
History-Based Choice between Consumption

Streams

Aram Ghazaryan∗

November 16, 2018

Abstract

The empirical and experimental research reveals that an agent may
manifest preferences which differ from the classical economics postulates.
A few of such manifestations are utility from anticipation, preferences for
improvement, preferences for happy endings and memorable consump-
tions. This paper studies those phenomena by static choices within a
dynamic context. This research provides an axiomatic framework and a
model which rationalises such decisions; furthermore, it shows that there
is an additive utility function which represents the preferences with those
specifications.

Keywords: Consumption streams, History-based representation, Diagonal
independence, Constant equivalence, Additivity.

1 Introduction

Sometimes we make a decision which concerns not only to the current period
but also to the upcoming periods. In other words, we choose between the
sequences of alternatives, where each option in the given sequence is affordable
for the consumption in the predefined further period. This kind of decisions,
which correspondents to the static choice in the dynamic context, has two main
challenges. The first is the uncertainty concerning later preferences, and the
second, which is the primary interest of this study, is the intertemporal trade-
off.

The traditional economic models of intertemporal choice, like, exponential
discounting (Koopmans 1960 [4], Samuelson 1937 [12]), hyperbolic discounting
(Ainslie 1992 [1], Laibson 1997 [6]), present-biased preferences (O’Donoghue and
Rabin [10]) etc. assume that given two similar rewards, people always prefer
reward which arrives sooner rather than later. Even though this assumption
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is quite realistic and logical, there is an experimental and empirical evidence
which shows that people, sometimes, prefer a reward which arrives later rather
than sooner. A few of main causes for such preferences are: utility from antic-
ipation (Loewenstein 1987 [7]), preferences for improvement (Loewenstein and
Prelec [9],[8]), preferences for happy endings (Ross and Simonson 1991 [11]) and
memorable consumptions (Gilboa, Postlewaite and Samuelson [3]).

According to the aforementioned literature, the decision maker (DM) could
demonstrate patience or impatience. In other terms, the DM can prefer con-
sumption sequences with the increasing, decreasing, constant, or volatile grati-
fication tendencies. Hence, there is no unique pattern, according to which the
DM will prefer any defined order of the alternatives in the sequence. These
unstable preferences induce difficulties to modelling the DM’s preferences over
sequences, and rationalize those kind of preferences. This study aims to develop
a behavioral foundation to fill the gap between the economic theory and such
empirical and experimental evidence.

The profound investigation of the mentioned behavioral manifestation sheds
light on one of the the main reasons of those kind preferences. That is, the
dependence between the choice alternatives over the periods. The meaning is
that the DM’s choice at some given period depends on her choices before or
after that period, i.e., we don’t have independence between the choices along
periods.

To formalise all above-mentioned, assume that the DM have a preference
relation over the set of sequences. Each sequence is an array of consumtion
goods, where the consumption of each option takes place in a predefined order.
For example, assume that the DM has to decide how to spend/consume her
budget during the following n periodes. Suppose the amount of budget is B(∈
R+), so she has to opt a tuple from {(c1, c2, ..., cn) ∈ R7

+ : c1 + c2 + ...+ cn ≤ B}
set, where c1 is her consumption at the first period, c2 at the period, and so on.

The representation result given (1) functional form justifies aforementioned
behavioral phenomena.

U(c1, c2, ..., cn) = u1(c1) + u2(c2, c1) + ...+ un(cn, c1, c2, ..., cn−1) (1)

In this model the utility of sequence (c1, c2, ..., cn) is defined by the collection
of the utility functions, {u1, u2, ..., un}, where each utility, ui, is the present value
from the consumption at the corresponding period, i. Moreover, in this model
the DM’s utility depends not only on the consumption of that period, but also
the consumptions before that period. The intuition of this representation is
that today’s consumption could change the DM’s tomorrow’s preferences. That
is, the DM’s consumption in each period is a reference point for the further
periods’ preferences, so, for a given period, any previous consumption of the
DM, has a potential effect on her current consumption.

Now I would like to recall one experimental result given by Loewenstein (1987
[7]), which shows that preferences over the sequences could be incompatible with
the independence axiom (and additive separability). Such preferences cannot be
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representable by the discounting utility models; however, the model suggested
here represents this choice structure.

The nature of the experiment is the following. Thirty-seven undergraduates
were presented with the following two questionary.

Question 1. Which would you prefer?

