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Abstract: Macroeconomists often estimate impulse response functions using

external instruments (proxy variables) for the shocks of interest. However, exist-

ing methods do not answer the key question of how important the shocks are in

driving macro aggregates. We provide tools for doing inference on variance de-

compositions in a general semiparametric moving average model, disciplined only

by the availability of external instruments. The share of the variance that can

be attributed to a shock is partially identified, albeit with informative bounds.

Point identification of most parameters, including historical decompositions, can

be achieved under much weaker assumptions than invertibility, a condition im-

posed in conventional Structural Vector Autoregressive (SVAR) analysis. In fact,

external instruments make the invertibility assumption testable. To perform in-

ference, we construct partial identification robust confidence intervals. We illus-

trate our methods using (i) a structural macro model and (ii) an empirical study

of the importance of monetary policy shocks.
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1 Introduction

Empirical macroeconomists increasingly seek to estimate impulse response functions using

easily interpretable and credible identification approaches. For example, local projections

(LPs) have become a popular direct regression-based alternative to Structural Vector Autore-

gressions (SVARs).1 Additionally, instrumental variable (IV, also known as proxy variable)

methods are now routinely used to conduct structural analysis under plausible identifying

assumptions.2 Several recent papers have combined these two ideas, yielding an appealingly

semiparametric method, LP-IV, with a transparent framework for identification.3

However, researchers often care not just about impulse responses – they also want to

know how important different shocks are in driving economic fluctuations. In theoretical

and applied macroeconomics, shock importance is usually quantified through variance de-

compositions and historical decompositions. Variance decompositions measure the fraction

of the overall (unconditional or forecast) variance of a variable that can be attributed to

each of the shocks, while historical decompositions measure the contributions of each shock

to observed fluctuations at specific points in time. These decompositions have served as key

tools for discerning between competing business cycle theories since Kydland & Prescott

(1982).4 Conveniently, in conventional SVAR analysis, identifying the impulse response

functions also identifies the underlying shocks (and thus their importance). In contrast, in

the semiparametric LP-IV setting, the extent to which external instruments are informa-

tive about variance/historical decompositions has been an open question, to our knowledge.

Applied researchers have thus faced an unfortunate dilemma between a need to quantify

the importance of shocks and the desire to avoid imposing a restrictive SVAR structure or

assuming that shocks are directly observed without error.

In this paper, we show precisely to what extent the data are informative about the

importance of shocks in a general linear dynamic model disciplined by IVs. Our model

allows for an unrestricted moving average structure of shock transmission, consistent with

1Jordà (2005); Angrist et al. (2018).
2 Stock (2008); Stock & Watson (2012); Mertens & Ravn (2013); Gertler & Karadi (2015); Stock &

Watson (2016); Caldara & Kamps (2017).
3Mertens (2015); Ramey (2016); Barnichon & Brownlees (2018); Stock & Watson (2018).
4For example, variance decompositions have been used to quantify the importance of productivity shocks

(King et al., 1991), monetary shocks (Romer & Romer, 1989; Christiano et al., 1999), investment shocks
(Justiniano et al., 2010), news shocks (Schmitt-Grohé & Uribe, 2012), financial shocks (Jermann & Quadrini,
2012; Christiano et al., 2014), and sentiment shocks (Angeletos et al., 2018). Cochrane (1994) and Smets &
Wouters (2007) perform comprehensive shock accounting exercises.
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essentially all linearized structural macroeconomic models. Assuming only validity of the

instruments, we derive sharp – and informative – bounds on variance decompositions. Point

identification of most parameters of interest, including historical decompositions, can be

achieved under a further assumption that the shock of interest is recoverable from the infinite

past, present, and future values of the endogenous macro variables. This requirement is

substantially weaker than the often questionable invertibility requirement of SVAR analysis

– the ability to recover structural shocks only from past and present macro variables. In fact,

we show that the availability of an external IV makes the invertibility assumption testable.

Finally, to perform inference, we develop easily computable, partial identification robust

confidence intervals for variance decompositions and other objects of interest.

We adopt the LP-IV model of Stock & Watson (2018), which, although linear, is semipara-

metric in the sense that we allow for a completely general infinite moving average structure

for the transmission of shocks to observed variables.5 Our sole assumption on the IVs is the

usual exclusion restriction – the IVs correlate with the shock of interest, but not with the

other macro shocks. Importantly, we allow the number of underlying exogenous shocks to

be unknown and potentially exceed the number of observed endogenous variables. Unlike

standard SVAR models, we do not restrict the shocks to be invertible, i.e., spanned by past

and current (but not future) values of the observed endogenous variables. Stock & Watson

(2018) show in this setting that relative impulse responses can be point-identified through

simple two-stage least squares regressions, but these do not pin down the scale of the shock

of interest, which is crucial for identifying variance/historical decompositions.

In this baseline LP-IV model, we show that variance decompositions are only partially

identified, albeit with informative bounds. Hence, even with an infinite sample, it would

be impossible to pinpoint the exact importance of the shock of interest. Intuitively, the

challenge is that we do not know the signal-to-noise ratio in the IV equation a priori. We

show, however, that the data are informative about this ratio. Specifically, the identified

set of the variance decomposition is an interval, with nontrivial lower and upper bounds

computable from the joint spectral density of the macro variables and the IV. The bounds

depend on the strength of the external IV and the informativeness of the observed macro

variables about the shock of interest. We consider several variance decomposition concepts

that are popular in applied work, including forecast variance decompositions.

As the LP-IV model does not assume a priori that shocks are invertible, we are able

5This Structural Vector Moving Average Model has been analyzed recently from a Bayesian viewpoint
by Barnichon & Matthes (2018) and Plagborg-Møller (2018), although with little emphasis on IVs.
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to sharply characterize the extent to which the data are informative about the “degree” of

invertibility. Inference about invertibility is useful for gauging the ability of VAR models to

perform valid structural analysis and for distinguishing between different classes of structural

models, such as models with anticipated versus surprise shocks. The degree of invertibility

of a shock is given by the R2 in an (infeasible) regression of the shock on past and current

values of the endogenous variables. We show that this R2 measure is partially identified. In

particular, the distribution of the data is inconsistent with invertibility if and only if the IV

Granger-causes the observed endogenous variables. Without invertibility, the popular SVAR-

IV estimator, which uses IVs to partially identify conventional SVARs, is inconsistent.6

Although the baseline model is partially identified, we additionally provide assumptions

that guarantee point identification of certain variance decompositions and the degree of

invertibility. A novel finding is that point identification obtains if the shock of interest is

recoverable, i.e., spanned by the infinite past, present, and future of the endogenous macro

variables. This assumption also yields point identification of historical decompositions. The

recoverability condition – although restrictive – is satisfied in certain classes of macro models,

such as news and noise shock models, and it is substantially weaker than the invertibility

condition that is automatically, if unintentionally, assumed in SVAR analysis. In particular,

recoverability obtains if there are as many observed variables as shocks – a necessary, but

not sufficient condition for invertibility. Still, we stress that researchers do not need to adopt

any auxiliary assumptions to partially identify variance decompositions.

To make our identification analysis practically useful, we develop partial identification

robust confidence intervals for all objects of interest. In a first step, the researcher estimates

a reduced-form VAR jointly in the macro variables and IVs. To be clear, this step merely uses

the reduced-form VAR as a convenient tool for approximating the second moments of the

data; it does not assume an underlying structural VAR model with invertible shocks.7 The

second step then constructs sample analogues of our population partial identification bounds

and inserts these into the confidence procedure of Imbens & Manski (2004) and Stoye (2009).

We construct confidence intervals both for the unknown parameters and for the identified

sets. We prove that our confidence intervals have asymptotically valid frequentist coverage

under weak nonparametric conditions on the data generating process. We also discuss a test

6The SVAR-IV estimator was developed by Stock (2008), Stock & Watson (2012), and Mertens & Ravn
(2013). We characterize the population bias of SVAR-IV under non-invertibility in Online Appendix B.3.

7We view the reduced-form VAR step as a dimension reduction technique, to address finite-sample con-
cerns about unrestricted local projections raised by Kilian & Kim (2011). It is straight-forward to base
inference on other first-step estimators of the joint spectrum of the data.
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of invertibility that has power against all falsifiable noninvertible alternatives.

We illustrate the usefulness of our identification bounds through the lens of the well-

known structural business cycle model of Smets & Wouters (2007). We assume that the

econometrician observes aggregate output, inflation, and a short-term policy interest rate,

but she does not exploit the underlying structure of the model for inference. We separately

consider external instruments for three different shocks: a standard monetary policy shock,

a forward guidance (anticipated monetary) shock, and a technology shock. These three

shocks vary greatly in terms of their degree of invertibility and recoverability, and we show

that invertibility-based (e.g., SVAR) identification of the latter two shocks is severely bi-

ased. Nevertheless, our partial identification bounds are informative in all cases. This result

is particularly striking for the technology shock, since the macro aggregates provide little

information about the short- or medium-run cycles of this shock.

Finally, we apply our method to U.S. data and show that monetary shocks account for

at most a moderate fraction of the forecast variance of output growth and inflation. We use

the specification of Gertler & Karadi (2015), whose external instrument is constructed from

changes in interest rate futures during short time windows around Federal Open Market Com-

mittee announcements. Unlike Gertler & Karadi (2015), we do not assume invertibility (i.e.,

SVAR structure) since we find that the data reject this assumption. At all forecast horizons,

our partial identification robust 90% confidence intervals rule out that the monetary shock

contributes more than 31% of the forecast variance of output growth and more than 8% of

the forecast variance of inflation. Moreover, monetary shocks do not contribute substantially

to short-run fluctuations in a non-default-related corporate bond spread. Thus, the upper

bounds on shock importance are informative despite the weak identifying assumptions.

Literature. A growing literature has provided inference tools for the LP-IV model, al-

though variance/historical decompositions have been neglected. External IVs relax the as-

sumption that the shock in a local projection is directly observed (or consistently estimable).

Theoretical results on LP-IV estimation of impulse response functions were established by

Mertens (2015), Ramey (2016), Ramey & Zubairy (2017), Barnichon & Brownlees (2018),

Jordà et al. (2018), and Stock & Watson (2018). These papers identify relative impulse

responses (e.g., the responses of the macro variables to a shock which raises the first variable

by 1 unit). We go further and derive the identified set of all LP-IV model parameters.

Our identification results for variance decompositions generalize several results in the

literature. Variance decompositions are frequently reported in SVAR analysis, where identi-

5



fication is straight-forward due to the invertibility assumption (Kilian & Lütkepohl, 2017, Ch.

4). Stock & Watson (2018) assume invertibility of all shocks to identify forecast variance de-

compositions and historical decompositions in an LP-IV model; we substantially strengthen

this result by showing that recoverability of the shock of interest is sufficient to yield point

identification of some of these objects. Our results are complementary to Gorodnichenko

& Lee (2017), who consider finite-sample inference on what we call the “forecast variance

ratio” in local projection models where the shock is assumed to be directly observed.

A key attraction of the LP-IV framework is that it allows for noninvertible shocks, unlike

the standard SVAR model. Noninvertibility is now known to occur in many classes of struc-

tural models where economic agents observe better information than the econometrician,

such as models with news shocks, private signals, or measurement error. Hence, the issue

has received a lot of attention in the SVAR literature (see references in Plagborg-Møller,

2018, Sec. 2.3). Stock & Watson (2018) develop an LP-IV-based test of noninvertibility.

