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and apply larger discounts to reported performance in high dispersion environ-
ments. Our empirical results are consistent with this prediction. Using fund
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1. Introduction

After 50 years of research on the performance of active mutual funds, a remarkable
consensus exists: the vast majority of active mutual funds do not outperform. The
evidence is consistent across three separate strands of research: the hypothesis testing
literature, the literature on classifying funds into different performance groups, and
the Bayesian performance evaluation literature.1

Investors face the problem of sorting the outperforming funds from the majority of
poorly performing funds. Investors do not want to invest in a poorly performing asset
manager (a Type I error), but neither do they want to miss an outperforming manager
(Type II error).2 In this context, we show that cross-sectional dispersion of manager
returns is an important state variable that influences the trade-off between Type I
and Type II errors, and argue that cross-sectional dispersion of returns is information
investors use in making manager-selection decisions. In periods of high cross-sectional
dispersion, unskilled managers can easily be disguised as skilled, leading investors to
be more skeptical of outperforming funds and to consequently discount fund alphas
more harshly.

Motivated by the literature that classifies funds into performance groups (Barras,
Scaillet, and Wermers, 2010; Ferson and Chen, 2017; and Harvey and Liu, 2018), we
build a model that assumes fund alphas are drawn from several subpopulations, with
one subpopulation being the zero-alpha population. In addition, we assume the ma-
jority of funds come from the zero-alpha population, consistent with the main finding
of the literature. Within this context, zero-alpha funds can still generate a non-zero
estimated alpha by taking on idiosyncratic risk over a given period of time. We show
that the average level of idiosyncratic risk for zero-alpha funds, which is closely re-
lated to cross-sectional return dispersion, determines the amount of shrinkage that
rational investors apply in discounting the alphas of outperforming funds.3

1See Kosowski, Timmermann, Wermers, and White (2006), Barras, Scaillet, and Wermers (2010),
Fama and French (2010), and Harvey and Liu (2017) for the hypothesis testing literature, Barras,
Scaillet, and Wermers (2010), Ferson and Chen (2017), and Harvey and Liu (2018) for the literature
on classifying funds into performance groups, and Baks, Metrick, and Wachter (2001), Pastor and
Stambaugh (2002b), Jones and Shanken (2005), Avramov and Wermers (2006), Busse and Irvine
(2006), Kosowski, Naik, and Teo (2007), Avramov, Kosowski, Naik, and Teo (2011), and Harvey
and Liu (2018) for the Bayesian performance evaluation literature.

2In our paper, we sometimes refer to funds as managers, although we do not observe managers.
Funds could have more than one manager or experience turnover in managers.

3The shrinkage of fund alphas is the key insight highlighted several existing papers, includ-
ing Pastor and Stambaugh (2002b), Jones and Shanken (2005), Cohen, Coval, and Pastor (2005),
Avramov and Wermers (2006), Busse and Irvine (2006), Mamaysky, Spiegel, and Zhang (2007),
Barras, Scaillet, and Wermers (2010), and Harvey and Liu (2018).
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Whereas our model provides unambiguous predictions about how the average
level of idiosyncratic risk among zero-alpha funds affects performance evaluation, we
cannot directly observe this level because we do not know which funds are zero-alpha
funds. We propose to represent the level of idiosyncratic risk with a simple metric:
the inter-quartile range (IQR) of the cross-section of all fund returns. We argue that
IQR is intuitively appealing because it succinctly captures the range of performance
among funds — most of which, given the prior literature, are mediocre performers
at best. As such, IQR gives investors a sense of the variation in performance that
should be expected based on luck alone.

We provide simulation-based evidence that shows a very high time-series cor-
relation between IQR and the average level of idiosyncratic risk of the zero-alpha
funds. Using IQR as a proxy for return dispersion, we test the main prediction of
our model by examining the relation between future fund flows and past fund per-
formance, which is known as the flow-performance sensitivity, and show that return
dispersion negatively affects this relation. The impact is economically significant: a
one-standard-deviation increase in return dispersion reduces flow-performance sensi-
tivity by 11% to 17%, depending on the benchmark model we use to estimate alpha.
Hence, our paper provides direct flow-based evidence on the relevance of the infer-
ence problems highlighted by the aforementioned three strands of literature from a
revealed-preference perspective (Berk and van Binsbergen, 2016; Barber, Huang, and
Odean, 2016; Agarwal, Green, and Ren, 2018).

Our results are robust across different alpha estimation methods and are stronger
for the more recent data. This is consistent with the view that investors have learned
through time and that the fraction of non-performing funds is larger today than in
the past. We also show that convexity in the flow-performance relation does not
explain our results. Instead, our results suggest that flows to outperforming funds
are especially sensitive to return dispersion. Lastly, we study how percentile alpha
rankings affect our results. Interestingly, while return dispersion remains important
after controlling for alpha rankings, alpha rankings lose their power to predict fund
flows. Indeed, our model of return dispersion provides an economic interpretation to
the finding that alpha rankings help predict fund flows.

Our paper is related to and motivated by the recent literature on performance
evaluation.

Our model can be interpreted within an hypothesis testing framework, following
Kosowski, Timmermann, Wermers, and White (2006), Barras, Scaillet, and Wermers
(2010), Fama and French (2010), Ferson and Chen (2017), and Harvey and Liu (2017).
These papers study performance evaluation from a multiple testing perspective, ar-
guing that outperforming funds must surpass a statistical threshold, which is tougher
than the usual threshold, to declare significance due to the large number of funds
in the cross-section. We show that return dispersion affects this threshold. All else
equal, a higher return dispersion makes it easier for a typical zero-alpha fund to be
cloaked as a fund whose managers have skill, resulting in a higher Type I error (i.e.,
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falsely identifying zero-alpha funds as good). As a result, rational investors should
apply a tougher threshold to control the Type I error rate at a desired level.

We present our model within a Bayesian framework. Suppose investors view fund
managers as coming from several subpopulations, with the zero-alpha population
being one of the subpopulations. In this setup, we show that a Bayesian investor’s
prior on the average level of idiosyncratic risk of zero-alpha funds, which is the main
driver of cross-sectional return dispersion, is important for their decision making. A
higher prior level of the average idiosyncratic risk leads to a lower posterior mean
for funds with large (positive) alphas, implying a more aggressive discount of the
alphas for these funds and thus a weaker flow-performance sensitivity. Our model
thus differs from existing Bayesian models by focusing on the time-varying impact of
cross-sectional return dispersion on perceived performance.4

Our research also complements the literature that models the cross-section of
funds’ performance by classifying funds into distinct performance groups. On the one
hand, we build on the premise that the majority of funds have a zero alpha, which
is consistent with the previous empirical consensus. On the other hand, whereas
recent research focuses on the estimation of the cross-sectional distribution of funds’
performance, we pay particular attention to the role of return dispersion in influencing
the classification of funds.

Importantly, instead of trying to infer the cross-sectional distribution of skill from
an econometrician’s perspective — as the aforementioned three strands of literature
do — we follow the recent literature on revealed preference to test the predictions of
our model. As such, we are able to ascertain the information that motivates investors
from a real-world asset allocation perspective.

Our paper also adds to the recent literature that takes a closer look at flow-
performance sensitivity. Franzoni and Schmalz (2017) study how uncertainty about
risk loadings on benchmark factors affects investors’ capital-allocation decisions. Starks
and Sun (2016) examine the implications of economic policy uncertainty on flow-
performance sensitivity. We show that our results are robust to the inclusion of risk
loading uncertainty and economic policy uncertainty.

Kim (2017) examines the impact of cross-sectional standard deviation of perfor-
mance on the convexity of the flow-performance relationship. She finds that convexity
is reduced following periods of low cross-sectional standard deviations of performance.
In contrast to Kim’s work, we show that the usual flow-performance sensitivity is
strengthened following periods of low return dispersion.

4The existing Bayesian applications to performance evaluation (e.g., Baks, Metrick, and Wachter,
2001; Pastor and Stambaugh, 2002b; Jones and Shanken, 2005; and Harvey and Liu, 2018) assume
a constant idiosyncratic risk for each fund and use the time-series history of fund returns to make
inference on the fund’s idiosyncratic risk (together with the prior distribution on fund alphas).
In contrast, our model highlights time-varying idiosyncratic risk and focuses on the problem of
inferring a fund’s alpha and risk over a relatively short period of time (e.g., a year), consistent with
the literature on flow-performance sensitivity.
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Finally, although we focus on a single important variable — return dispersion
— that appears to influence investors’ capital-allocation decisions, other candidate
variables implied by the previous literature on performance evaluation potentially
exist. Past research mainly focuses on what investors should do to evaluate fund
managers, whereas our paper provides an example of what investors are actually
doing.

The remainder of the paper is organized as follows. Section 2 presents our model
that links return dispersion to flow-performance sensitivity. Section 3 tests our model
predictions by empirically examining flow-performance sensitivity. Some concluding
remarks are offered in the final section.

2. Model

2.1. A simple model of return dispersion

We present a model that links cross-sectional return dispersion to individual fund
performance. In particular, we assume the population of fund managers consists of
several subpopulations, each characterized by a specific value of alpha (Barras, Scail-
let, and Wermers, 2010; Ferson and Chen, 2017; and Harvey and Liu, 2018). This
view of the population provides a convenient, yet realistic, way to classify funds into
performance groups. Meanwhile, building on the insights from the literature that
uses hypothesis testing to evaluate fund performance (Kosowski, Timmermann, Wer-
mers, and White, 2006; Barras, Scaillet, and Wermers, 2010; and Fama and French,
2010), we assume the majority of funds have an alpha indistinguishable from zero.
Finally, following the Bayesian performance evaluation literature (Baks, Metrick, and
Wachter, 2001; Pastor and Stambaugh, 2002b; Harvey and Liu, 2018), we study the
inference problem faced by Bayesian investors who learn about manager skill by using
both past fund performance as well as information about the cross-section of fund
returns.

