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Abstract

Large innovative firms routinely strengthen their new product pipelines by out-
sourcing developing technologies from other (typically startup) companies. This
practice is portrayed by scholars and practitioners as a high-involvement, carefully
planned and executed process. We contribute to their understanding by highlighting
a novel concept and documenting an associated trade-off: technologies outsourced
“reactively” (following development setbacks of other projects in their pipelines)
are less likely to reach the market. Our argument is supported by evidence from
the pharmaceutical industry, where outsourcing (drug candidate licensing) plays a
central role for innovation, and where Phase 3 outcomes provide a rich source of
quasi-experimental variation that we exploit for inference. The analysis takes ad-
vantage of recent methodological advances that leverage machine learning for causal
inference. Compared to traditional methods, these techniques make more efficient
use of data and allow for a more detailed description of the effects at play. Results
suggest that, whereas reactive outsourcing behavior is not rare in the pharmaceu-
tical industry, its incidence and consequences can be predicted to occur in specific
environments.
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1 Introduction

Large innovative firms routinely strengthen their new product pipelines by acquiring rights

to commercialize developing technologies invented by other (typically startup) companies.

This practice—known as technological outsourcing—is the focus of this article. For the

acquiring firm (“innovator”), outsourcing offers the main advantages of shortening devel-

opment cycles and selectively accessing frontier new technologies in environments of rapid

and distributed technical progress. Fueled by these advantages, the model has grown in

popularity and even lead to the restructuring of a variety of high technology industries,

ranging from aerospace to pharmaceuticals (Quinn, 2000).

The contribution of this paper is to highlight a novel concept and empirically doc-

ument an associated trade-off: technologies outsourced “reactively” by innovators (fol-

lowing setbacks of other products in their pipelines) are less likely to reach the market.

Our motivation comes from the standard scholarly and practitioner portrayals of out-

sourcing, which describe it as a high-involvement, “proactive” process, shaped towards

the implementation of the innovator’s strategic goals, and which requires several prepara-

tory and execution activities. For example, Quinn (2000) emphasizes that the model’s

success is contingent on it being “carefully pursued.” Moreover, a World Intellectual

Property Organization white paper (WIPO, 2015) states that “before the other party

has been approached, a party may spend many months defining business objectives, as-

sessing leverage, researching the other party, deciding positions on key terms, preparing

documentation, and protecting IP, among other tasks.” We posit that innovators who

outsource reactively may “cut corners” on some of these activities, compromising in turn

technologies’ chances to reach the market.

The empirical arena is the pharmaceutical industry, which we argue is a suitable but

also important case study. Unable to keep up with the rapid and diverse advances in basic

science, large pharmaceutical firms have come to significantly rely on investigational ther-

apies invented by biotech startups (Cockburn, 2004; Pisano, 2006). Implemented through

licensing contracts, these outsourcing deals often trade rights for the more innovative and

potentially impactful types of developing therapies (Kneller, 2010). This is why many

deals get to be valued at multiple billions of dollars, and why insights that help fine tune

licensing (outsourcing) efforts could yield materially large rewards. Concurrently, drug

innovation is notorious for its large attrition: most therapies that enter the development

process fail to reach the market. This statistic is the key ingredient for the industry’s large

average development costs (DiMasi et al., 2003, 2016), as well as a common justification

for the high prices of pharmaceuticals. To the extent that we can identify managerial

behaviors that contribute to this large attrition, we could shed light on ways alleviate

these problems.

Our interest on this industry is also based on some anecdotal evidence suggesting that

large pharmaceutical firms may indeed engage in reactive licensing. In particular, follow-
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ing the Phase 3 failure of Pfizer’s cardiovascular compound Torcetrapib, the company’s

CEO vowed to “bring increased focus and emphasis to its business development and li-

censing efforts in order to identify new products and technologies that will supplement its

pipeline” (Pfizer Inc., 2006). Five months later, the company announced an agreement

to license a cardiovascular-targeted compound (Pfizer Inc., 2007).

Based on this episode, our empirical analysis consists on investigating the impacts

of Phase 3 failures (“P3Fs”) on the firm’s subsequent licensing behavior, and the de-

velopment performance (i.e., advancement versus termination at each stage) of subse-

quently licensed therapies. Partly because few therapies reach Phase 3, P3Fs constitute

large shocks for developers—“When Phase III clinical trial failures happen it is a painful

blow—to the drug manufacturer, to investors and to patients” (Merrill, 2016). Whereas

economic considerations may prompt firms to terminate development at earlier stages,

discontinuation decisions at Phase 3 are primarily driven by the quality of randomized

testing results. This is because, this late in the development process, most uncertainty

has been cleared and investments sunk, making continuation a dominant strategy. (This

is also why therapies are said to “fail” rather than be “terminated” at Phase 3.) P3Fs

thus provide a rich source of quasi-experimental variation that we take advantage of, while

accounting for firms’ varying propensity to experience a P3F at a given point in time.

In an ideal empirical setting, our analysis would correlate P3Fs with data tracking

firms’ preparatory and execution activities. But because these data are not systematically

available, we focus on testable implications for our hypothesis’ two main pillars. Using

comprehensive 2001-2015 data for twenty of the largest pharmaceutical firms, we ask:

• [Q1, engagement with reactive licensing] Do P3Fs increase the near-future

probability of licensing?

• [Q2, consequences of reactive licensing] Do pre-licensing P3Fs worsen post-

licensing development performance (i.e., more likely terminations)?

Simple data descriptives support our hypothesis, by suggesting that both questions have

yes for an answer. Nevertheless, there exists a sizable set of potential confounders X. We

account for these adopting a data-driven causal inference approach, where P3F incidence

plays the role of “treatment.”

Our analysis first considers a matching estimator, which draws inference by comparing

outcomes of treated and non-treated observations matched on X. While estimated aver-

age treatment effects are directionally consistent with those of our simpler analyses, there

remains a doubt on whether the data could be used more efficiently. In particular, an im-

portant drawback of matching models is that they are not equipped to determine which of

the variables in X are important to match on (and which are not), thus requiring that all

variables be matched. This “skeptical” approach creates a curse of dimensionality prob-

lem, as finding good matches becomes difficult for relatively “wide” X matrices. Many
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observations are often left unmatched, while remaining “matched variation” is not rich

enough to characterize treatment effect heterogeneity. Moreover, discarding unmatched

observations can introduce a “matching bias,” which cannot be signed without knowledge

of the true distribution of heterogenous treatment effects. These curse of dimensionality

problems stand out for Q1 and Q2, as X contains a number of variables that is large

relative to that of observations.

To address these limitations, we turn to the causal forest estimator of Athey et al.

(2018), which also draws inference by comparing observations that are similar in terms

of X. The main functional difference with the matching estimator is that observations

do not need to coincide on all the variables in X to be considered similar, but only

on the subset thereof that drive treatment effect differences. This crucial capability is

articulated by incorporating the random forests methodology (Breiman, 2001) into the

estimation routine, whose role here is to “learn” which differences in X actually matter

for treatment-control comparisons. In other words, the causal forest estimator does not

operate in an skeptic way, and is therefore much less vulnerable to curse of dimensionality

issues (no observations are dropped). Another important advantage of this method is

that it returns heterogeneous treatment effects, which estimated at each point X (along

with a confidence interval). Furthermore, these (X-)conditional average treatment effects

(CATEs) are estimated non-parametrically, in that their distribution does not need to

be assumed. This estimated variability allow us to inspect the validity of our hypothesis

across different regions of the sample.

Like matching estimates, causal forest results indicate reactive licensing does in fact

occur in our sample (Q1). However, the behavior is not adopted across the board. For

those firms that react to P3Fs, the estimated effect is quite large on average. P3Fs

increase the near-future (one year) probability of licensing by about 0.08, which represents

an almost 50% increase relative to the baseline. Variation in the propensity to engage

in reactive licensing appears to be primarily driven by a size effect: reactions are more

likely among larger firms, with more active portfolios and robust market positions to

defend. Some evidence for the “matching bias” mentioned above comes from noting that

the matching average treatment effect is smaller than the average causal forest estimate.

At the same time, observations dropped by the matching procedure are associated to

generally larger conditional average treatment effect values.

The analysis of Q2 also supports the hypothesis, indicating that pre-licensing P3Fs

can be linked to worse post-licensing development performance. However, as before, not

all firms appear to suffer these consequences. When the effect has statistical significance,

it implies that P3Fs increase the probability of post-licensing termination by about 15%.

Importantly, the “performance” CATEs obtained from this analysis are not independent

from “reactiveness” CATEs obtained from the analysis of Q1. In particular, their corre-

lation suggests those that firms that are more likely to react to a P3T are also those more

likely to suffer the consequences. This finding highlights the empirical relevance of the
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reactive licensing trade-off, even though its occurrence can be circumscribed to specific

circumstances. We discuss a series of potential mechanisms that may underlie the results

of Q1 and Q2.

Our research connects to previous Marketing work on the management of innovation.

Closest to our study, Chandy et al. (2006) present evidence suggesting that pharmaceuti-

cal firms that overly emphasize development speed risk higher attrition rates. The same

general point is also made by Bayus (1997) and Smith (1999), among others. In turn,

Griffin (1997) describes how project and process characteristics affect development cycle

times. Beyond these authors’ focus on internal rather than outsourced innovation, our

context differs in that haste is circumstantially imposed (by P3Fs) rather than willingly

adopted or environmentally given. Moorman and Miner (1998) develop the concept of im-

provisation in new product development, which they define essentially as decision-making

without time for planning. Consistent with our results, they find that improvisation is

more likely to occur in environments of turbulence while, at the same time, that it may

reduce the effectiveness of innovation efforts.

Beyond Marketing, our work relates to the literature on Markets for Technology (Arora

et al., 2004) or Markets for Ideas (Gans and Stern, 2010), for which licensing plays a central

role. Arora and Gambardella (2010) emphasize that this literature has maintained a strong

“supply side” focus. Our work addresses this gap, suggesting that the demand for and

performance of licensed technologies can depend on the short-term pipeline contingencies

faced by the demanding firm. Lastly, our study adds to a rich literature that analyzes the

determinants of development performance in pharmaceutical innovation (e.g., Cockburn

and Henderson, 2001; Dranove and Meltzer, 1994). Like in Guedj and Scharfstein (2004),

our results raise the possibility that development attrition could be impacted managerial

agency problems (a discussion of this point is presented in subsection 6.1). To the best

of our knowledge, ours is the first paper in this literature to relate performance outcomes

to the timing of decisions.

2 Industry background

2.1 The drug development process

This highly structured process starts when a compound’s (drug candidate’s) formulation is

identified, and then fine-tuned in the lab. At this point, a set of potential therapeutic ap-

plications (i.e., compound/targeted disease combinations, henceforth called “therapies”)

are identified. These early formulation activities are followed by experiments on ani-

mal subjects (“pre-clinical trials”), aimed at assessing their potential. Our data source

collapses these two set of activities into a single “Discovery” stage. Therapies with good

enough potential move on to clinical trials on human subjects. If the development process
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carries forward, each therapy requires a largely independent set of development activities.