Our contribution in this area is to sharply characterize the identified set for the degree of

invertibility of the shocks, which in turn shows under what conditions the distribution of the

data is consistent with invertibility. These conditions are related to Granger causality, as in

the SVAR settings studied by Giannone & Reichlin (2006) and Forni & Gambetti (2014).

The concept of “recoverability” has precursors in the SVAR literature. Our definition

of recoverability has independently been proposed by Chahrour & Jurado (2018). Their

generic framework does not specifically consider the LP-IV model, where the recoverability

assumption is testable, as we show. As discussed below, recoverability is formally equivalent

to recovering shocks from dynamic rotations of reduced-form VAR errors, as used by Lippi

& Reichlin (1994), Mertens & Ravn (2010), and Forni et al. (2017a,b).

Our confidence interval procedure applies the generic methods for interval-identified pa-

rameters developed by Imbens & Manski (2004) and Stoye (2009). Our analysis is distinct

from and complementary to the literature on inference in sign-identified SVARs (Giacomini

& Kitagawa, 2015; Granziera et al., 2017; Gafarov et al., 2018).

Outline. Section 2 defines the LP-IV model and the parameters of interest. Section 3

contains our main identification results. Section 4 interprets the results through the lens

of a structural macro model. Section 5 develops confidence intervals. Section 6 contains

the empirical application. Section 7 concludes. Appendix A provides inference formulas and

proofs of our main results. A supplementary appendix and Matlab code are available online.8

8https://scholar.princeton.edu/mikkelpm/decomp_iv
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2 Model and parameters of interest

We begin by defining the Local Projection Instrumental Variable (LP-IV) model and its

parameters of interest. The LP-IV model allows for an unrestricted linear shock transmission

mechanism and, unlike standard SVAR analysis, does not assume shocks to be invertible, i.e.

spanned by current and past (but not future) values of the observed endogenous variables.

We assume the availability of valid external IVs (proxy variables) – variables that correlate

with the shock of interest, but not with the other shocks. Although the model we study

is equivalent with the framework in Stock & Watson (2018), our parameters of interest

are entirely different: They study relative impulse responses, whereas we study variance

decompositions, historical decompositions, and the degree of invertibility.

Model. We start out by describing the LP-IV model’s semiparametric assumptions on

shock transmission and the instrument exclusion restrictions. For notational clarity, we as-

sume throughout that all time series below have mean zero and are strictly non-deterministic.

First, we specify the weak assumptions on shock transmission to endogenous variables.

Assumption 1. The ny-dimensional vector yt = (y1,t, . . . , yny ,t)
′ of observed macro variables

is driven by an unobserved nε-dimensional vector εt = (ε1,t, . . . , εnε,t)
′ of exogenous economic

shocks,

yt = Θ(L)εt, Θ(L) ≡
∞∑
`=0

Θ`L
`, (1)

where L is the lag operator. The matrices Θ` are each ny × nε and absolutely summable

across `. Θ(x) is assumed to have full row rank for all complex scalars x on the unit circle.

The (i, j) element Θi,j,` of the moving average coefficient matrix Θ` is the impulse response

of variable i to shock j at horizon `. The j-th column of Θ` is denoted by Θ•,j,` and the i-th

row by Θi,•,`. The full-rank assumption guarantees a nonsingular stochastic process. This

condition requires nε ≥ ny, but – crucially – we do not assume that the number of shocks

nε is known. The model is semiparametric in that we place no a priori restrictions on the

coefficients of the infinite moving average, except to ensure a valid stochastic process. In

particular, we do not impose the usual invertibility conditions that point-identify Θ(L) in

reduced-form time series analysis. It is well known that the infinite-order Structural Vector

Moving Average model (1) is consistent with discrete-time Dynamic Stochastic General

Equilibrium (DSGE) models as well as stable SVAR models for yt. However, the appeal of

LP-IV analysis is that it does not require any specific underlying structure.
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Second, we assume the availability of one or more external IVs for the shock of in-

terest.9 We specify the shock of interest to be the first one, ε1,t. Each of the nz IVs

zt = (z1,t, . . . , znz ,t)
′ are assumed to correlate with the first shock but not the other shocks,

after controlling for lagged variables: For all i = 1, . . . , nz,

E(z̃i,tε1,t) 6= 0, E(z̃i,tεj,t) = 0 , j = 2, 3, . . . , nε, (2)

where z̃i,t is the population residual from projecting zi,t on all lags of {zt, yt}. The key

exclusion restrictions are that the shock of interest ε1,t is the only contemporaneous shock

to correlate with the IVs. This is a strong assumption that must be carefully defended

in applications. Ramey (2016) and Stock & Watson (2018) survey the extensive applied

literature that has constructed plausibly valid external IVs for various shocks. In Online

Appendix B.2 we discuss how our analysis changes if the exclusion restriction is relaxed.

Using linear projection notation, we can equivalently express the IV exclusion restrictions

(2) as follows. ‖ · ‖ refers to the Euclidean norm.

Assumption 2. The IVs zt = (z1,t, . . . , znz ,t)
′ satisfy

zt =
∞∑
`=1

(Ψ`zt−` + Λ`yt−`) + αλε1,t + Σ1/2
v vt, (3)

where Ψ` is nz × nz, Λ` is nz × ny, λ is an nz-dimensional vector normalized to unit length

(‖λ‖ = 1) and with its first nonzero element being positive, α ≥ 0 is a scalar, and Σv is a

symmetric positive semidefinite nz × nz matrix. The elements of Ψ` and Λ` are absolutely

summable across `, and the polynomial x 7→ det(Inz −
∑∞

`=1 Ψ`x
`) has all its roots outside

the unit circle.

The scale parameter α (along with the residual variance-covariance matrix Σv) measures

the overall strength of the IVs, while the unit-length vector λ determines which IVs are

stronger than others. We emphasize that the linearity of equation (3) is not a structural

assumption; it arises from a linear projection (as in the “first stage” of cross-sectional IV).10

Finally, since we restrict attention to identification from second moments, we assume

9If instruments are not available, the model (1) is severely underidentified (Lippi & Reichlin, 1994).
10We allow for lagged values of zt and yt on the right-hand side of (3) because this is precisely enough to

ensure that the LP-IV model is untestable (using second moments) in the case of a single IV, cf. Proposition 1
below. The model with multiple instruments is testable, as further discussed in Section 3.3. If lagged terms
can be excluded a priori, it presents no difficulties for identification or inference.
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that the structural shocks and IV disturbances are jointly i.i.d. standard Gaussian.

Assumption 3.

(ε′t, v
′
t)
′ i.i.d.∼ N(0, Inε+nz), (4)

where In denotes the n-dimensional identity matrix.

We adopt the Gaussianity assumption strictly for notational convenience. We could in-

stead have assumed white noise shocks and phrased all our results using linear projection

notation.11 We will drop the Gaussianity assumption when considering inference in Sec-

tion 5. The mutual orthogonality of the shocks is the standard assumption in empirical

macroeconomics. The sole meaningful restriction is that we only consider identification from

the second-moment properties of the data, as is standard in the applied macro literature

(and without loss of generality for Gaussian data).

Note that we have normalized the variances of all shocks to 1, without loss of generality,

as this simplifies our notation. Stock & Watson (2018) study the same LP-IV model as us,

but they instead normalize certain impact impulse responses to equal 1, while letting the

the shock variances be unrestricted. Hence, when Stock & Watson discuss identification of

“impulse responses”, this translates into our notation as identification of relative impulse

responses of the type Θi,1,`/Θ1,1,0. The choice of normalization of course does not matter for

the identification analysis.

Note also that Assumptions 1 to 3 together imply that the (ny + nz)-dimensional data

vector (y′t, z
′
t)
′ is strictly stationary.

Invertibility and recoverability. We now define invertibility, the degree of invert-

ibility, and recoverability.

The shock ε1,t is said to be invertible if it is spanned by past and current (but not

future) values of the endogenous variables yt: ε1,t = E(ε1,t | {yτ}−∞<τ≤t). Invertibility

of all structural shocks is assumed automatically by SVAR models, but the condition may

or may not hold in a given moving average model (1), depending on the impulse response

parameters Θ`. A sufficient condition for invertibility of all shocks is that nε = ny and the

polynomial x 7→ det(Θ(x)) has all its roots outside the unit circle. In many structural macro

models, at least some of the shocks cannot be recovered from only past and current observed

macro variables, i.e., the moving average representation is noninvertible. For example, this is

11Simply replace conditional expectations by linear projections and replace conditional variances by vari-
ances of projection residuals.
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often the case in models with news (anticipated) shocks or noise (signal extraction) shocks.

Furthermore, if the number of structural shocks nε strictly exceeds the number of endogenous

variables ny, it is impossible for all shocks to be invertible.

A continuous measure of the degree of invertibility is the R2 value in a population regres-

sion of the shock on past and current observed variables. More generally, define

R2
` ≡

Var(ε1,t)− Var(ε1,t | {yτ}−∞<τ≤t+`)
Var(ε1,t)

= 1− Var(ε1,t | {yτ}−∞<τ≤t+`)

as an R2 measure of invertibility of the shock of interest using data up to time t + `. If

the shock is invertible in the sense of the previous paragraph, then R2
` = 1 for all ` ≥ 0.

If R2
` < 1 for some ` ≥ 0, then the model is noninvertible and thus no SVAR model could

generate the impulse responses Θ(L), although the model may be nearly consistent with an

SVAR structure if the R2 values are close to 1, as we discuss further in Online Appendix

B.3 (Sims & Zha, 2006, pp. 243–245; Forni et al., 2018; Wolf, 2018). For noninvertible

models, a plot of R2
` for ` = 0, 1, 2, . . . reveals how quickly the econometrician learns about

the structural shock over time. To illustrate, we derive the R2
` value for an MA(1) model in

Online Appendix B.4.

A weaker condition than invertibility is that the shock of interest is recoverable from all

leads and lags of the endogenous variables – that is, if E(ε1,t | {yτ}−∞<τ<∞) = ε1,t, or equiv-

alently if R2
∞ = 1.12 This property will become important when we consider assumptions

that guarantee point identification.

Variance decompositions. Variance decompositions are the key parameters of interest

in this paper. We now define several variance decomposition objects, including forecast

variance decompositions (either conditioning on past observables or on past shocks) and a

frequency-specific unconditional variance decomposition.

We consider two forecast variance decomposition concepts. First, define the forecast

variance ratio (FVR) for the shock of interest for variable i at horizon ` as

FVRi,` ≡ 1− Var(yi,t+` | {yτ}−∞<τ≤t, {ε1,τ}t<τ<∞)

Var(yi,t+` | {yτ}−∞<τ≤t)
=

∑`−1
m=0 Θ2

i,1,m

Var(yi,t+` | {yτ}−∞<τ≤t)

12Chahrour & Jurado (2018) independently propose this definition. Recoverability is formally equivalent
to the assumption that the structural shock is spanned by current and future reduced-form forecast errors
ut ≡ yt − E(yt | {yτ}−∞<τ≤t−1). Such dynamic rotations of ut have been exploited for identification by
Lippi & Reichlin (1994), Mertens & Ravn (2010), and Forni et al. (2017a,b).
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The FVR measures the reduction in the forecast variance that would come from knowing

the entire path of future realizations of the first shock. The larger this measure is, the

more important is the first shock for forecasting variable i at horizon `. The FVR is always

between 0 and 1. An unappealing feature, however, is that the FVR conflates two different

sources of uncertainty: fundamental forecasting uncertainty (uncertainty related to future

shock realizations) and noninvertibility-induced uncertainty (uncertainty related to imperfect

knowledge about past shocks).13 This means that, when ε1,t is noninvertible, the FVR does

not equal 1 even if ε1,t is solely responsible for driving the i-th variable in equation (1).