Alternativs This weekend Next weekend Two weekends
from now

Choices

A Fancy French Eat at home Eat at home 16%
B Eat at home Fancy French Eat at home 84%

Question 2. Which would you prefer?

Alternatives This weekend Next weekend Two weekends
from now

Choices

C Fancy French Eat at home Fancy lobster 54%
D Eat at home Fancy French Fancy lobster 46%

From Question 1 we have that when the third-period option is “eat at home”
(less pleasurable alternative in this context), then majority of the students prefer
to have a dinner at the Fancy French restaurant in the second period than at the
first period. However, when there is a lobster dinner (more pleasurable alterna-
tive in this context) at the third period, then the French restaurant is preferable
to be chosen at the first period rather than at the second period. Hence, the
third-period option which seems has nothing to do with other periods, changes
the DM’s preference order.

Now let us make sure that the aforementioned model, (1), is consistent with
this preference relation and rationalizes the preference reversal. To this end, let
u1, u2 and u3 be utility functions for the first, the second and the third periods
respectively. Consider two cases. First, assume that there is no lobster dinner
at the third period. We will have:

U(French, home, home) < U(home, French, home). (2)

Applying equation (1) we get

u1(French) + u2(home, French) + u3(home, French, home) <

u1(home) + u2(French, home) + u3(home, home, French).
(3)

Second, assume there is a lobster dinner at the third period. In this case we
have the following result:
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U(French, home, lobster) > U(home, French, lobster) (4)

Applying (1), we have

u1(French) + u2(home, French) + u3(lobster, French, home) >

u1(home) + u2(French, home) + u3(lobster, home, French).
(5)

Note, that in (3) and (5) the utilities u1 and u2 are providing identical
outcomes. So, in order to have reversed preferences u3 must satisfy (6), which
is mathematically achievable and has a logical background.

u3(lobster, French, home)− u3(lobster, home, French) >

u3(home, French, home)− u3(home, home, French).
(6)

This means that the fancy lobster dinner (comparing to a dinner at home) is
more preferable when the previous two activities where the dinner at the fancy
French restaurant and the dinner at home than, the dinner at home and the
dinner at the fancy French restaurant respectively. This assures that the DM
obtain various levels satisfactions, depending on the previous consumptions.

The rest of the paper has the following structure. In the next section, I
develop an axiomatic framework for the preference relation on the set of the
sequences. In section 3, I define a few basic properties and introduce a repre-
sentation result. The last section is the conclusion.

2 Preliminaries and Axioms

Let (Z, d) be a nonempty, compact metric space, where Z is the set of prizes,
and let X denote the set of all probability distributions on Z. In other words, X
is the set of all lotteries on the prize set Z. Hence, X is a connected, compact
and metric space (with Prokhorov metric). The typical elements of X, the
lotteries, are denoted by x, xi, x̄, x

′, y, etc.. Let Ai := X × ... × X be a set of
all ordered sequences of length i [= 1, ..., n]1, endowed with a product metric.
For notational convenience I will use A instead of An. Let Ac

i be the set of all
constant2 sequences with length i, and Ac the set of all constant sequences with
length n. Suppose (x1, ..., xn) and (y1, ..., yn) are two arbitrary sequences in A,
I will define the mixture between them as a sequence of compound lotteries

α(x1, ..., xn) + (1− α)(y1, ..., yn) := (αx1 + (1− α)y1, ..., αxn + (1− α)yn).

for all α ∈ [0, 1].

1n is finite, positive integer.
2A sequence is constant if all terms of the sequence are equal to each other.

4



Assume that the DM has a preference relation on A, denoted by �, with
a symmetric ∼ and an asymmetric � parts. In the representation result I will
require the following four axioms stated on � preference relation. The first two
axioms are well known from the classic axiomatic works, they are: Preference
Relation and Continuity.

Axiom 1 (Preference Relation). � is a complete and transitive binary relation.

Axiom 2 (Continuity). For all (x1, ..., xn), (y1, ..., yn) ∈ A, the sets {(y1, ..., yn) :
(y1, ..., yn) � (x1, ..., xn)} and {(y1, ..., yn) : (x1, ..., xn) � (y1, ..., yn)} are closed.

I will skip the interpretation of these two axioms since it is the same as in the
common decision theoretic literature. The next two axioms are a bit different
than in the common texts and adjusted for this representation.

