i.d over time. Informed investors

do not need to learn about v since they know it directly. However, they do condition their orders

on v (both because v is the final stock value and also because v tells them what type of informed

investors Iv will arrive in the future along with the uninformed U traders). Informed investors

10



Figure 2: � Distribution and Upper Envelope for Informed Investor I�v at time t1.
This figure shows the private-value factor � � Tr[N (�; �2)] distribution superimposed on the plot of the expected
payoffs the informed investor I�v with good news at time t1 for each equilibrium order type MBA2, MSB2, LSA2,
LSA1, LBB1, LBB2, NT , (solid colored lines) when the total book (including crowd limit orders) opens Lt0 = [1
0 0 1]. The dashed line shows the investor’s upper envelope for the optimal orders. The vertical black lines show
the �-thresholds at which two adjacent optimal strategies yield the same expected payoffs. For example LSA1 is the
optimal strategy for values of � between 0 and the first vertical black line; LSA2 is instead the optimal strategy for
the values of beta between the first and the second vertical lines; and so forth. The parameters are � = 0:8, � = 1:6,
� = 0, � = 15, and � = 1.

MBA2LBB1LBB2LSA2LSA1
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also condition on the order-flow history Lt−1, since Lt−1 affects the trading behavior of future

investors.11

The underlying economic state in our model is the realization of the asset value v and a realized

sequence of investors who arrive in the market. The investor who arrives at time tj is described

by two characteristics: their status as being informed or uninformed, I or U , and their private-

value factor �tj . The underlying economic state is exogenously chosen over time by Nature. More

formally, it follows an exogenous stochastic process described by the model parameters �, �, �,

and �. A sequence of arriving investors together with a pair of strategy functions — which we

11The order history Lt−1 is an input in the uninformed-investor learning problem and, thus, is an input in their
order-submission strategy. In addition, since future informed investors know that Lt−1 can affect uninformed investor
trading behavior, it also enters the order-submission strategies of future informed investors.
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denote here as Φ = {’Utj (x|�tj ;Ltj−1); ’Itj (x|�tj ; v;Ltj−1)} — induce a sequence of trading actions

xtj which — together with the predictable actions of the trading crowd — results in a sequence of

observable changes in the state Ltj of the limit order book. Thus, the stochastic process generating

paths of order histories is induced by the economic state process and the strategy functions. Given

the order-path process, several probabilistic quantities can be computed directly: First, we can

compute the unconditional probabilities of different paths Pr(Ltj ) and the conditional probabilities

Pr(Qtj |Ltj−1) of particular order book changes Qtj due to arriving investors given a prior history

Ltj−1 . Certain paths of orders are possible (i.e., have positive probability Pr(Ltj )) given the

strategy functions {’Utj (x|�;Ltj−1); ’Itj (x|�; v;Ltj−1)}, and certain paths of orders are not possible

(i.e., for which Pr(Ltj ) = 0). Second, the endogenous order-path process also determines the order-

execution probabilities Pr(�xtj | v;Ltj−1) and Pr(�xtj |Ltj−1) for informed and uninformed investors

for various orders x submitted at time tj . Computing each of these probabilities is simply a matter

of listing all of the possible underlying economic states, mechanically applying the order-submission

rules, identifying the relevant outcomes path-by-path, and then taking expectations across paths.

Let ‘ denote the set of all feasible histories {Ltj : j = 1; : : : ; 4} of physically available orders

of lengths up to four trading periods. A four-period long history is the longest history a order-

submission strategy can depend on in our model. In this context, feasible paths are simply sequences

of actions from the action choice sets Xtj over time without regard to whether they are possible

in the sense that they occur with positive probability given the strategy functions Φ. Let ‘ in;�

denote the subset of all possible trading paths in ‘ that have positive probability, Pr(Ltj ) > 0,

given a pair of order strategies Φ. Let ‘ o�;� denote the complementary set of trading paths that

are feasible but not possible given Φ. This notation will be useful when discussing “equilibrium”

beliefs on order paths that have positive probability and “off equilibrium” beliefs on paths that

have zero probability given investor strategies. In our analysis, strategy functions Φ are defined

for all feasible paths in ‘. In particular, this includes all of the possible paths in ‘ in;� given Φ

and also the paths in ‘ o�;�. As a result, the probabilities Pr(Qtj |Ltj−1), Pr(�xtj | v;Ltj−1) and

Pr(�xtj |Ltj−1) are always well-defined, because the continuation trading process going forward —

even after an unexpected order-arrival event (i.e., a path Ltj−1 ∈ ‘ o�;�) — is still well-defined.
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The stochastic process for order paths and its relation to the underlying economic state also

determine the uninformed-investor expectations E[v |Ltj−1 ; �
x
tj ] of the terminal asset value given

the previous order history (Ltj−1) and conditional on future execution of a limit order x submitted

at time tj (denoted here by the set of future states �xtj in which this happens). In particular, belief

and expectation formation for the uninformed investor involve backward conditioning on the prior

order history Ltj−1 and forward conditioning on the endogenous set of future states �xtj in which

limit orders are executed. These beliefs and expectations are determined as follows:

• Step 1: The conditional probabilities �vtj = Pr(v|Ltj ) of a particular final asset value v = v̄; v0

or v given a possible trading history Ltj ∈ ‘ in;� up through time tj is given by Bayes’ Rule.