The second variance decomposition concept is the forecast variance decomposition (FVD)

for the shock of interest for variable i at horizon `,

FVD i,` ≡ 1− Var(yi,t+` | {ετ}−∞<τ≤t, {ε1,τ}t<τ<∞)

Var(yi,t+` | {ετ}−∞<τ≤t)
=

∑`−1
m=0 Θ2

i,1,m∑nε
j=1

∑`−1
m=0 Θ2

i,j,m

. (5)

The FVD measures the reduction in forecast variance that arises from learning the path

of future realizations of the shock of interest, supposing that we already had the history

of structural shocks εt available when forming our forecast. Because the econometrician

generally does not observe the structural shocks directly, the FVD is best thought of as

reflecting forecasts of economic agents who observe the underlying shocks. The FVD always

lies between 0 and 1, purely reflects fundamental forecasting uncertainty, and equals 1 if the

first shock is the only shock driving variable i in equation (1). The software package Dynare

reports FVDs after having estimated a DSGE model.

While the FVR and FVD concepts generally differ, they coincide in the case where all

shocks are invertible, since in that case the information set {yτ}−∞<τ≤t equals the information

set {ετ}−∞<τ≤t. This explains why the SVAR literature has not made the distinction between

the two concepts.14

For completeness, we also consider the frequency-specific unconditional variance decom-

position (VD) of Forni et al. (2018, Sec. 3.4). The VD for variable i over the frequency band

[ω1, ω2] is given by

VD i(ω1, ω2) ≡
∫ ω2

ω1
|Θi,1(e

−iω)|2 dω∑nε
j=1

∫ ω2

ω1
|Θi,j(e−iω)|2 dω

, 0 ≤ ω1 < ω2 ≤ π, (6)

13Var(yi,t+` | {yτ}−∞<τ≤t) =
∑`−1
m=0 Θi,•,mΘ′i,•,m + Var

(∑∞
m=` Θi,•,mεt+l−m

∣∣∣ {yτ}−∞<τ≤t).

14Forni et al. (2018) point out the bias caused by noninvertibility when estimating the FVD using SVARs.
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where Θi,j(L) is the (i, j) element of the lag polynomial Θ(L). VD i(ω1, ω2) is the percentage

reduction in the variance of yi,t – after passing the data through a bandpass filter that retains

only cyclical frequencies [ω1, ω2] – caused by entirely “shutting off” the shock of interest ε1,t.

The software package Dynare automatically reports VD i(0, π) after solving a DSGE model.

Historical decomposition. The historical decomposition of variable yi,t at time t at-

tributable to the shock of interest is defined as E(yi,t | {ε1,τ}−∞<τ≤t) =
∑∞

`=0 Θi,1,`ε1,t−`.

3 Identification

This section presents our main results on instrumental variable identification of variance

decompositions and the degree of invertibility. For exposition, we start by deriving results

for a static version of the LP-IV model. We then turn to the general dynamic model, which

applies the static results to the frequency domain representation of the data. The dynamics

involve additional nuances in characterizing the informativeness of the macro aggregates for

the shock at all frequencies. Our main results assume availability of a single external IV for

the shock of interest. We then show that identification analysis in a model with multiple

IVs for the same shock can be reduced to the single-IV case.

3.1 Static model

We use an illustrative static model to motivate why variance decompositions are partially

identified in the general case but can be point-identified under additional assumptions. Al-

though the static model does not capture all the nuances of the dynamic LP-IV model, it

provides useful intuition for the general case.

Model. The static model with a single IV assumes15

yt = Θ0εt,

zt = αε1,t + σvvt,

(ε′t, vt)
′ i.i.d.∼ N(0, Inε+1),

15While the static model is primarily intended for gaining intuition, the results in this subsection are
directly relevant for SVAR analysis with an external IV. In that framework, yt would be the reduced-form
VAR residuals, which are a linear function of the vector εt of contemporaneous structural shocks. Textbook
SVAR analysis further assumes that nε = ny, so the model is identified up to an orthogonal rotation matrix.
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where Θ0 is ny × nε, and α, σv ≥ 0 are scalars. To avoid singularity, we assume that Θ0 has

full row rank, so in particular nε ≥ ny.

Since the static model is nothing but a multivariate classical measurement error model,

we can apply ideas from that literature to bound variance decompositions. However, our

parameters of interest are not regression coefficients as in Klepper & Leamer (1984). Instead,

we essentially seek lower and upper bounds on the R2 in an infeasible regression of yi,t on ε1,t.

We may proceed as follows. First, the R2 value from a regression of yi,t on zt = αε1,t + σvvt

understates the importance of the shock ε1,t, due to attenuation bias.16 Second, the R2 from

a regression of yi,t on E(zt | yt) = αE(ε1,t | yt) overstates the importance of the shock ε1,t,

due to bias caused by regressing on the “fitted value” E(ε1,t | yt).
We now turn this intuition into formal results on the identification of variance decom-

positions and the degree of invertibility. In the static case, the degree of invertibility of the

shock ε1,t is fully summarized by the static projection R2, defined as

R2
0 = 1− Var(ε1,t | yt) = Θ′•,1,0 Var(yt)

−1Θ•,1,0.

As for variance decompositions, the static model does not distinguish between the FVR,

FVD, and VD, and we can restrict attention to one-step prediction:

FVDi,1 = 1− Var(yi,t | ε1,t)
Var(yi,t)

=
Θ2
i,1,0

Var(yi,t)
.

Partial identification. We now show that the impulse response functions, the degree of

invertibility, and variance decompositions are all identified up to a scalar multiple. This fac-

tor of proportionality is interval-identified, with nontrivial and informative lower and upper

bounds. Since the data are i.i.d., identification in this model relies solely on contemporaneous

covariance calculations.

It is immediate that absolute impulse responses Θi,1,0 to the shock of interest are identified

up to the scale parameter α:

Cov(yt, zt) = αΘ•,1,0. (7)

In particular, relative responses are point-identified, cf. Stock & Watson (2018). Since the

vector Θ•,1,0 is identified up to scale α, the degree of invertibility R2
0 is identified up to the

16A related argument appears in Gorodnichenko & Lee (2017, Appendix D).
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multiple 1
α2 , and the FVDs of different variables i are identified up to the same multiple 1

α2 :

R2
0 =

1

α2
Cov(yt, zt)

′Var(yt)
−1 Cov(yt, zt), FVD i,1 =

1

α2

Cov(yi,t, zt)
2

Var(yi,t)
. (8)

Which values of the scale parameter α are consistent with the distribution of the data

wt = (y′t, zt)
′? First, the equation defining the IV zt implies

α2 ≤ Var(zt) ≡ α2
UB. (9)

The boundary case α = αUB corresponds to Var(ε1,t | zt) = 0, i.e., perfect instrument

strength. Second, we find

α2
LB ≡ Var(E(zt | yt)) = α2 Var(E(ε1,t | yt)) ≤ α2 Var(ε1,t) = α2, (10)

where the inequality uses that “the total sum of squares exceeds the explained sum of

squares”. The boundary case α = αLB corresponds to Var(ε1,t | yt) = 0, i.e., the observed

macro aggregates yt are perfectly informative about the hidden shock (invertibility).

It is not hard to show (and it follows from our general results below) that the bounds (9)

and (10) on α2 are sharp, in the following sense: Given any positive semidefinite variance-

covariance matrix for wt = (y′t, zt)
′, and given any value of α2 in the interval between the

bounds (9) and (10), we can construct a static model with the given value of α and which

matches the given Var(wt) (we just have to choose Θ0 and σv appropriately).

The width of the identified set [α2
LB, α

2
UB] for α2 depends on the degree of invertibility

and the strength of the instrument. The interval is never empty, and it collapses to a point

only in the knife-edge case of a perfectly informative instrument and invertibility of the first

shock. Generically, α – and so impulse responses, FVDs, and the degree of invertibility – are

only partially identified, but with useful bounds that limit the range of admissible values.

We interpret the identified set for 1
α2 by expressing it in terms of the (unknown) model

parameters (recall that our parameters of interest are identified up to 1
α2 , cf. (8)):[

α2

α2 + σ2
v︸ ︷︷ ︸

instrument strength

× 1

α2
,

1

R2
0︸︷︷︸

invertibility

× 1

α2

]
.

The lower bound is more informative (i.e., larger and closer to the true 1
α2 ) when the in-

strument is stronger in the sense of a higher signal-to-noise ratio. The upper bound is
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more informative (i.e., smaller and closer to the true 1
α2 ) when the model is closer to being

invertible for the shock of interest.

Having partially identified α, we obtain identified sets for the FVD, absolute impulse

responses, and the degree of invertibility. By scaling the identified set for 1
α2 , we find the

identified set for FVD i,0:[
1

Var(zt)
× Cov(yi,t, zt)

2

Var(yi,t)︸ ︷︷ ︸
α2

α2+σ2v
×FVDi,0

,
1

Var(E(zt | yt))
× Cov(yi,t, zt)

2

Var(yi,t)︸ ︷︷ ︸
1

R2
0
×FVDi,0

]
.

Instrument informativeness and invertibility thus map one-to-one into the width of the iden-

tified set for the FVD. The identified set for the absolute impulse response Θi,1,0 can similarly

be obtained by scaling the identified set for 1
α

, cf. (7), while the identified set for the degree

of invertibility R2
0 can be obtained by scaling the identified set for 1

α2 .17

Sufficient conditions for point identification. Although the baseline model is

partially identified, point identification obtains under a variety of auxiliary assumptions.

First, assume that the shock of interest is recoverable, which in the static model is the

same as invertibility: E(ε1,t | yt) = ε1,t, or equivalently R2
0 = 1. Then α2 equals the

lower bound in (10); we can then identify the impulse responses Θ•,1,0 from the covariance

relationship (7), and σv from Var(zt). Hence, all objects of interest are point-identified under

the recoverability assumption. A stronger condition than recoverability is that there are as

many shocks as variables, nε = ny. This condition implies that Θ0 is square and invertible,

so all shocks are recoverable, and point identification follows.

Second, point identification obtains if the instrument is assumed to be perfect, i.e., σv = 0.

In that case the shock ε1,t is effectively observed by the econometrician and all parameters

can be identified directly from regressions of yi,t on zt (local projections). Equivalently, the

true α equals the upper bound in (9), and then all derivations follow as before.

3.2 General dynamic model

We now present our main identification results for the general dynamic model, applying the

logic of the static model frequency-by-frequency to the frequency domain representation of

the data. The main theoretical result is that, exactly as in the static model, the identified

17The identified set for R2
0 always contains 1, i.e., we can never reject invertibility in the static model.
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set for the scale parameter α is an interval with informative bounds. From this result we

derive identified sets for the main objects of interest: the degree of invertibility and variance

decompositions. Relative to the static case, the dynamic case involves additional challenges

in characterizing the informativeness of the data for the hidden shock at all frequencies.