The clinical trial protocol is sequential, composed of three phases, mostly based on

randomized experiments. Phase 1 trials are designed to assess safety. Phase 2 trials are

primarily used as proof-of-concept experiments to investigate efficacy. Phase 3 trials aim

to provide definitive evidence of superior therapeutic value (thus usually take longer and

require larger patient pools). Successful therapies can be presented to the regulator in

application for a commercialization permit. For conciseness, we refer to this last stage

simply as “review.” As we mentioned in the introduction, drug development process is

further characterized by a notoriously distinctive feature: its large development termi-

nation rates (attrition), which unfold across all stages. In subsection 3.3 we provide a

detailed account of termination statistics, both within our sample and overall.

2.2 The licensing market and the incentives to license

Until the 1980s, pharmaceutical innovation was characterized by a high degree of verti-

cal integration, in the sense that most innovation activities (discovery, development and

commercialization) were carried out “in-house” within large pharmaceutical firms. This

industry feature was rooted on the fact that drug discovery was primarily performed

through “combinatorial” approaches (thousands of chemical combinations synthesized in

search of symptom reduction), for which access to chemical libraries (storing results of

previous experiments) was a crucial input. Due to their proprietary nature, these li-

braries acted as entry barriers into discovery activities, and so sustained the vertically

integrated structure (Pisano, 2006). A series of scientific breakthroughs in the 1970s and

1980s created an alternative route to drug discovery, which in turn led to an important

degree of vertical disintegration. Specifically, these advances enabled scientists to “engi-

neer” (rather than “discover”) new compounds. Chemical libraries became a less relevant

input (and entry barrier) for drug innovation, and a fringe of biotech startups focusing

on early-stage innovation activities was established.

Backed by venture capital, biotech startups are typically established by academic scien-

tists, with the goal of “translating” their research findings into drug technologies. These

firms have three primary ways to monetize their innovations: (i) licensing, (ii) “trade

sales” (biotech startup is acquired by a larger company), and (iii) self-commercialization.

Licensing means that the biotech firm sells the commercialization rights for an specific set

of its developing therapies to another firm. These transactions are enabled by negotiated

licensing contracts, which typically deliver most of potential compensation on a contin-

gent basis (milestone payments and royalties on market revenues) as means to spread risk,

mitigate informational problems, and insure the biotech firm’s continued involvement in

development activities (Mason et al., 2008).

A primary incentive for biotech firms to choose licensing over self-commercialization

is benefiting from the (in-licensing) partner’s “complementary assets” (Teece, 1986; Gans
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et al., 2002). Besides funding, these capabilities may include “know-how” (e.g., regulatory

affairs, implementation of clinical trials; Powell, 1996), as well as assets that are important

for massive commercialization (e.g., branded reputation, established sales-forces; Levine,

2009). Thus, relative to self-commercialization, licensing is better suited for the develop-

ment of therapies that target “large market” conditions, or those which require complex

and/or costly clinical trials. From the point of view of the biotech firm’s financial back-

ers, licensing has the benefit of outlining a safer profile of returns (some compensation is

received even if licensed therapies do not reach the market). Relative to “trade sales,”

licensing allows founding scientists and investors to retain control of the firm, while at the

same time, participate in the financial upside of potential blockbuster therapies.1 From

the point of view of in-licensing pharmaceutical firms, licensing constitutes the a lean and

expedite route to integrating cutting-edge advances into their pipelines.

Fueled by these motivations, technological outsourcing via licensing now plays a central

role for drug innovation (Cockburn, 2004; Kneller, 2010), as is reflected by the large and

growing global volume of trade, estimated at $40B, $43B, and $57B respectively for 2007,

2010, and 2016 (Giovannetti and Spence, 2017).2

2.3 Contracting frictions and proactive licensing

The acquired importance of licensing for drug innovation has come through despite the

presence of important contracting frictions. Here we review their main sources, as well

as the extensive efforts that in-licensors incur on to overcome them. The summation of

these efforts embodies what we refer to as the “proactive” approach to licensing.

The main contracting frictions in this market are rooted on the progressively deepening

scientific basis from which biotech innovation draws upon (Powell, 1996; Pisano, 2006).

This scientific environment infuses the supply of licensable therapies with novel, diverse,

and rapidly evolving technological approaches. For potential in-licensors, the resulting

supply is not only difficult to navigate as they search for the “right” candidate, but also

a fertile ground for informational asymmetries to flourish on.

Alcacer et al. (2008) illustrate the magnitude of costs and types of search activities

that pharmaceutical firms engage in, as they strive to narrow down the set of “right”

therapies to license. Drawing on evidence from interviews with pharmaceutical executives,

these authors report that the major stages of the in-licensing process include a worldwide

search and screening for licensing opportunities, followed by an in-depth analysis of each

identified candidate, and a final screening. After screening candidates from 80-100 firms,

1Danzon et al. (2007) provide evidence suggesting that biotech firms adopt a “trade sale” as an exit
strategy after encountering financing problems.

2These figures only consider deals that include US and European firms, and are expressed in “potential
value” or “biobucks,” which is the traditional yardstick used to measure drug candidate licensing activity.
The key aspect of this metric is that it includes includes value attached to contingent payments, which
may not be materialized.
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this process can deliver one or two licensing opportunities. At this point, further due

diligence, valuation and contract negotiations remain, all of which may take the better

part of a calendar year or even longer (Truex, 2018).

The importance of due diligence arises in part due to the risk of adverse selection given

the large informational advantages of biotech firms (Pisano, 1997; Hermosilla, 2016). In-

licensors need to not only verify the integrity of the underlying science, but also insure

that adequate intellectual property is available or underway, as well as the extent to which

it could be challenged. Accordingly, pharmaceutical in-licensors deploy multifunctional

teams (including lawyers, executives, and field-expert scientists) at every stage of the

process (Alcacer et al., 2008). Jones (2007) highlights that due diligence and valuation

activities can present significant challenges for in-licensors.

Furthermore, due to its novelty, much of the scientific knowledge embedded in biotech

compounds is tacit at the time agreements are in place (Pisano, 2006). For this rea-

son, licensing agreements require the continued involvement of biotech scientists in post-

licensing development. These circumstances set the stage for potential moral hazard prob-

lems. For example, once an agreement is in place, biotech researchers may use available

funds and time to advance their own (alternative) projects, or attempt to publish results

related to the developing therapy earlier than the in-licensing firm would like to (Lerner

and Malmendier, 2010). Licensing contracts thus include a wide variety of non-financial

clauses (e.g., control, publication, residual ownership rights, etc.), carefully designed to

maintain engagement while minimizing moral hazard-like behavior (Lerner and Merges,

1998; Lerner and Malmendier, 2010). Accordingly, the negotiation and design of contracts

require high involvement, and often becomes a “drawn-out affair” (Giordano-Coltart and

Calkins, 2007).

As a whole, these factors suggest that drug candidate licensing is afflicted by a number

of frictions, including issues stemming from costly search and matching, as well as po-

tential adverse selection and moral hazard issues. In-licensors seeking to minimize their

negative consequences adopt a proactive approach, which includes careful preparatory

market research (WIPO, 2015), extensive search and due diligence, and the careful design

of contracts.

3 Data

3.1 Source, sample, and structure

Our main data source is Clarivate Analytics’ Cortellis Competitive Intelligence. Cortellis

is heralded as the most comprehensive and up-to-date repository of pharmaceutical inno-

vation data. Information is obtained from company records, conferences, and other public

sources, curated and updated daily by over 500 expert analysts. According to company
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documentation, as of the third quarter of 2016, Cortellis included over 65,000 drug devel-

opment histories and 48,000 deal reports, both of which date back several decades. We

accessed the data in mid 2018.

From this source, we assemble a dataset focusing on the licensing and development

activities of twenty of the largest pharmaceutical firms in the World, for the fifteen year

period of 2001-2015. Firms entered the sample based on two criteria: (i) they were top

in-licensors in the sample period (according to parameters described below), and (ii) firm-

level financial information at the quarter level was generally available from COMPUSTAT.

All but two of the selected firms are members of the Association of Pharmaceutical Re-

search and Manufacturers of America (PhRMA), known as the trade association for big

pharma firms.3

Firms in the sample actively developed therapies spanning 20 therapeutic areas. We

retain data from 17 of these for which key variables have enough in-sample variation.4

Because the economics and science of drug development has a large area-specific compo-

nent, in our analysis we assume that licensing and termination decisions are made at the

level of firm/therapeutic area pairs. For ease, we refer to these decision making entities

simply as “units.” Appendix Table A.1 lists the 230 units that appear in our sample. A

unit enters the sample in the first quarter that we observe it actively developing a therapy.

It is important to note that, from the perspective of our analysis, there are essentially

two datasets available. The first of these includes licensing and development histories of

all therapies licensed by units in the sample, during the sample period. These data are

the main focus of our study and are described in subsection 3.2 and 3.3. The second

dataset includes remaining licensing and development records available from Cortellis.

These secondary data will be used extensively with two primary purposes: (i) to codify

P3F incidence (subsection 3.4) and construct an auxiliary variable that we call the “P3F

risk score” (subsection 4.2), and (ii) to construct pipeline-related controls (subsection 4.1).

3.2 Licensing activity

Here we cover the main characteristics of the set of licensed therapies that is the focus of

our analysis. An important first antecedent is that most licensing records available from

Cortellis do not reflect the type of technological outsourcing model that we study. We fo-

cus on the category of licensing that is labelled as “Drug - Development/Commercialization”

by Cortellis, which provide a tight empirical correlate for the technological outsourcing

3The list of firms is: Abbvie, Amgen, Astellas, Astra Zeneca, Bayer, Biogen, Bristol-Myers Squibb,
Celgene, Daiichi Sankyo, Eli Lilly, Gilead, GlaxoSmithKline, Johnson & Johnson, Merck & Co, Novartis,
Pfizer, Roche, Sanofi, Shire, and Takeda. Gilead and Roche are not PhRMA members (as of 10/2018).

4The list of covered therapeutic areas is: Autoimmune/Inflammatory, Bone Disease, Cancer, Cardio-
vascular, Central Nervous System, Dermatological, Endocrinological & Metabolic, Gastrointestinal, Gen-
itourinary/Gynecological, Hematologic, Infectious, Ophthalmic, Psychiatric, Renal, Respiratory, Trans-
plantation, and Other/Unclassified.
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model that we are interested in.5

Licensing agreements vary significantly in terms of the geographical coverage of traded

commercialization rights. In some cases, these rights are for specific countries or regions,

in others, they are worldwide. We only consider worldwide licensing deals in our sample.

In addition, as we have indicated above, licensing deals may bundle rights for more than

one therapy (in our sample, the average is about 2.5), which may span across different

therapeutic areas. For tractability, our analysis treats the licensing of each therapy as

a individual licensing event. Lastly, because financial compensation terms are rarely

available from the data, they play no part in our analysis.

After imposing these filters, we are left with 3,495 therapies licensed by units in the

sample. About 48% of these belong to the cancer area. Licensing of therapies in the

endocrinological & metabolic, and autoimmune/inflammatory are the distant followers

(with 9% and 8% of licensed therapies, respectively). Most licensing happens early in

the process: 25% of therapies were licensed before clinical trials and 62% before reaching

Phase 3. The average unit in-licenses an average of about 2 therapies each year that it

appears in the sample. Among the units that license more than once (little over half of

units), the average time between licensing is little about 10 months.

Figure 1 presents some aggregate trends that help place this licensing activity into

context. The solid line shows the number of actively developing therapies maintained by

sample units across the sample period (right axis). The short dash-dot line at the bottom

shows the percentage that these therapies represent out of the industry’s total (left axis).