At time t1, this probability is

�vt1 =
Pr(v;Lt1)

Pr(Lt1)
=
Pr(Lt1 |v)Pr(v)

Pr(Lt1)
=
Pr(Qt1 |v)Pr(v)

Pr(Qt1)
(8)

=
Pr(Qt1 |v; I)Pr(I) + Pr(Qt1 |U)Pr(U)

Pr(Qt1)
Pr(v)

=
E�[’It1(xt1 |�It1 ; v)|v]�+ E�[’Ut1(xt1 |�Ut1)](1− �)

Pr(Qt1)
�vt0

where the prior is the unconditional probability �vt0 = Pr(v), xt1 is the order at time t1 that

leads to the order book change Qt1 , and �It1 and �Ut1 are independently distributed private-

value � realizations for informed and uninformed investors at time t1.12 At times tj > t1, the

history-conditional probabilities are given recursively by13

�vtj =
Pr(v;Ltj )

Pr(Ltj )
=
Pr(v;Qtj ;Ltj−1)

Pr(Qtj ;Ltj−1)
=

0B@ Pr(Qtj |v;Ltj−1 ; I)Pr(I|Ltj−1)Pr(v|Ltj−1)

+Pr(Qtj |v;Ltj−1 ; U)Pr(U |Ltj−1)Pr(v|Ltj−1)

1CA
Pr(Qtj |Ltj−1)

=
E�[’Itj (xtj |�Itj ; v;Ltj−1)|v;Ltj−1 ] �+ E�[’Utj (xtj |�Utj ;Ltj−1)|Ltj−1 ] (1− �)

Pr(Qtj |Ltj−1)
�vtj−1

(9)

12A trader’s information status (I or U) is independent of the asset value v, so P (Ijv) = Pr(I) and Pr(U jv) =
Pr(U). Furthermore, uninformed traders have no private information about v, so the probability Pr(Qt1 jU) with
which they take a trading action Qt1 does not depend on v.

13A trader’s information status is again independent of v, and it is also independent of the past trading history
Lt1 . While the probability with which an uninformed trader takes a trading action Qt1 may depend on the past
order history Ltj , it does not depend directly on v which uninformed traders do not know.
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Given these probabilities, the expected asset value conditional on the order history is

E[ṽ|Ltj−1 ] = ��v
tj−1

v̄ + �v0
tj−1

v0 + �
v
tj−1

v (10)

• Step 2: The conditional probabilities �vtj given a “feasible but not possible in equilibrium”

order history Ltj ∈ ‘ o�;� in which a limit order book change Qtj that is inconsistent with

the strategies Φ at time tj are set as follows:

1. If the priors are fully revealing in that �vtj−1
= 1 for some v, then �vtj = �vtj−1

for all v.

2. If the priors are not fully revealing at time tj , then �vtj = 0 for any v for which �vtj−1
= 0

and the probabilities �vtj for the remaining v’s can be any non-negative numbers such

that ��v
tj + �v0

tj
+ �

v
tj

= 1.

3. Thereafter, until any next unexpected trading event, the subsequent probabilities �vtj′

for j′ > j are updated according to Bayes’ Rule as in (9).

• Step 3: The execution-contingent conditional probabilities �̂vtj = Pr(v|Ltj−1 ; �
x
tj ) of a final

asset value v conditional on a prior path Ltj−1 and on execution of a limit order x submitted

at time tj is

�̂vtj =
Pr(Ltj−1)Pr(v|Ltj−1) Pr(�xtj−1

|v;Ltj−1)

Pr(�xtj ;Ltj−1)
(11)

=
Pr(�xtj |v;Ltj−1)

Pr(�xtj |Ltj−1)
�vtj−1

This holds when adjusting for a future execution contingency both when the probabilities

�vtj−1
given the prior history Ltj−1 are for possible paths in ‘ in;� (from (8) and (9) in Step 1)

and also for feasible but not possible paths in ‘ o�;� (from Step 2). These execution-contingent

probabilities �̂vtj are used to compute the execution-contingent conditional expected value

E[ṽ|Ltj−1 ; �
x
tj ] = �̂�v

tj v̄ + �̂v0
tj
v0 + �̂

v
tj
v
�

(12)

used by uninformed traders to compute expected payoffs for limit orders. In particular, the
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probabilities in (12) are the execution-contingent probabilities �̂vtj from (11) rather than the

probabilities �vtj from (9) that just condition on the prior trading history but not on the future

states in which the limit order is executed.

Given these updating dynamics, we can now define an equilibrium.

Definition. A Perfect Bayesian Nash Equilibrium of the trading game in our model is a collec-

tion {’U; ∗tj
(x|�tj ;Ltj−1); ’I; ∗tj (x|�tj ; v;Ltj−1); P r∗(�xtj | v;Ltj−1); P r∗(�xtj |Ltj−1); E∗[ṽ|Ltj−1 ; �

x
tj ]}Nj=1

of order-submission strategies, execution-probability functions, and execution-contingent condi-

tional expected asset-value functions such that:

• The equilibrium execution probabilities Pr∗(�xtj | v;Ltj−1) and Pr∗(�xtj |Ltj−1) are consistent

with the equilibrium order-submission strategies {’U; ∗tj+1
(x|�tj+1 ;Ltj ); : : : ; ’U; ∗t5

(x|�t5 ;Lt4)}

and {’I; ∗tj+1
(x|�tj+1 ; v;Ltj ); : : : ; ’I; ∗t5 (x|�t5 ; v;Lt4)} after time tj .

• The execution-contingent conditional expected asset values E∗[ṽ|Ltj−1 ; �
x
tj ]} agree with Bayesian

updating equations (8), (9), (11), and (12) in Steps 1 and 3 when the order x is consistent with

the equilibrium strategies ’U; ∗tj
(x|�tj ;Ltj−1) and ’I; ∗tj (x|�tj ; v;Ltj−1) at date tj and, when x is

an off-equilibrium action inconsistent with the equilibrium strategies, with the off-equilibrium

updating in Step 2.

• The positive-probability supports of the equilibrium strategy functions ’U; ∗tj
(x|�tj ;Ltj−1) and

’I; ∗tj (x|�tj ; v;Ltj−1) (i.e., the orders with positive probability in equilibrium) are subsets of

the sets of optimal orders for uninformed and informed investors computed from their op-

timization problems (6) and (7) and the equilibrium execution probabilities and outcome-

contingent conditional asset-value expectation functions Pr∗(�xtj | v;Ltj−1), Pr∗(�xtj |Ltj−1),

and E∗[ṽ|Ltj−1 ; �
x
tj ].