We maintain Assumptions 1 to 3 throughout, but for the moment, we carry out the

analysis for the case of a single IV (nz = 1), leaving the generalization to Section 3.3. That

is, zt is a scalar and λ = 1 in equation (3). We write Σ
1/2
v = σv ≥ 0, a scalar.

Preliminaries. For the identification analysis, it will prove convenient to define and work

with the IV projection residual

z̃t ≡ zt − E(zt | {yτ , zτ}−∞<τ<t) = αε1,t + σvvt. (11)

We have thus removed any dependence on lagged observed variables, and z̃t is serially un-

correlated by construction.

Next, we need to define our notation for spectral density matrices. For any two jointly

stationary vector time series at and bt of dimensions na and nb, respectively, define the na×nb
cross-spectral density matrix function (Brockwell & Davis, 1991, Ch. 4 and 11)

sab(ω) ≡ 1

2π

∞∑
`=−∞

e−iω` Cov(at, bt−`), ω ∈ [0, 2π].

This object is well-defined if the autocovariance function of (a′t, b
′
t)
′ is absolutely summable.

For any vector time series at, we denote its spectrum by sa(ω) ≡ saa(ω).

Just like identification in the static case proceeded through the variance-covariance matrix

of the data, identification in the general dynamic model will rely heavily on the joint spectrum

for wt = (y′t, z̃t)
′ implied by the LP-IV model, i.e., equations (1), (4), and (11). This joint

spectrum is given by

sw(ω) =

(
sy(ω) syz̃(ω)

syz̃(ω)∗ sz̃(ω)

)
=

1

2π

(
Θ(e−iω)Θ(e−iω)∗ αΘ(e−iω)e1

αe′1Θ(eiω)′ α2 + σ2
v

)
, ω ∈ [0, 2π], (12)

where e1 is the unit vector with 1 as the first element and zeros elsewhere, an asterisk denotes

complex conjugate transpose, and the matrix polynomial Θ(·) was defined in equation (1).

Note the similarity between the spectrum sw(ω) and the covariance structure in the static

model in Section 3.1. The main difference is that in the dynamic setting we have a matrix
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at each frequency ω ∈ [0, 2π].

Relative impulse responses. As in the static model, absolute impulse responses to the

first shock are identified up to the scale parameter α:

Cov(yt, z̃t−`) = αΘ•,1,`. (13)

Thus, relative impulse responses Θi,1,`/Θ11,0 are point-identified, as shown by Stock & Watson

(2018) and others.

Scale parameter. We now show that, exactly as in the static case, the identified set for

α is an interval with informative bounds. Although α itself is not a parameter of primary

interest, it is key to identification of variance decompositions and the degree of invertibility.

Just as in the static case, the variance of the instrument provides the upper bound:

α2 ≤ Var(z̃t) ≡ α2
UB. (14)

As in the static model, the boundary case α = αUB corresponds to perfect IV informativeness.

To derive the lower bound, we apply the argument from the static case to the joint spec-

trum of the data at every frequency. Define first the projections of z̃t and ε1,t, respectively,

onto all lags and leads of the endogenous variables yt:

z̃†t ≡ E(z̃t | {yτ}−∞<τ<∞), (15)

ε†1,t ≡ E(ε1,t | {yτ}−∞<τ<∞).

Then, for every ω ∈ [0, 2π],

sz̃†(ω) = α2sε†1
(ω) ≤ α2sε1(ω) = α2 × 1

2π
, (16)

which is the frequency-domain analogue of the conditional variance inequality (10) in the

static case.18 Hence, we obtain the lower bound

α2 ≥ 2π supω∈[0,π] sz̃†(ω) ≡ α2
LB. (17)

18Brockwell & Davis (1991, Remark 3, p. 439) show that sz̃†(ω) = syz̃(ω)∗sy(ω)−1syz̃(ω) and sε†1
(ω) =

syε1(ω)∗sy(ω)−1syε1(ω). Since the joint spectrum is positive semidefinite, sε1(ω) ≥ sε†1(ω) for all ω.
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This lower bound generalizes the lower bound (10) in the static model. Intuitively, in the

static case a small value of α requires yt and z̃t to be nearly independent. In the dynamic

case, a small value of α requires z̃t to be nearly unpredictable by yt at every frequency ω,

e.g., both in the long run and at business cycle frequencies. The boundary case α = αLB

corresponds to the observed macro aggregates being perfectly informative about the hidden

shock ε1,t at some frequency ω ∈ [0, π], i.e., the projection residual ε1,t − ε†1,t has a spectral

density sε1−ε†1
(ω) = sε1(ω)− sε†1(ω) that vanishes at frequency ω.

The main theoretical result of this paper is that the above bounds α2
LB, α

2
UB are sharp.

Proposition 1. Let there be given a joint spectral density for wt = (y′t, z̃t)
′, continuous and

positive definite at every frequency, with z̃t being unpredictable from {wτ}−∞<τ<t. Choose

any α ∈ (αLB, αUB]. Then there exists a model of the form (1), (4), and (11) with the given

α such that the spectral density of wt implied by the model matches the given spectral density.

In words, the distribution of the data allows us to conclude that α2 lies in the identified

set [α2
LB, α

2
UB], but the data cannot rule out any values of α2 in this interval. The proposition

does not cover the knife-edge case α = αLB due to economically inessential technicalities.

The width of the identified set for depends on the application, although the set is never

empty. To interpret the identified set, we express it in terms of the (unknown) model

parameters. Analogously to the static case, the identified set for 1
α2 equals[

α2

α2 + σ2
v︸ ︷︷ ︸

instrument strength

× 1

α2
,

1

2π supω∈[0,π] sε†1
(ω)︸ ︷︷ ︸

informativeness of data for shock

× 1

α2

]
.

The lower bound of the identified set for 1
α2 is larger (and closer to the true 1

α2 ) when

the instrument is stronger in the sense of a higher signal-to-noise ratio. The upper bound

of the identified set for 1
α2 is smaller (and closer to the true 1

α2 ) when the data are more

informative about the shock of interest at least at some frequency. Similar to the static case,

the identified set for 1
α2 does not collapse to a point unless the instrument is perfect and

there exists a frequency ω for which the data are perfectly informative about the frequency-ω

cyclical component of the shock.

To further interpret α2
LB, we derive a lower bound to this object that is explicitly tied to

the degree of recoverability/invertibility. First, we have

α2
LB = 2π sup

ω∈[0,π]
sz̃†(ω) ≥

∫ 2π

0

sz̃†(ω) dω = Var(z̃†t ). (18)
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The far right-hand side above depends on the degree of recoverability of the shock:

Var(z̃†t ) = Var(E(z̃t | {yτ}−∞<τ<∞)) = α2(1− Var(ε1t | {yτ}−∞<τ<∞)) = α2 ×R2
∞.

An even lower bound on α2
LB is given by

Var(E(z̃t | {yτ}−∞<τ≤t)) = α2(1− Var(ε1t | {yτ}−∞<τ≤t)) = α2 ×R2
0.

Thus, if the shock is close to being invertible – or more generally, recoverable – α2
LB will be

close to α2. As mentioned above, α2
LB will in fact be close to α2 as long as the yt process

is highly informative about the ε1,t process at some frequency. For example, the observed

macro variables yt may not perfectly reveal the short-run fluctuations of an unobserved

technology shock, so recoverability fails (R2
∞ < 1); yet a long-lag two-sided moving average

of GDP growth may well approximate the low-frequency cycles of the technology shock. See

Section 4 for a concrete example.

Degree of invertibility. The identified set for the degree of invertibility at horizon `

follows directly from the identified set for α2, since

R2
` = 1− Var(ε1,t | {yτ}−∞<τ≤t+`) =

1

α2
× Var(E(z̃t | {yτ}−∞<τ≤t+`)),

and the variance on the right-hand side above is point-identified. Now similarly define

R̃2
` ≡ 1− Var(z̃t | {yτ}−∞<τ≤t+`)

Var(z̃t)
=

Var(E(z̃t | {yτ}−∞<τ≤t+`))
Var(z̃t)

as the (point-identified) R2 in a population regression of z̃t on lags and leads of yτ up to

time τ = t+ `. Then the identified set for the degree of invertibility R2
` at horizon ` equals[

R̃2
`︸︷︷︸

α2

α2+σ2v
×R2

`

,
Var(z̃t)

2π supω∈[0,π] sz̃†(ω)
× R̃2

`︸ ︷︷ ︸
1

2π supω∈[0,π] sε
†
1

(ω)
×R2

`

]
. (19)

This identified set implies conditions under which the distribution of the observable data is

consistent with invertibility or recoverability.

Proposition 2. Assume α2
LB > 0. The identified set for R2

0 contains 1 if and only if the
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instrument residual z̃t does not Granger cause the macro observables yt. The identified set

for R2
∞ contains 1 if and only if the projection z̃†t is serially uncorrelated.

According to Proposition 2, ε1,t is certain to be noninvertible if and only if z̃t Granger

causes yt. Moreover, ε1,t is certain to be non-recoverable if and only if z̃†t , defined in (15), is

serially correlated at some lag.

Variance decompositions. We now turn to the identification of variance decomposi-

tions, the main parameters of interest. The identified sets for the FVR and FVD defined in

Section 2 are different. For the FVR, simply observe that

FVRi,` =

∑`−1
m=0 Θ2

i,1,m

Var(yi,t+` | {yτ}−∞<τ≤t)
=

1

α2
×
∑`−1

m=0 Cov(yi,t, z̃t−m)2

Var(yi,t+` | {yτ}−∞<τ≤t)
.

Hence, as in the static case, the identified set for FVRi,` equals the identified set for 1
α2 , scaled

by the (point-identified) second fraction on the far right-hand side above. In particular, the

upper bound on the FVR depends on the informativeness of the macro variables for the

shock of interest. Hence, adding more variables to the vector yt of endogenous observables

leads to a weakly narrower identified set (in relative terms, since the estimand itself changes

if yt is changed).

The identified set for the FVD requires more work. Intuitively, the (point-identified) full

forecasting variance Var(yi,t+` | {yτ}−∞<τ≤t) conflates pure forecasting uncertainty (which

enters the denominator of the FVD) and invertibility-related uncertainty (which does not).

We thus need to bound the contribution of pure forecasting uncertainty. The following

proposition summarizes our results.

Proposition 3. Let there be given a joint spectral density for wt = (y′t, z̃t)
′ satisfying the

assumptions in Proposition 1. Given knowledge of α ∈ (αLB, αUB], the largest possible value

of the forecast variance decomposition FVD i,` is 1 (the trivial bound), while the smallest

possible value is given by ∑`−1
m=0 Cov(yi,t, z̃t−m)2∑`−1

m=0 Cov(yi,t, z̃t−m)2 + α2 Var(ỹ
(α)
i,t+` | {ỹ

(α)
τ }−∞<τ≤t)

. (20)

Here ỹ
(α)
t = (ỹ

(α)
1,t , . . . , ỹ

(α)
ny ,t)

′ denotes a stationary Gaussian time series with spectral density

sỹ(α)(ω) = sy(ω)− 2π
α2 syz̃(ω)syz̃(ω)∗, ω ∈ [0, 2π]. Expression (20) is monotonically decreasing
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in α, so the overall lower bound on FVD i,` is attained by α = αUB; in this boundary case we

can represent ỹ
(αUB)
t = yt − E(yt | {z̃τ}−∞<τ≤t).