Together, these trends tell us that the industry underwent non-stationary growth over

the covered period, and that our sample accounts for a significant and stable percentage

(about 15%) of the total. The dashed line tracks the percentage of therapies added to

the portfolios of units in the sample, which were obtained via licensing.6 By this trend,

licensing constituted an important and relatively stable source of all portfolio additions

for sample units, about 30% in the first half the sample and 20% in the second half (the

drop that coincides with the 2008 recession). At the same time, therapies licensed by units

in the sample represented between 30% and 40% of those licensed in the industry (long

dash-dot line). Thus, our sample accounts for a non-negligible share of overall licensing

activity.

5Cortellis documentation describes this category of deals by indicating that the “Partner [in-licensing]
firm acquires a license from Principal [out-licensing] firm to develop and commercialize (sell) drug(s).”
(Excerpt taken from Cortellis documentation. Bracketed comments added.). Additional types of licensing
deals include early-stage joint ventures, subcontracting of manufacturing and research services, licensing
of drug-delivery technologies, among others.

6The total number of portfolio additions also includes therapies discovered in-house, as well as those
incorporated via M&As and join ventures.
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3.3 Post-licensing development performance

We assemble post-licensing development histories for 2,787 of the therapies in the sample

described above.7 For them, we observe a total of 3,829 therapy/development stage pairs.

About 27% of these development stages were still ongoing at the time of data download

(outcomes not observed). For an additional 25%, we were not able to assemble the full

list of covariates used in the analysis (described in subsection 4.1). Our analysis utilizes

data from the remaining 1,777 “resolved” stages in the data, for which we observe both an

outcome and all covariates. Column (1) of Table 1 shows their distribution across stages.

There is good coverage for all stages in the process.8

We measure development performance at the therapy/stage level, through a variable

that we call ADVANCE. This variable equals one if a therapy advances past a given

stage (i.e., enters the next), and zero otherwise (termination). Column (2) presents this

variable’s average across stages. As we discuss below, these figures are comparable to

benchmark results from the literature.

We identify three forms of termination from the data. Even though this distinction

is irrelevant for our main analysis (which relies solely on ADVANCE), it is useful for a

secondary analysis and to give context. To understand the differences between termination

types, first note that a licensed therapy’s development termination may or may not imply

that the underlying licensing agreement is terminated (parties may continue to cooperate

on the development of related therapies). Sometimes, it is also the case that licensing

agreements are terminated without it implying the therapy’s development termination,

for example, if parties enter conflict and their collaboration is “derailed.”

Column (3) shows statistics for the main type of termination in our data (which also

corresponds to the type of attrition emphasized by specialized literature). We label these

simply as “development” terminations. In terms of our codification, the defining trait of a

“development” termination is that a therapy’s development is declared terminated before

the underlying agreements are. Column (4) shows rates of “agreement” terminations.

These are situations in which the underlying licensing agreement is terminated before

development outcomes are observed. Even though therapies in question may continue to

be developed (by other firms), they are no longer part of the in-licensing unit’s pipeline

(which warrants treating them as terminations). In our data, these are a distant second

in terms of frequency. Lastly, in Column (5), we present a type of termination that we

call “idle state” termination. This case reflects a common (though rarely acknowledged)

feature of pharmaceutical innovation datasets. Namely, the case where an outcome is not

7Cortellis licensing and development data are kept in separate data repositories, and the website does
not (as of mid 2018) allow the user to systematically bridge between the two. We performed the matching
procedure manually. Therapies that we observe in the licensing sample but for which no match was found
were left out of the post-licensing performance sample.

8The larger number of observations for Phase 2 than Phase 1 is largely explained by a nuance of the
drug development process. This is, many therapies “skip” Phase 1, if safety has been already demon-
strated for other therapies of the same compound.
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observed, despite data telling us that a therapy has spent an abnormally long period of

time being developed in a particular stage.9 Fortunately, these terminations are quite

rare.

To investigate the external validity of performance statistics in our sample, we searched

for and reviewed articles that report rates of success in pharmaceutical development.10

These articles have important differences in terms of the used samples (number and types

of firms, time periods), as well as some discrepancies in the way variables defined. Most

importantly, none of these articles considers a sample that is purely composed of in-

licensed therapies. Thus, comparability is limited. With this caveat in mind, we found

that, while Phase 2 and 3 rates were close to the lower bounds of the assembled distri-

butions, the statistics of Column (2) in Table 1 are within range of reported results.11

The relatively lower advancement rates for Phases 2 and 3 in our data could be in part

reverted by accounting for the advancements registered within the outcomes that we label

as “agreement” terminations.

3.4 Phase 3 Failures (P3Fs)

We identified a total of 418 P3Fs experienced by units in our sample, during the covered

period. While some of these correspond to therapies included in our analysis sample

(described above), the majority (about 80%) occur for other therapies, incorporated into

pipelines through different means (in-house discovery, M&As, etc). The distribution of

P3Fs across time and areas is shown by Table A.2. Consistent with the industry’s growth

over the covered period, their frequency is increasing over time. Even though the Cancer

area is a distant first in terms of frequency, the distribution is quite spread out across

other areas.

We also note that, in addition to the tight scrutiny of investors, patients, and special-

ized media, most P3 trials are monitored by independent “data monitoring committees”

(Freidlin et al., 1999). These committees review incoming trial data in an approximate

real-time fashion, and provide recommendations on how to continue the trial. At any

time, these entities may recommend that the trial is stopped (as it happened for Pfizer’s

Torcetrapib). Thus, sponsors have in general little scope to engage in strategic P3F

information release.

9We say that a therapy is terminated by entering an “idle state” at a given stage and date t, if: (i)
we don’t observe an outcome for that therapy at that stage, and (ii) at date t, the therapy has spent
an abnormally long period of time (95th percentile of time-to-stage completion in the broader Cortellis
sample) at that stage.

10The list of surveyed papers is: DiMasi et al. (2003, 2010, 2016), Kola and Landis (2004), Abrantes-
Metz et al. (2004), Pammolli et al. (2011), Hay et al. (2014), Arrowsmith (2011), and Waring et al.
(2015).

11Summarizing the distribution of surveyed success rates through triplets (min,mean,max), we obtained
(0.31,0.61,0.81) for Phase 1, (0.18,0.4,0.58) for Phase 2, (0.48,0.58,0.75) for Phase 3, and (0.77,0.87,1) for
Review. There were no statistics for the Discovery stage.
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4 Empirical Strategy

Both sets of analysis announced in the introduction refer to the causal impacts of P3Fs.

Q1 (engagement with reactive licensing) posits that a P3F may increase a unit’s near-

future probability of in-licensing, whereas Q2 (consequences of reactive licensing), that

pre-licensing P3Fs may translate into poorer post-licensing performance. We investigate

these hypotheses using a causal inference framework, which views P3F incidence as the

“treatment.”

Because the adequacy of the implemented methodologies is best appreciated with

an understanding of the available controls (or covariates) X, we begin by describing

their construction. We proceed by introducing the “P3F risk score,” and finalize with a

methodological overview of the considered estimators.

4.1 Covariates X

Our hypotheses focus on two outcomes: licensing incidence (Q1) and development per-

formance (Q2). Here we seek to specify a set of independent variables (or controls, or

covariates) X that includes leading confounders for these outcomes. The list comes from

insights of a broad literature.

A key reference in this regard is Chan et al. (2007), who theoretically analyze the

interplay of termination and licensing decisions. These authors suggest that these deci-

sions may depend on a sponsor’s pipeline strength (i.e., expected number to reach the

market in short/medium-run), as well as on their portfolio of marketed therapies. The

importance of pipeline strength is also highlighted by Girotra et al. (2007), who find that

stronger pipelines soften the negative stock price impact of P3Fs.

Following Henderson and Cockburn (1994) and Cockburn and Henderson (2001), Dan-

zon et al. (2005) and Arora et al. (2009) empirically analyze the development performance

of licensed therapies. They draw attention to the role of sponsors’ development experi-

ence and diversification as determinants of innovative productivity. These constructs are

captured by the so-called “scale” and “scope” variables. In line with a broader literature

investigating the “demand pull” effect on pharmaceutical innovation (Acemoglu and Linn,

2004; Finkelstein, 2004; Dranove et al., 2014; Dubois et al., 2015), Arora et al. (2009) also

emphasize the impact of market potential on termination decisions. More recently, Her-

mosilla and Wu (2018) extend this line of work by showing that larger market potential

may also increase the likelihood of licensing.

A last set of papers focuses on technological outsourcing decisions, but in the form

of M&As (rather than licensing). We incorporate insights from this line of research on

the basis that similar effects could also apply to licensing. Higgins and Rodriguez (2006)

show that (declining) recent productivity may lead firms to acquire other firms as means

12



to “revitalize” their pipelines. Cunningham et al. (2018) present evidence supporting a

somewhat opposite idea, namely, that pharmaceutical incumbents may both acquire firms

and “kill” their developing therapies to guard against threats to their market shares.

In summary, these antecedents suggest that licensing and performance may depend

on a broad set of factors, including sponsors’: (i) portfolio of commercialized therapies,

(ii) pipeline strength, (iii) recent productivity, and (iv) market potential of developing

therapies. Using Cortellis data we construct variables to specifically address (i)-(iii). We

further develop “competitive” versions of some of these variables, as described below.

From COMPUSTAT, we retrieve firm-level financials (sales, assets, R&D expenditures),

which help us control for effects stemming from liquidity, capabilities, size of internal

capital markets, overall technological leadership, among others. (Size-related effects are

also highlighted by Arora et al. (2009).) To address (iv) (market potential), we rely on

therapeutic area- and year-specific indicators. Development stage and area indicators are

used to account for baseline differences in performance across each respective dimension.

We face two practical issues to adequately implement this plan. First, we require a

scheme to consistently weight the importance of quantities associated to different develop-

ment stages. For example, because a therapy that is being developed at Phase 3 is much

more likely to reach the market than one being developed at the Phase 1 (see table Ta-

ble 1), we should judge a pipeline composed of a single Phase 3 therapy as being stronger

than one composed of a single Phase 1 therapy. Similarly, we should register a poorer

productivity record when recent terminations have occurred at more advanced stages. A

second concern is based on the patterns of Figure 1, which shows non-stationary industry

growth over the covered period, while at the same time, a relatively stable importance of

licensing. If covariates X are defined in absolute terms, we run the risk of estimating our

models mainly on temporal variation.

The approach used to construct variables combines weighting and normalization steps

to account for these issues. We exemplify the procedure focusing on a representative

variable, PIPESTR, which tracks a units’ pipeline strengths. We start by defining a

chronological measurement window. For Q2, this window corresponds to the calendar year

ending the day t for which a specific milestone (licensing, stage completion) is reported.

Next, for each unit j, we count the number of unique therapies that were active on each

stage (s = 0, .., 4) over the window. Denote these counts by {Ajts}.12

The weighting step is carried out using “reach-the-market” probabilities {past} as

weights. These represent the likelihood that a therapy of area a, which is at stage s in

time t, continues its development all the way into the market (as opposed to failing along

the way). We compute them using the large number of development histories available

from Cortellis, on a rolling basis (the reason for the t subindex), as described in Appendix

12In rare cases, a therapy is active on two different stages over the measurement window. We use the
most advanced stage to codify these cases.
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A. With these elements we compute:

Ajt =
∑
j

Ajts · pa(j)ts, (1)

were the variable is expressed in terms of a “approved therapies-equivalent” scale. In the

normalization step, we compute PIPESTR as Ajt/(Ajt +A−jt), where A−jt represents the

“rest-of-area” figure (including data from all units in the broad Cortellis sample). The

resulting variable is bound to the unit interval, and equal to zero if and only if j had no

therapies on active development over the measurement window. The normalization with

respect to each area’s current “size” makes the variable robust to the uneven development

of areas across time.