Our equilibrium concept differs from the Markov Perfect Bayesian Equilibrium used in Goettler

et al. (2009). Beliefs and strategies in our model are path-dependent; that is to say, traders use

Bayes Rule given the full prior order history when they arrive in the market. In contrast, Goettler

et al. (2009) restricts Bayesian updating to the current state of the limit order book and does not
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allow for conditioning on the previous order history. Roşu (2016b) also assumes a Markov Perfect

Bayesian Equilibrium. The quantitative importance of the order history is considered when we

discuss our results in Section 2.

To help with intuition, Appendix A walks through the order-submission and Bayesian updating

mechanics for a particular realized equilibrium path in the extensive form of the trading game.

Appendix B explains the algorithm used to compute equilibria in our model.

2 Results

This section presents results about how liquidity supply and demand decisions of informed and

uninformed traders and the learning process of uninformed traders affect market liquidity, price

discovery, and investor welfare. Section 2.1 first considers a model specification in which only

uninformed investors have random private-value trading motives. Section 2.2 considers a second

specification that generalizes the analysis and shows the robustness of our findings and extends them

when informed investors also have private-value motives. Throughout the numerical illustrations,

the number of trading rounds is N = 5, and the private-value dispersion � is 15.

We focus on two time windows. The first is when the market opens at time t1. The second

is over the middle of the trading day from times t2 through t4. We look at these two windows

because our model is non-stationary over the trading day. Much like actual trading days, our

model has start-up effects at the beginning of the day and terminal horizon effects at the market

close. When the market opens at time t1, there are time-dependent incentives to provide, rather

than to take, liquidity: The opening book is thin (with limit orders only from the crowd), and

there is the maximum time for future investors to arrive to hit limit orders from t1. There are

also time-dependent disincentives for limit orders. Information asymmetries are maximal at time

t1, since there has been no learning through the trading process. Also, there is the maximal time

for early less aggressive limit orders (at A2 and B2) to be undercut by more aggressive later limit

orders (at A1 and B1). Over the day, information is revealed (lessening adverse selection costs), but

the book can also become fuller (i.e., there is competition in liquidity provision from earlier limit

orders with time priority at their respective limit prices), and the remaining time for market orders
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to arrive and execute limit orders becomes shorter. Comparing these two time windows shows how

market dynamics change over the day. The market close at t5 is also important, but trading then

is straightforward. At the end of the day, investors only submit market orders (or do not trade),

because the execution probability for new limit orders at t5 is zero given our assumption that

unfilled limit orders are canceled once the market closes. Our choice of N = 5 trading rounds in a

day is computationally tractable while still allowing time for relatively less constrained endogenous

choices between market and limit orders at times t2 through t4 away from the immediate mechanical

effects of the relatively thin book at the market open at t1 and the end-of-day market orders at t5.

We use our model to investigate three questions: First, who provides and takes liquidity, and how

does the amount of adverse selection affect investor decisions to take and provide liquidity? Second,

how does market liquidity vary with different amounts of adverse selection? Third, how does the

information content of different types of orders depend on an order’s direction, aggressiveness, and

on the prior order history?

The amount of adverse selection can change in two ways: The proportion � of informed traders

can change, and the magnitude � of the asset-value shocks can change. We present comparative

statics using four different combinations of parameters with high and low informed-investor arrival

probabilities (� = 0:8 and 0:2) and high and low value-shock volatilities (� = 1:6 and 0:2). We

call markets with � = 0:02 low-volatility markets and markets with � = 1:6 high-volatility markets,

because the arriving information is small relative to the � = 1 tick size in the former parameter-

ization and larger relative to the tick size in the later. In high-volatility markets, the final asset

value v given good or bad news is beyond the outside quotes A2 or B2, and so even market orders

at the outside prices are profitable for informed traders. However, in low-volatility markets, v is

always within the inside quotes A1 and B1, and so market orders are never profitable for informed

investors. A real-world example are markets for individual stocks where heteroskedastic fluctuation

in the daily volatility of arriving information can flip the market for a given stock with a fixed one-

penny tick size over time between being a high and low volatility market. Another example is that

futures contracts on different underlyings have customized price grids that can be large or small

relative to their underlying information flow.
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2.1 Uninformed traders with random private-value motives

In our first model specification, only uninformed U traders have random private values �tj . Informed

I traders have fixed neutral private-value factors �tj = 0. Thus, as in Kyle (1985), there is a clear

differentiation between investors who speculate on private information and those who trade for

purely non-informational reasons. Unlike Kyle (1985), informed and uninformed investors here can

choose to trade using limit or market orders rather than being restricted to just market orders.

2.1.1 Trading strategies

We begin by investigating who supplies and takes liquidity and how these decisions change with

the amount of adverse selection. Our starting point establishes from first principles that different

forms of adverse selection affect investors’ trading decisions differently.

Proposition 1 Trading strategies are affected differently by changes in adverse selection due to

changes in the value-shock size � vs. changes in the informed-investor arrival probability �.

Proof: Consider first the effect of changes in the value-shock � on informed-investor order sub-

missions given any fixed �. If the value-shock � is sufficiently close to zero, then directionally

informed I�v and Iv investors with good or bad news never use market orders, since the terminal

asset value v is always between the inside bid and ask prices A1 and B1 given a discrete tick size �.

However, once � is sufficiently large, investors with good and bad news start to use market orders

for their guaranteed execution. Thus, the set of orders used by directionally informed investors can

change when � changes. This is true independently of the informed-investor arrival probability �.