The upper bound on the `-period-ahead FVD is always 1, for any ` ≥ 1. This is achieved

by a model in which all shocks, except the first one, only affect yt after an `-period delay.

The expression for the lower bound (20) has a simple interpretation. Even if α is known,

the denominator Var(yi,t+` | {ετ}−∞<τ≤t) of the FVD is not identified due to the lack of

information about shocks other than the first. Although we can upper-bound this conditional

variance by the denominator of the FVR, this upper bound is not sharp. Instead, to maximize

the denominator, as much forecasting noise as possible should be of the pure forecasting

variety, and not related to noninvertibility. For all shocks except for ε1,t, this is achievable

through a Wold decomposition construction (Hannan, 1970, Thm. 2′′, p. 158). Given α, we

know the contribution of the first shock to yt; the residual after removing this contribution

has the distribution of ỹ
(α)
t , as defined in the proposition. If α is not known, the smallest

possible value of the lower bound (20) is attained at the largest possible value of α, namely

αUB, for which ε1,t contributes the least to forecasts of yt.

Analogously to the FVR, the frequency-specific variance decomposition VD i(ω1, ω2) is

interval-identified with informative lower and upper bounds. This follows from

VD i(ω1, ω2) =
1

α2
×
∫ ω2

ω1
|syiz̃(ω)|2 dω∫ ω2

ω1
syi(ω) dω

,

where syiz̃(ω) is the i-th element of syz̃(ω), cf. equations (6) and (12).

Absolute impulse responses. The identified set for the absolute impulse response Θi,1,`

is obtained by scaling the identified set for 1
α

, cf. equation (13). This generalizes existing

results on relative impulse responses, as discussed above (Stock & Watson, 2018).

Sufficient conditions for point identification. Although we have shown that par-

tial identification analysis is informative in the general model, we now give a variety of suf-

ficient conditions that ensure point identification of α and thus the FVR, VD, and degree

of invertibility. We also discuss identification of historical decompositions. Proposition 3

showed that even point identification of α is insufficient to point-identify the FVD, although

a sharp and informative lower bound can be computed.

The first set of sufficient conditions relates to the informativeness of the macro aggregates

yt for the hidden shock ε1,t. In this category, our weakest condition for point identification is

21



that the data yt is perfectly informative about ε1,t at some frequency, i.e., the spectral density

of the projection residual ε1,t−ε†1,t vanishes at some frequency ω. Then α = αLB, so the FVR,

VD, and degree of invertibility are identified. This assumption is not testable. A stronger

but more easily interpretable identifying assumption is recoverability, i.e., ε†1,t ≡ E(ε1,t |
{yτ}−∞<τ<∞) = ε1,t. This assumption is testable, cf. Proposition 2. Under recoverability,

we have both α = αLB and z̃†t = αε1,t. Recoverability is a restrictive assumption, but at least

it is a meaningfully weaker requirement than invertibility in many economic applications,

as discussed further in Section 4. In fact, recoverability is implied by the usual SVAR

assumption that there are as many shocks as variables, nε = ny.
19 Our proof of Proposition 1

shows how restrictive this assumption really is: α is partially identified with the same sharp

bounds as above even if we know that the number of shocks nε can be at most ny + 1. Thus,

no identifying power is gained from the knowledge that the number of shocks is “small”,

unless that means nε = ny.

Point identification can also be achieved by assuming that the instrument is perfect, i.e.,

σv = 0. Then z̃t = αε1,t and identification proceeds in accordance with the logic behind local

projections (Jordà, 2005; Gorodnichenko & Lee, 2017). This assumption is not testable.

Under either recoverability or perfect instrument informativeness, we can point-identify

the historical decomposition corresponding to the identified shock, cf. the definition in

Section 2. This object is identified because both the impulse responses and the time series

of the shock itself are identified, as argued above.

3.3 Extension: multiple instruments

We now argue that identification analysis in the model with multiple IVs for the shock of

interest (nz ≥ 2) can be reduced to the single-IV setting without loss of generality.

The multiple-IV model is testable, unlike the single-IV model. As in the single-IV case,

define the projection residual

z̃t ≡ zt − E(zt | {yτ , zτ}−∞<τ<t) = αλε1,t + Σ1/2
v vt. (21)

Online Appendix B.1 shows that the testable implication of the multiple-IV model is that

the cross-spectrum syz̃(ω) has a rank-1 factor structure. The validity of the multiple-IV

model can be rejected if and only if this factor structure fails.

19Since we have ruled out singularities, nε = ny implies that Θ(L)−1 is a well-defined two-sided lag
polynomial (Brockwell & Davis, 1991, Thm. 3.1.3), so that εt = Θ(L)−1yt and all shocks are recoverable.
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When the multiple-IV model is consistent with the distribution of the data, identification

analysis can be reduced to the single-IV case in Section 3.2. Specifically, Online Appendix B.1

shows that (i) λ is point-identified, and (ii) the identified sets for α, variance decompositions,

and the degree of invertibility are the same as the identified sets that exploit only the scalar

instrument

z̆t ≡
1

λ′Var(z̃t)−1λ
λ′Var(z̃t)

−1z̃t. (22)

Intuitively, z̆t ∝ E(ε1,t | z̃t). Because z̆t is a linear combination of all nz instruments, the

identified sets are narrower than if we had used any one instrument zk,t in isolation.

In Online Appendix B.2 we consider the more general case of multiple instruments being

correlated with multiple structural shocks. In particular, we allow the instrument set to

be correlated with a pre-specified number of structural shocks and then bound the forecast

variance contribution of this combination of shocks to the macro aggregates of interest. The

derived bounds would for example be informative in the application of Mertens & Ravn

(2013), who use two external IVs plausibly correlated with two latent tax shocks.

4 Illustration using a structural macro model

We use the workhorse business cycle model of Smets & Wouters (2007) to illustrate the

informativeness of our partial identification bounds on the degree of invertibility and variance

decompositions. We show how the width of the identified sets depends on the strength of the

instrument and the informativeness of the macro variables for the unknown shock. Given

our choice of observables, the model’s monetary policy shock is nearly invertible, so standard

SVAR methods would deliver reasonable identification of this shock. In contrast, invertibility

is a very poor approximation when identifying the effects of forward guidance (anticipated

monetary) shocks or of technology shocks. Nevertheless, our sharp bounds on variance

decompositions and the degree of invertibility are informative for all three shocks.

For clarity, we focus entirely on population bounds in this section, assuming the spectral

density of the data is known. The econometrician uses our LP-IV techniques and does not

exploit the underlying structure of the model.

We stress that the purpose of this section is merely to illustrate the workings of our

identification bounds in an economically interpretable setting. Hence, we deliberately con-

sider a small number of observable variables. Our results below are necessarily sensitive to

the set of observables, as shown through robustness checks in Online Appendix B.5. How-

ever, we caution against the belief that the use of a large number of observable variables will
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automatically guarantee that shocks are recoverable (or invertible) in realistic applications.20

Model. We employ the Smets & Wouters (2007) model. Throughout, we parametrize the

model according to the posterior mode estimates of Smets & Wouters (2007).21 Following the

canonical trivariate VAR in the empirical literature on monetary policy shock transmission,

we assume the econometrician observes aggregate output, inflation, and the short-term policy

interest rate. These macro aggregates are all stationary in the model, so they should be

viewed as deviations from trend. The model features seven unobserved shocks, so not all

shocks can be invertible.

The econometrician observes a single external instrument zt for the shock of interest ε1,t:

zt = αε1,t + σvvt.

We normalize α = 1 throughout and compute identified sets for two different degrees of

informativeness of the external instrument, 1
1+σ2

v
∈ {0.25, 0.5}. We do not attach any specific

economic interpretation to the IV in the context of the Smets & Wouters (2007) model.

We separately consider three different shocks of interest: a monetary shock, a forward

guidance shock, and a technology shock. With our set of observables, the monetary shock is

nearly invertible, but the others are not. The forward guidance shock is instead nearly recov-

erable, whereas only the long-run cycles of the technology shock can be accurately recovered

from the data. Nevertheless, we show that partial identification analysis is informative about

the effects of all three shocks.

Monetary shock. We first consider identification of monetary policy shocks. These are

defined as shocks to the serially correlated disturbance in the model’s Taylor rule.

The monetary shock is nearly invertible in our parametrization. Specifically, the collection

of all past and current values of the observable macro variables explain a fraction R2
0 = 0.8705

of the variance of the shock, as shown by Wolf (2018).22 The infinite past, present, and future

20Although most DSGE models in the literature feature a small number of shocks for simplicity, in reality
the addition of new observables will likely contaminate the analysis with additional nuisance shocks (includ-
ing, but not limited to, measurement error). While the recoverability assumption may in some settings be
justified from a theoretical standpoint, it should not be taken for granted.

21Our implementation of the Smets-Wouters model is based on Dynare replication code kindly provided
by Johannes Pfeifer. The code is available at https://sites.google.com/site/pfeiferecon/dynare.

22Wolf (2018) argues that the R2
0 of monetary policy shocks is robustly high because such shocks uniquely

move nominal interest rates and inflation in opposite directions.
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Monetary shock: Spectral density of best 2-sided linear predictor
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Figure 1: Scaled spectral density 2πs
ε†1

(·) of the best two-sided linear predictor of the monetary

shock. A frequency ω corresponds to a cycle of length 2π
ω quarters.

of the observables yield only slightly sharper identification, with R2
∞ = 0.8767. Figure 1

shows the spectral density sε†1
(·) of the two-sided best linear predictor of the monetary shock

based on all macro variables. The data are essentially equally informative about medium

and high frequencies of the monetary shock, whereas the long-run cycles of the shock cannot

be accurately recovered from the data. At the peak of the spectral density, the observables

explain a fraction 0.8958 of the variance of that particular cyclical component of the monetary

shock; hence, αLB =
√

0.8958 = 0.9465, which is close to the truth of 1.

Because the shock is nearly invertible, the upper bounds of the identified sets for the

forecast variance ratios are close to the truth, while the lower bounds depend on the infor-

mativeness of the IV. Figure 2 displays the identified set of the FVR at different forecast

horizons.23 The upper and lower bounds are proportional to the true FVRs. The lower

bound scales one-for-one with instrument informativeness, while the upper bound scales

one-for-one with the maximal informativeness of the data for the shock across frequencies.

The upper bounds are thus close to the true FVRs in this application with a near-invertible

shock. The informativeness of the lower bounds depends entirely on the strength of the IV.

For FVDs, the lower bound of the identified set also depends on the informativeness

of the IV, while the upper bound always equals the trivial value 1. Figure 3 depicts the

23Throughout this paper, the identified sets for FVRs are constructed horizon by horizon. However, the
joint uncertainty about FVRs at different horizons is caused by uncertainty about the single parameter α.
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Monetary shock: Identified set of FVRs
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Figure 2: Horizon-by-horizon identified sets for FVRs up to 10 quarters. The two lower bounds
are for 1

1+σ2
v

= 0.25 (lower dashed line) and 1
1+σ2

v
= 0.5.