We cast our model within a Bayesian framework. Similar to existing models that
study flow-performance sensitivity (Berk and Green, 2004; Huang, Wei, and Yan,
2012; Starks and Sun, 2016; and Franzoni and Schmalz, 2017), we focus on our
model’s implications for the posterior mean of alpha.

More specifically, we begin by assuming that investors view fund managers as
coming from two subpopulations: one with α0 = 0, and the other with αh > 0, where
‘0’ represents unskilled or zero alpha and ‘h’ is high alpha. We further assume that
by observing a fund’s return history over the past T periods, investors infer whether
the fund exhibits no skill (i.e., α0 = 0) or skill (i.e., αh > 0). The prior masses of
the two subpopulations are Π0 and Πh, with Π0 + Πh = 1. Given the priors and
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past performance, investors come up with a perceived alpha, which we refer to as the
posterior mean of alpha.

Note that our model abstracts from two complications that arise in performance
evaluation. First, although some disagreement exists over the number of subpopu-
lations that best describe the cross-section of funds, we choose to use the two-group
classification. Our model, however, can be easily extended to accommodate more than
two groups of managers. Second, we abstract from issues related to the adjustment
for benchmark risk factors.

The group of funds with no skill can still generate non-zero performance because
of idiosyncratic risk. Moreover, intuitively, the cross-sectional dispersion of returns
across all funds should be positively correlated with the mean level of idiosyncratic
risk. While we examine the cross-sectional dispersion of returns in our empirical
analysis, our model focuses on idiosyncratic risk for analytical tractability. We later
provide simulation-based evidence that shows the cross-sectional dispersion of returns
does indeed have a strong positive correlation with the mean level of idiosyncratic risk.
We thus view cross-sectional return dispersion and the average level of idiosyncratic
risk as interchangeable in our framework.

To model the cross-sectional distribution of idiosyncratic risk conditional on α0,
we assume that the prior distribution (from the investors’ perspective) of idiosyn-
cratic variance is given by an inverse-gamma distribution, IG(λ, θ0), where λ is the
shape parameter and θ0 is the scale parameter.5 The inverse-gamma distribution
is a standard conjugate prior for the variance parameter in Bayesian analysis. We
adopt it to obtain an analytically tractable posterior distribution. The main message
of our model — an increase in return dispersion is associated with a reduction in
flow-performance sensitivity — applies when we use other distributions.6

Similarly, we assume that the prior distribution of idiosyncratic risk conditional
on αh is given by another inverse-gamma distribution IG(λ, θh). Notice that, for sim-
plicity, we assume this inverse-gamma distribution shares the same shape parameter
as the prior distribution under α0 = 0. This assumption allows us to focus on the
scale parameters (i.e., θ0 and θh) that affect the means of the inverse-gamma distri-

5The probability density function for the inverse-gamma distribution IG(λ, θ0) is p(x|λ, θ0) =
θλ0

Γ(λ)x
−λ−1 exp(− θ0x ) for x > 0. While both λ and θ0 are needed to determine the mean (= θ0

λ−1 , λ >

1) of the distribution, λ is usually referred to as the shape parameter as it has a large impact on the
shape of the density function and θ0 is called the scale parameter.

6When a non-conjugate prior is used, the posterior distribution, which is no longer analytically
tractable, can be obtained through Gibbs sampling (see, e.g., Jones and Shanken, 2005).
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butions.7 Throughout our analysis, we will fix λ and explore how the variations in θ0

and θh affect performance evaluation.

We choose to model θ0 and θh separately for several reasons. First, zero-alpha
funds and positive-alpha funds, on average, may choose different levels of risk (Huang,
Sialm, and Zhang, 2011), and modeling θ0 and θh separately allows for this possibility.
Second, although we are using a proxy (i.e., cross-sectional alpha dispersion) for θ0

in our empirical analysis (and we do not have a proxy for θh), we believe studying
the related theoretical implications for θh can provide valuable information. Indeed,
we later show different implications of θ0 and θh on flow-performance sensitivity.
And third, the main prediction of our model (i.e., how return dispersion affects flow-
performance sensitivity) is still valid if we assume a common factor drives both θ0

and θh, as we shall discuss when we calibrate our model.

Finally, we assume that a fund’s returns follow an i.i.d. normal distribution with
mean α and standard deviation σ. As such, the conditional likelihood function of a
fund’s returns (conditional on α and σ) over the past is given by:

p(R|α, σ) = (2πσ2)−T/2 exp(−
∑T

t=1(Rt − α)2

2σ2
),

where R = (R1, R2, ..., . . . , RT )′ is the vector of fund returns (we suppress the fund
subscript because we are considering a generic fund).

In contrast to the research that uses the Bayesian framework to study performance
evaluation, our model highlights the impact of idiosyncratic risk on the inference of
alpha. A strand of literature on unconditional performance evaluation also uses large
samples to estimate the idiosyncratic risk of a fund. Assuming a constant idiosyncratic
risk over the lifetime of a fund, this unconditional performance evaluation approach
allows researchers to estimate idiosyncratic risk (i.e., second moment) with a much
higher precision than they are able to estimate alpha (i.e., first moment). Our model,
differing from that approach, is best understood within a conditional performance
evaluation framework, where T is a relatively short period of time (e.g., one year).8

Adopting such a framework makes our model compatible with the literature on mutual

7Unlike a normal distribution, for which the mean and the standard deviation are parameter-
ized separately and are independent of each other, the scale parameter θ for an inverse-gamma
distribution affects both its mean and its standard deviation. Although we could use a different
parameterization of the inverse-gamma distribution that would allow us to vary the mean of the
distribution without affecting the variance, such a parameterization is inconsistent with the obser-
vation that an increase in the mean of idiosyncratic risk is often accompanied by an increase in the
standard deviation. Notice that our model’s implications are the same under such an alternative pa-
rameterization, which highlights the importance of the mean level of idiosyncratic risk impacting the
performance evaluation. We therefore focus on the standard parameterization of the inverse-gamma
distribution and examine the impact of θ on the mean of the distribution.

8For more information on conditional performance evaluation, see, e.g., Ferson and Schadt
(1996), Ferson and Warther (1996), Christopherson, Ferson, and Glassman (1998).
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fund flows for which the flow-performance sensitivity is shown to be much higher over
the short run than over the long run.

Given our focus on the relatively short-run performance, inferring a fund’s id-
iosyncratic risk is challenging. First, mutual funds may substantially change their
risk levels over time (Huang, Sialm, and Zhang, 2011; and Huang, Wei, and Yan,
2012),9 making it difficult for investors to reliably infer a fund’s idiosyncratic risk in a
timely fashion. Second, and more fundamentally, the fact that a stock’s idiosyncratic
risk is time-varying is well documented (see, e.g., Fu, 2009) and in addition, has a
common factor (Herskovic, Kelly, Lustig, and Van Nieuwerburgh, 2016). Lastly, fund
investors with limited resources and limited attention may simply rely on the most
recent quarterly or annual shareholder reports to learn about a fund’s performance.10

The limited return information offered by these reports creates additional challenge
in inferring a fund’s risk. To address the challenge of inferring a fund’s idiosyncratic
risk, our model assumes that Bayesian investors use information in the cross-section
to aid in this endeavor. In particular, they use cross-sectional return dispersion —
which our model links to the average idiosyncratic risk of zero-alpha funds — in order
to elicit a prior on idiosyncratic risk.

We can summarize the assumptions in our model as follows: An investor has a
dichotomous prior on a fund’s alpha (i.e., α0 = 0 vs. αh > 0), with the corresponding
prior probability masses of Π0 and Πh; conditional on the level of alpha, the prior
distribution of σ2 is either IG(λ, θ0), if α0, or IG(λ, θh), if αh. Additionally, an
investor observes a fund’s returns over the past T periods and infers a fund’s alpha
by combining information from both the fund’s recent financial data and the investor’s
prior on the fund’s idiosyncratic risk.11

Based on the preceding assumptions, we first derive the (posterior) distribution
for a fund’s alpha, established by Proposition 1.

9See Ang (2014), Chapter 16 for an illustration of time-varying fund risk taking.
10Although mutual fund holdings data are available (at least for the more recent sample), investors

may still care more about actual performance than holdings-implied performance given the gap
between them that is potentially caused by unobserved actions of mutual funds (Kacperczyk, Sialm,
and Zheng, 2008.)

11Note that papers in the Bayesian performance evaluation literature entertain different priors
that reflect alternative sources of information that investors could use to better estimate alphas. For
example, Jones and Shanken (2005) assume fund alphas are drawn from a time-invariant normal
distribution while being agnostic about fund idiosyncratic risk (i.e., a non-informative prior). As
another example, Pastor and Stambaugh (2002b) adopt a framework in which prior views about
asset pricing models can be incorporated into the investment decision. To achieve model parsimony,
we focus on the prior on the fund’s idiosyncratic risk to study the impact of return dispersion and
do not include the alternative priors that are proposed by the literature.
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Proposition 1. The posterior probability distribution of a fund’s alpha is given by:

p(α|R) =


1

1 + (
θ0

θh
)λ ·
(IV OL2 + (R̄− αh)2 + 2θh/T

IV OL2 + R̄2 + 2θ0/T

)T
2

+λ · Π0

Πh

, if α = αh,

1− p(αh|R), if α = α0,

where R̄ =
∑T

t=1Rt

T
is the fund’s mean return and IV OL =

√∑T
t=1(Rt−R̄)2

T
is the fund’s

standard deviation. The posterior mean (i.e., E(α|R)) is therefore αh × p(αh|R).12

Proof. See Appendix A.1.

Note that because the basic presentation of our model has no risk adjustment,
IV OL is the same as the standard deviation of returns.