Axiom 3 (Diagonal Independence). For every (x, ..., x), (y, ..., y), (z, ..., z) ∈ Ac

and every α ∈ (0, 1),

(y, ..., y) � (x, ..., x) iff α(y, ..., y)+(1−α)(z, ..., z) � α(x, ..., x)+(1−α)(z, ..., z).

Diagonal Independence is a common independence axiom stated merely for
the constant sequences. In words, it means that if the DM has to choose only
between the constant sequences, that is, sequences that provide the same alter-
native for all periods, then her preferences should satisfy independence axiom in
a classical sense. In the meantime, there is not any restriction on the preference
relation out of the set of constant sequences. The relaxation of the independence
axiom, in this way, allows us to go along with the DM’s “exotic” preferences
presented in the introduction.

Axiom 4 (Constant Equivalence). For every (x1, ..., xn) ∈ A, there is (x, ..., x) ∈
Ac such that (x1, ..., xn) ∼ (x, ..., x).

This axiom is a technical constraint and states that each sequence has a con-
stant equivalence, that is, for each sequence there is a sequence on the diagonal
such that the DM is indifferent between those two sequences.

3 History-Based Representation

This work aims to provide a representation result which is synchronised with
the phenomena discussed in the introduction. The following additive functional
form defines the utility of the sequence as a sum of utilities depending on current
and previous choices.

U(x1, ..., xn) = u1(x1) + ...+ un(xn, x1, ..., xn−1) (7)

As I have shown with an example, in the introduction, (7) model is a simple
and intuitive result which allows to represent preferences which manifest util-
ity from anticipation and memory. Furthermore, (7) represents the preference
relation via {u1, ..., un} collection of “periodic” utility functions.
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Definition 1. {u1, ..., un} is called a collection generated by U if {u1, ..., un}
defines U as in (7) and ui ≥ 0 for all i = 1, ..., n.

Let GU be the set of all collections generated by U .

Definition 2. Given (7) representation, a collection of nonnegative functions,
{u1, ..., un}, is a maximum splitter if {u1, ..., un} ∈ GU and for every i = 1, ..., n
there is no collection {u1, ..., ui−1, u′i, ..., u′n} ∈ GU such that u′i(xi, x1, ..., xi−1) >
ui(xi, x1, ..., xi−1) for some (x1, ..., xi) ∈ Ai.

In words, there is not another collection which is generated by the same U
and the first (by index) differ utility function, in the collection, returns higher
value for some sequence. Note, that according to (7) model, the DM’s utility
at a given period depends on consumption at that period and periods before
that, and is independent of the future consumptions, i.e., we deal with a one-
sided dependence. In this context, the maximum splitter property provides a
collection of utility functions which are the best revelation of a given period’s
utility independently from the future (after the given period) consumptions.

Definition 3. A history-based additive representation of � relation is a collec-
tion of nonnegative, continuous utility functions {u1, ..., un}, where ui : Ai → R
i = 1, ..., n, such that (a) function U : A→ R, defined by (7), is continuous and
represents � relation, and (b) {u1, ..., un} is a maximum splitter.

The history-based additive representation is the fundamental concept of this
work. It provides an alternative way to model preferences over sequences as a
sum of utilities assigned to each period consumption. In this model, each pe-
riod’s utility is a state-dependent, and each state is a vector with the previous
consumptions. The last allows us to be more flexible to represent preferences
which are not consistent with the changes in other periods’ choices. The fol-
lowing theorem gives necessary and sufficient conditions for this representation;
also, it proves that under some sufficient conditions the representation has a
particular uniqueness property.

Theorem 1. A. The preference relation � defined on A has a history-based
additive representation if and only if it satisfies Preference Relation and Conti-
nuity.

B. Moreover, if � satisfies Diagonal Independence and Constant Equiva-
lence as well then the functions ui (i = 1, ..., n) have the following uniqueness
properties:

Given that {u1, ..., un} collection is a history based additive representation
of �, {u′1, ..., u′n} collection also will be a history based additive representation
of � if and only if there are a > 0, b > 0, such that u′1 = au1 + b and u′i = aui
for all i ∈ 2, n.

This theorem has two principal contributions. The first enrichment of the
model is the additive representation of the preference relation over the sequences,
through the collection of the continuous functions which has maximum splitter
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property. This functional form allows us to represent the utility of a sequence
as a sum of utilities assigned to each period. Each utility is defined by the state
dependent utility function and each state is a sequence of consumptions made
before that period. The second enrichment relates to the second part of the the-
orem. This lets us to have a cardinal ranking over the set of sequences without
requiring the independence axiom on all set of sequences. Consequently it gives
a uniqueness property for the collection of utility functions which represents the
preference relation.