Monetary shock: Identified set of FVDs
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Figure 3: Horizon-by-horizon identified sets for FVDs up to 10 quarters. The two lower bounds
are for 1

1+σ2
v

= 0.25 (lower dashed line) and 1
1+σ2

v
= 0.5. Upper bound not shown.

identified sets for FVDs, ommitting the trivial upper bound. The lower bound is now not

simply proportional to the true FVD, due to the intricacies of bounding the denominator

of the FVD. In this application, the lower bound is nevertheless approximately equal to the

true FVD scaled by instrument informativeness 1
1+σ2

v
.

Due to the near-invertibility of the shock, SVAR-IV identification of the monetary shock

would only be slightly biased (Forni et al., 2018; Wolf, 2018). This, however, is not the case

for the next two shocks we consider.
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Forward guidance shock: Identified set of FVRs
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Figure 4: Horizon-by-horizon identified sets for FVRs up to 10 quarters. The two lower bounds
are for 1

1+σ2
v

= 0.25 (lower dashed line) and 1
1+σ2

v
= 0.5.

Forward guidance shock. We now modify the model to include forward guidance

shocks, a type of news shock. A forward guidance shock is identical to a monetary shock,

except it is anticipated two quarters in advance by economic agents.24

As is common with news shocks, the forward guidance shock is highly noninvertible but

approximately recoverable. The wedge between information contained in the infinite past and

information contained in the entire time series of observables is sizable: Contemporaneous

informativeness is limited, with R2
0 = 0.0792, but looking two quarters ahead basically

returns us to the level of informativeness for the standard monetary shock, with R2
2 = 0.8731

and R2
∞ = 0.8813. Intuitively, on impact, all macro aggregates move in the same direction,

suggesting to the econometrician that the economy was probably buffeted by a demand

shock. But two quarters from now, when the anticipated innovation finally hits, the interest

rate response suddenly switches sign, sending a strong signal that in fact a monetary policy

shock – and not some other kind of demand shock – had occurred. This is one example of

why, with news shocks, the incremental bite of two-sided analysis can be substantial.

Despite the high degree of noninvertibility, the identified sets for the FVRs of the forward

guidance shock are as informative as those for the monetary shock, as shown in Figure 4. This

demonstrates that our partial identification analysis is not only robust to noninvertibility – its

quantitative usefulness does not depend on the degree of invertibility per se. In stark contrast,

24Formally, we implement forward guidance by changing the baseline Smets & Wouters (2007) model so
that the monetary shock has time subscript t− 2 instead of t.
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Technology shock: Spectral density of best 2-sided linear predictor
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Figure 5: Scaled spectral density 2πs
ε†1

(·) of the best two-sided linear predictor of the technology

shock. A frequency ω corresponds to a cycle of length 2π
ω quarters.

identification that incorrectly imposes invertibility (e.g., SVARs) would overstate variance

decompositions by a factor of 1/0.0792 ≈ 13 (!).25 Recoverability-based identification would

err by a more modest factor of 1/0.8813 ≈ 1.13.

Technology shock. Finally, we consider identification of technology shocks, defined as

an innovation to the autoregressive process of total factor productivity.

Unlike the monetary and forward guidance shocks, the technology shock is far from re-

coverable, using our baseline set of observables; nevertheless, our bounds remain informative.

In the model, the technology shock is much more important in accounting for low-frequency

cycles of the data than it is for high-frequency cycles. The degrees of invertibility and re-

coverability are low: R2
0 = 0.2007 and R2

∞ = 0.2209. However, the data are very informative

about the lowest-frequency cycles of the technology shock, as shown in Figure 5. As a result,

α2
LB = 0.9092 is close to the true value of 1, and the upper bounds of our identified sets for

FVRs and the degree of invertibility (not shown) yield tight identification. In contrast, iden-

tification that incorrectly imposes either invertibility or recoverability of the shock overstates

the FVR by a factor of about 5.

25To be exact, standard SVAR-IV methods would overstate impact impulse responses by a factor of
1/
√

0.0792 ≈ 3.6 and so impact variance decompositions by a factor of 13. Subsequent impulse responses
would not be proportional to true responses, due to the imposed VAR dynamics (Stock & Watson, 2018).
We state formal results on the bias of SVAR-IV under noninvertibility in Online Appendix B.3.
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5 Inference

To make the identification analysis practically useful, we develop partial identification robust

confidence intervals and tests. In a first step, the researcher estimates a reduced-form VAR

model, which is then used in a second step to derive sample analogues of our population

bounds. Using the general partial identification confidence procedures of Imbens & Manski

(2004) and Stoye (2009), we construct confidence intervals for both the parameters and for

the identified sets. We also discuss a test of invertibility. The confidence intervals are shown

to be asymptotically valid under nonparametric regularity conditions. Finally, we show

through simulations that the LP-IV confidence intervals perform well in finite samples.

We assume the availability of a single instrument zt for notational simplicity. The gen-

eralization to multiple instruments is straight-forward, as discussed in Section 3.3.

Reduced-form VAR. We assume that the second-moment properties of the data are

captured by a reduced-form VAR in (y′t, zt)
′. The lag length p is initially assumed to be

finite and known, but this is relaxed below. Thus, assume that there exist (ny +1)× (ny +1)

matrices A`, ` = 1, 2, . . . , p, and a symmetric positive definite (ny + 1)× (ny + 1) matrix Σ

such that the spectral density of Wt ≡ (y′t, zt)
′ is given by

sW (ω) =

(
Iny+1 −

p∑
`=1

A`e
−iω`

)−1
Σ

(
Iny+1 −

p∑
`=1

A`e
−iω`

)−1∗
, ω ∈ [0, 2π],

and such that all roots of the polynomial x 7→ det(Iny+1 −
∑p

`=1A`x
`) are outside the unit

circle. Let ϑ ≡ (vec(A1)
′, . . . , vec(Ap)

′, vech(Σ)′)′ denote the collection of true reduced-form

VAR parameters, and let ϑ̂ ≡ (vec(Â1)
′, . . . , vec(Âp)

′, vech(Σ̂)′)′ denote the least-squares

estimators. Under standard conditions, we have T 1/2(ϑ̂ − ϑ)
p→ N(0,Ω), where T is the

sample size, and the asymptotic variance Ω can be estimated consistently by Ω̂, say (Kilian

& Lütkepohl, 2017, Ch. 2.3).

Although not essential to our approach, we assume a reduced-form VAR structure for

three reasons. First, VARs are known to be able to approximate any spectral density func-

tion arbitrarily well as the VAR lag length tends to infinity. Second, the VAR structure

facilitates the development of a test of invertibility. Third, VAR-based inference amounts to

applying our population calculations from Section 3 to a spectrum of a particular functional

form (namely a VAR spectrum with the particular estimated parameters ϑ̂). All inequali-

ties satisfied in the population must then also hold in any finite sample, thus guaranteeing
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nonempty identified sets, for example (up to numerical error, but not statistical error). The

advantages of the VAR approach notwithstanding, we remark that one could in principle use

any well-behaved estimator of the spectrum of (y′t, zt)
′.

While we here assume a finite VAR lag length for expositional simplicity, Online Appendix

B.7 proves that our VAR-based inference strategy is asymptotically valid under nonparamet-

ric regularity conditions, provided that the VAR lag length p = pT used for estimation

diverges with the sample size T at an appropriate rate. That is, the inference strategy is

valid even if the true data generating process (DGP) is a possibly non-Gaussian VAR(∞).

In practice, we suggest estimating the lag length p by information criteria or likelihood ra-

tio tests. We emphasize that assuming a reduced-form VAR is less restrictive than doing

SVAR-IV inference: We do not assume that the reduced-form VAR residuals span the true

structural shocks εt. For example, we continue to allow the number of structural shocks to

possibly exceed the number of variables in the VAR.

Invertibility test. It is straight-forward to test for invertibility of the shock of interest

using the estimated reduced-form VAR. We showed in Proposition 2 that the distribution

of the data is consistent with invertibility of ε1,t if and only if z̃t does not Granger cause yt.

Granger non-casuality of z̃t for yt is equivalent with Granger non-causality of zt for yt. A test

of the Granger non-causality null hypothesis amounts to a test of the exclusion restrictions

that lags of zt do not enter the reduced-form VAR equations for yt. This test has power

against all Granger causal alternatives, so it has power against all falsifiable noninvertible

alternatives by Proposition 2.26

Confidence intervals. We now construct partial identification robust confidence inter-

vals for identified sets and for the true parameters. Here we rely heavily on the inference

methods pioneered by Imbens & Manski (2004) and refined by Stoye (2009).

We start by defining notation. Given the reduced-form VAR model, all identified sets

derived in Section 3.2 are of the form [h(ϑ), h(ϑ)], where h(·) and h(·) are continuous functions

mapping the VAR parameter space into the real line, and such that h(·) ≤ h(·). A (pointwise)

consistent estimator of the identified set [h(ϑ), h(ϑ)] is then given by the plug-in interval

[h(ϑ̂) , h(ϑ̂)].

26Stock & Watson (2018) develop an LP-IV invertibility test which directs power against alternatives with
impulse response functions that differ substantially from the invertible null. They do not discuss whether
their test has power against all falsifiable noninvertible alternatives.
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Let ∆̂ ≡ h(ϑ̂) − h(ϑ̂) denote the width of the estimate of the identified set. Assume h(·)
and h(·) are continuously differentiable at the true VAR parameters ϑ with 1 × dim(ϑ)

dimensional Jacobian functions ḣ(·) and ḣ(·). Define the standard errors of h(ϑ̂) and h(ϑ̂),

σ̂ ≡
√
T−1ḣ(ϑ̂)Ω̂ḣ(ϑ̂)′ , σ̂ ≡

√
T−1ḣ(ϑ̂)Ω̂ḣ(ϑ̂)′,

and their correlation,

ρ̂ ≡ T−1ḣ(ϑ̂)Ω̂ḣ(ϑ̂)′

σ̂ × σ̂
.

Finally, let Φ(·) denote the standard normal cumulative distribution function.

We now construct a confidence interval for the entire identified set. The interval[
h(ϑ̂)− Φ−1(1− β/2)σ̂ , h(ϑ̂) + Φ−1(1− β/2)σ̂

]
(23)

is a (pointwise) asymptotically valid level-(1 − β) confidence interval for the identified set

[h(ϑ), h(ϑ)]. That is, the above interval contains the entire identified set in at least 100(1−
β)% of repeated experiments, asymptotically. This follows from the delta method and the

arguments of Imbens & Manski (2004).

Next, we construct a confidence interval for the true parameter of interest. By definition

of the identified set, the true parameter is contained in [h(ϑ), h(ϑ)], but we know nothing

else about the true parameter. Although the interval (23) trivially has asymptotic coverage

of at least 1− β for the true parameter, Imbens & Manski (2004) showed that it is possible

to develop a narrower interval with the same property. As in Stoye (2009, p. 1305), define

the two scalars ĉ, ĉ as the minimizers of the objective function

σ̂ × ĉ+ σ̂ × ĉ,

subject to the two constraints

Pr

(
−ĉ ≤ U1, ρ̂U1 ≤ ĉ+

∆̂

σ̂
+
√

1− ρ̂2 × U2

)
≥ 1− β,

Pr

(
−ĉ− ∆̂

σ̂
−
√

1− ρ̂2 × U2 ≤ ρ̂U1, U1 ≤ ĉ

)
≥ 1− β.