In contrast, consider the effect of the informed-investor arrival probability � on informed-investor

order submission given a fixed �. If the value-shocks � are close to zero, informed investors with

good or bad news never use market orders for any informed-investor arrival probability �. They

are unwilling to pay a large tick size to trade on their small information. Instead act as liquid-

ity providers using limit orders to supply liquidity asymmetrically depending on the direction of

their information. Thus, the set of orders used by directionally informed investors in low-volatility

markets never changes to include market orders when � changes.
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Numerical results illustrate other facets of how adverse selection affects investor trading. Table

1 reports results about trading early in the day at time t1 using a 2 × 2 format. Each of the four

cells corresponds to a different combination of parameters. Comparing cells horizontally shows the

effect of a change in the value-shock size � while holding the arrival probability � for informed

traders fixed. Comparing cells vertically shows the effect of a change in the informed-investor

arrival probability while holding the value-shock size fixed. In each cell corresponding to a set of

parameters, there are four columns reporting conditional results for informed investors with good

news, neutral news, and bad news about the asset (Iv, Iv0 , Iv) and for an uninformed investor (U)

and a fifth column with the unconditional market results (Uncond). The table reports the order-

submission probabilities and several market-quality metrics. Specifically, we report expected bid-

ask spreads conditioning on the three informed-investor types E[Spread |Iv] and on the uninformed

trader E[Spread |U ], the unconditional expected market spread E[Spread], and expected depths

at the inside prices (A1 and B1) and the total at both prices (A1 + A2 and B1 + B2) on each

side of the market. As we shall see, our results are symmetric for the directionally informed

investors Iv and Iv on the buy and sell sides of the market. In addition, we report the probability-

weighted contributions to the different investors’ welfare (i.e., expected gains-from-trade) from

limit and market orders respectively, and their total expected welfare.14 Table B1 in Appendix B

provides additional results about conditional and unconditional future execution probabilities for

the different orders (PEX(xt1)) and also the uninformed investor’s updated expected asset value

E[v|xt1 ] given different types of buy orders xt1 at time t1.

Table 2 shows average results for times t2 through t4 during the day using a similar 2×2 format.

The averages are across time and trading histories. Comparing results for time t1 with the averages

for t2 through t4 shows intraday variation in the trading process. There is no table for time t5,

because only market orders are used at the market close.

One order-submission property that is important for market-quality and order-informativenes

results below is that directionally informed investors Iv and Iv tend to trade more aggressively in a

14LetWU (�t1) andW I(v; �t1) denote the value functions when (6) and (7) are evaluated at time t1 using the optimal
strategies for the uninformed and informed investors respectively. The total ex ante welfare gain is E[WU (�t1)] for
the uninformed investor where the expectation is taken over �t1 and E[W I(v; �t1)] for the informed investor where
the expectation is taken over v and �t1 .
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high-volatility markets in which value shocks are large relative to the tick size. This is intuitive since

larger potential trading gains-from-trade make price improvement less important relative to trade

execution. This property can be seen in Table 1 where I�v and Iv investors at time t1 only post limit

orders at the less-aggressive outsides quotes A2 and B2 in the two low-volatility parameterizations

on the right (with � = 0:2 and � = 0:2 or 0:8) but use limit orders with positive probability at

both the aggressive inside quotes A1 and B1 as well as at the outside quotes in the two high-

volatility parameterization cells on the left (with � = 1:6 and the same two respective �s). This

trading-aggressiveness property can also be seen in different ways in the average order-submission

probabilities at times t2 through t4 in Table 2. In the low-volatility parameterizatons on the right,

informed I�v and Iv investors supply liquidity via limit orders on both sides of the market with

order-submission probabilities that are somewhat skewed at the inside quote in the direction of

their small amount of private information. Moving to the high-volatility parameterizations on the

left, we see that, when the informed-investor arrival probability � is low (0:2), directionally informed

investors increase the probability of using aggressive limit orders at the inside prices to trade in

the direction of their information. However, when the informed-investor arrival probability � is

high (0:8), the increased trading aggressiveness by informed investors in the high-volatility market

takes a different form. Informed I�v and Iv investors reduce their use of all types of limit orders and

increase their use of market orders at times t2 to t4.

Next, consider the neutrally informed Iv0 investors and uninformed U investors. These investors

respond differently to adverse selection because the informed Iw0 investors have an advantage over

uninformed U investors: There is no adverse selection risk for the Iv0 investors. They know the

value shock ∆ is 0 and, thus, that the unconditional valuation v0 is correct. Tables 1 and 2 show

that as adverse selection increases (via both larger �s and larger �s), liquidity-provision by the Iv0

investors is unchanged at time t1 and becomes somewhat more aggressive on average in the use of

limit orders at the inside prices at times t2 through t4. These results are qualitatively consistent

with the intuition of Bloomfield, O’Hara and Saar (2005), who find in laboratory experiments

that informed investors provide liquidity via limit orders when mispricing is small in a market.

In contrast, uninformed U investors become less willing to provide liquidity via aggressive limit
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orders at the inside quotes as adverse selection worsens. Rather, they increasingly take liquidity

via market orders or supply liquidity via less aggressive limit orders at the outside quotes. This

reduction in liquidity provision at the inside quotes by uninformed U investors happens at time

t1 (Table 1) and at times t2 through t4 (Table 2) and for both larger value shocks � and higher

informed-investor arrival probabilities �.

An equilibrium interaction in investor trading behavior is noteworthy in this context. Unin-

formed U investors are unwilling to use aggressive limit orders at the inside quotes when the adverse

selection risk is sufficiently high as in the upper-left parametrization (� = 0:8 and � = 1:6). This

explains the fact that informed I�v and Iv investors use aggressive limit orders at the inside quotes

with a higher probability at time t1 in the lower-left intermediate adverse-selection parametrization

(0.930 with � = 0:2 and � = 1:6) than in the upper-left high adverse-selection parameterization