The formal proof of the theorem is given in the appendix. However here I
will give the intuition and the sketch of the proof.

The A part of the theorem shows the existence of the history-based additive
representation. The necessity of the axioms are obvious. For the sufficiency
result first I will show that according to Debreu’s theorem there is a continuous
utility function which represents � relation. Then based on that function I will
generate a collection of utility functions through OSMS method (Appendix,
Step 2). The rest of the prove is to show that the generated collection is a
history-based additive representation.

The proof of the B part is mainly based on the three lemmata. In addition
the first lemma is quite interesting and important result per se. It states that the
preference relation which satisfies axioms 1-4 has is representable with a function
which is unique up to affine transformation, i.e., it provides a cardinal ranking of
the preference relation. The second lemma gives the uniqueness of the maximum
splitter collection and the third lemma states one to one correspondence between
history-based additive representation collection and the collection derived by the
OSMS method. The proof of the theorem part B is following from these three
results.

4 Conclusion

Utility from anticipation, preferences for improvement, preferences for happy
endings and memorable consumptions are empirically and/or experimentally
tested behavioral phenomena, which show a significant gap between the con-
ventional economic models and the reality. This work rationalizes those be-
havioral manifestations via history-based representation model. Based on this
model, the utility over the sequences is represented by the additive form of
state-dependent utility functions, where each utility function depends on the
consumption at that period and the consumptions before that period, a state.
The state-dependent structure let us consider all previous consumptions, which
form a reference point for the DM preferences, such that, her current consump-
tion could be strongly affected by that reference point. This work improves
the existing literature in this manner and provides the behavioral foundation,
which fills the gap between the theory and the empirical ground. Thanks to the
simple structure and realistic background, the history-based representation has
a sound potential to be applied in various fields.
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Appendix

Proof of Theorem A; Existence

The necessity of axioms 1 and 2 is quite straightforward, so I will skip it. I
will construct the proof of the sufficiency step by step.

Step 1. Existence of U .
Since X is connected, compact and metric then the finite product space,

A = X × ...×X, will be connected, compact and metric as well. Hence A is a
separable space too.

Since A is a connected and separable, then from axioms 1 and 2 follow that
there is a continuous, ordinal utility function U , defined on A, which represents
� preference relation (Debreu 1954 [2]).

Step 2. The One Side Maximum Separation Method - OSMS Method.
OSMS is a method which design a methodology of construction of a collection

{u1, ..., un}, based on function U . According to OSMS method, u1 is derived
from U by the following equation.

u1(x1) = min
x2,...,xn∈X

U(x1, ..., xn).

For each i = 2, ..., n− 1, ui is derived in a recursive way

ui(xi, x1, ..., xi−1) = min
xi+1,...,xn∈X

U(x1, ..., xn)−u1(x1)−...−ui−1(xi−1, x1, ..., xi−2).

And un is determined by

un(xn, x1, ..., xn−1) = U(x1, ..., xn)− u1(x1)− ...− un−1(xn−1, x1, ..., xn−2).

Step 3. Each ui is a nonnegative function.
Each ui constructed by OSMS method is a continuous function on Ai. From

the functional forms of ui and ui−1 as given in the last step, we can write
ui(xi, x1, ..., xi−1) = minxi+1,...,xn∈X U(x1, ..., xn) −minxi,...,xn∈X U(x1, ..., xn).
Notice that minxi+1,...,xn∈X U(x1, ..., xn) ≥ minxi,...,xn∈X U(x1, ..., xn) for all
(x1, ..., xn) ∈ A and for all nonnegative U3. As a result ui(xi, x1, ..., xi−1) ≥ 0
on the domain.

Step 4. Continuity of ui.
Each ui constructed by OSMS method is a continuous function on Ai.