Panel A of Table 2 presents a summary of the generated variables, including a formal

definition, the level over which variability unfolds, and associated construct. Using the

weighting procedure of (1), we constructed the “approved therapies-equivalent” variables

T (terminations other than P3Fs) and L (licensing), both measured within the same

window as A. With these, we assembled RTER OWN and RLIC OWN to track recent

productivity and licensing activity, respectively. From the insights of Krieger (2017), who

argues that P3Fs can impacts other sponsors’ termination decisions, we also generate a

variable that measures “rest-of-area” recent productivity, RTER RA. RLIC RA is speci-

fied analogously, to help us to control for competitively-motivated licensing effects, as well

as the possible influence of “licensing waves” following the establishment of new techno-

logical approaches.13 Lacking access to revenue data, we define MKTSHARE as each

unit’s share of approved therapies.14 Notice that, because PIPESTR and MKTSHARE

are normalized to the unit interval, defining their “competitive” counterparts would be re-

dundant. SCALE and SCOPE variables are defined as in previous research, in a way that

larger values reflect larger accumulated experience (SCALE) and higher degrees of spe-

cialization (SCOPE). Financial variables (retrieved from COMPUSTAT at the quarterly

level) are log-transformed after CPI-adjusting them to year 2010. To impose a temporal

stationarity, we normalize them by subtracting the in-sample yearly mean.

4.2 P3F Risk Score

One identification challenge is that different units are not equally likely to experience a

P3F at a given time. One reason is that, all else constant, a unit’s likelihood of experi-

encing a P3F increases with the number of therapies on active P3 development (“P3D”),

a number that varies across units and time. A second reason is rooted on the micro-

dynamics of P3 clinical trials: P3Fs are more likely to occur the longer the therapy has

13For example, genetically-targeted therapies following the 2003 unveiling of the Human Genome (Her-
mosilla and Lemus, 2018).

14The number of approved therapies is tracked by the variable M , which does not use probability
weighting
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been on active P3D. Here we introduce a variable that we call “P3F risk score,” which

naturally combines these two sources of variation. Both of the considered estimators uti-

lize this variable to account for disparities in the likelihood of experiencing a P3F (i.e.,

selection into treatment).

We define the P3F risk score Rj(t1, t2) as the probability that unit j experiences a

P3F during the time interval [t1, t2].
15 To formalize it, we denote a unit j’s portfolio of

therapies on active P3D at time t1 by Aj(t1). In addition, by rk(t1, t2) we denote the

probability that a therapy k introduced to P3D at an earlier time tk fails during [t1, t2].

With these elements, the risk score is defined as:

Rj(t1, t2) =


1−

∏
k∈Aj(t1)

1− rk(t1, t2) if |Aj(t1)| > 0

0 otherwise (empty Aj(t1))

(2)

Thus, R corresponds to the probability complement for the event in which none of the

therapies of Aj(t1) fails during [t1, t2]. The key ingredient in this formulation is rk. By

its definition in the previous paragraph, rk corresponds to a duration “hazard” or quan-

tity. One difference with the standard “hazard” quantity of Cox (1972) is that rk is not

instantaneous. Rather, it corresponds to the integral of an instantaneous hazard quantity

over the time interval of interest. Furthermore, rk is not only defined by trial duration

(i.e., the event “P3 trial ends”), but also by the reason behind the trial’s completion (i.e.,

the more specific event “P3 trial ends due to the project’s failure”). Thus, to compute

rk we require a cause-specific hazard estimate, which we can then integrate over the time

interval of interest. The competing risks framework of Fine and Gray (1999) provides us

with “sub-hazard” estimates that fit this description.

From competing risks estimates obtained from data on P3 trial durations and outcomes

(details provided below), we assemble functions Fk(t). These functions represent the

probability that a therapy k that was introduced to P3 at time tk fails at or before time t.

Panel A of Figure 2 illustrates one such function. According to this curve, therapy k has

probability Fk(t1) of failing at P3D at or before time t1, whereas its probability of failing

anytime after t1 is Fk(∞)− Fk(t1). Note that, because not all therapies fail at P3, these

probabilities do not add up to one. Instead, they add up to the overall probability of

failure in P3, Fk(∞). With this, rk is computed as the fraction of all failure mass Fk(∞)

that has not been realized by t1, but is expected to unfold during [t1, t2]. That is,

rk(t1, t2) =
Fk(t2)− Fk(t1)

Fk(∞)− Fk(t1)
· Fk(∞)

We fit the competing risks model to the over 9,000 P3 clinical trial observations (du-

15For simplicity we are using the continuous-time notation [t1, t2] to reference the discrete-time interval
{t1, .., t2}.
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ration and outcomes) available from Cortellis, excluding therapies that appear in our

analysis sample. The model specification allows for variability across areas (area-specific

indicators) and time period (five year-period indicators, 2001-2005, 2006-2010, etc.). To il-

lustrate these results, Panel B of Figure 2 presents F estimates for the 2006-2010 period,

where variability captured by boxes comes from differences across therapeutic areas.16

Lastly, Panel C of the same Figure presents the (cumulative) distributions of P3F risk

scores for all therapies in our analysis sample. P3 portfolios A are measured over the one

year window that ends the day each therapy was licensed. To provide a sense of validation,

we split this distribution by whether a P3F was observed over the measurement window.

As expected, risk scores are generally larger for the P3F than the no-P3F distribution.

Whereas about 40% of no-P3F therapies are associated to null risk scores, the minimum

value risk score at which a P3F is observed is about 0.1.

4.3 Estimators

The causal inference problem is cast in the terms of the potential outcomes framework.

Let i index observations and consider a dependent variable (or outcome) Yi ∈ Y , a di-

chotomic treatment variable Wi ∈ {0, 1}, and a covariate vector Xi ∈ X . The outcome

is conceptualized as a free-form function of the treatment, Yi = Y
(Wi)
i . Our goal is to

estimate conditional average treatment effects (CATEs), τ(x) = E[Y
(1)
i − Y

(0)
i |Xi = x].

The key difficulty is that, for each i, we only observe one of the two potential outcomes:

depending on the value of Wi, we observe either Y
(1)
i or Y

(0)
i . Both the matching and

causal forest estimators approach this problem relying on a set of “close” or “similar”

observations in the covariate space X—a “neighborhood.”

4.3.1 Matching Estimator

The matching estimator (MTE) approaches the causal inference problem by relying on a

counterfactual outcome, Ŷ
(1−Wi)
i . This value is generated by first determining a neighbor-

hood set N (x) = {i′ : Xi′ and x are similar enough} for each X = x, and then averaging

Y within the subset of observations in this set that receive i’s opposite treatment, 1−Wi.

There exists a wide variety of MTEs, which primarily differ in their implementation of

what it means for two covariate vectors to be “similar enough.” Here we will discuss the

radius matching estimator, which allows us to communicate key points in the most gen-

eral and simple way. Our implementation will use the closely related k-nearest neighbor

estimator.

For the radius MTE, two vectors Xi′ and Xi′′ are similar enough if the vector distance

d = ||Xi′ − Xi′′|| is smaller than some constant κ > 0. Figure 3 illustrates what the

16For illustrative purposes, this Figure only considers F values at the day that each year begins.
However, our implementation of the P3F risk score takes advantage of day-by-day variation (i.e., t
corresponds to days).
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neighborhood would look like for an observation X = x (marked with a cross). Potential

outcomes are computed as:

Ŷ
(W )
i =


Yi for W = Wi

1
|{i′:Wi′=1−Wi,i′∈N (Xi)}|

∑
i′∈N (Xi),
Wi′=1−Wi

Yi′ for W = 1−Wi,

where the second case represents the counterfactual outcome. Naturally, counterfactual

outcomes are undefined if N is empty or there are no opposite-treatment observations

in it. Observations in that situation are dropped. If there is a large enough number

of matched observations at a given X = x, τ(x) can be estimated as the average of

Ŷ
(1)
i − Ŷ

(0)
i |Xi = x.

Remark MTE1 (Covariates X and the curse of dimensionality). Even

though some of the variables in X may not impact outcomes, the distance function d

penalizes deviations of all variables in X equally. In this sense, the matching estimator

is “skeptical,” as it assumes that all variables in X (“suspects”) are a source of bias

(“guilty”). The analyst is responsible for feeding the estimator the “right” set of co-

variates. This feature of the estimator is often responsible for a curse of dimensionality

problem. Analysts seeking to avoid omitted variable bias may increase the number of

variables in X. It then becomes increasingly difficult to find good enough matches. As

a result, the number of unmatched observations increases quickly with the width of X.

This problem is particularly burdensome in our context, where the number of variables

in X is large relative to the number of observations.

Remark MTE2 (Homogeneous treatment effect and matching bias). By

the curse of dimensionality problem, matching procedures often fail to produce a large

enough number of matched observations to allow for the estimation of (conditional) treat-

ment effects at each X = x. As a result, researchers are most times forced to neglect

treatment effect heterogeneity and settle for an (unconditional) average treatment effect

(ATE). Theoretically, the ATE can be formulated as a frequency-weighted aggregation

of CATEs. This is,
∑

x∈X τ(x)·Pr(X=x). However, the estimated ATE may depart from

this formulation if there are unmatched observations. In particular, if unmatched observa-

tions are heavily drawn from low-τ(X) regions of X , the ATE will be overestimated (and

vice versa). Some evidence suggests that this “matching” bias is at play in our sample.

Remark MTE3 (Selection into treatment and P3F risk). The consistency

of estimated treatment effects relies on the assumption of unconfoundedness, formally

stated as W ⊥⊥ {Y (1), Y (0)}|X (e.g., Imbens and Rubin, 2015). In practice, this condition

assumes that treatment assignment is random among observations close in X . Uncon-

foundedness is commonly enforced using propensity scores (Rosenbaum and Rubin, 1983),

which in practice correspond to (first stage) estimates for the probability or receiving the

treatment. Propensity scores π provide a natural platform to incorporate P3F risk score
17



(R) variability, so they will play an important role in our analysis. We will estimate them

as π = P̂r(W = 1|R,XP , XF ), also allowing for variation across therapeutic areas and

time. Thus, the resulting π values give the probability that a unit j experiences a P3F

over a determinate time window, as a function of the characteristics of its P3 portfolio

and P3D micro-dynamics, as well as of the environmental factors picked up by XP and

XF .17

Propensity scores can enter the analysis (and often do) as a one-for-one replacement

for the distance function d (e.g., Dehejia and Wahba, 1999). In this case, the implicit

assumption is that covariates X impact selection into treatment but not outcomes. By

our review of subsection 4.1, this assumption is inadequate in our context. Our approach

is then to match each observation to its nearest neighbor based on X, while demanding

that matched observations have the same propensity scores value after rounding it to half

decimals (i.e., increments of 0.05), and belong to the same therapeutic area.18

4.3.2 Causal Forest

The causal forest estimator (CFE) advances a similar set of principles as the MTE by

leveraging the random forests technique of Breiman (2001). As we mentioned in the in-

troduction, a key advantage of the CFE is that it returns a set of conditional average

treatment effects (CATEs), estimated at each point X = x without requiring distribu-

tional assumptions. While the original version of the CFE was introduced by Wager and

Athey (2018), here we present a more recent version, implemented as a special case of

the Generalized Random Forests (GRF) framework of Athey et al. (2018). We choose

this implementation for its generality, but also because it outperformed the original im-

plementation in Monte-Carlo experiments (Athey et al., 2018). Closely related methods

have been recently used in Marketing by Ascarza (2018) and Guo et al. (2017). Our

exposition begins with a brief overview of the GRF framework, then moves on to details

that are specific to the CFE.