To gain more insight into Proposition 1, we consider a special case in which θ0 = θh,
that is, we assume the same prior dispersion of returns across the two groups of funds.
We can show in a straightforward manner that p(αh|R) is decreasing in IV OL, if
R̄ > αh/2, and increasing in IV OL, if R̄ < αh/2. This result can be interpreted
in a hypothesis testing framework, such that when R̄ > αh/2, an investor will likely
classify the fund as a good fund. Simultaneously, however, the investor is worried
about a Type I error, or falsely classifying a zero-alpha fund as a good fund. An
increase in the fund’s IV OL would exacerbate this concern and lead the investor to
reduce p(αh|R). Similarly, when R̄ < αh/2, an investor is likely to classify the fund
as a zero-alpha fund, but is simultaneously concerned about a Type II error. An
increase in the fund’s IV OL would makes an investor less confident about classifying
the fund as a zero-alpha fund, resulting in an increase in p(αh|R).

In the context of our paper, we are more interested in the comparative statics
related to θ0 and θh. Proposition 2 establishes these.

Proposition 2. For each level of IV OL, there exists a lower bound on R̄ (denoted

as R̄∗) such that when R̄ > R̄∗, we have the following relations:

∂E(α|R)

∂θ0

< 0,
∂E(α|R)

∂θh
> 0.

Proof. See Appendix A.2.

12Because we set α0 at zero, E(α|R) = α0 × p(α0|R) + αh × p(αh|R) = αh × p(αh|R).
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Figure 1: The Probability of Classifying a Fund as Good. We illustrate Proposition 2 by
plotting the posterior probability (p(αh|R)), as given in Proposition 1, against different levels of√
θ0 (Panel A) and

√
θh (Panel B). For both panels, we fix R̄ at 10%, IVOL at 15%, and Π0 at 0.8.

For Panel A, we fix θh at 0.12. For Panel B, we fix θ0 at 0.12.

Because E(α|R) is simply αh× p(αh|R) in our model, we plot p(αh|R) against θ0

and θh in Fig. 1 to illustrate Proposition 2. We focus on an outperforming fund and
fix its mean (R̄ = 10%) and standard deviation (IV OL = 15%). We also fix αh at
5% and Π0 at 80%. We examine how changes in θ0 and θh influence the probability
of classifying the fund as a good fund, p(αh|R).

Focusing on Panel A of Fig. 1, in which we fix θh at 0.12, when θ0 increases,
p(αh|R) changes from around 0.8 to less than 0.1. When

√
θ0 is very low (i.e., around

5%), the expected value of idiosyncratic risk for zero-alpha funds is low, making it
difficult for a zero-alpha fund to achieve a high average return (i.e., R̄ = 10%). As a
result, Bayesian investors attribute the good performance to skill and assign a high
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probability to the manager as being skilled. In contrast, when
√
θ0 is very high

(i.e., around 20%), the expected value of idiosyncratic risk for zero-alpha funds is
high, making it easier for a zero-alpha fund to achieve the average return of 10% by
drawing a higher risk from the inverse-gamma distribution. Consequently, investors
assign a lower probability to the manager as being skilled.

Notice that when
√
θ0 is large (i.e., around 20%), p(αh|R) can be as low as 0.1,

even if R̄ is closer to αh = 5% than to zero. The intuition for this result is as
follows. Bayesian investors are comparing the probabilities of two scenarios. One
scenario is the case of a zero-alpha fund drawing a very large idiosyncratic variance,
with a mean of 0.22, from the inverse-gamma distribution and achieving 10% (=
10%−0%) outperformance. The second scenario is the case of a good fund (i.e., αh =
5%) drawing a still somewhat large idiosyncratic variance from the inverse-gamma
distribution, with a mean of 0.12, and achieving 5% (= 10% − 5%) outperformance.
We find that the first scenario is more likely to occur than the second scenario, which,
combined with the fact that the majority of funds are believed to be zero-alpha funds
(i.e., Π0 = 0.8), leads investors to assign a small probability to the manager as being
skilled. Our results, therefore, highlight the implication that in a high dispersion
environment, a seemingly outperforming fund, whose performance may exceed the
benchmark performance of managers that are regarded as skilled, can still be classified
as a zero-alpha fund rather than as a skilled fund.

Similar arguments can be used to explain Panel B of Fig. 1, in which we fix θ0 at
0.12. When θ0 is fixed, a higher θh makes it more likely for a good fund to achieve
5% (= 10% − 5%) outperformance, leading Bayesian investors to assign a higher
probability to the manager as being skilled. Although interesting from a theoretical
perspective, we cannot test the implications of Panel B empirically because we do not
have a proxy for θh. We focus on the implications of Panel A in our empirical work.

In addition to interpreting Proposition 2 from an analytical (i.e., Bayesian) per-
spective, we also provide a simpler explanation using the intuition from the hypothesis
testing framework.

For the population of funds with a zero alpha, a higher θ0 is associated with
a higher dispersion of fund returns in the cross-section, which creates difficulty for
investors to tell the good from the bad. More specifically, all else being equal, a
higher θ0 makes it easier for a typical zero-alpha fund to be disguised as a fund with
skill, resulting in a higher Type I error (i.e., identifying a zero-alpha fund as good) for
investors if they do not take into account the change in θ0. Equivalently, assuming
that investors have information about θ0 and incorporate this information into their
priors, they will discount fund alphas more harshly (i.e., a lower E(α|R)) when θ0

becomes higher in order to reduce Type I error. This is the main hypothesis we test
in our empirical work.

A similar intuition applies to θh. For the population of funds with a positive alpha
(i.e., αh), a higher θh results in a higher dispersion of positive-alpha fund returns,
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which means that a larger fraction of these funds will have bad luck and generate a
return closer to α0 = 0 rather than to αh. As a result, all else being equal, a higher θh
results in a higher Type II error (i.e., identifying a good fund as having zero alpha)
for investors if they do not take into account the change in θh. If investors have
information about the change in θh, they will discount fund alphas less harshly (i.e.,
a higher E(α|R)) corresponding to an increase in θh in order to reduce Type II error.

Lastly, we establish the comparative statics for IV OL.

Proposition 3. Fixing θ0 and θh, a lower bound on R̄ (denoted as R̄†) exists such

that when R̄ > R̄†, we have:
∂E(α|R)

∂IV OL
< 0.

Proof. See Appendix A.3.

The intuition for this result was previewed in our discussion of Proposition 1. For
funds with a sufficiently large R̄, although perhaps inclined to classify them as α = αh,
investors concerned about a Type I error will lower E(α|R) if IV OL increases.

Notice that Proposition 3 is different from the usual result that the appraisal ratios
and t-statistics — commonly used performance metrics that take risk into account
— are negatively correlated with IV OL (Sirri and Tufano, 1998; and, Huang, Wei,
and Yan, 2012).13 Our result in Proposition 3 makes a statement about the perceived
alpha level, as opposed to the estimated alpha scaled by IV OL, as in appraisal ratios.
In our empirical analysis, however, in which we study flow-performance sensitivity,
we are not able to distinguish between Proposition 3 and the risk channel (i.e., fewer
flows go to funds with a higher level of IV OL, holding alpha constant). We therefore
list Proposition 3 for completeness and point out that the impact of IV OL on alpha
level, as documented in Proposition 3, may reinforce the risk channel (i.e., investors
discount funds with a lower appraisal ratio, holding the estimated alpha constant),
which we may not be able to distinguish empirically.

Overall, our model links return dispersion to idiosyncratic risk. If idiosyncratic
risk for zero-alpha funds is high, then return dispersion is high (because the majority
of funds have a zero alpha). This is represented by a high θ0, which is the average
idiosyncratic variance among zero-alpha funds.

Our model focuses on one representation that links return dispersion to idiosyn-
cratic risk. In a more general framework, the amount of idiosyncratic risk is en-
dogenously chosen by funds, with skilled and unskilled managers potentially having

13The appraisal ratio divides alpha estimate by idiosyncratic risk, whereas the t-statistic divides
alpha estimate by its standard error, which takes into account the covariance structure among the
regressors.
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different incentives for selecting a level of risk due to, for example, the convex flow-
performance relation and manager career concerns (see Brown, Harlow, and Starks,
1996; Chevalier and Ellison, 1997; Huang, Sialm, and Zhang, 2011, and the references
therein). Our model abstracts from this endogenous choice problem by focusing on
how return dispersion (or, equivalently, the average idiosyncratic risk of unskilled
managers) affects capital allocation from an investors’ perspective.

2.2. Model calibration

We perform a calibration exercise on our model by setting the scale parameters of
θ0 and θh at different levels and examining how changes in the levels influence the
relation between E(α|R) and R̄, that is, the sensitivity of the perceived performance
(i.e., E(α|R)) to the estimated performance (i.e., R̄). Assuming that investors allocate
funds based on perceived performance, this relation is directly related to the flow-
performance sensitivity analysis we conduct in our empirical analysis.

The baseline values for θ0 (mean level of idiosyncratic variance for zero-alpha
funds) and θh (mean level of idiosyncratic variance for positive-alpha funds) are both
set at 0.12, indicating an annualized idiosyncratic risk of 10% for the average fund
in either group of funds, which is consistent with the historical data.14 Fig. 2 shows
how changes in θ0 and θh (changed θ0 and θh are denoted by θ̃0 and θ̃h) affect the
sensitivity of E(α|R) (i.e., perceived performance) to R̄ (i.e., estimated performance).

Panels A and B in Fig. 2 show that the perceived performance becomes much less
sensitive to the estimated performance when θ0 is raised from 0.12 to 0.22, whether Π0

is set at 0.8 (Panel A) or 0.9 (Panel B). In our empirical analysis, we use cross-sectional
return dispersion (more specifically, the IQR for the cross-section of alphas) to proxy
for
√
θ0. The peak and trough levels for the time-series of our measure are 38% and

4%,15 respectively, suggesting that a 100% (=0.2/0.1) change in
√
θ0 is not unusual.

Given this increment in θ0, the change in sensitivity of the perceived performance to
the estimated performance is substantial. For example, when Π0 = 0.8, using the
slope of a straight line that connects the two endpoints of the perceived performance
curve to approximate sensitivity,16 the sensitivity of the perceived performance to
the estimated performance changes from 0.007/0.15 (at θ0 = 0.12) to 0.004/0.15 (at
θ̃0 = 0.22), implying a 43% (= 0.003/0.007) reduction in slope.