Here the probabilities are taken solely over the distribution of (U1, U2)
′, which is bivariate
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standard normal. The above minimization problem is easy to solve numerically, cf. Stoye

(2009, Appendix B). Given these definitions, the interval[
h(ϑ̂)− ĉ× σ̂ , h(ϑ̂) + ĉ× σ̂

]
is a (pointwise) asymptotically valid level-(1−β) confidence interval for the true parameter.

Again, this result follows from the delta method and the results in Stoye (2009), who builds

on Imbens & Manski (2004).27

To implement the above confidence interval procedures, the researcher needs to compute

the VAR estimator ϑ̂, the asymptotic variance matrix estimate Ω̂, the bound estimates

h(ϑ̂) and h(ϑ̂), and the derivatives of the bounds ḣ(ϑ̂) and ḣ(ϑ̂). Appendix A.1 provides

formulas for the bounds and derivatives in terms of the VAR parameters. A simple bootstrap

implementation is also available, see below.

We now discuss how to resolve the complication that the upper bound of the identified

sets for 1
α2 , R2

0, the FVR, and the VD may not be continuously differentiable in the VAR

parameters. The issue arises because α2
LB is given by the maximum of a certain function, cf.

(17). When this function has multiple maxima at the true VAR parameters (e.g., when the

spectral density of z̃†t is flat, as in the recoverable case), continuous differentiability of α2
LB in

the VAR parameters ϑ may fail (Gafarov et al., 2018). In this case, delta method inference

will be unreliable. As a remedy, we suggest replacing the maximum α2
LB = 2π supω∈[0,π] sz̃†(ω)

in all our bounds with the smaller average value Var(z̃†t ) =
∫ 2π

0
sz̃†(ω) dω, cf. the inequality

(18). The latter object is continuously differentiable in the VAR parameters, so inference

using the above methods is unproblematic. Use of the non-sharp bound does lead to a power

loss, but the loss is small if the shock ε1,t is close to being recoverable.28 Note that continuous

differentiability of the bounds for the FVD obtains without modifications.

Our confidence intervals are pointwise valid in both senses of the word. First, we focus

on constructing a confidence interval for each parameter of interest separately, as opposed

to capturing the joint uncertainty of several parameters at once. Second, our asymptotics

are pointwise in the true parameters; we do not derive the coverage under the worst-case

27We do not require that the VAR parameters are uniformly asymptotically normal, since we only develop
pointwise valid confidence intervals, as discussed further below.

28More generally, we can lower-bound α2
LB by

∫ 2π

0
r(ω)sz̃†(ω) dω, where r(·) is a nonnegative function

such that
∫ 2π

0
r(ω) dω = 2π. If the researcher has prior information about the frequencies ω at which yt is

particularly informative about ε1,t, then r(ω) can be chosen to weight these frequencies more heavily. This

yields a more informative bound than Var(z̃†t ), while preserving continuous differentiability.
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data generating process.29 In particular, we ignore finite-sample issues caused by weak

instruments, i.e., αLB ≈ 0. We also ignore the familiar parameter-on-the-boundary issue

that may arise if one of the population bounds is at the boundary of its parameter space

(this issue can also arise in standard SVAR inference on variance decompositions).

Bootstrap implementation. The calculation of derivatives in the confidence interval

formulas above is obviated by the bootstrap. Suppose we bootstrap the estimator ϑ̂ (Kilian

& Lütkepohl, 2017, Ch. 12). Then we can compute σ̂ as the bootstrap standard deviation of

h(ϑ̂), σ̂ as the bootstrap standard deviation of h(ϑ̂), and ρ̂ as the bootstrap correlation of h(ϑ̂)

and h(ϑ̂). By plugging into the same confidence interval formulas as above, we achieve the

same (pointwise) asymptotic coverage probability as the delta method confidence intervals,

provided an appropriate bootstrap consistency condition holds.

Simulation study. Online Appendix B.8 presents a simulation study of the LP-IV boot-

strap confidence intervals for parameters and identified sets. We consider a variety of struc-

tural VARMA DGPs, including a non-invertible one. We find that the finite-sample cover-

age rates of our confidence intervals are close to the nominal level throughout, except when

parameter-on-the-boundary issues cause over-coverage. In particular, the LP-IV confidence

intervals have at least as accurate coverage as corresponding SVAR-IV confidence intervals

for invertible DGPs, and of course perform much better in the non-invertible case.

6 Empirical application

To illustrate our inference procedure, we study the importance of monetary shocks in U.S.

data. We use the empirical setting of Gertler & Karadi (2015), whose external instrument

for the monetary shock is obtained from high-frequency financial data. Using an SVAR-IV

approach, Gertler & Karadi (2015) estimated impulse responses to a 20 basis point shock

in the short-term interest rate, but they did not consider the importance of the monetary

shock using variance decompositions. Caldara & Herbst (2018) compute FVDs for a similar

specification, but their analysis also assumes an SVAR model. We find that invertibility (i.e.,

29The Imbens & Manski (2004) and Stoye (2009) procedures are designed to control coverage uniformly
over the width of the identified set. We do not discuss uniform asymptotics here because this seems to
require bounding the magnitude of the largest eigenvalue of the VAR polynomial away from 1, in which case
the width of the identified set (for all our objects of interest) would also be bounded away from zero. Hence,
in this case, the uniform asymptotic validity of the confidence procedures is a trivial matter.
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SVAR structure) is rejected by the data. Happily, our LP-IV confidence intervals confirm the

conclusions in Caldara & Herbst (2018) that monetary shocks contribute at most moderately

to fluctuations in output growth and inflation, as well as to financial stress in the short run.

Our specification follows Gertler & Karadi (2015) except that we do not impose a SVAR

structure. We consider four endogenous macro variables yt: output growth (log growth rate

of industrial production), inflation (log growth rate of CPI inflation), the Federal Funds

Rate, and the Excess Bond Premium of Gilchrist & Zakraǰsek (2012), a measure of the

non-default-related corporate bond spread. The external IV zt is constructed from changes

in 3-month-ahead futures prices written on the Federal Funds Rate, where the changes are

measured over short time windows around Federal Open Market Committee monetary policy

announcement times.30 Data are monthly from January 1990 to June 2012. The Akaike

Information Criterion selects p = 6 lags in the reduced-form VAR we use for inference. We

employ a homoskedastic recursive residual VAR bootstrap with 10,000 draws.31

The data reject invertibility. Table 1 shows point estimates and 90% confidence intervals

for the identified sets of the degree of invertibility and the degree of recoverability. We also

show partial identification robust 90% confidence intervals for these parameters themselves,

cf. Section 5. Since the confidence sets for the degree of invertibility exclude 1, we can reject

invertibility at the 10% level.32 The data are consistent, however, with moderately large

values of the degree of invertibility R2
0, as well as with very small values. The data are also

consistent with small values of the degree of recoverability R2
∞.33

The monetary shock accounts for a small to moderate fraction of the forecast variance of

output growth and inflation, and of the Excess Bond Premium at short horizons. Figure 6

shows partial identification robust confidence intervals for the forecast variance ratio of the

30See Gertler & Karadi (2015) for details on the construction of the IV and a discussion of the exclusion
restriction. Nakamura & Steinsson (2018) argue that the monetary shock identified using this IV partially
captures revelation of the Federal Reserve’s superior information about economic fundamentals. Online
Appendix B.2 shows that our FVR bounds can generally be interpreted as bounding the importance of the
particular linear combination of shocks that tend to hit during FOMC announcements.

31All empirical results reported in this section, including unreported confidence intervals for the FVR
parameters themselves, can be produced in about 6 minutes per 1,000 bootstrap draws, using Matlab R2017b
without parallelization on a personal laptop with 1.60 GHz processor and 8 GB RAM.

32As discussed in Section 5, this amounts to testing whether the IV Granger causes the other variables in
the reduced-form VAR. Online Appendix B.6 provides p-values for such tests. Stock & Watson (2018) fail
to reject invertibility in the Gertler & Karadi (2015) specification, apparently because they use a smaller lag
length of 4 in their Granger causality tests.

33As discussed in Section 5, we base inference on a slightly conservative lower bound for α, so our confidence
intervals for R2

∞ include 1 by construction.
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Empirical application: Degree of invertibility/recoverability

R2
0 Estimate of IS [0.197, 0.687]

Conf. int. for IS [0.090, 0.877]

Conf. int. for param. [0.117, 0.828]

R2
∞ Estimate of IS [0.283, 1.000]

Conf. int. for IS [0.186, 1.000]

Conf. int. for param. [0.207, 1.000]

Table 1: 90% confidence intervals for the degree of invertibility R2
0 and the degree of recoverabil-

ity R2
∞, along with point estimates and 90% confidence intervals for the identified sets of these

parameters. IS = identified set. All numbers are bootstrap bias corrected. Upper bound of IS for
R2
∞ equals 1 by construction.

Empirical application: Forecast variance ratios
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Figure 6: Point estimates and 90% confidence intervals for the identified sets of forecast variance
ratios, across different variables and forecast horizons. For visual clarity, we force bias-corrected
estimates/bounds to lie in [0, 1].
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four endogenous macro variables with respect to the monetary shock. We report point

estimates and confidence intervals for the identified sets (at each horizon separately); these

intervals happen to be similar to the confidence intervals for the parameters themselves

in this application. Because we compute Hall’s asymmetric bootstrap confidence interval,

which has a built-in bias correction, some of the intervals and bias-adjusted point estimates

go negative.34 At all forecast horizons, the 90% confidence intervals rule out FVRs above

31% for output growth and 8% for inflation.35 At forecast horizons up to 6 months, we can

rule out that the monetary shock accounts for more than 18% of the forecast variance of

the Excess Bond Premium. However, we cannot rule out that the monetary shock is an

important contributor to medium- or long-run forecasts of the bond premium. On the other

hand, we cannot rule out that the monetary shock is completely unimportant either, for

essentially all variables and forecast horizons.

The application illustrates that LP-IV inference can be informative about important

questions, in addition to being robust to violations of dubious identification assumptions

such as invertibility (here rejected by the data) and the availability of a noise-less IV (an

untestable assumption). We obtain tight upper bounds on forecast variance ratios, despite

the finding by Stock & Watson (2018) that standard errors for LP-IV-estimated impulse

response functions are large in this application. Since our analysis arguably weakens the

identifying restrictions used in previous papers, it is reassuring that the finding of a modest

role for monetary shocks in driving real output and inflation is in line with the existing

literature (Ramey, 2016, Sec. 3; Caldara & Herbst, 2018).36

7 Conclusion

We expand the toolkit of the LP-IV approach to causal inference in macroeconometrics. LP-

IV has recently become a popular method for estimating impulse response functions by ex-

ploiting interpretable exclusion restrictions, without imposing invertibility or functional form

assumptions on shock transmission. However, existing methods did not allow researchers to

quantify the importance of individual shocks. We fill this gap by providing identification

34This could be avoided by using Efron’s percentile interval, but bias correction is desirable in VAR contexts
(Kilian & Lütkepohl, 2017, Ch. 12). Our qualitative conclusions are not sensitive to the bias correction.