GRF exploits local moment conditions ψ(·) to estimate heterogeneous parameters of

interest τ(x), as well as optional nuisance parameters µ(x) (e.g., constants) at each point

X = x. The method fits equations of the form E[ψτ(x),µ(x)(Xi,Wi, Yi)|Xi = x] = 0, ∀x.
Each specific pair of X-conditional estimates (τ̂(x), µ̂(x)) is obtained as the solution to:

min
τ(x),µ(x)

∥∥∥∥∥
N∑
i=1

αi(x)ψτ(x),µ(x)(Xi,Wi, Yi)

∥∥∥∥∥
2

, (3)

17Experience-related covariates XE are not suspected of impacting licensing decisions, so they are left
out from these estimations.

18The “transformed outcomes” approach offers another alternative to incorporate propensity score vari-
ation into the analysis (Hirano et al., 2003). Here, propensity scores are used to compute the transformed
outcome Y ∗

i = Wi
Yi

πi
−(1−Wi)

Yi

1−πi
, which is then used to compute treatment effects. Because propensity

scores enter the denominators of Y ∗, this estimator can be unstable. In our data, this approach delivered
implausibly large ATE estimates.
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where the summation is over all observations i in the sample. The fundamental role

of random forests is to produce the set of weights α, which indicate how similar each

observation i is to one at the test point X = x. We describe the construction of these

weights in short. For now, note that if the treatmentW was randomized, one could obtain

CATEs by setting ψτ(x),µ(x)(Xi,Wi, Yi) = Yi − µ(x) −Wi · τ(x). As with the generalized

method of moments, different models can be estimated by appropriately choosing ψ.

To see how weights α are computed, first note that a random forest uses the results

of a series of classification/regression trees b = 1, .., B (B usually in the thousands),

which are grown by randomly choosing estimation (“training”) subsamples and classifica-

tion (“splitting”) variables. Random forest results are then computed as averages across

this ensemble of trees. Each tree estimates quantities with little bias but high variance,

averaging quantities across many trees stabilizes these estimates.

Panel A of Figure 5 presents the dendogram representation for a sample tree classi-

fication. In this case, the covariate space has been split according to the values of two

variables, X1 and X2. The resulting partition is composed of three terminal nodes, or

“leaves” (lb = 1, 2, 3). Panel B shows what this partition looks like in the covariate space.

These results tell us that, according to the tree’s optimally-determined partition, all ob-

servations within leaf lb = 3 are similar to the test observation (marked with a cross),

while observations on other leaves are not similar to it. Thus, at the tree level, similarity is

dichotomic. The optimality criterion used to determine when a split is necessary purports

to best explain the data (in validation samples) while, at the same time, maximizing the

amount of detected heterogeneity in the parameter of interest.

The set of weights α used in (3) are built from tree-specific weights. These are com-

puted as the relative participation that an observation i has on the leaf that contains the

test point X = x. For the tree b, this is αib(x) =
1[Xi∈lb(x)]

|lb(x)|
. The definitive weights are con-

tinuous variables, which result from averaging tree-specific values, αi(x) =
1
B

∑B
b=1 αib(x).

As an illustration, Panel A of Figure 5 presents a series of individual trees. Across trees,

an observation i may or many not belong to the same leaf of the test observation X = x. If

it does, its weight for estimate τ(x) increases by 1/|lb(x)|. The Figure’s Panel B represents

final weights by the size of each marker.19

In this context, the CFE is obtained through appropriate choice of the local moment

function ψ. Based on earlier work (summarized by Nie and Wager, 2017), Athey et al.

(2018) use:

ψτ(x)(Xi,Wi, Yi) = (Yi −m(Xi))︸ ︷︷ ︸
Locally centered

outcome

−
(
Wi − π(Xi)

)︸ ︷︷ ︸
Locally centered

treatment assignment

· τ(x),

where m(Xi) = E[Y |Xi] and π(Xi) is the propensity score, both of which result from

purely predictive tasks performed by standard prediction forests. According to this spec-

ification, CATE estimates τ(x) are obtained from a (α-)weighted regression of “locally

19A similar figure is presented by Athey et al. (2018).
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centered” outcome and treatment assignment variables.

Remark CFE1 (Optimal splits and the curse of dimensionality). Because

classification splits are introduced optimally in each tree, the CFE does not operate with

skepticism. This property makes it much less vulnerable to curse of dimensionality issues,

compared to the MTE. In our context, for example, it could be that advancement rate

differences between treated and non-treated observations is about the same across all

therapeutic areas. In this sense, therapeutic area information would not “matter,” and

the CFE would learn to ignore it. By the same principle, the CFE may learn that pipeline

strength differences do not “matter” continuously, but only if a certain threshold is crossed

(as in the example of Figure 5). In contrast, the MTE operate on the premise that all

these differences “count” and should be matched away.

Remark CFE2 (Implicit neighborhoods). Weights α summarize the results of

the exercise described in the previous remark, namely, determining what differences in X

are meaningful with respect to differences in mean outcomes. It can thus be said that, for

a test observation X = x, the program (3) forms an implicit neighborhood by heightening

(minimizing) the relevance of those observations that are close (distant) to it, only based

on differences that “matter.”

5 Results

5.1 Do P3Fs increase the near-future probability of licensing?

(Q1)

The first step to address this question is to format the data. Our approach is summarized

by Panel A of Figure 6. This Figure illustrates the measurement windows used to construct

a sample observation, for unit j at quarter q. We measure the incidence of a P3F (W ), P3F

risk score (R), and quarterly financials (XF ) only using data of quarter q. To construct

pipeline-related covariates (XP ), this one-quarter window is too narrow, however. This

is because the impact (or determinants) of recent terminations and licensing are likely

to be felt over several quarters. Thus, we measure covariates XP over the wider window

{q−3, .., q}.20 The dependent variable, DLICENSE, equals one if unit j in-licenses at least

one therapy during quarters {q+1, .., q+4}, and zero otherwise. This approach results in

5,071 observations at the jq level, about 8% of which is associated to a P3F (W=1).21 The

hypothesis that pharmaceutical sponsors engage in reactive licensing would be supported

if W ’s impact on DLICENSE is positive.

20Note that for covariates that rely on a count of unique active/marketed therapies (PIPESTR, MK-
TSHARE), a wider window makes little difference, as units do not drastically alter the composition of
their pipelines from one quarter to the other.

21A control observation for quarter q may be “contaminated” if the conjectured impacts of a P3F span
the period {q − 3, .., q}, or if a P3F is observed during {q + 1, .., q + 4}. These “contaminated” control
observations are dropped from the sample.
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DLICENSE averages 0.32 among treated observations (W=1) and 0.19 among non-

treated ones. This comparison supports the idea that firms engage in reactive licensing.

Column (1) of Panel A in Table 3 presents the results of a formal test for the difference

of these means. The difference of 0.13 is highly significant (p < 0.01). Taking the no-P3F

licensing probability as a base, this difference suggests that P3Fs increase near-future

licensing probabilities by about 68%. This estimate, however, is afflicted by a major

source of (upward) bias. Namely, units that innovate more also experience higher project

turnover, which increases their inherent propensity to both experience P3Fs and in-license

therapies. In Column (2) we present an estimate that alleviates this problem to some

extent. This estimate corresponds to W ’s coefficient in a linear probability regression,

which also includes XP and XF variables as controls, along with year and therapeutic

area fixed effects. The size of W ’s estimated effect on DLICENSE shrinks by about half,

while retaining statistical significance.

In Columns (3) and (4) of the same Panel we present ATE estimates from two versions

of our matching estimator (MTE). In contrast to estimates of Columns (1) and (2),

these estimates account for non-random treatment assignment (i.e., P3F incidence) by

incorporating propensity score variation. We implement two MTE versions to illustrate

the role of the P3F risk score (R): the propensity score used in Column (3) does not

include R as a predictor; that in Column (4) does. Both propensity scores are estimated

via Logit.

We estimate these specifications on the subsample of observations such that R ≥ 0.1,

which is the minimum approximate value of R at which we start to observe P3Fs. By

imposing this overlap restriction, we are eliminating control group observations that are

too unlikely to produce a P3F, and should thus not enter the comparison (most of these

are due to empty P3 portfolios). Given that there are about 990 observations in the

R ≥ 0.1 subsample, and that about 890 of these are used in Columns (3) and (4), we

can conclude that the MTE’s “skepticism” is responsible for the loss of about 10% of

observations in this case.

The estimated coefficient of Column (3) suggests that P3Fs increase the near-future

licensing probability by 0.1. In Column (4), where R is accounted for by the propensity

score, this estimate falls to 0.06. Taking as a base the 0.19 average of DLICENSE in the

W=0 subsample, this estimate suggests that a P3F increases the near-future probability

of licensing by about 32%.

Causal Forest CATE estimates are obtained from the full R ≥ 0.1 subsample (no

observations are dropped). Moreover, by capturing treatment effect heterogeneity, these

estimates provide a richer set of results. The additional nuance manifests itself both

in terms of the value of estimates and their statistical significance. To simultaneously

represent both these dimensions, we present results in the form of a scatter plot, in Panel

A of Figure 7. CATE magnitudes are presented in the horizontal axis; their z-scores,
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on the vertical one (estimates have a normal asymptotic distribution). The difference

between marker types is explained below as it becomes relevant. Note that CATE values

can be interpreted as the willingness to engage in reactive licensing (as a function of X),

shall a P3F be experienced. We refer to this construct simply as “reactiveness.”

The average value of CATE estimates is about 0.07. Even though this value is close

to the benchmark estimate of Column (4), it hides the fact that only a fraction of CATE

estimates are statistically significant. About half of them are significant with 90% con-

fidence and a quarter with 95% (dotted lines mark significance thresholds). Thus, while

this evidence suggests that reactive licensing is not a rare behavior, it also suggests that

we should not expect every unit to engage in it following every P3F. In subsection 5.3 we

investigate the drivers of this heterogeneity. Only considering the half of the sample for

which CATE estimates have some statistical significance, these results imply that P3Ts

increase the probability of near-future licensing by an average of 47%. This estimate is

considerably larger than its matching counterpart of 32%. Part of this difference could

be explained by the matching bias that we have alluded to before. To illustrate this, we

have marked with a red cross the CATE estimates that correspond to observations left

unmatched and therefore dropped in our matching analysis (Table 3, Column (4)). These

are predominantly scattered among upper ranges of the axis, suggesting that the lower

MTE ATE could follow from the missing influence of these high-valued CATEs.