14The average level of return dispersion across all funds ranges from 7.4% to 11.0%, depending
on the benchmark factor model used. We thus set

√
θ0 and

√
θh at 10%.

15These levels are based on the CAPM-adjusted alpha.
16In particular, let the perceived performance at observed performance = 0 and observed perfor-

mance = 0.15 be p0 and p1, respectively, then the slope of the straight line that connects the two
endpoints of the perceived performance curve is given by p1−p0

0.15 .
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Figure 2: Model Calibration: Sensitivity of Perceived Performance (E(α|R)) to
Observed Performance (R̄). We plot the perceived performance against the observed
performance based on our model presented in Section 2.1 under various specifications of θ0

(mean level of idiosyncratic variance for zero-alpha funds), θh (mean level of idiosyncratic
variance for positive-alpha funds) and Π0 (fraction of zero-alpha funds). The corresponding
specifications for Panel A are solid line (θ0 = 0.12, θh = 0.12,Π0 = 0.8) and dashed line
(θ0 = 0.22, θh = 0.12,Π0 = 0.8); for Panel B are solid line (θ0 = 0.12, θh = 0.12,Π0 = 0.9)
and dashed line (θ0 = 0.22, θh = 0.12,Π0 = 0.9); for Panel C are solid line (θ0 = 0.12, θh =
0.12,Π0 = 0.8) and dashed line (θ0 = 0.22, θh = 0.22,Π0 = 0.8); and for Panel D are solid
line (θ0 = 0.12, θh = 0.12,Π0 = 0.8) and dashed line (θ0 = 0.12, θh = 0.22,Π0 = 0.8). αh is
set at 5% per annum.
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A closer inspection of Panels A and B in Fig. 2 reveals that while both the re-
duction of large alpha estimates (e.g., observed performance around 0.15) and the
markup of small alpha estimates (e.g., observed performance around zero) contribute
to the change in slope, the former represents a more important contribution, high-
lighting Proposition 2, in particular, ∂E(α|R)

∂θ0
< 0. Notice that this depends on the

range of the alpha estimates we include in the graphs. Given that a 15% annual alpha
estimate is not an uncommon observation in the cross-section of funds,17 we use 15%
as the limit for the alpha estimate in our graphs. The inclusion of even larger alpha
estimates would make our result (i.e., the reduction in slope) stronger.

Panel C shows that when both θ0 and θh are increased by the same factor, the
sensitivity of the perceived performance to the observed performance still moves lower
(slope flattens), while Panel D shows that when only θh is increased, this sensitivity
generally increases. The pattern shown in Panel D is consistent with Proposition 2,
in particular, ∂E(α|R)

∂θh
> 0.

Panel C shows that when θ0 = θh, an increase in θ0 (and hence an equal increase in
θh) lowers the sensitivity of the perceived performance to the estimated performance.

This result holds true in general in our model (i.e., ∂E(α|R)
∂θ0

< 0 when θ0 = θh),
although we do not formally establish this as a proposition in Section 2.1.

While our calibration exercise in Fig. 2 assumes a small fraction of outperforming
funds, which is consistent with recent papers such as Barras, Scaillet, and Wermers
(2010), Ferson and Chen (2017) and Harvey and Liu (2018), we also explore alter-
native parameterizations of our model in Appendix B. In particular, we show in Fig.
B.1 that our calibration results are robust when a larger fraction of fund managers
are skilled but less so (i.e., αh = 2.5%) than what we assume in Fig. 2 (i.e., αh = 5%).

Overall, our calibration results show the economic importance of θ0 and θh in
affecting the sensitivity of the perceived performance to the observed performance.
The results also highlight the differential impact of θ0 and θh on this sensitivity: while
an increase in θ0 lowers the sensitivity, an increase in θh implies the opposite pattern.
In our empirical analysis, although we do not have an empirical measure of θh, we use
a measure of cross-sectional return dispersion to proxy for θ0. Given the differential
impact of θ0 and θh on flow-performance sensitivity, it is crucial to ensure that our
measure of θ0 is not contaminated by θh. We later provide simulation evidence that
shows our measure of cross-sectional return dispersion has near-perfect correlation
with θ0 and a low correlation with θh from a time-series perspective.

17About 4.5% of fund-month observations in our sample have an annual CAPM-ajusted alpha
estimate of no less than 15%.
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2.3. Measuring return dispersion

Our model shows that investors’ predictions about alpha are influenced by cross-
sectional dispersion of returns and are different across θ0 and θh. Whereas a larger
θ0 implies a more aggressive discount of funds with large alphas (and hence a lower
flow-performance sensitivity), a larger θh implies the opposite. Crucially, therefore,
our measure of θ0 must not be contaminated by θh. Achieving this requirement is
a challenge. Ideally, we group funds into performance categories and calculate the
within-group IVOL — but how do we make the initial classification?

We propose a simple proxy for
√
θ0 based on the cross-section of alphas. In

particular, we use the IQR of the cross-section of alphas. Later, we will define alpha as
either the mean excess return over a simple benchmark (either the risk-free rate or the
market) or the factor-model-adjusted alpha over the past year.18 Our focus on annual
alpha is consistent with the literature on flow-performance sensitivity. Compared to
higher-frequency alphas, a one-year focus also allows a sufficient amount of time for
investors to absorb information in the cross-section. To summarize, at the end of each
month t, we obtain the IQR of the cross-section of alphas estimated over the past year.
We use this monthly measure of return dispersion to predict future flow-performance
sensitivity.

We believe that the return dispersion of mutual funds is the type of information
investors consider in making fund-selection decisions. Further, given previous evi-
dence that the vast majority of funds are unskilled, the dispersion measured by the
IQR is largely representing the unskilled funds.

In Appendix C, we provide simulation-based evidence to further justify our use of
the IQR. In particular, we simulate the panel of returns for a cross-section of funds
that are drawn from two (or three) subpopulations, with the idiosyncratic risk for
funds within each subpopulation following a separate inverse-gamma distribution.
Moreover, the means of these inverse-gamma distributions are time-varying. When
the majority of funds are drawn from the zero-alpha population, we show that the
IQR for the entire cross-section of funds closely tracks the time-varying mean level of
idiosyncratic risk (i.e.,

√
θ0) for funds with a zero alpha. Indeed, the contemporaneous

correlation is close to one under various parameterizations of our model.19 In contrast,
our measure of return dispersion has a very low time-series correlation with

√
θh.

20

18See Section 3.1 for details.
19In contrast, the cross-sectional standard deviation of alphas (e.g., Kim, 2017) has a much lower

correlation with the mean level of idiosyncratic risk for zero-alpha funds.
20We use two methods to simulate the panel of returns in Appendix C. The first approach (Panel

A and Panel B) assumes a constant αh (alpha for skilled managers) but allows θ0 (the mean id-
iosyncratic variance among zero-alpha funds) and θh (the mean idiosyncratic variance among skilled
funds) to vary across time. The second approach allows αh to vary across time by assuming that
αh is perfectly correlated with the time-varying θh, capturing the idea that skilled managers may
create more value when they take more risk.
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The intuition for the performance of the IQR in tracking the average level of id-
iosyncratic risk for zero-alpha funds is straightforward. As Alizadeh, Brandt, and
Diebold (2002) demonstrate, range-based statistics provide a good approximation to
time-varying volatilities. In our context, however, extreme returns are more likely to
be generated by funds with non-zero alphas, so range-based statistics that depend
on extreme returns (e.g., maximum minus minimum) are not very useful in approx-
imating the average level of idiosyncratic risk for zero-alpha funds.21 In contrast,
range-based statistics that rule out extreme returns (e.g., IQR) are more likely to be
representative, because the majority of funds are assumed to have a zero alpha.

2.4. Model implications

We cast our model within a Bayesian framework in which Bayesian investors, en-
dowed with priors (governed by θ0 and θh) on the levels of idiosyncratic risk taken
by zero-alpha and positive-alpha funds, estimate fund alphas through their posterior
distributions. How do we test our model predictions with the data?

Because it is well documented that mutual fund investors have a certain degree
of recency bias (i.e., their investment decisions are sensitive to recent fund alphas),
we construct a time-varying measure of return dispersion, θ0t, based on recent fund
alphas. Our model implies that investors should take θ0,t into account when adjusting
fund alphas, resulting in a certain degree of flow-performance sensitivity (termed
st+1) that can be estimated using future data (i.e., data at time t+ 1). Our empirical
analysis therefore studies whether θ0,t predicts st+1 (in particular, how the interaction
between θ0,t and past alpha predicts st+1).

Note that we are taking an empirical Bayes perspective to test our model’s impli-
cations in that we are assuming investors directly learn about key parameters of their
priors from the data. This is not a crucial assumption of our model, however, and
we can cast this learning within a frequentist framework in which investors simulta-
neously estimate individual fund alphas and the distributions of idiosyncratic risk.22

But given the close connection between return dispersion and the distributions of
idiosyncratic risk, the main prediction of such a frequentist framework would be the
same as that of our model. We, therefore, rely on our Bayesian framework to provide
insights, while pointing out that our model’s implications hold more generally.

21Indeed, as we see from Appendix C, range-based statistics that depend on extreme returns have
a low correlation with the average level of idiosyncratic risk for zero-alpha funds.

22For more details on the application of empirical Bayes methods to performance evaluation, see
Harvey and Liu (2018).
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3. Flow-performance sensitivity conditional on re-

turn dispersion

3.1. Data and variables

Our data are drawn from the CRSP Survivor-Bias-Free Mutual Fund Database from
January 1980 to December 2016. Following the previous literature, we focus on
domestic equity mutual funds and exclude sector funds using the CRSP objective
code. We also exclude index funds and funds that, on average, have less than 80%
of their holdings in stocks. We further apply several filters to mitigate omission bias
(Elton, Gruber, and Blake, 2001) and incubation bias (Evans, 2010). In particular,
we exclude fund return observations reported prior to the year of fund organization.
We also exclude fund observations before a fund passes the $5 million threshold for
assets under management (AUM); all subsequent observations, including those that
fall under the $5 million AUM threshold in the future, are included.