35Our upper bounds are even tighter if we run our analysis on the pre-crisis 1990–2006 sample.
36For completeness, Online Appendix B.6 provides forecast variance decompositions implied by an esti-

mated SVAR-IV model, although the latter is rejected by the data.
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results and inference techniques for variance decompositions, historical decompositions, and

the degree of invertibility. Our partial identification robust confidence interval procedure is

computationally straight-forward and relies on familiar methods for delta method or boot-

strap inference in reduced-form VARs. The informativeness of our partial identification

bounds does not depend on the degree of invertibility of the shocks per se, but rather on the

strength of the instrument and the informativeness of the macro variables for some short-,

medium-, or long-run cycles of the shock of interest. In contrast, the validity of SVAR-IV

analysis relies on the testable assumption that the shock of interest is nearly invertible (Forni

et al., 2018). Finally, we show that if researchers are willing to assume that the shock of

interest is recoverable – a substantively weaker assumption than invertibility – most objects

of interest are point-identified.

Our work points to several potential future research directions. First, to simplify the

practical econometric procedure, our inference strategy relies on a slightly conservative iden-

tification bound that does not exploit the shape of the entire spectrum; it would be interesting

to improve on this. Second, one could construct simultaneous (rather than pointwise) con-

fidence bands for, say, forecast variance decompositions at multiple horizons. Third, future

research should explore inference issues caused by parameters on the boundary, weak in-

struments, or near-unit roots. Fourth, our analysis imposed stationarity, but cointegration

properties could be relevant for forecast variance decompositions of data in levels. Finally,

one could perform Bayesian inference on the identified sets of the structural parameters.
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A Appendix

A.1 Formulas for implementing the confidence intervals

Here we provide formulas needed to construct the partial identification robust confidence

intervals in Section 5. Assume the spectrum of Wt = (y′t, zt)
′ has VAR structure as in

Section 5. We now show how to compute the interval bounds from the reduced-form VAR

parameters ϑ = (vec(A1)
′, . . . , vec(Ap)

′, vech(Σ))′.

Preparations. We first map the reduced-form VAR parameters ϑ into the various vari-

ances and covariances needed to compute our objects of interest. In principle, it is possible

to directly compute these mappings from ϑ using standard VAR formulas. However, we

prefer working with the vector moving average representation, as outlined below. Our first

objective is then to map the VAR representation into a VMA representation

Wt = B(L)et,

where

B(L) =
∑∞

`=0B`L
`, et

i.i.d.∼ N(0, InW ),

and nW ≡ ny + 1. This is achieved by setting

B0 = Σ
1
2 , Bh =

∑h
`=1A`Bh−`, h ≥ 1,

where A` = 0nW×nW for ` > p. In practice, we truncate this recursion at some large p̂, and

set Bh = 0nW×nW for h > p̂. For each h, denote the top ny × nW block of the nW × nW

matrix Bh by By,h, and write By(L) =
∑∞

`=0By,`L
` for the entire lag polynomial. Then

yt = By(L)et.

Let Bz̃ be the bottom row of B0, so that

z̃t = Bz̃et.

Bounds for α. To compute the bounds for α, we need the quantities

α2
UB = Var(z̃t), (24)
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α2
LB = 2π max

ω∈[0,π]
syz̃(ω)∗sy(ω)−1syz̃(ω), (25)

Var(z̃†t ) = 2

∫ π

0

syz̃(ω)∗sy(ω)−1syz̃(ω) dω. (26)

For the upper bound (24), we have

Var(z̃t) = Bz̃B
′
z̃ ≡ Σz̃.

For the lower bound (25),

sy(ω) = By(e
−iω)By(e

−iω)∗,

syz̃(ω) =
∑p̂

`=0 Σy,z̃,`e
−iω`,

where

Σy,z̃,` ≡ Cov(yt, z̃t−`) = By,`B
′
z̃.

In practice, we compute the maximum in (25) by grid search.

Rather than explicitly computing the integral (26), we note that we can approximate

Var(z̃†t ) = Var(E(z̃t | {yτ}t−∞<τ<t+∞)) arbitrarily well as M →∞ by

Var(E(z̃t | {yτ}t−M≤τ≤t+M)) = Σz̃,y,(M,M)Σ
−1
y,(M,M)Σ

′
z̃,y,(M,M),

where Σz̃,y,(M,M) is the covariance vector of z̃t and (y′t+M , . . . , y
′
t, . . . , y

′
t−M)′, and Σy,(M,M) is

the full variance-covariance matrix of (y′t+M , . . . , y
′
t, . . . , y

′
t−M)′. For any given M , we can

construct these matrices from

Cov(z̃t, yt+h) =

Bz̃B
′
y,h if h ≥ 0,

0 otherwise,

and

Cov(yt, yt−h) =
∑p̂

`=0By,`B
′
y,`+h.

Bounds for R2
0. The only missing ingredient to computing the identified set for the degree

of invertibility is Var(z̃t | {yτ}−∞<τ≤t). We can approximate this quantity arbitrarily well as

M →∞ by

Var(z̃t | {yτ}t−M≤τ≤t) = Σz̃ − (Σ′y,z̃,0, 01×nyM)Σ−1y,(M)(Σ
′
y,z̃,0, 01×nyM)′,
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where Σy,(M) is the full variance-covariance matrix of (y′t, y
′
t−1, . . . , y

′
t−M)′.

Bounds for R2
∞. The only missing ingredient to computing the identified set for the de-

gree of recoverability is Var(z̃t | {yτ}−∞<τ<∞). We can approximate this quantity arbitrarily

well as M →∞ by

Var(z̃t | {yτ}t−M≤τ≤t+M) = Σz̃ − Σz̃,y,(M,M)Σ
−1
y,(M,M)Σ

′
z̃,y,(M,M),

where all objects were already defined above.

Bounds for FVR. To compute the identified set for FVRi,`, we need Cov(yt, z̃t−h) as

well as Var(yi,t+` | {yτ}−∞<τ≤t). The first object was discussed above, and the second object

is well approximated for large M by37

Var(yi,t+` | {yτ}t−M≤τ≤t) = Var(yi,t)−(Cov(yi,t+`, yt), . . . ,Cov(yi,t+`, yt−M))Σ−1y,(M)

× (Cov(yi,t+`, yt), . . . ,Cov(yi,t+`, yt−M))′,

where Σy,(M) was defined above.

Bounds for FVD. To compute the overall lower bound for the FVD, we need Var(ỹ
(αUB)
i,t+` |

{ỹ(αUB)
τ }−∞<τ≤t). As before, we approximate this by Var(ỹ

(αUB)
i,t+` | {ỹ

(αUB)
τ }t−M≤τ≤t) for large

M . The same formula used above for Var(yi,t+` | {yτ}t−M≤τ≤t) applies, where covariances

are obtained from

Cov(ỹ
(αUB)
t+` , ỹ

(αUB)
t ) = Cov(yt+`, yt)−

1

α2
UB

∑∞
m=0 Cov(yt, z̃t−m−`) Cov(yt, z̃t−m)′.

The sum can be truncated when the contribution of additional terms is small.

Remarks. Our computations require two truncation choices: the maximal VMA horizon

p̂, and the maximal prediction horizons M . In all codes, we set these truncation parameters

large enough to leave results unaffected by further increases.38 Derivatives of all parameters

with respect to ϑ can be computed by finite differences or automatic differentiation.

37In our computations for this paper we use the Kalman filter to compute the conditional variance, but
there is little difference in numerical accuracy or speed relative to the formula stated here.

38Our choices of truncation parameters therefore differs according to the application, depending on the
persistence of the studied processes.
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A.2 Proofs of main results

A.2.1 Auxiliary lemma

Lemma 1. Let B be an n × n Hermitian positive definite complex-valued matrix and b

an n-dimensional complex-valued column vector. Let x be a nonnegative real scalar. Then

B − x−1bb∗ is positive (semi)definite if and only if x >(≥) b∗B−1b.

Please find the proof in Online Appendix B.9.1.

A.2.2 Proof of Proposition 1

Let α and the spectrum sw(ω) be given. Define the ny-dimensional vectors

Θ•,1,` = α−1 Cov(yt, z̃t−`), ` ≥ 0,

and the corresponding vector lag polynomial

Θ•,1(L) =
∞∑
`=0

Θ•,1,`L
`.

Since α2 ≤ α2
UB, we may define σv =

√
Var(z̃t)− α2. Since α2 > α2

LB, Lemma 1 implies that

sy(ω)− 2π

α2
syz̃(ω)syz̃(ω)∗ = sy(ω)− 1

2π
Θ•,1(e

−iω)Θ•,1(e
−iω)∗

is positive definite for every ω ∈ [0, 2π]. Hence, the Wold decomposition theorem (Hannan,

1970, Thm. 2′′, p. 158) implies that there exists an ny × ny matrix lag polynomial Θ̃(L) =∑∞
`=0 Θ̃`L

` such that39

sy(ω)− 1

2π
Θ•,1(e

−iω)Θ•,1(e
−iω)∗ =

1

2π
Θ̃(e−iω)Θ̃(e−iω)∗, ω ∈ [0, 2π].

Thus, the following model for wt = (y′t, z̃t)
′ generates the desired spectrum sw(ω):

yt = Θ•,1(L)ε1,t + Θ̃(L)ε̃t,

z̃t = αε1,t + σvvt,

39We can rule out a deterministic term in the Wold decomposition because a continuous and positive
definite spectral density satisfies the full-rank condition of Hannan (1970, p. 162).
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(ε1,t, ε̃
′
t, vt)

′ i.i.d.∼ N(0, Iny+2).

Note that the construction requires only nε = ny + 1 shocks, ε1,t ∈ R and ε̃t ∈ Rny .

A.2.3 Proof of Proposition 2

Identified set for R2
0. If the identified set contains 1, then there must exist an α ∈

[αLB, αUB] and i.i.d., independent standard Gaussian processes ε1,t and vt such that (i)

z̃t = α× ε1,t + vt, (ii) vt is uncorrelated with yt at all leads and lags, and (iii) ε1,t lies in the

closed linear span of {yτ}−∞<τ≤t. This immediately implies the “only if” statement.

For the “if” part, assume z̃t does not Granger cause yt. By the equivalence of Sims and

Granger causality, z̃†t = E(z̃t | {yτ}−∞<τ<∞) = E(z̃t | {yτ}−∞<τ≤t). Note that the latter

best linear predictor is white noise since, for any ` ≥ 1,

Cov
(
E(z̃t | {yτ}−∞<τ≤t), yt−`

)
= Cov(z̃t, yt−`)− Cov

(
z̃t − E(z̃t | {yτ}−∞<τ≤t), yt−`

)
= 0− 0,

using the fact that z̃t is a projection residual. In conclusion, the best linear predictor z̃†t of

z̃t given {yτ}−∞<τ<∞ depends only on {yτ}−∞<τ≤t and it has a constant spectrum. From

the expression for α2
LB, we get that α2

LB = Var(E(z̃t | {yτ}−∞<τ≤t)), which further yields

α2
LB = Var(z̃t)R̃

2
0. Hence, expression (19) implies that the upper bound of the identified set

for R2
0 equals 1.

Identified set for R2
∞. The upper bound of the identified set for R2

∞ equals 1 if and only

if 2π supω∈[0,π] sz̃†(ω) = R̃2
∞Var(z̃t), and the right-hand side equals Var(z̃†t ) =

∫ 2π

0
sz̃†(ω) dω.

But we have supω∈[0,π] sz̃†(ω) = 1
2π

∫ 2π

0
sz̃†(ω) dω if and only if sz̃†(ω) is constant in ω almost

everywhere, i.e., z̃†t is white noise.

A.2.4 Proof of Proposition 3

Please see Online Appendix B.9.3.
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