To conclude this section, we investigate whether P3Fs may also have an impact on

the number of therapies or their maturity (stage of development) at licensing. To this

end we consider two additional outcome variables, NLICENSE and ELICENSE. The first

corresponds to the number of therapies licensed (over the same measurement window

used for DLICENSE). ELICENSE is also constructed based on the number of therapies

licensed during this period, with the difference that the probability weighting scheme of

(1) is used for aggregation. That is, all else constant, the value of ELICENSE is larger

the more mature therapies were at licensing.

Causal forest estimates are computed separately for each outcome variable, only using

the subset of observations in which at least one therapy was licensed. Resulting esti-

mates are generally negative, for both outcome variables (results are shown by Appendix

Figure A.4). Statistical significance has a similar pattern to that in our analysis for DLI-

CENSE. For the NLICENSE outcome, the negative sign of estimates could suggest that

P3Fs prompt units to engage in more targeted licensing. In the case of the ELICENSE

outcome, it may indicate that units acting reactively are particularly vulnerable to the

lack of thickness that characterizes this market (Gans and Stern, 2010). This is, even

though units may ideally want to replace the recently failed P3 therapy with a mature

(i.e., late-stage) therapy obtained from the licensing market, such therapy may not be

available.
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5.2 Do pre-licensing P3Fs worsen post-licensing development

performance? (Q2)

Panel B of Figure 6 illustrates how we assemble a dataset to implement this analysis.

Observations in this dataset correspond to licensed therapy/development stage pairs. Two

such observations (i and i′) are referenced in the Figure. These correspond to the two post-

licensing stages that a hypothetical therapy r completed after licensing. (Only completed

stages are considered in this analysis.) The outcome indicator ADVANCE (activated if

development continues onto the next stage, and zero otherwise) is recorded for each of

these observations. Covariates suspected of conditioning the likelihood of advancement

(performance) are measured over the year prior to each milestone’s reported completion

date. These are used as the matching and “splitting” variables, respectively by the MTE

and CFE. Variables related to the incidence of P3Fs are measured over the year prior to

each therapy’s licensing date. These are used to estimate propensity scores at the therapy

level.

Panel B of Table 3 presents benchmark estimates. These are produced as before.

However, because there are marked differences in the probability of advancement across

stages (see Table 1 and related discussion), we demand that MTE also matches exactly

on development stages. As a result, a relatively larger percentage of observations are left

unmatched (relative to our previous analysis)—the MTE’s “skepticism” implies the loss

of 53% and 71% of the data, respectively for the analysis of Columns (3) and (4).22

The negative estimates across columns of Panel B suggest that the incidence of a

pre-licensing P3F exerts a negative impact on post-licensing performance. In particular,

estimates of Columns (1) and (2) suggest that a pre-licensing P3F lowers the probability

of stage advancement in post-licensing development by 0.04 (linear probability model

includes stage indicators). These coefficients are imprecisely estimated, however. The

two versions of the MTE estimator (with and without R) give a similar result, by which

P3Ts lower the probability of advancement by 0.11-0.12. Considering that the mean value

of ADVANCE is 0.42 when there is no pre-licensing P3F (W = 0), this estimate suggests

that pre-licensing P3Fs lower advancement probabilities by about 28%, overall.

As with our analysis of the previous section, Causal Forest CATE estimates (presented

in Panel B of Figure 7) suggest that treatment effect heterogeneity tells an important part

of the story. The average CATE is about -0.04. However, only about 30% and 5% are

significant at the usual statistical confidence levels. Within this 35% of observations, the

negative average impact of P3Fs on post-licensing performance is about 15%—about half

22The actual minimum value of R at which a P3F is observed differs from that in the context of the
reactiveness analysis above (measurement windows are different). For the current analysis, this value is
reflected in Panel C of Figure 2. Nevertheless, these threshold values are quite similar (even though their
distributions are not). In absence of a theoretical framework to help us determine what is the “right”
threshold for each case—and for simplicity—we have thus decided to use the relatively “clean” cut-off of
0.1 for both analyses.
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that implied by matching estimates. The distribution of the large number of unmatched

observations could again here explain part of the difference. To see this note that un-

matched observations have an agglomeration near zero.23 These relatively small estimates

(in absolute value) are not accounted for by the matching procedure, which is why the

resulting ATE may be larger.

5.3 What factors drive estimated treatment effect heterogene-

ity?

Our results above unveil a large amount of treatment effect heterogeneity across the

covariate space X . Our goal here is to shed some light on what specific variables in X

can be regarded as the more important drivers of this heterogeneity.

Recall that reactiveness CATE estimates τ̂R can be viewed as a sort of latent willing-

ness to engage in reactive licensing (as a function of the circumstances X). Analogously,

performance estimates τ̂P can be interpreted as a latent willingness to terminate the de-

velopment of a therapy licensed reactively. Also recall that CFE CATE estimates vary

at the observation level, and are available for all observations in the samples used for

each analysis. Thus, we can regress these on covariates X. To facilitate interpretation,

we use a linear specification and a apply a normal-standard transformation on X. Ob-

tained estimates can then be interpreted as the effect of increasing each covariate by one

standard deviation. To account for the fact that the dependent variable is the result of

an estimation procedure, we employ the generalized linear model correction of Hanushek

(1974), which down-weights observations according to the standard error of the dependent

variable.

Column (1) of Table 4 presents regressions results for the reactiveness estimates. Be-

sides the listed variables, this model includes therapeutic area and year fixed effects. The

positive coefficients for MKTSHARE, PIPESTR, LOGASSETS and LOGRD all align

with the idea that larger firms are more likely to react to P3Fs. LOGASSETS exerts

the stronger influence among these. The negative estimate coefficient on LOGSALES is

a priori puzzling, as one would expect firms with more cash to be more likely to engage

in reactive licensing. However, the variable’s negative coefficient suggests the opposite.

But in fact, licensing deals require relatively little cash (most potential compensation is

contingent).

To analyze performance treatment effect heterogeneity (in Column (2)), we use the

absolute value of CATE estimates as dependent variable. The strongest drivers of these

are firms’ scale and scope. Their negative coefficients coincides with previous literature,

in suggesting that broader experience and specialization better equips firms to move

23The percentage of unmatched observations is three points higher for above-median CATE (i.e., less
negative) observations.
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development forward, despite a potential lack of fit of reactively-licensed therapies. The

positive coefficient of PIPESTR is also intuitive, in that it suggests that for units with

stronger pipelines, terminating a reactively-licensed therapy is likely to be less costly

(more options to fall back on). The related “size effect” is also observed, based on the

positive coefficient of LOGASSETS. To interpret the positive estimate of RLIC RA, note

that more intensive licensing by other units in the same area may signal that a new wave

of technologies is starting to permeate from the biotech supply. In this context, sponsors

may be less eager to continue developing a reactively-licensed therapy.

5.4 Do managers face a trade-off in practice?

Given the wide heterogeneity of estimated treatment effects, it could be possible that

licensing circumstances X that make a unit more reactive (large τ̂R(X)) are typically

paired with milestone completion circumstances X ′ that make reactive licensing less con-

sequential in terms of performance (small |τ̂P (X ′)|). This empirical correlation would

undermine the relevance of the reactive licensing trade-off, by implying that managers

at high risk of engaging in reactive licensing usually are a low risk of suffering its con-

sequences. On the other hand, if larger values of τ̂R(X) tend to be paired with larger

values of |τ̂P (X ′)|, then evidence would suggest that the reactive licensing trade-off is

indeed experienced by managers in practice. Whether reality is closer to one extreme or

the other depends on the empirical distribution of (X,X ′) pairs and the nature of the τ̂

functions. We can investigate the matter simply by examining the sample correlation of

τ̂R(X) and |τ̂P (X ′)| values.

The key step to implement this analysis is merging the two sets of CATE estimates.

We do so by first considering performance estimates, which are available for the ther-

apy/completed stage pairs used in the causal forest estimation of subsection 5.2. Then,

we identify the reactiveness estimate associated to each of these therapies’, at the li-

censing quarter. This gives us a dataset with observations (τ̂R(x), |τ̂P (x′)|), where x

corresponds to covariates (“circumstances”) measured prior to licensing, while x′ to those

measured prior to the completion of each milestone. Using a generalized linear model

(which accounts for both variables’ estimated standard errors) to regress τ̂P on τ̂R (in-

cluding therapeutic area, stage and licensing year fixed effects), we get a coefficient of

0.22 (p < 0.01) for τ̂R. This positive correlation suggests that units more likely to react

to P3Fs tend to also be more likely to terminate reactively-licensed therapies. This result

supports the notion that managers do face the reactive licensing trade-off in practice.
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6 Discussion of mechanisms

6.1 Why may firms react to setbacks?

What is the specific mechanism that prompts (some) firms to engage in reactive licensing?

One possible explanation could be based on the use managerial incentives that are tied

to the firm’s stock market performance. Indeed, there exists ample evidence that the

structure of executive compensation impacts innovation decisions and outcomes in high

technology industries (e.g., Hoskisson et al., 1993; Balkin et al., 2000; Lerner and Wulf,

2007; Baranchuk et al., 2014). In our particular context, this type of explanation has

the additional support of evidence showing that P3Fs have a significant negative impact

on sponsoring firms’ stock market valuation (Sharma and Lacey, 2004; Girotra et al.,

2007): managers would engage in reactive licensing in an attempt to (at least partially)

restore their firms’ stock price, and with it, their personal compensation. On the other

hand, this explanation has the problem that licensing deals are small relative to firms’

overall operation, and hence unlikely to impact their stock market valuation. To resolve

the matter, we conducted a financial event-study analysis. We found no evidence to

support the idea that licensing (reactive or not) impacts the in-licensing firms’ stock

market valuation. This analysis is presented in Appendix B.

The corporate finance argument that managers may grow firms as means to expand the

scope of their control (Shleifer and Vishny, 1988) maps into a second possible explanation.

The bottom line of this argument is that managers may be willing to sacrifice some of

their firm’s market value if an investment offers them a sizable personal benefit (Morck

et al., 1990). The correlate for our context would be that reactive licensing could be used

to make up for the scope of control that is eroded by P3Fs. Donaldson and Lorsch (1983)

indicate that value-decreasing acquisitions can be used to promote the firm’s survival

(even when liquidation may be better for shareholders), while Morck et al. (1990) find

that acquisitions that follow a period of poor performance of the acquiring manager,

as well as those whose target has experienced rapid growth have systematically lower

returns for the acquiring firms’ shareholders. Beyond the reactive flavor of these cases,

this evidence is telling in the sense that acquisitions usually are much larger transactions

than licensing deals. They should thus be less likely to be scrutinized and contested, and

hence at higher risk of being used for the implementation of managers’ personal objectives.

Lastly, a third possible explanation aligns with the “prolonged commitment” (Boulding

et al., 1997) or “escalation of commitment” (Schmidt and Calantone, 1998) effect, a

behavioral bias whereby managers delay “pulling the plug” on poor projects. The analogy

for our context would be that managers may refuse to accept development setbacks by

using outsourcing to quickly fill the gap they leave behind.