We obtain fund expense ratio, turnover rate, fund age, and total net assets (TNA)
directly from the CRSP database. Combined with fund returns, we calculate annual
percentage flow between month t+ 1 and month t+ 12 as:

Flowi,t+1→t+12 =
TNAi,t+12 − TNAi,t(1 +Ri,t+1→t+12)

TNAi,t
, (1)

where TNAi,t is fund i’s TNA at the end of month t, and Ri,t+1→t+12 is fund i’s annual
return (i.e., between month t+1 and month t+12). We focus on annual fund flows to
avoid seasonal (in particular, quarterly) fluctuations in fund flows (Kamstra, Kramer,
Levi, and Wermers, 2017). While this introduces autocorrelation in regression resid-
uals in our panel regressions, for which we have overlapping dependent variables (i.e.,
annual fund flows) at the monthly frequency, we focus on standard errors clustered
by both fund and time (i.e., double-clustered standard errors).

Consistent with the standard practice detailed in the literature, we focus our
empirical analysis on alphas estimated over the past year, although many alternatives
are promulgated for how to best estimate alpha. Although simple benchmarks seem to
be most consistent with investor flows (Berk and van Binsbergen, 2016) and produce
less a biased assessment of fund performance (Cremers, Petajisto, and Zitzewitz, 2012;
and Pastor, Stambaugh, and Taylor, 2015), papers in the performance evaluation
literature routinely use the Fama-French three-factor or the Fama-French-Carhart
four-factor model.

17



We use a spectrum of alpha estimates to ensure our results are not driven by
the benchmark model we use. For our main results, we focus on the simple market-
adjusted alpha (i.e., fund return minus market return), the CAPM-adjusted alpha,
and the Fama-French-Carhart four-factor model. In Appendix D, we report results
for the risk-free-adjusted alpha (i.e., fund excess return) as well as for alphas based on
the Fama-French three-factor model. For the simple market-adjusted alpha and the
risk-free-adjusted alpha, we use fund returns for the past year (i.e., between month
t−11 and t) to estimate fund alpha to time t. For CAPM and multi-factor models, we
first estimate risk loadings based on data for the past five years.23 We then adjust fund
returns in the past year to the benchmark factors using the estimated risk loadings.24

Let the estimated alpha for fund i by time t be αi,t. Return dispersion at time t
(Dispt), which is our main variable of interest, is defined as the IQR for the cross-
section of αi,t at time t.

We include several other controls in our regression analysis. We first define
the OLS standard error for fund i’s alpha estimate (Std(αi,t−11→t)i,t). When the
simple market-adjusted alpha model or the risk-free-adjusted alpha model is used,
Std(αi,t−11→t)i,t is defined as the standard deviation of the adjusted fund returns over
the past year. When CAPM or multi-factor models are used, Std(αi,t−11→t)i,t is the
standard error of the alpha estimate over the past five years. In our regression anal-
ysis, we interact Std(αi,t−11→t)i,t with fund alpha to control for the uncertainty in
estimating fund i’s alpha based on its time-series information alone. Sirri and Tufano
(1998), and Huang, Wei, and Yan (2012) explore the implications of this fund-specific
uncertainty on flow-performance sensitivity.

The other controls we include are consistent with the existing literature, namely,
Franzoni and Schmalz (2017) and Starks and Sun (2016). In particular, fund volatility
(V OLi,t) is the standard deviation of fund excess returns over the past year, and
style flow (StyleF lowi,t) is the average flow of the investment objective class. We also
control for expense ratio (ExpRatio), turnover (Turnover), log TNA (LogTNA), and
log fund age (LogAge). All variables involving fund returns (i.e., αi,t, Std(αi,t−11→t)i,t,
and V OLi,t) are annualized. We also follow the literature and winsorize the fund flows
and the control variables (i.e., ExpRatio, Turnover, LogTNA, LogAge, V OL, and
StyleF low) at the 1st and 99th percentiles.

To control for the variables proposed by Franzoni and Schmalz (2017) and by
Starks and Sun (2016), we follow them in constructing the market state (State, Fran-
zoni and Schmalz, 2017) and policy uncertainty (PolicyUncer, Starks and Sun, 2016).
In particular, we define a quarterly indicator variable that equals one if the quarterly
market excess return is considered as mediocre (i.e., the absolute value is no larger
than 5%) and zero otherwise. We then take the average of the indicator variable over
the past year to obtain the annual market state. Following Starks and Sun (2016),

23Following previous research, we require that a fund has at least 36 monthly observations.
24Both the Fama-French factors and the momentum factor are obtained from the Kenneth French

On-line Data Library.
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we obtain the Economic Policy Uncertainty Index (EPU) from Baker, Bloom, and
Davis (2016).

Table 1 reports the summary statistics for the variables we include in our regression
analysis. The statistics are consistent with those presented in the recent literature.

Table 1: Summary Statistics

Summary statistics for the variables used in our main regression analysis. Panel
A reports the summary statistics for alphas. “Excess return” is fund return minus
the risk-free rate and “Market Adjusted Return” is fund return minus the market
return, both defined over the previous year. “CAPM Alpha”, “Three-factor Alpha”,
and “Four-factor Alpha” are obtained by first estimating risk loadings (on market
return, Fama-French three factors, and Fama-French-Carhart four factors, respec-
tively) over the past five years, and then adjusting fund returns in the previous year
to benchmark factors using the estimated risk loadings. Panel B reports summary
statistics for control variables that include flow (annual percentage flow computed as
the annual change in TNA minus the dollar return on assets under management over
the year and divided by the TNA of the prior-year end), total net assets (TNA, in $
millions), fund turnover ratio, fund age (the number of months since the first appear-
ance in CRSP), expense ratio, and fund volatility (return volatility over the prior
12 months). The sample period is January 1980 to December 2016. All variables
reported are at the monthly frequency. The total number of monthly observations
is 1,555,734.

(1) (2) (3) (4) (5)
Mean Stdev. Median p(10) p(90)

Panel A: Alphas (% annualized)

Excess Return 4.83 19.76 7.45 -20.27 25.34
Market Adjusted Return -1.51 10.16 -1.75 -10.86 7.98
CAPM Alpha -0.98 9.03 -1.38 -9.49 7.85
Three-factor Alpha -1.58 6.56 -1.54 -7.95 4.64
Four-factor Alpha -1.51 6.88 -1.57 -8.18 5.08

Panel B: Other Variables

Flow (per annum) 0.24 1.06 -0.03 -0.32 0.87
Total Net Assets ($ millions) 450.91 1996.88 63.00 5.60 862.20
Turnover 0.86 1.59 0.62 0.17 1.64
Fund Age (months) 88.81 76.49 68.00 13.00 194.00
Expense Ratio (%) 1.35 0.80 1.25 0.69 2.11
Fund Volatility (% annualized) 15.60 7.68 14.12 7.79 25.20
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3.2. Results

3.2.1. Time-series of return dispersion

The time series of our return dispersion measures are presented in Fig. 3 along with
the widely followed volatility index, VIX, and the NBER recession periods. We plot
two series of return dispersion. One is based on CAPM adjusted alpha, and the other
corresponds to the Fama-French-Carhart four-factor adjusted alpha.

Fig. 3 shows that VIX is quite different than our return dispersion measures,
despite its positive correlation with them; the correlation coefficients between the
VIX and the CAPM-adjusted return dispersion and the four-factor-model-adjusted
return dispersion are 0.35 and 0.32, respectively. In particular, although the market
was highly volatile in 1987 and in 2008 as measured by the VIX,25 our measures of
return dispersion are relatively low during these same periods compared to the rest
of the sample.

There are two interesting patterns in the time-series of return dispersion. First,
the level for the four-factor-model-adjusted return dispersion is lower than that for
the CAPM-adjusted dispersion, which can be explained by the fact that differences
in fund loadings on the three benchmark factors (other than the market factor) in
the Fama-French-Carhart four-factor model contribute to the cross-sectional return
dispersion under CAPM. Second, the return dispersion during the 1999-2001 tech
bubble is much higher than in other periods for the CAPM-adjusted alpha, but not as
evident for the Fama-French-Carhart-adjusted alpha. Despite some of the differences
in the time-series of the two measures of return dispersion, we study both (and a few
other alternative measures) in our empirical analysis and show that our results are
robust to the benchmark model we use to estimate alphas.

There is also some evidence for a time trend for return dispersion in Fig. 3.
Intuitively, there is a gradual decline in return dispersion that is accompanied by
the general decline in performance for an average fund. Indeed, when we test for a
time trend by regressing the time-series of return dispersion on a constant and a time
trend, we find significantly negative coefficients on the time trend for our measures of
return dispersion.26 We therefore make sure that we always include time fixed effects
in our empirical analysis. In Section 3.3.3, we discuss the impact of a time trend in
more detail.

25Since we plot the lagged one-year average VIX at month t, the peak in market volatility that
occurred in 1987 and 2008 appears to show up in 1988 and 2009 in Fig. 3.