First I will show that wi(x1, ..., xi) := minxi+1,...,xn∈X U(x1, ..., xn) is a con-
tinuous function on Ai. For this, I need to show that wi is a continuous func-
tion on all vectors on Ai. Let (x̄1, ..., x̄i) is an arbitrary vector in Ai. As-
sume that U(x̄1, ..., x̄i, xi+1, ..., xn) takes its minimum value on (x̄1, ..., x̄n) ∈ Ai

3U is a nonnegative because it is a utility function, step 1.
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point, i.e. wi(x̄1, ..., x̄i) = U(x̄1, ..., x̄n). Similarly, assume that wi(x̃1, ..., x̃i) =
U(x̃1, ..., x̃n) for an arbitrary (x̃1, ..., x̃n) ∈ Ai. From the continuity of U we
have that for all ε > 0 there is a δ-neighbourhood of (x̄1, ..., x̄i), such that
|U(x̄1, ..., x̄n) − U(x̃1, ..., x̃i, x̄i+1, ..., x̄n)| < ε, whenever (x̃1, ..., x̃i, x̄i+1, ..., x̄n)
is in that neighbourhood. Since (x̃1, ..., x̃n) is the vector where U is minimal,
then U(x̃1, ..., x̃i, x̄i+1, ..., x̄n) ≥ U(x̃1, ..., x̃n) always holds. Without loss of gen-
erality assume that U(x̄1, ..., x̄n) < U(x̃1, ..., x̃n). Since U is a positive function
then, it is easy to see that |U(x̄1, ..., x̄n) − U(x̃1, ..., x̃n)| < ε or equivalently
|wi(x̄1, ..., x̄i) − wi(x̃1, ..., x̃i)| < ε whenever (x̃1, ..., x̃i, x̄i+1, ..., x̄n) belongs to
δ-neighbourhood of (x̄1, ..., x̄n).

For all i = 1, ..., n, ui will be continues function, since it is a finite sum
(difference) of continuous functions.

Step 5. A collection {u1, ..., un}, induced by OSMS method, is a maximum
splitter.

I will prove by contradicting assumption. Let {u1, ..., un} collection be in-
duced by OSMS method. From steps 2 and 3 it follows that {u1, ..., un} ∈
GU and {u1, ..., un} are nonnegative respectively. Suppose that there is an-
other collection {u1, ..., ui−1, u′i, ..., u′n} ∈ GU and (x′1, ..., x

′
i) ∈ Ai such that

u′i(x
′
i, x
′
1, ..., x

′
i−1) > ui(xi, x1, ..., xi−1), that is {u1, ..., un} is not a maximum

splitter. Without loss of generality let U is minimal on (x′1, ..., x
′
i, x̄i+1, ..., x̄n)

vector, i.e., ui(x
′
i, x
′
1, ..., x

′
i−1) = U(x′1, ..., x

′
i, x̄i+1, ..., x̄n) − u(x1) − ... −

ui(x
′
i−1, x

′
1, ..., x

′
i−2). Since u1, ..., un functions are nonnegative then it is easy

to see that {u1, ..., ui, u′i+1, ..., un} is not generated by U . A contradiction.
Easy to see that these steps are sufficient to state that the collection gener-

ated by OSMS is a history-based additive representation of �.

Proof of Theorem B; Uniqueness

Lemma 1 (A.1). If preference relation � satisfies axioms 1-4 then there is a
continuous function U : A → R, unique up to positive affine transformation,
which represents � on A.

Proof. If axioms 1-3 holds then from vNM theorem we have that there is a
continuous function defend on Ac which is unique up to affine transformation
(Kreps 1988 [5]). From Axiom 4 and existence of (ordinal) continuous utility
function on A (Step 1) it follows that there is a continuous function U : A→ R
which is unique up to affine transformation.

Lemma 2. For every U there is a unique maximum splitter collection generated
by U , {u1, ..., un} ∈ GU .

Proof. I will proof by contradiction. Assume there are two different collections
generated by the same U and both are the maximum splitters. Without loss
of generality suppose they are {u1, ..., un} and {u1, ...ui−1, u′1, ..., u′n}. u′i 6= ui,
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which means that there is (x1, ..., xi) ∈ Ai such that either u′i(xi, x1..., xi−1) >
ui(xi, x1..., xi−1) or u′i(xi, x1..., xi−1) < ui(xi, x1..., xi−1). From definition the
maximum splitter collection it follows that either either {u1, ..., un} is not a
maximum splitter collection or {u1, ...ui−1, u′1, ..., u′n} is not a maximum splitter
collection, respectively. A contradiction.

Lemma 3. For every U , {u1, ..., un} ∈ GU is a history-based additive represen-
tation collection of � if and only if it is derived by OSMS method.