(0.360). At first glance this might seem counterintuitive since competition from future informed

investors (and the possibility of being undercut by later limit orders) is greater when the informed-

investor arrival probability is large (� = 0:8) than when � is smaller. However, in equilibrium there

is camouflage from the uninformed U investor limit orders at the inside quotes in the lower-left

parametization, whereas limit orders at the inside quotes are fully revealing in the upper-left para-

metrization. Table B1 in Appendix B shows that, as a result, the execution probabilities for the

fully revealing limit orders at prices that are revealed to be far from the asset’s actual value are

much lower (0.078) relative to the non-fully revealing limit orders (0.713).
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Table 1: Trading Strategies, Liquidity, and Welfare at Time t1 in an Equilibrium with Informed
Traders with � = 0 and Uninformed Traders with � � Tr[N (�; �2)]: This table reports results for two
different informed-investor arrival probabilities � (0.8 and 0.2) and two different value-shock volatilities � (1.6 and
0.2). The private-value factor parameters are � = 0 and � = 15, and the tick size is � = 1. Each cell corresponding to
a set of parameters reports the equilibrium order-submission probabilities, the expected bid-ask spreads and expected
depths at the inside prices (A1 and B1) and total depths on each side of the market after order submissions at time
t1, and expected welfare of the market participants. The first four columns in each parameter cell are for informed
traders with positive, neutral and negative signals, (I�v,Iv0 ,Iv

�
) and for uninformed traders (U). The fifth column

(Uncond:) reports unconditional results for the market.

� = 1:6 � = 0:2

I�v Iv0 Iv
�

U Uncond: I�v Iv0 Iv
�

U Uncond:

LSA2 0 0.500 0.640 0.145 0.333 0 0.500 1.000 0.052 0.410
LSA1 0 0 0.360 0 0.096 0 0 0 0.079 0.016
LBB1 0.360 0 0 0 0.096 0 0 0 0.079 0.016
LBB2 0.640 0.500 0 0.145 0.333 1.000 0.500 0 0.052 0.410

MBA2 0 0 0 0.355 0.071 0 0 0 0.369 0.074
MBA1 0 0 0 0 0 0 0 0 0 0
MSB1 0 0 0 0 0 0 0 0 0 0
MSB2 0 0 0 0.355 0.071 0 0 0 0.369 0.074
NT 0 0 0 0 0 0 0 0 0 0

� = 0:8
E[Spread |·] 2.640 3.000 2.640 3.000 2.808 3.000 3.000 3.000 2.842 2.968
E[Depth A2+A1 |·] 1.000 1.500 2.000 1.145 1.429 1.000 1.500 2.000 1.131 1.426
E[Depth A1 |·] 0 0 0.360 0 0.096 0 0 0 0.079 0.016
E[Depth B1 |·] 0.360 0 0 0 0.096 0 0 0 0.079 0.016
E[Depth B1+B2 |·] 2.000 1.500 1.000 1.145 1.429 2.000 1.500 1.000 1.131 1.426

E[Welfare LO |·] 0.347 0.596 0.347 0.194 0.383 0.288 0.688 0.288 0.153 0.368
E[Welfare MO |·] 0 0 0 3.361 0.672 0 0 0 3.390 0.678
E[Welfare |·] 0.347 0.596 0.347 3.554 1.055 0.288 0.688 0.288 3.543 1.046

LSA2 0 0.500 0.070 0.065 0.090 0 0.500 1.000 0.063 0.150
LSA1 0 0 0.930 0.368 0.356 0 0 0 0.397 0.318
LBB1 0.930 0 0 0.368 0.356 0 0 0 0.397 0.318
LBB2 0.070 0.500 0 0.065 0.090 1.000 0.500 0 0.063 0.150

MBA2 0 0 0 0.068 0.054 0 0 0 0.040 0.032
MBA1 0 0 0 0 0 0 0 0 0 0
MSB1 0 0 0 0 0 0 0 0 0 0
MSB2 0 0 0 0.068 0.054 0 0 0 0.040 0.032
NT 0 0 0 0 0 0 0 0 0 0

� = 0:2
E[Spread |·] 2.070 3.000 2.070 2.265 2.288 3.000 3.000 3.000 2.206 2.365
E[Depth A2+A1 |·] 1.000 1.500 2.000 1.432 1.446 1.000 1.500 2.000 1.460 1.468
E[Depth A1 |·] 0 0 0.930 0.368 0.356 0 0 0 0.397 0.318
E[Depth B1 |·] 0.930 0 0 0.368 0.356 0 0 0 0.397 0.318
E[Depth B1+B2 |·] 2.000 1.500 1.000 1.432 1.446 2.000 1.500 1.000 1.460 1.468

E[Welfare LO |·] 2.726 1.471 2.726 3.094 2.937 0.809 1.497 0.809 3.595 3.084
E[Welfare MO |·] 0 0 0 1.045 0.836 0 0 0 0.642 0.514
E[Welfare |·] 2.726 1.471 2.726 4.139 3.773 0.809 1.497 0.809 4.238 3.598

22



Table 2: Averages for Trading Strategies, Liquidity, and Welfare across Times t2 through t4 for
Informed Traders with � = 0 and Uninformed Traders with � � Tr[N (�; �2)]: This table reports results
for two different informed-investor arrival probabilities � (0.8 and 0.2) and for two different asset-value volatilities
� (1.6 and 0.2). The private-value factor parameters are � = 0 and � = 15, and the tick size is � = 1. Each cell
corresponding to a set of parameters reports the equilibrium order-submission probabilities, the expected bid-ask
spreads and expected depths at the inside prices (A1 and B1) and total depths on each side of the market after order
submissions at times t2 through t4, and expected welfare for the market participants. The first four columns in each
parameter cell are for informed traders with positive, neutral and negative signals, (I�v,Iv0 ,Iv

�
) and for uninformed

traders (U). The fifth column (Uncond:) reports unconditional results for the market.