26The t-statistics for the coefficients on the time trend are -6.77 (return dispersion based on
CAPM-adjusted alphas) and -21.26 (return dispersion based on the Fama-French-Carhart four-factor
model).
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Figure 3: Time-Series of Return Dispersion, January 1980–December 2016. For
each month t in our data, we calculate return dispersion as the interquartile range of the
cross-section of fund alphas for the previous year (i.e., from month t−11 to month t). Fund
alpha is calculated as either the CAPM-adjusted alpha (solid line) or the Fama-French-
Carhart four-factor adjusted alpha (dashed-dotted line). We also plot the time-series of
VIX, which is calculated as the average of the daily VIX over the same period (i.e., from
month t− 11 to month t). Shaded areas are NBER recession dates.
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3.2.2. Main results

The main prediction of our model is that flow-performance sensitivity is decreasing
in return dispersion. We test this prediction by estimating the following regression:

Flowi,t+1→t+12 = b1αi,t + b2Dispt × αi,t + b3Std(αi,t−11→t)i,t × αi,t
+b4Othert × αi,t + Controlsi,t + εi,t+1→t+12, (2)

where Flowi,t+1→t+12 is the annual percentage fund flow in the following year, Dispt is
cross-sectional alpha dispersion measured over the past year, αi,t and Std(αi,t−11→t)i,t
are the alpha estimate and its standard error, Othert includes either market state
(State, as in Franzoni and Schmalz, 2017) or policy uncertainty (PolicyUncer, as in
Starks and Sun, 2016), and Controlsi,t include log TNA, expense ratio, turnover ratio,
log fund age, volatility of fund returns, and the average flow of the investment objec-
tive class.27 All independent variables are measured using data in the past except for
the average flow of the investment objective class, which is measured contemporane-
ously with fund flow (consistent with previous literature). In our regression analysis,
we include both fund and month fixed effects. Standard errors are also clustered by
both fund and month.

Table 2 reports the regression results when alpha is calculated as the difference
between fund return and the market return, Table 3 reports the results for the CAPM-
adjusted alpha, and Table 4 reports the results for the Fama-French-Carhart four-
factor model.

Focusing on the first column in Table 2, the positive coefficient on α is consis-
tent with the previous literature that documents a positive relation between past
alphas and future flows. By interacting return dispersion with past alpha, the second
column shows a negative relation between return dispersion and flow-performance
sensitivity, which is highly significant, both statistically (t-stat = −7.26) and eco-
nomically. To quantify its economic significance, the mean and standard deviation of
return dispersion for the model in Table 2 are 11.02% and 5.97%, respectively. This
implies a mean flow-performance sensitivity of 1.87 − 2.99 × 11.02% = 1.54 and a
decrease of 2.99 × 5.97% = 0.18 corresponding to a one-standard-deviation increase
in return dispersion. Hence, a one-standard-deviation increase in return dispersion
reduces flow-performance sensitivity by 0.18/1.54 = 12%. The reduction in the flow-
performance sensitivity is somewhat lower in the model that includes all standard
controls (i.e., 8% as in the fourth column of Table 2).

When additional controls are introduced, our results are robust. In particular,
when we add the interaction term between a fund’s alpha estimate and its standard
error (i.e., Std(α)), we observe that Std(α) negatively impacts flow-performance sen-

27Notice that we do not include Dispt itself as a separate independent variable in (2) as it will
be absorbed by the time fixed effects.
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sitivity. This result is consistent with our Proposition 3, and can also be explained
by the fact that investors care not only about alpha, as measured by the mean, but
also the standard error of alpha, as measured in appraisal ratios or t-statistics. While
we are agnostic on the interpretation, our main results on return dispersion are ro-
bust to the inclusion of Std(α). Our results also survive when market state or policy
uncertainty is included in our regressions.

Table 3 and Table 4 show similar results to Table 2 when we use alternative alpha
estimates.

When we use CAPM-adjusted alphas in Table 3, the results are similar to Table
2. To calibrate the economic significance, the mean and standard deviation of return
dispersion for the model in Table 3 are 9.94% and 4.51%, respectively. This implies
a mean flow-performance sensitivity of 2.22 − 4.10 × 9.94% = 1.81 and a decrease
of 4.22× 4.51% = 0.19 corresponding to a one-standard-deviation increase in return
dispersion. Hence, a one-standard-deviation increase in return dispersion reduces
flow-performance sensitivity by 0.19/1.81 = 11%, which is very close to the results
reported in Table 2.

For Table 4, first note that when more factors are added to the benchmark model,
the average idiosyncratic variance across funds decreases, leading to a decrease in
the level as well as the variance of return dispersion. As a result, the coefficient
estimates associated with return dispersion are larger in magnitude for multi-factor
models than those for the CAPM or market-adjusted alpha models. Nonetheless, a
similar calibration shows that a one-standard-deviation increase in return dispersion
reduces flow-performance sensitivity by 13%.28

In Appendix D, we report additional results that correspond to the simple excess-
return alpha (fund return minus risk-free rate, Table D.1) and the Fama-French three-
factor-adjusted alpha (Table D.2).

Our results are consistent. Overall, across different benchmark factor models, the
economic impact of a one-standard-deviation increase in return dispersion on flow-
performance sensitivity is a reduction of 11% to 17%.29

28The mean and standard deviation of return dispersion are, respectively, 7.41% and 2.28% for
the Fama-French-Carhart four-factor-adjusted alpha. Given these summary statistics, the impact of
a one-standard-deviation increase in return dispersion reduces flow-performance sensitivity by 13%.

29The means and standard deviations of return dispersion are, respectively, 11.02% and 5.97%
(risk-free-adjusted alpha) and 7.78% and 2.48% (Fama-French three-factor-adjusted alpha). Given
these summary statistics, the impact of a one-standard-deviation increase in return dispersion re-
duces flow-performance sensitivity by 11% (Table D.1) and 17% (Table D.2), respectively.
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In our on-line appendix, we explore alternative regression specifications and vari-
able constructions. In Table IA.1, we do not include fund fixed effects and re-estimate
our model. In Table IA.2 and IA.3, instead of measuring annual percentage fund flow
using the end-of-the-year assets under management, we explore an alternative con-
struction that aggregates monthly dollar flows to calculate the annual percentage
flow. Lastly, in Table IA.4 and IA.5, we use the monthly percentage fund flow (in-
stead of the annual flow as used in our main analysis) as the dependent variable and
rerun our analysis.30 We show that our main results are robust to these alternative
specifications.

3.2.3. Sub-sample analysis

We next examine whether the impact of return dispersion varies through time. In
particular, we conjecture that the impact of return dispersion increases through time
for two reasons. First, mutual funds performed better, on average, in the early years of
our sample, making encountering a zero-alpha fund — which is important to rational
investors in our model — less of a worry for investors. Second, investors may have
become more sophisticated in the later years of our sample, as they have had more
time to learn, data has become more widely available as well as the tools to analyze
the data, and the number of third-party analysts providing advice has grown. To
test this hypothesis, we create two subsamples: 1980-1999 and 2000-2016. Table 5
summarizes the key regression results across different factor models, and Tables IB.1
to IB.8 in the on-line appendix report the detailed results.31

When interpreting our results, there are two caveats. First, substantially fewer
observations are available for the 1980-1999 subsample than for the full sample. In
particular, the early subsample represents only approximately 15% of total observa-
tions. Second, the size of the coefficient estimate on Disp × α in Table 5 does not
directly reflect the economic magnitude of the importance of return dispersion because
our measure of the economic impact of return dispersion — the percentage change
in flow-performance sensitivity corresponding to a one-standard-deviation increase in
return dispersion — also depends on the size of the coefficient estimate on α and the
mean and the standard deviation for return dispersion over the particular sample we
examine. As a result, although the size of the coefficient estimate on Disp × α, as

30As we mentioned previously, we use annual fund flows as the dependent variables in our main
analysis to avoid seasonal fluctuations in fund flows. However, this raises a concern about the
potential bias in inference that is caused by overlapping observations in both the independent and
dependent variables. We therefore explore a specification where we use the monthly fund flow as
the dependent variable.

31Note that hereafter we choose a few model specifications to report summary tables (i.e., Table
5, 6, and 7) in the main text, while leaving results on alternative model specifications to the on-line
appendix. Correspondingly, our calibrations of the economic impact of return dispersion are based
on the tables reported in the main text. Alternative calibrations can be performed by using the
more detailed tables reported in the on-line appendix.
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reported in Table 5, seems smaller post-2000 (Panel B) than pre-2000 (Panel A), the
economic significance of return dispersion is actually higher post-2000 than pre-2000.

The results in Table 5 (as well as those in the on-line appendix) are consistent with
our conjecture.32 The impact of return dispersion is less significant, both statistically
and economically, for the 1980-1999 sample than for the 2000-2016. For example, a
one-standard-deviation increase in return dispersion reduces flow-performance sensi-
tivity by 5% pre-2000 (column 1) and 18% post-2000 (column 9) for market-adjusted
alpha, and by 4% pre-2000 (column 3) and 16% post-2000 (column 11) for CAPM-
adjusted alpha.33

We also perform another subsample analysis by excluding the sample period be-
tween January 1998 and December 2002 since return dispersion seems particularly
high for this period (especially for return dispersion based on the CAPM-adjusted
alpha). We report the results in Table IB.9 in the on-line appendix. Our results are
robust to the exclusion of the 1998 – 2002 sample period.

32Note that the estimates for the coefficient of interest for the Fama-French three-factor model
and the Fama-French-Carhart four-factor model are substantially larger (in magnitude) than those
for the other two models. This is because both the mean and the standard deviation of return
dispersion are much lower for these multi-factor models.

33When alpha is calculated as the difference between fund return and the market return, the
mean and the standard deviation for return dispersion are 11.45% and 3.65%, respectively, pre-
2000, and 10.52% and 7.84%, respectively, post-2000. For CAPM-adjusted alpha, the mean and
the standard deviation for return dispersion are 10.55% and 2.92%, respectively, pre-2000, and
9.24% and 5.77%, respectively, post-2000. These numbers can be used, together with the results
in Table 5, to calculate the percentage change in flow-performance sensitivity corresponding to a
one-standard-deviation change in return dispersion.
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3.2.4. Convexity

A large literature documents a convex flow-performance relation.34 Underperforming
funds do not experience capital outflows to the same degree as outperforming funds
attract capital inflows. To ensure our results are not driven by the mis-specification
of the flow-performance relation, we investigate a piecewise linear function of fund
returns (Franzoni and Schmalz, 2017), and examine how return dispersion affects the
slopes of the piecewise linear regression.