Whereas these explanations suggest that reactive licensing could be sub-optimal from

the point of view of shareholders, we note that this would be difficult to verify empiri-
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cally. The primary reason is the structural complexity of the problem—which has salient

elements matching, negotiation and contract design in a dynamic environment with asym-

metric information. To this inherent complexity, one should add the unavailability of sys-

tematic and reliable contract design and expected market profitability data. Nevertheless,

given the great emphasis that is placed on reducing attrition rates in this industry (e.g.,

Kola and Landis, 2004; Paul et al., 2010), our results do raise the possibility that reactive

licensing could be detrimental for shareholders. In that case, our analysis would serve as

a counter example to the usual implication of R&D management models based on real

options theory (e.g. Schwartz and Trigeorgis, 2004), namely, that managerial flexibility is

valuable.24

6.2 Why do reactively licensed therapies underperform?

Our goal in this section is to shed some light on the potential mechanisms that under-

lie the negative consequences of reactive licensing that are illustrated by the results of

subsection 5.2. We envision two potential mechanisms. The first regards the idea that

reactively-licensed therapies may exhibit poorer fit with the in-licensor’s capabilities:

• Technical mismatch mechanism. Reactively-licensed therapies may underper-

form if they are more likely to rely on technical approaches that are new to the

in-licensor. In this case, the in-licensing unit may have been unable to perform

adequate due diligence, or effectively dealt with the contingencies of clinical trial

development.25 As a result, the value of continuing with development may be lower.

The importance of technical matching is highlighted by research documenting licens-

ing sorting based on technological relatedness (e.g., Mowery et al., 1998; Diestre and

Rajagopalan, 2012). More explicitly, Mittra (2007) states that “licensing-in prod-

ucts to fill a portfolio gap is a risky strategy if the company lacks the in-house

expertise.”

The second potential mechanism highlights the fact that, in practice, licensing deals

require parties to engage in a lasting collaboration. Organizational frictions can arise if

contracts are designed hastily:

• Derailed collaboration mechanism. Contractual agreements for reactively-

licensed therapies may be less likely to properly specify contingent decision rules,

24Huchzermeier and Loch (2001) make a similar point but based on a different rationale.
25For example, suppose that a unit with experience in the development of bronchodilator asthma

therapies reactively licenses another asthma therapy, but which uses a monoclonal antibody technology
that is novel to the unit. Because monoclonal antibodies can increase the risk of cardiovascular events
(Hansel et al., 2010), their clinical trials may require, among others, carefully crafted exclusion restrictions
(e.g., less focus on older populations) and specific analyses of drug-drug interactions (e.g., cholesterol
medications). A unit without experience on monoclonal antibodies may be less prepared to properly
manage these tasks, making clinical trials more likely to produce adverse events.
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making parties more likely to enter conflict and terminate their collaboration. These

“missing” decisions rules could refer, for example, to the timing and scope of biotech

scientists’ publication rights, or to the obligations of biotech scientists in supporting

development activities. These aspects are highlighted by studies focusing on the

governance of and contractibility for research-based collaborations (e.g., Lerner and

Merges, 1998; Lerner and Malmendier, 2010), as well as by anecdotal evidence by

practitioners indicating that “failure to arrive at a common understanding of con-

tractual terms from the start of an agreement is a major source of risk that can

jeopardize outcomes” (Jones, 2007).

To address the technological mismatch mechanism, we take advantage of two technological

categorizations available from our data. This information is generally available both for

the therapies developed inside and outside our analysis sample. Thus, we use these data

to construct indicators for each licensed therapy’s technical matching quality.

For the first of these categorizations, levels correspond to broad technical approaches

used in the formulation and delivery of developing medicines. Categories include, for

example, small molecules (i.e., chemically synthesized), large molecules (i.e., living or-

ganisms), dermatological or intravenous delivery, etc. Cortellis labels these simply as

“technologies.” There are 327 such technologies in the overall data, and therapies are

often associated to more than one. The second categorization corresponds to “targeted

based actions” (TBAs), which describe the precise way in which a compound produces

a pharmacological effect on the body.26 There are about 7,500 TBA levels in the overall

data. Therapies are associated to more than one only occasionally.

We utilize these categorizations one at the time, in the following way. For each li-

censed therapy, we code the matching quality variable MATCH as one if the entire set of

technologies (or TBAs) associated to it have been previously (i.e., prior to licensing) been

employed by the in-licensing unit. The variable is coded as zero otherwise. For consis-

tency with our earlier analysis, we restrict the to subsample therapies used in the causal

forest analysis (R ≥ 0.1). The conjectured mechanism requires the average of MATCH

to be lower among treated than among non-treated therapies (with treatment defined as

in subsection 5.2). When we use the first categorization (technologies), MATCH averages

0.60 among treated therapies (licensed within a year of a P3T) and 0.61 among non-

treated ones (p = 0.57). When the second categorization (TBAs) is used instead, these

averages are respectively 0.36 and 0.35 (p = 0.7). Results do not qualitatively change if

we drop the R ≥ 0.1 requirement, or if we code MATCH considering the entire set of

26More precisely, TBAs correspond to mechanism of action/targeted cell pairs. A compound’s mech-
anism of action refers to the way the compound produces a pharmacological effect on the body. Some
molecules may, for example, act by stimulating specialized cells (like adrenaline); others, by replacing
them (like insulin). Because TBA pairs also specify the targeted cell, they provide an even more spe-
cific categorization for the technicalities involved in each compound’s development. For example, the
“p38 MAP kinase inhibitor” TBA in our data refers to the implementation of an inhibition mechanism,
targeting the mitogen-activated protein kinases P38.
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therapies previously developed by the firm (instead of unit). Thus, this evidence does not

support the technical mismatch mechanism.

Turning to the derailed collaboration mechanism, we first return to the statistics of

Table 1, which describe the frequencies of different types of terminations. We approach

these statistics highlighting the difference in the definition of “development” and “agree-

ment” terminations (Columns (3) and (4), respectively). In particular, recall that whereas

“development” terminations imply that therapies in question are not developed further,

“agreement” terminations do not. Instead, “agreement” terminations solely indicate that

collaboration has reached an end. As such, these terminations may signal the deteriora-

tion of parties’ relationship. Using termination events only, our test relies on the indicator

DERAIL, which is activated only for “agreement” terminations. (As before, the analysis

is restricted to the R ≥ 0.1 subsample.) DERAIL averages 0.12 among treated obser-

vations and 0.06 among non-treated ones (p < 0.05). When the R ≥ 0.1 requirement is

dropped, the difference shrinks somewhat but retains statistical significance (p < 0.1).

This evidence suggests that the underperformance of reactively licensed therapies may be

fueled by organizational frictions. We nevertheless note that, because agreement termi-

nations are a relatively small share of all terminations in the sample, this mechanism is

unlikely to the sole driver of the underperformance of reactively-licensed therapies.

7 Conclusion and limitations

This paper highlights the concept of “reactive” outsourcing of technological innovations,

which diverges from standard literature portrayals of outsourcing as a carefully planned

and executed, “proactive” process. Evidence from the pharmaceutical industry suggests

that firms occasionally engage it. When they do so, outsourced technologies are less likely

to reach the market.

Some of the limitations of our analysis stem directly from data availability. We do not

have access to data tracking the set of preparatory and execution activities that underpin

our hypothesis. Neither do we systematically observe contracts financial compensation

terms, or the type of incentives that may shape managerial decisions. For these reasons,

our analysis is build over tests for the hypothesis’ empirical implications. These types of

data may be particularly useful to shed light on the mechanisms at play, a topic that we

cannot conclusively resolve with the data at hand.

A second set of limitations comes from the structural complexity of the decision envi-

ronment. For example, outsourcing deals in this industry are heavily negotiated and can

vary in terms of exclusivity and geographical scope of traded rights, among others. Here

we have adopted an “apples to apples” comparison strategy, circumscribing the analysis

to particular type of deals (exclusive worldwide rights). We suspect that broadening the

scope of considered outsourcing activities (to include other types of deals as well as M&A)
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could shed further valuable insight. We hope to address some of these aspects in future

research.
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Figures and Tables

Table 1: Post-licensing development performance.

(1) (2) (3) (4) (5)
Stage

N
Advance to Development Agreement Idle stage
next stage termination termination termination

Discovery 509 0.46 0.46 0.05 0.03
Phase 1 325 0.38 0.49 0.07 0.06
Phase 2 540 0.20 0.72 0.05 0.02
Phase 3 229 0.51 0.41 0.05 0.03
Review 174 0.86 0.11 0.02 0.01

Total 1,777 0.41 0.50 0.05 0.03

Statistics in this table do not consider ongoing stages. A definition for the variables considered by each
column is provided in text.
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Table 2: Specification summary for covariates X.

Variable Definition Variability Construct

A. Pipelines-related covariates XP

PIPESTR Ajt/Aj +A−jt Unit/date Strength of unit’s pipeline
RTER OWN Tjt/Aj Unit/date Unit’s recent productivity
RTER RA T−jt/A−jt Unit/date Rest-of-area’s recent productivity
RLIC OWN Ljt/Ajt Unit/date Unit’s recent in-licensing
RLIC RA L−jt/A−jt Unit/date Rest-of-area’s recent in-licensing
MKTSHARE Mjt/Mj +M−jt Unit/date Strength of unit’s commercialized portfolio

B. Experience-related covariates XE

SCOPE 1-HHI (across areas) Firm/date Firm’s development diversification
SCALE Log number of therapies Firm/date Firm’s development experience

historically developed

by sponsor

C. Quarterly financial covariates XF

LOGSALES Demeaned log sales Firm/quarter Size, liquidity, internal capital markets
LOGASSETS Demeaned log assets Firm/quarter Size, capabilities, internal capital markets
LOGRD Demeaned log R&D Firm/quarter Size, technological leadership

expenditures

D. Additional controls
Year, area, and development stage indicators
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Table 3: Benchmark estimates.

(1) (2) (3) (4)
Difference Linear

MTE 1 MTE 2
of means probability

A. Reactiveness analysis (Q1), outcome DLICENSE

Estimate 0.13*** 0.06*** 0.10*** 0.06***
Std. error (0.01) (0.02) (0.03) (0.01)
p-value [0.00] [0.01] [0.00] [0.00]

Observations 5,071 5,071 897 889

B. Performance analysis (Q2), outcome ADVANCE

Estimate -0.04 -0.04 -0.11*** -0.12***
Std. error (0.03) (0.03) (0.01) (0.01)
p-value [0.17] [0.23] [0.00] [0.00]

Observations 1,777 1,777 546 333

Propensity
N/A N/A

Function Function
score of X of X and R

Sample All All Matched Matched
R ≥ 0.1 R ≥ 0.1

Models in this Table aim to estimate the impact of pre-licensing P3Fs on the short term probability
of license (Panel A) and post-licensing development performance (Panel B). Outcomes and independent
variables are constructed according to Figure 6. In columns (3) and (4), estimates correspond to ATEs.
Further specification details are provided in text.
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Table 4: Exploring treatment effect heterogeneity.

(1) (2)
Reactiveness Performance

MKTSHARE 0.005*** 0.001
(0.000) (0.001)
[0.000] [0.348]

PIPESTR 0.005*** 0.006***
(0.001) (0.001)
[0.000] [0.000]

RLIC OWN -0.000 -0.000
(0.000) (0.000)
[0.267] [0.776]

RLIC RA -0.004*** 0.001*
(0.000) (0.000)
[0.000] [0.010]

RTER OWN 0.001*** 0.001***
(0.000) (0.000)
[0.000] [0.001]

RTER RA 0.001 -0.000
(0.000) (0.000)
[0.143] [0.244]

LOGASSETS 0.009*** 0.003***
(0.000) (0.001)
[0.000] [0.000]

LOGSALES -0.005*** -0.005***
(0.001) (0.001)
[0.000] [0.000]

LOGRD 0.004*** 0.000
(0.000) (0.001)
[0.000] [0.939]

SCALE -0.031***
(0.001)
[0.000]

SCOPE -0.012***
(0.001)
[0.000]

Therapeutic area FE ✓ ✓
Year FE ✓ ✓
Stage FE ✓

Observations 992 1,161

Generalized linear models for the dependent variables τ̂R and |τ̂P |, respectively. Estimated models
account for the standard errors associated to each outcome (both are estimated variables). All shown
covariates are standardized by their mean and standard deviation.
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Figure 1: Trends in pharmaceutical licensing and innovation.