� = 1:6 � = 0:2

I�v Iv0 Iv
�

U Uncond: I�v Iv0 Iv
�

U Uncond:

LSA2 0 0.244 0.049 0.155 0.109 0.399 0.255 0.108 0.026 0.209
LSA1 0 0.256 0.253 0.027 0.141 0.192 0.239 0.288 0.064 0.205
LBB1 0.253 0.256 0 0.027 0.141 0.288 0.239 0.192 0.064 0.205
LBB2 0.049 0.244 0 0.155 0.109 0.108 0.255 0.399 0.026 0.209

MBA2 0.491 0 0 0.297 0.190 0 0 0 0.347 0.069
MBA1 0.001 0 0 0.018 0.004 0 0 0 0.058 0.012
MSB1 0 0 0.001 0.018 0.004 0 0 0 0.058 0.012
MSB2 0 0 0.491 0.297 0.190 0 0 0 0.347 0.069
NT 0.206 0 0.206 0.007 0.111 0.013 0.010 0.013 0.011 0.012

� = 0:8
E[Spread |·] 2.174 2.276 2.174 2.529 2.272 2.269 2.275 2.269 2.738 2.364
E[Depth A2+A1 |·] 1.048 2.326 2.467 1.755 1.909 2.165 2.300 2.433 1.608 2.161
E[Depth A1 |·] 0.001 0.362 0.826 0.235 0.364 0.226 0.362 0.506 0.131 0.318
E[Depth B1 |·] 0.826 0.362 0.001 0.235 0.364 0.506 0.362 0.226 0.131 0.318
E[Depth B1+B2 |·] 2.467 2.326 1.048 1.755 1.909 2.433 2.300 2.165 1.608 2.161

E[Welfare LO |·] 0.092 0.128 0.092 1.075 0.298 0.143 0.133 0.143 0.055 0.123
E[Welfare MO |·] 0.093 0 0.093 2.960 0.642 0 0 0 3.538 0.708
E[Welfare |·] 0.185 0.128 0.185 4.036 0.940 0.143 0.133 0.143 3.592 0.830

LSA2 0 0.385 0.525 0.101 0.141 0.375 0.389 0.443 0.093 0.155
LSA1 0 0.099 0.242 0.058 0.069 0.044 0.096 0.116 0.066 0.070
LBB1 0.242 0.099 0 0.058 0.069 0.116 0.096 0.044 0.066 0.070
LBB2 0.525 0.385 0 0.101 0.141 0.443 0.389 0.375 0.093 0.155

MBA2 0.130 0 0 0.219 0.184 0 0 0 0.218 0.175
MBA1 0.093 0 0 0.118 0.101 0 0 0 0.120 0.096
MSB1 0 0 0.093 0.118 0.101 0 0 0 0.120 0.096
MSB2 0 0 0.130 0.219 0.184 0 0 0 0.218 0.175
NT 0.010 0.031 0.010 0.006 0.009 0.022 0.030 0.022 0.005 0.009

� = 0:2
E[Spread |·] 2.160 2.154 2.160 2.402 2.353 2.212 2.173 2.212 2.478 2.422
E[Depth A2+A1 |·] 1.299 2.094 2.513 1.585 1.662 1.932 2.091 2.257 1.576 1.680
E[Depth A1 |·] 0.190 0.423 0.727 0.304 0.332 0.346 0.414 0.442 0.262 0.290
E[Depth B1 |·] 0.727 0.423 0.190 0.304 0.332 0.442 0.414 0.346 0.262 0.290
E[Depth B1+B2 |·] 2.513 2.094 1.299 1.585 1.662 2.257 2.091 1.932 1.576 1.680

E[Welfare LO |·] 1.179 0.566 1.179 0.523 0.614 0.596 0.654 0.596 0.500 0.523
E[Welfare MO |·] 0.177 0 0.177 3.419 2.759 0 0 0 3.417 2.734
E[Welfare |·] 1.357 0.566 1.357 3.942 3.372 0.596 0.654 0.596 3.917 3.257
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2.1.2 Market quality

Market liquidity changes when the amount of adverse selection in a market changes. A standard

intuition, as in Kyle (1985), is that liquidity deteriorates given more adverse selection. Roşu

(2016b) also finds worse liquidity (a wider bid-ask spread) given higher value volatility in his limit

order market. However, we show the standard intuition is not always true when informed investors

endogenously choose whether to supply liquidity via limit orders or take liquidity via market orders.

Observation 1 Liquidity can sometimes improve when adverse selection increases.

In particular, markets can become more liquid when, given the tick size, increasing the value-shock

volatility flips the value shock � from being small to being large relative the price grid. In addition,

we show how different measures of market liquidity — expected spreads, inside depth, and total

depth — can respond differently to changes in adverse selection.

The impact of adverse selection on market liquidity follows directly from the trading strategy

effects in Section 2.1.1. Three intuitions are useful in understanding our market liquidity results.

First, the most aggressive way to trade (both on directional information and private values) is

via market orders, which take liquidity. However, the next most aggressive way to trade is via

limit orders at the inside prices. Thus, changes in market conditions (i.e., � and �) that make

directionally informed investors trade more aggressively (i.e., that reduce their use of limit orders

at the outside prices A2 and B2) can improve liquidity if their stronger trading interest migrates

to aggressive limit orders at the inside quotes (A1 and B1) rather than to market orders. We call

this the aggressive directional informed liquidity provision e�ect. Second, informed investors have

a comparative advantage in providing liquidity over uninformed investors since Iv0 investors know

that the unconditional asset value is correct. We call this the Bloom�eld-O’Hara-Saar e�ect since

they were the first to discuss liquidity provision by neutrally informed investors. Third, liquidity can

change due to composition effects when changes in � change the mix of informed and uninformed

investors, since different types of investors affect liquidity differently. Informed Iv0 investors with

neutral news are natural liquidity providers. Their impact on liquidity comes from whether they

supply liquidity at the inside (A1 and B1) or outside (A2 and B2) prices. In contrast, informed
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I�v and Iv investors with directional news and uninformed U traders affect liquidity depending

on whether they opportunistically take or supply liquidity. All three effects can contribute to

overturning the standard intuition about adverse selection and liquidity.

Our main result in this section is that the relation between adverse selection and market li-

quidity depends on the relative magnitudes of asset-value shocks and the tick size. As measures of

liquidity, we focus here on the expected bid-ask spread and on expected depth at the inside prices.