More specifically, we define α+
i,t and α−i,t as:

α+
i,t = max{αi,t, 0},
α−i,t = min{αi,t, 0},

In other words, α+
i,t (α−i,t) equals αi,t if αi,t is greater (less) than zero, and zero other-

wise. This implies that αi,t = α+
i,t + α−i,t. We then modify Eq. (2) by separating the

impact of α+
i,t and α−i,t, such that

Flowi,t+1→t+12 = b+
1 α

+
i,t + b−1 α

−
i,t + b+

2 Dispt × α+
i,t + b−2 Dispt × α−i,t +

b3Std(αi,t−11→t)i,t × αi,t + Controlsi,t + εi,t+1→t+12. (3)

To save space, we do not include market state or policy uncertainty (i.e., Othert
in Eq. (3)) in the preceding regression specifications. Our results are similar if we
include them.

We report the key regression results in Table 6. More detailed regression results
are reported in Tables IC.1 and IC.2 in the on-line appendix.

The results in Table 6 show that the loading on α+ is much higher than on α−,
which is consistent with existing evidence on the convex flow-performance relation.
When we focus on the loading on the interaction between return dispersion and α−i,t,
we see a negative estimate across all specifications, which is consistent with our model
predictions.

Our results on the impact of return dispersion on flow-performance sensitivity for
α+
i,t are stronger (both statistically and economically) than those for α−i,t, which is

consistent with previous findings that fund flows respond more to outperformance
than to underperformance. For example, a one-standard-deviation increase in return
dispersion reduces flow-performance sensitivity for α+

i,t by 18% (column 3) for CAPM-
adjusted alpha and by 21% (column 5) for Fama-French three-factor adjusted alpha,
and for α−i,t by 7% and 4%, respectively.

34See, e.g., Ippolito (1992), Goetzmann and Peles (1997), Gruber (1996), Lynch and Musto
(2003), and Spiegel and Zhang (2013).
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3.2.5. Percentile rankings

Previous research shows that percentile alpha rankings can predict future fund flows,
above and beyond the ability of alphas to do so. In this section, we provide an analysis
of the relations among alpha, percentile alpha ranking, and return dispersion.

Whereas the percentile alpha ranking is empirically relevant, it lacks economic
foundation (e.g., Berk and Green, 2004; Pastor and Stambaugh, 2012). Our paper
provides an economic interpretation as to why percentile rankings might predict future
flows.

Our thought process is as follows: Suppose a fund produces a 10% alpha at two
points in time, t1 and t2. Return dispersion is higher at t2 than at t1. Although a 10%
alpha may look very attractive, in comparison to other funds, when cross-sectional
return dispersion is low at t1, it may become less attractive at t2 when cross-sectional
return dispersion is high. As such, a higher cross-sectional return dispersion may
be correlated with the lowering of the percentile alpha ranking, which would lead to
lower flows in the future. In our model, however, high return dispersion predicts a
lower perceived alpha, because zero-alpha funds, on average, take more idiosyncratic
risk. Our model predicts that the time-varying cross-sectional dispersion interacting
with alphas is what explains fund flows, rather than the percentile alpha ranking.

While return dispersion may be correlated with the change in the percentile rank-
ing for certain funds (holding alpha constant), it does not necessarily imply a change
in ranking. For example, suppose a fund earns an alpha of 20% (per annum) at two
points in time. Given this high alpha, the fund is likely ranked very high at both
points in time, regardless of the change in return dispersion. Assuming the fund is
ranked at the 95th percentile at both points in time, both alphas and the percentile
rankings of alphas suggest that future fund flows should be the same following the
two points in time. In contrast, our model predicts that future fund flows should be
lower following the point in time that has the higher return dispersion. This exam-
ple illustrates how we can disentangle our model’s predictions from the previously
documented results for percentile alpha rankings.

Table 7 includes the percentile alpha rankings and provides a summary of the key
results. More detailed regression results are reported in Tables ID.1 and ID.2 in the
on-line appendix.

Overall, the results in Table 7, which control for percentile alpha rankings, are
consistent with our model predictions. Interestingly, while percentile alpha rankings
do provide some explanatory power of fund flows to alphas when only the rankings
and alphas are included in the regressions (consistent with the previous literature, see
our results in Tables ID.1 and ID.2 in the on-line appendix), they are on longer signif-
icant (under the CAPM (column 3), three-factor (column 5), and four-factor models
(column 7)) or only marginally significant (under market-adjusted alpha (column 1))
after we include return dispersion. Hence, our results not only show that the impact
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of return dispersion is robust to the inclusion of alpha rankings, but suggest that
the well-documented impact of alpha rankings is subsumed by our model of return
dispersion.
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3.3. Additional results

3.3.1. Time-varying market conditions

We include in our main analysis the variables in Franzoni and Schmalz (2017) and
Starks and Sun (2016). These variables affect the flow-performance sensitivity and
are related to time-varying market or economic conditions. We also construct three
market-related variables that may be related to the flow-performance sensitivity.
They are the average market excess return, the standard deviation of the market
excess return, and the absolute value of the average market excess return, all mea-
sured over the past year.

We report in Tables IE.1 – IE.4 in the on-line appendix our regression results that
control for the above market-related variables. We find that although there is some
evidence that the average market excess return influences the flow-performance sensi-
tivity, it seems to depend on the benchmark factor model we use. On the other hand,
we find no evidence that the other two variables that are related to market uncertain-
ties affect the flow-performance sensitivity. Importantly, our results on the impact of
cross-sectional return dispersion among mutual funds on the flow-performance sen-
sitivity are robust to the inclusion of market-related state variables. Overall, our
evidence suggests that it is cross-sectional return dispersion among mutual funds —
not market uncertainty in general — that is driving our results.

3.3.2. Quadratic flow-performance sensitivity

In our main analysis, we use a piecewise linear function to capture the convex flow-
performance relation. We explore alternative functional forms in the on-line ap-
pendix. In particular, we use a quadratic function to approximate the non-linear
flow-performance relation, following Barber, Odean, and Zheng (2005), Sensoy (2009),
and Kim (2017). We focus on the impact of our measure of return dispersion on both
the linear and the quadratic term for fund performance.

Tables IC.3 and IC.4 in the on-line appendix report our results. Consistent
with the previous literature (e.g., Chevalier and Ellison, 1997), we find a signifi-
cant quadratic term in capturing the convexity in the flow-performance sensitivity.35

Consistent with our previous results, we find a significant impact of return disper-
sion on the linear flow-performance sensitivity across all the models we examine.
Interestingly, return dispersion also seems to dampen the quadratic flow-performance
sensitivity, and does so significantly across three out of four benchmark models we

35This is inconsistent to the results in Kim (2017), who finds an insignificant role for the quadratic
term in driving the flow-performance sensitivity. We reconcile her findings with ours in the next
section.
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examine (with the exception of the four-factor adjusted alpha). Overall, our results
on the quadratic flow-performance sensitivity provide an additional robustness check
of our model’s predictions.

3.3.3. Relating to existing papers

Several existing papers also study the role of return uncertainty or market uncertainty
in driving the flow-performance sensitivity. Huang, Wei, and Yan (2012) argue that
investors’ learning of a fund’s skill has implications on the fund’s time-series return
volatility impacting the flow-performance relation. Different from their work, our pa-
per focuses on how cross-sectional return variability affects the flow-performance sen-
sitivity. Nonetheless, we include the interaction between a fund’s time-series volatility
and its past performance in our empirical analysis to control for the learning chan-
nel proposed by Huang, Wei, and Yan. Jun, Li, and Shi (2014) study how market
uncertainty affects the flow-performance relation for Chinese mutual funds. Their un-
certainty measure is different from our measure of return dispersion. Moreover, our
results in Table IE.1 – IE.4 show that market uncertainty is not driving our results
for U.S. mutual funds.

Perhaps most closely related to our paper is Kim (2017), which, among other
things, also empirically studies the impact of industry return dispersion (as measured
by the standard deviation of the cross-section of fund returns) on the flow-performance
sensitivity. Contrary to our results, she finds that an increase in return dispersion
increases the convexity (as measured by the coefficient on the quadratic term of past
performance) of the flow-performance relation. We reconcile her findings with ours in
Table IC.3 in the on-line appendix. We replicate her findings when we do not include
time fixed effects.36 However, when we include the time fixed effects, which is the
specification we use throughout our empirical analysis, the pattern is reversed and
we find a negative and significant impact of return dispersion on convexity.37 Given
the gradual decline in return dispersion displayed in Fig. 3 (which, not surprisingly,
coincides with the decline in performance for an average fund),38 we believe it impor-
tant to include the time fixed effects when measuring the impact of return dispersion
on the flow-performance sensitivity. Importantly, our main results on how return
dispersion affects the linear flow-performance relation are robust to the exclusion of
the time fixed effects.

36In particular, we show her measure of return dispersion positively (albeit insignificantly) affects
the convexity of the flow-performance relation.

37We show in Table IC.4 that our results are consistent across alternative benchmark models. In
contrast, Kim (2017) only focuses on the market adjusted alpha (i.e., the difference between fund
return and the market return).

38We find strong evidence for a time trend for both series of return dispersion used in Table IC.3.
In particular, we test for a time trend by regressing the time-series of return dispersion on a constant
and a time trend. The t-statistics for the coefficients on time trends are -5.92 for our measure of
return dispersion and -9.95 for Kim (2017)’s measure of return dispersion.
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4. Conclusion

Over the 50 years of modern financial research on performance evaluation, we have
learned a lot. First, we need to take luck into account and, when we do that, the
majority of fund managers appear unskilled. Second, it is a useful paradigm to
think about a two group categorization (skilled and unskilled) to study Type I and
Type II errors. Third, the Bayesian performance evaluation literature has made an
important point: you cannot evaluate a particular fund’s performance without using
the information in the cross-section of fund returns.