Proof. The proof of the if part immediately follows from the proof of Theorem
A. Only if part. On one hand, from Lemma 2 we have that for every U there is
a unique maximum splitter collection generated by U , thus, for that U there is a
unique collection which is a history-based additive representation of �. On the
other hand, for a given U , a collection derived by OSMS method, {u1, ..., un}, is
a history-based additive representation. Therefore, for a given U , the collection
derived by OSMS method is the only history-based additive representation of
� relation.

Proof of the Theorem B, If part.
Let {u1, ..., un} is a history-based additive representation of � and there

are a, b > 0 such that {u′1, ..., u′n} is another history based representation of �
defend as follows: u′1 = au1 + b and u′i = aui,∀i = 2, ..., n. In order to prove
this I need to show that it {u′1, ..., u′n} satisfies the properties of a history-based
additive representation.

Since a, b > 0 and ui ≥ 0,∀i = 1, ..., n then u′i ≥ 0,∀i = 1, ..., n. u′i ≥ 0
are continuous ∀i = 1, ..., n because ui ≥ 0 are continuous ∀i = 1, ..., n. Now
let me show that U ′, derived by (7), represents �. U ′ = u′1 + u′2... + u′n =
au1 +b+au2 + ...+aun = aU+b, so from Lemma 1 it follows that U ′ represents
� as well.

There is left to show that there is U ′ such that {u′1, ..., u′n} is a maxi-
mum splitter with respect to U ′. First I will show that {u′1, ..., u′n} is derived
by OSMS method as well. Note that u′1(x1) is possible to represent by the
following expression; u′1(x1) = au1(x1) + b = aminx2,...,xn∈X U(x1, ..., xn) +
b = minx2,...,xn∈X(aU(x1, ..., xn) + b) = minx2,...,xn∈X U ′(x1, ..., xn). For u′2
we have; u′2(x2, x1) = au(x2, x1) = a(minx3,...,xn∈X U(x1, ..., xn) − u1(x1)) =

minx3,...,xn∈X aU(x1, ..., xn)− a (u′
1(x1)−b)

a = minx3,...,xn∈X(aU(x1, ..., xn) + b)−
u′1(x1) = minx3,...,xn∈X U ′(x1, ..., xn)−u′1(x1). With this intuition we will have,
u′i(xi, x1, ..., xi−1) = minxi+1,...,xn∈X U ′(x1, ..., xn)−u′1(x1)−...−u′i−1(xi−1, x1, ..., xi−2).
So {u′1, ..., u′n} collection is possible to derive by OSMS method, but from the
Theorem A, step 5 we have that the collection derived by OSMS method is
a maximum splitter. Hence {u′1, ..., u′n} collection is a maximum splitter with
respect to U ′.

Only If part.
I need to show that if {u1, ..., un} and {u′1, ..., u′n} are history-based additive

representation collections, then there are a, b > 0 such that u′1 = au1 + b and
u′i = aui for all i = 2, ..., n.
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Having Lemma 2 and Lemma 3 together, we can state that for every U
there is a unique collection which is a history-based representation of � and
that collection is derived by OSMS method.

Since {u1, ..., un} and {u′1, ..., u′n} are two different history-based additive
representing collections, then they should be generated by different U’s, that
is, {u1, ..., un} ∈ GU and {u′1, ..., u′n} ∈ GU ′. Both collections are representing
the same preference relation, �, so U and U ′ must represent � relation as well.
But from Lemma 1 we have that if U and U ′ represents the same preference
relation then U ′ = aU + b for a > 0 and b ∈ R. Since both collections are de-
rived by OSMS method then we have; u′1(x1) = minx2,...,xn∈X U ′(x1, ..., xn) =
minx2,...,xn∈X(aU(x1, ..., xn)+b) = aminx2,...,xn∈X U(x1, ..., xn)+b = au1(x1)+
b, u′2(x2, x1) = minx3,...,xn∈X U ′(x1, ..., xn)−u′1(x1) = minx3,...,xn∈X(aU(x1, ..., xn)+
b)−(au1(x1)+b) = aminx3,...,xn∈X U(x1, ..., xn)−au1(x1) = au2(x2, x1). Recur-
sively we can show u′3 = au3, ..., u

′
n = aun. Since both collections are history-

based additive representations, then ui ≥ 0 and u′i ≥ 0, so a ≥ 0 and b is
essentially nonnegative.
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