In Table 1, liquidity improves at time t1 when the value-shock volatility � increases (comparing

parameterizations horizontally so that � is kept fixed). This happens, contrary to the standard

intuition, because the informed Iv and Iv traders submit limit orders at the inside quotes in these

high-volatility markets, whereas they only use limit orders at the outside quotes in low-volatility

markets. In contrast, liquidity at time t1 worsens, as predicted by the standard intuition, when the

informed-investor arrival probability � increases holding the value-shock size � fixed at the high

level. Thus, the standard intuition is sometimes wrong but can also hold.

The evidence against the standard adverse-selection intuition is even stronger on average at

times t2 through t4 in Table 2. First, consider the effect of increased information volatility �. For

both high and low proportions � of informed investors, liquidity improves when � is increased.

However, the underlying causes are different. When � is high (0:8), most investors reduce their

total use of inside limit orders (i.e., on both sides of the market). Thus, the reason that average

liquidity at times t2 through t4 is better in the high-volatility market is a carry-over effect from

the greater liquidity of the high-volatility market at time t1. In contrast, when � is low (0:2),

high-volatility markets are more liquid due to the increased use of inside limit orders by both

the directionally informed investors and the neutrally informed investors (i.e., both the aggressive

directional informed liquidity provision effect and the Bloomfield-O’Hara-Saar effect) as well as

due to the liquidity carry-over effect from time t1. Second, consider the effect of a higher arrival

probability � for informed investors. For both values of asset-value volatility �, a higher probability

� of informed investors leads neutrally informed Iv0 investors to increase their total use of limit

orders at the inside prices far more than the other investors reduce their use of these orders. That,

together with a composition effect (i.e., with � = 0:8 there are more informed investors and informed
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investors use inside limit orders more than the uninformed investors) and the liquidity carry-over

from t1, is why liquidity improves in this case.

Our results for the expected spread and inside depth are driven by limit-order submissions at the

inside quotes. However, the effect of adverse selection on total depth at the inside and outside quotes

combined can differ from those liquidity measures driven by inside limit orders. For example, total

depth at time t1 increases (in Table 1) when value-shock volatility � increases when the informed-

investor arrival probability � is high (comparing horizontally the top two parametrizations), but

decreases in � when � is low. In contrast, average total depth at times t2 through t4 is decreasing (in

Table 2) in the value-shock volatility (comparing parameterizations horizontally). This is opposite

the effect on the inside depth. Thus, different metrics for liquidity can give different results.

Our results show that the relation between adverse selection and market liquidity in limit order

markets is more subtle than the standard intuition. In particular, it is the ability of investors

to choose endogenously whether to supply or demand liquidity and at what limit prices that can

overturn the standard intuition. Goettler et al. (2009) also investigate a market with informed

traders with no private-value motives and uninformed having only private-value motives. In their

model, when volatility increases, informed traders reduce their provision of liquidity and increase

their demand of liquidity; with the opposite holding for uninformed traders. Our results are more

nuanced. Increased value-shock volatility is associated with increased liquidity supply in some cases

and decreased liquidity in others. This is because the tick size of the price grid constrains the prices

at which liquidity can be supplied and demanded.

2.1.3 Welfare

Tables 1 and 2 also report results about investor welfare. Not surprisingly, the utility of directionally

informed investors increases when information volatility � is higher. Interestingly, more than half

of their expected gains-from-trade come from limit-order submissions. Perhaps more surprisingly,

uniformed-investor utility is also often higher when � is larger. This is consistent with the associated

increase in liquidity that allows uninformed investors to capture more of their potential gains from

trade. The net effect is that total active investor welfare increases in high volatility markets. In
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contrast, total welfare is less when the arrival probability � of informed investors increases. This

is due to the fact that in this model only the uninformed U investors have gains-from-trade.

2.1.4 Information content of orders

Traders in real-world markets and empirical researchers are interested in the information content

of different types of orders.15 A necessary condition for an order to be informative is that informed

investors use it. However, the magnitude of order informativeness is determined by the mix of

equilibrium probabilities with which informed and uninformed traders use an order. If uninformed

traders use the same orders as informed investors, they add noise to the price discovery process,

and orders become less informative. In our model, the mix of information– and noise–based orders

depends on the underlying proportion � of informed investors and the value-shock volatility �.

We expect different market and limit orders to have different information content. A natural

conjecture is that the sign of the information revision associated with an order should agree with

the direction of the order (e.g., buy market and limit orders should lead to positive valuation

revisions). Another natural conjecture is that the magnitude of information revisions should be

greater for more aggressive orders. However, while the order-sign conjecture is true in our first

model specification, the order-aggressiveness conjecture does not always hold here.

Observation 2 Order informativeness is not always increasing in the aggressiveness of an order.

This, at-first-glance surprising, result is another consequence of how informed investors trade on

their information. As a result, the relative informativeness of different market and limit orders can

flip in high-volatility and low-volatility markets. The result is immediate for market orders versus

(less aggressive) limit orders in low-volatility markets in which informed investors avoid market

orders (see Table 1). However, this reversed ordering can also hold for aggressive limit orders at

the inside quotes (A1 and B1) versus less aggressive limit orders at the outside quotes (A2 and B2).

Figure 3 shows the informativeness of different types of orders. Each row contains four plots

showing the informativeness of particular types of orders submitted at different times during the day

15Fleming et al. (2017) extend the VAR estimation approach of Hasbrouck (1991) to estimate the price impacts of
limit orders as well as market orders. See also Brogaard et al. (2016).

27



for the indicated market parameterizations. Informativeness at time t1 is measured as the Bayesian

revision E[v|xt1 ] − E[v] in the uninformed investor’s expectation of the terminal value v after

observing different given types of orders xt1 at time t1. The analogous measure of informativeness

at later dates t2 through t4 is the Bayesian revision E[v|Ltj−1 ; xtj ]−E[v|Ltj−1 ] for different given

types of orders xtj at time tj relative to the incoming expectation conditional on the preceding

order-flow history Ltj−1 . In particular, the informativeness of a given order may change over

time and may differ conditional on different preceding order histories. The vertical heights of the

individual dots in the plots indicate the informativeness of given orders at particular times given

specific preceding histories.16 The associated probabilities can differ across the different dots. The

rectangles show the range of our informativeness metrics across paths. The vertical height of the

blue squares indicate the probability-weighted average informativeness of a given type of order. The

figure reports results for market and limit buy orders. The results are symmetric for sell orders.