Given the extensive literature on what investors should do, we ask a different
question: Are investors actually taking the above issues into account in their capital
allocation decisions? To answer this question, we have presented a model that pro-
vides a straightforward link between return dispersion and investor actions. Periods
of high return dispersion should make it especially difficult for investors to separate
good (skilled) funds from bad (unskilled) funds.

Our empirical results suggest that investors take dispersion of idiosyncratic risk
into account in making manager-selection decisions. Investors are much more likely
to be skeptical of good performance when return dispersion across funds is high. Our
results are robust to different factor models used to estimate alphas. Our results
are also stronger using more recent data, which is consistent with investors learning
through time. In addition, convexity in the flow-performance relation, as highlighted
by the previous literature, does not account for our findings. Instead, our results
allow for a new interpretation of this convexity: Flows to outperforming funds are
especially sensitive to cross-sectional return dispersion. Finally, our results are robust
to the inclusion of percentile alpha rankings. Our analysis shows that the predictive
power of percentile rankings vanishes once we include return dispersion.
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Pástor, L., Stambaugh, R., 2002a. Mutual fund performance and seemingly unre-
lated assets. Journal of Financial Economics 63, 315–349.

40
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Appendix A Proofs

A.1 Proposition 1

p(R|α = 0) =

∫
p(R|α = 0, σ2)p(σ2|α = 0)dσ2,

ν=σ2

=

∫
(2πν)−T/2 exp(−

∑T
t=1R

2
t

2ν
)
θλ0

Γ(λ)
ν−λ−1 exp(−θ0

ν
)dν,

= (2π)−T/2
θλ0

Γ(λ)

∫
ν−T/2−λ−1 exp(−

∑T
t=1R

2
t /2 + θ0

ν
)dν,

= (2π)−T/2
θλ0

Γ(λ)

Γ(T/2 + λ)(∑T
t=1R

2
t

2
+ θ0

)T/2+λ
.

Similarly, one can show that:

p(R|α = αh) = (2π)−T/2
θλh

Γ(λ)

Γ(T/2 + λ)(∑T
t=1(Rt − αh)2

2
+ θh

)T/2+λ
,

Using the fact that

p(αh|R) =
p(R|αh)Πh

p(R|αh)Πh + p(R|α0)Π1

and that

T∑
i=1

R2
t =

T∑
t=1

(Rt − R̄)2 + TR̄2,

T∑
i=1

(Rt − αh)2 =
T∑
t=1

(Rt − R̄)2 + T (R̄− αh)2,
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we have:

p(αh|R) =
1

1 + (
θ0

θh
)λ ·
(
IV OL2 + (R̄− αh)2 + 2θh/T

IV OL2 + R̄2 + 2θ0/T

)T
2

+λ

· Π0

Πh

.

A.2 Proposition 2

Note that ∂E(α|R)
∂θ0

has the opposite sign of ∂ψ(θ0)
∂θ0

, where ψ(θ0) is defined as:

ψ(θ0) = λ log(
θ0

θh
)− (

T

2
+ λ) log(IV OL2 + R̄2 +

2θ0

T
).

When ∂E(α|R)
∂θ0

< 0, we have:

∂ψ(θ0)

∂θ0

=
λ

θ0

− 1 + 2λ/T

IV OL2 + R̄2 + 2θ0/T
> 0.

Solving the above inequality, we have:

IV OL2 + R̄2 >
θ0

λ
. (4)

Similarly, noting that ∂E(α|R)
∂θh

has the opposite sign of ∂ϕ(θh)
∂θh

, where ϕ(θh) is defined
as:

ϕ(θh) = λ log(
θ0

θh
) + (

T

2
+ λ) log(IV OL2 + (R̄− αh)2 +

2θh
T

).

Requiring ∂ϕ(θh)
∂θh

< 0, we have:

IV OL2 + (R̄− αh)2 >
θh
λ
. (5)

Notice that Eq. (4) and (5) must be simultaneously satisfied if R̄ is large enough.
Let R̄∗ be the minimum level of R̄ such that Eq. (4) and (5) are satisfied if R̄ > R̄∗.

When R̄ > R̄∗, we have ∂E(α|R)
∂θ0

< 0 and ∂E(α|R)
∂θh

> 0.
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A.3 Proposition 3

Note that ∂E(α|R)
∂IV OL

has the opposite sign of ∂ξ(IV OL)
∂IV OL

, where ξ(IV OL) is defined as:

ξ(IV OL) = log(IV OL2 + (R̄− αh)2 + 2θh/T )− log(IV OL2 + R̄2 + 2θh/T ).

Requiring ∂ξ(IV OL)
∂IV OL

> 0 (hence, ∂E(α|R)
∂IV OL

< 0), we have:

R̄ >
αh
2

+
θh − θ0

Tαh︸ ︷︷ ︸
R̄†

.

Hence, when R̄ > R̄†, we have ∂E(α|R)
∂IV OL

< 0.
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Appendix B Model calibration under alternative

parameterizations
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Figure B.1: Alternative Model Calibration: Sensitivity of Perceived Performance
(E(α|R)) to Observed Performance (R̄). We plot the perceived performance against the ob-
served performance based on our model presented in Section 2.1 under various specifications of θ0

(mean level of idiosyncratic variance for zero-alpha funds), θh (mean level of idiosyncratic variance
for positive-alpha funds) and Π0 (fraction of zero-alpha funds). The corresponding specifications
for Panel A are solid line (θ0 = 0.12, θh = 0.12,Π0 = 0.6) and dotted line (θ0 = 0.22, θh =
0.12,Π0 = 0.6); for Panel B are solid line (θ0 = 0.12, θh = 0.12,Π0 = 0.5) and dotted line
(θ0 = 0.22, θh = 0.12,Π0 = 0.5); for Panel C are solid line (θ0 = 0.12, θh = 0.12,Π0 = 0.6) and dotted
line (θ0 = 0.22, θh = 0.22,Π0 = 0.6); and for Panel D are solid line (θ0 = 0.12, θh = 0.12,Π0 = 0.5)
and dotted line (θ0 = 0.22, θh = 0.22,Π0 = 0.5). αh is set at 2.5% per annum.
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Appendix C Return dispersion as a proxy for
√
θ0

Table C.1: Simulated Correlations between
√
θ0 (
√
θh) and Different Mea-

sures of Return Dispersion. For Panel A, we simulate M = 30 years of monthly
data. Assuming a two-group structure for the cross-section of funds (with a probabil-
ity mass of Π0 for zero-alpha funds and Πh for positive-alpha funds), at the beginning
of year m, θ0,m (mean idiosyncratic risk for zero-alpha funds) and θh,m (mean idiosyn-
cratic risk for positive-alpha funds) are randomly and independently generated by
0.1×(1+x), where the variable x is uniformly distributed on (−0.5, 0.5). Conditional
on θ0,m and θh,m, we first simulate idiosyncratic risks for the cross-section of funds
(assuming N = 1, 000 funds in the cross-section) by drawing independently from the
inverse-gamma distribution IG(λ = 2, θ0,m) for zero-alpha funds and IG(λ = 2, θ0,m)
for positive-alpha funds. Conditional on the simulated idiosyncratic risks for the
cross-section of funds, we then simulate individual fund returns over the year by
drawing independently from a normal distribution with a mean of zero for zero-alpha
funds and αh for positive-alpha funds. We then calculate three statistics to measure
cross-sectional return dispersion for year m: inter-quartile range (iqrm), standard
deviation (stdevm), and range between the maximum and the minimum (rangem).
Finally, we calculate the time-series correlation between

√
θ0,m (

√
θh,m) and the three

dispersion statistics. We simulate 1,000 times and report the average correlations. A
similar procedure is applied to the case with three fund groups (with a probability
mass of Π0 for zero-alpha funds, Π−h for negative-alpha funds, and Πh for positive-
alpha funds) in Panel B. In Panel C, we assume αh is time-varying and positively
correlated with θh,m. In particular, αh at the beginning of year m is generated by
2%+(5%−2%)×(θh,m/0.1−0.5). As such, it has a correlation of 100% with θh,m and
is bounded between 2% and 5%. The remaining steps of the simulation procedure for
Panel C are the same as for Panel A.
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Panel A: Two Groups (Π0 and Πh)

(Π0 = 0.8, Πh = 0.2)

αh = 2% αh = 5%
iqr stdev range iqr stdev range√

θ0 0.978 0.498 0.426 0.979 0.542 0.442√
θh -0.034 0.124 0.151 -0.039 0.136 0.140

(Π0 = 0.9, Πh = 0.1)

αh = 2% αh = 5%
iqr stdev range iqr stdev range√

θ0 0.986 0.559 0.477 0.987 0.600 0.492√
θh 0.027 0.078 0.101 0.002 0.046 0.049

Panel B: Three Groups (Π0, Π−h, and Πh)

(Π0 = 0.8, Π−h = 0.1, Πh = 0.1)

α±h = 2% α±h = 5%
iqr stdev range iqr stdev range√

θ0 0.987 0.572 0.435 0.986 0.494 0.347√
θ−h -0.017 0.087 0.093 -0.002 0.064 0.108√
θ+h -0.040 0.062 0.074 0.002 0.031 0.071

(Π0 = 0.9, Π−h = 0.05, Πh = 0.05)

α±h = 2% α±h = 5%
iqr stdev range iqr stdev range√

θ0 0.987 0.641 0.512 0.987 0.596 0.417√
θ−h 0.002 0.041 0.046 0.004 0.020 0.038√
θ+h 0.009 0.028 0.032 0.005 0.056 0.086

Panel C: Two Groups and Time-varying αh

(Π0 = 0.8, Πh = 0.2)

2% ≤ αh ≤ 5%
iqr stdev range√

θ0 0.978 0.278 0.452√
θh -0.015 0.769 0.146

(Π0 = 0.9, Πh = 0.1)

2% ≤ αh ≤ 5%
iqr stdev range√

θ0 0.986 0.421 0.492√
θh 0.023 0.594 0.127
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Appendix D Additional results
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