# actively developing (sample)

# in-licensed (sample)
# in-licensed (industry)

# in-licensed (sample)
# portfolio additions (sample)

# actively developing (sample)
# actively developing (industry)
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Figure 2: Construction elements and descriptives of the P3F risk score (R).

A. Theoretical illustration.
1

Fk(∞)

Fk(t2)
Fk(t1)

tk t1 t2 t

Fk(t)

B. Estimated cumulative failure sub-hazards F (0, t)
(all therapeutic areas in period 2001-2005).

Years on P3D (t)

C. P3F risk scores (R) for licensed therapies
(measured over year ending at licensing date).

P3F observed

P3F not observed

Panel A. The function Fk(t) corresponds to the probability that a therapy k introduced to P3D at time tk
fails at or before time t. Panel B. Estimated cumulative P3D failure sub-hazards (empirical correlate of
Fk(t)), estimated via competing risks (Fine and Gray, 1999) on a large sample of P3 development histories.
Variability shown by boxes comes from differences across therapeutic areas. Panel C. Estimates of P3F
risk scores for all licensed therapies, computed via expression (2), and where the measurement window
[t1, t2] corresponds to the calendar year ending the day each therapy is licensed.
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Figure 3: Radius matching neighborhood for an observation at X = x.

X2

X1
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Figure 4: Classification and neighborhoods in tree-based methods.

A. Sample classification tree (dendogram representation).

x1 ≤ c1 x1 > c1
l = 1

x2 ≤ c2 x2 > c2
l = 2 l = 3

B. Neighborhoods in tree-based classification.

X2

X1

l = 1 l = 3

l = 2
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Figure 6: Measurement windows for variable construction.

A. Reactiveness analysis (Q1)
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Figure 7: Causal Forest CATE estimates τ̂ .

A. Reactiveness analysis (Q1)

τ̂R

σ̂τ

τ̂R

B. Performance analysis (Q2)

τ̂P

σ̂τ

τ̂P
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Appendices

A Stage-conditional reach-the-market probabilities

Here we describe the procedures used to construct the set of “stage-conditional reach-the-
market” probabilities {pas} used for the weighted aggregation procedure of expression (1).
We construct these probabilities on a rolling basis and at the therapeutic area level, using
the about 80,000 development histories available from the broad Cortellis sample.

To see how we do this specifically, consider the problem of computing a unit’s “mar-
keted therapies-equivalent” number of active therapies over the one-year measurement
window that ends on day t. In this case, we would consider all development outcomes
that were observed between y-5 and y-1, for y =year(t). With these, we estimate a probit
model for the probability of advancement for one stage at the time, using therapeutic
area indicators as independent variables. The predictions of this model are stored, and
the estimation is repeated for all other stages. Call the resulting probabilities qasy. Stage-

conditional probabilities of reaching the market are then computed as pasy =
∏
s′≥s

qas′y.

Figure A.1 describes these estimates, for each year(t) in the sample. Boxes capture vari-
ability across therapeutic areas.
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Figure A.1: Stage-conditional reach-the-market probabilities.
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B Do licensing events impact stock market returns?

To address this question, we the event-study methodology that have been applied numer-
ous times to study how innovation-related events impact firms’ stock market returns.27

Our results suggest that (i) licensing events do not impact the in-licensing firm’s stock
market valuation, and (ii) pre-licensing P3Fs do not appear to systematically mediate
these impacts.

The analysis relies on an “abnormal returns” variable (AR), which computed at the
daily level, based for the in-licensing firm’s stock price returns. The “event day” corre-
sponds to the day in a therapy j is licensed (as reported by Cortellis). We index this
day by t = 0. Days following the event are successively indexed by t = 1, 2, ..; those that
preced it, by t = −1,−2, ... AR represents the difference between the stock’s actual daily
return and that predicted by an equilibrium pricing model.

Crucially, the event-study methodology postulate that ARs account for the impact of
the information surfaced by the event under study on the firm’s stock market returns.
Inference is drawn by aggregating ARs into cumulative abnormal returns (CAR) over an
event window {T , .., T̄}. To analyze the impact of a therapy j’s licensing on its in-licensing
firm’s stock returns, CAR is defined as:

CARj =
T̄∑

t=T

ARft,

where f indexes the in-licensing firm. Following other studies in this literature (e.g.,
Girotra et al., 2007), we set T = −1 to account for the possibility that there may be
“information leakage” prior to each deal’s announcement. Keeping this threshold fixed,
we consider the three windows given by T̄ = 3, 5, 7. Thus, CAR computes the sum of
abnormal returns experienced by the firm around the deal’s date. An estimated value of
CAR > 0 would be consistent with the idea that licensing a positive impact on the firm’s
stock market valuation.

To compute ARs, we consider two equilibrium pricing models to predict expected
returns E[Rft]. With these predictions, ARs are constructed as ARft=Rft-E[Rft]. The
employed pricing models are the Market Model (MM) of Brown andWarner (1985) and the
Fama-French-Cahart 4-Factor Model (FFC) of Carhart (1997). These compute expected
returns respectively as:

E[Rft] = αj + βjRmt (MM)
E[Rft] = αj + βjRmt + θ1jSMBt + θ2jHMLt + θ3jUMDt (FFC)

Both models produce expected return predictions by invoking an equilibrium condition

27The methodologies employed here have been applied numerous times in the context of new product
innovation. Sharma and Lacey (2004) use them to unveil the asymmetry of reactions to good and bad
news in the pharmaceutical industry, while Girotra et al. (2007) to dissect the negative impacts of P3Fs
based on the richness of the firm’s developmental pipeline. Chaney et al. (1991) provide estimates of
stock market reaction to developmental success across industries. Cao and Sorescu (2013) focus on the
impact of co-branded products. Hendricks and Singhal (1997) study the impacts of product delays, and
Robertson et al. (1995) how new product announcements impact the stock market valuation of competing
firms. See Srinivasan and Hanssens (2009) for a thorough review of these methods and their application
to marketing problems
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that ties the return of the market portfolio (Rmt) to that of the firm’s stock. The pa-
rameters governing this relationship are estimated independently for each licensing event
through OLS regressions, using data from the pre-licensing window {−365, ..,−11}. Mod-
els differ in terms of the number of additional factors that enter the specification as in-
dependent variables. Whereas MM only includes return of the market portfolio, FFC
includes three other potential moderators. These are, (i) SMB (“small minus big”) factor
(return spread between small and large firms), (ii) HML (“high minus low” or “value
premium”) factor (differential return between stocks of companies with high and low
book-to-market ratios), and (iii) UMD (“up minus down”) factor (historical excess return
of “winning stocks,” compared to “loosing” ones). Factor data was obtained from Profes-
sor Kenneth French’s website; stock market returns data, from the Center for Research
in Security Prices (CRSP). We present results for the 1,775 licensed therapies for which
we were able to compile all required data.

Estimated CAR values are small on average, suggesting that licensing does not have
a systematic impact on the in-licensing firm’s stock market value. When MM is used,
these average 0.001, 0.002, and 0.004 for each window (narrowest to widest). Their
FFC counterparts are about an order of magnitude smaller. Between 2% and 6% of
these estimates are statistically significant with 95% confidence. (Standard errors are
obtained from each regressions estimated error variance). These relatively few statistically
significant CAR estimates are about evenly split between positive and negative values.

To further illustrate the absence of a systematically positive effect of licensing on the in-
licensing firm’s stock market valuation, Figure A.2 presents the (cumulative) distribution
of estimates obtained in each case. To investigate the possibility that these effects may
be present when licensing follows a recent P3F, we present separate distributions for
each set of events (i.e., with and without a P3F having occurred within year ending on
the licensing date). If the referenced impacts of licensing existed, these distributions
should place relatively more mass on the positive domain of CAR. But this is not the
case. Furthermore, the incidence of a pre-licensing P3F does appear to make a difference:
dashed (P3F) and solid (no P3F) distributions are quite similar. The hypothesis that CAR
estimates for licensing that follows a P3F are larger than their “no-P3F” counterparts is
rejected within all sets of results (95% confidence).

As a last check, we evaluate the volume of stocks traded around the date of licensing
t = 0. We base our analysis on the variable NVOL, defined as:

NVOLjt =
VOLjt

¯VOLj
− 1 for t = −10, .., 0, .., 10,

where VOLjt represents the number of stocks traded on day t (of therapy j’s in-licensing
firm). The denominator ¯VOLj corresponds to the the average of VOL within the period
t = −365, ..,−11. Thus, NVOL gives a normalized measure of traded volume around
licensing. If licensing has an impact on the in-licensing firm’s equity, we should expect
NVOL values to shift around licensing. The patterns described by Figure A.3 suggest that
this is not the case. NVOL values are quite stable around zero throughout the considered
window. In conclusion, this evidence does not support the idea that licensing impacts the
in-licensing firm stock market valuation.
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Figure A.2: Distributions of Cumulative Abnormal Returns following licensing events.
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Figure A.3: Normalized traded volumes (NVOL) around the licensing date (t = 0).

t
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C Additional Tables and Figures

Table A.1: Decision-making units in the sample.
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ABBVIE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
AMGEN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ASTELLAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ASTRA ZENECA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
BAYER ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
BIOGEN ✓ ✓ ✓ ✓ ✓ ✓
BRISTOL-MYERS SQUIBB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CELGENE ✓ ✓ ✓ ✓ ✓
DAICHII SANKYO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ELI LILLY ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GILEAD ✓ ✓ ✓ ✓ ✓ ✓
GLAXO SMITH KLINE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
JOHNSON & JOHNSON ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MERC & CO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NOVARTIS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PFIZER ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ROCHE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SANOFI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SHIRE ✓ ✓ ✓ ✓ ✓ ✓ ✓
TAKEDA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Figure A.4: Causal Forest CATE estimates: P3F impacts on NLICENSE and ELICENSE
(conditional on DLICENSE=1).

τ̂
σ̂τ

τ̂

55


	Introduction 
	Industry background 
	The drug development process 
	The licensing market and the incentives to license 
	Contracting frictions and proactive licensing 

	Data 
	Source, sample, and structure 
	Licensing activity 
	Post-licensing development performance 
	Phase 3 Failures (P3Fs) 

	Empirical Strategy 
	Covariates X 
	P3F Risk Score 
	Estimators 
	Matching Estimator 
	Causal Forest 


	Results 
	Do P3Fs increase the near-future probability of licensing? (Q1) 
	Do pre-licensing P3Fs worsen post-licensing development performance? (Q2) 
	What factors drive estimated treatment effect heterogeneity?
	Do managers face a trade-off in practice?

	Discussion of mechanisms 
	Why may firms react to setbacks? 
	Why do reactively licensed therapies underperform? 

	Conclusion and limitations 
	Appendices
	Stage-conditional reach-the-market probabilities 
	Do licensing events impact stock market returns? 
	Additional Tables and Figures 