The results in Figure 3 point to a variety of properties about order informativeness. First,

perhaps the most obvious point is the heterogeneity in the information content of a given order at

different times during the day and conditional on different prior order-flow histories. For example,

plot 3(c) shows the Bayesian revisions for a LBB1 limit buy order at the inside quotes B1 in a high

volatility market with a high arrival probability of informed investors (� = 1:6 and � = 0:8). At

time t1, an LBB1 order is fully revealing (and so the Bayesian revision relative to the unconditional

expectation is 1:6). This follows from the fact in Table 1 that only informed I�v investors with good

news use LBB1 orders at time t1. However, at later dates an LBB1 limit order has different

information content depending on the prior history. For example, in equilibrium an LBB1 at time

t2 can be preceded by one of four possible equilibrium orders at t1. If it follows a LSA2 at t1 (i.e.,

from an uninformed U investor which partially lowered prices), then an LBB1 at t2, which is fully

revealing, leads to a positive Bayesian revision of 2.42 (the high dot). If it is preceded by either a

market buy or sell MBA2 or MSB2 (at the outside prices) at t1 (which are uninformative since

only uninformed investors use them), then the LBB1 at t2 is again fully revealing and is associated

16A given sequence of equilibrium orders might be produced by more than one investor-arrival sequence. Thus,
individual dots correspond to sets of investor arrival sequences. Note here that the horizontal spacing of the dots in
the plots is simply for ease of viewing.
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with a positive Bayesian revision of 1.6. Lastly, if the time t1 order is a LBB2 limit order (which

raise prices somewhat), the LBB1 order at t2 is only partially revealing but still produces a smaller

upward incremental revision of 0:75. In this context, note that the order histories associated with

the different dots can have different probabilities of occurring in equilibrium. For example, in Plot

3(b), we see that a few equilibrium order histories cause a MBA1 market order at time t4 to have a

large Bayesian revision of almost 3. One way this can happen, for example, is when the proceeding

path of orders is {LSA2;MSB2; LSA1} which is possible given the right sequence of uninformed

investors. Over time the number of equilibrium paths grows by definition, but, in addition, we

also see that, in equilibrium, the amount of informational heterogeneity across paths also grows.

Moreover, this includes an increasing number of paths with zero Bayesian revisions. One reason

this happens is that the number of fully revealing prior order histories is non-decreasing over time.

Second, Figure 3 shows that the aggressiveness conjecture for order informativeness can fail

in a variety of ways. One way it can fail is that the average Bayesian revisions for limit orders

are frequently larger than for market orders. This is follows immediately from Proposition 1 in

low-volatility markets (� = 0:2). However, the conjecture also fails in high-volatility markets.

For example, with � = 1:6 in the high-informed-investor proportion � = 0:8 case, the average

revisions for limit orders in Plots 3(c) and 3(d) are always larger than for market orders in Plots

3(a) and 3(b). This is also true in the low-informed investor proportion � = 0:2 case in Plots

3(h) through 3(k). We also see that the conjecture can fail for aggressive vs. less-aggressive limit

orders. Comparing Plots 3(g) and 3(h), is visually apparent that less-aggressive LBB2 limit buys

at t1 have larger average Bayesian revisions than the aggressive LBB1 limit buys. Visually, the

differences are smaller in Plots 3(n) and 3(o), but the less-aggressive limit order averages are larger

at all dates than for the aggressive limit orders. Having shown that the aggressiveness conjecture

can fail, we also note that it does not always fail. For example, the average Bayesian revions for

aggressive limit orders at times t1 through t3 in Plot 3(c) are larger than for the less-aggressive

limit orders in Plot 3(d).
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Figure 3: Order Informativeness for the Model with Informed Traders with � = 0 and Uninformed Traders with � � T r [N ( �; � 2 )] :
for times t 1 to t 4 . This �gure shows the path-contingent Bayesian value-forecast revisions E [vjL t j � 1 ; x t � j ] � E [vjL t j � 1 ], which shows the change in
the uninformed traders's expected value of the fundamental conditional on the order. We only consider orders when they are equilibrium orders for the
trading periods. Each dot indicates an equilibrium revision, the plots indicate the maximum and the minimum. The plots are grouped by their respective
market parameterizations ( �; � ).

a) � = 0 :8 � = 1 :6, Order:MBA 2 b)� = 0 :8 � = 1 :6, Order:MBA 1 c)� = 0 :8 � = 1 :6, Order:LBB 1 d)� = 0 :8 � = 1 :6, Order:LBB 2

e)� = 0 :8 � = 0 :2, Order:MBA 2 f) � = 0 :8 � = 0 :2, Order:MBA 1 g)� = 0 :8 � = 0 :2, Order:LBB 1 h)� = 0 :8 � = 0 :2, Order:LBB 2



Figure 3 Continued: Order Informativeness for the Model with Informed Traders with � = 0 and Uninformed Traders with � �
T r [N ( �; � 2 )] : for times t 1 to t 4 .

h)� = 0 :2 � = 1 :6, Order:MBA 2 i) � = 0 :2 � = 1 :6, Order:MBA 1 j) � = 0 :2 � = 1 :6, Order:LBB 1 k) � = 0 :2 � = 1 :6, Order:LBB 2

l) � = 0 :2 � = 0 :2, Order:MBA 2 m)� = 0 :2 � = 0 :2, Order:MBA 1 n)� = 0 :2 � = 0 :2, Order:LBB 1 o)� = 0 :2 � = 0 :2, Order:LBB 2


