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Abstract

This paper develops a tractable theoretical framework for the Top Trad-

ing Cycles (TTC) mechanism for school choice that allows quantifying welfare

and optimizing policy decisions. We compute welfare for TTC and Deferred

Acceptance (DA) under different priority structures, and find that the choice

of priorities can have larger welfare implications than the choice of mecha-

nism. We solve for the welfare-maximizing distributions of school quality for

parametrized economies, and find that optimal investment decisions can be

very different under TTC and DA.

Our framework relies on a novel characterization of the TTC assignment in

terms of a cutoff for each pair of schools. These cutoffs parallel prices in com-

petitive equilibrium, with students’ priorities serving the role of endowments.

We show that these cutoffs can be computed directly from the distribution

of preferences and priorities in a continuum model, and derive closed-form

solutions and comparative statics for parameterized settings. The TTC cut-

offs clarify the role of priorities in determining the TTC assignment, but also

demonstrate that TTC is more complicated than DA.
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1 Introduction

School choice mechanisms are commonly used to determine school admission based

on student preferences and school priorities. In their seminal paper, Abdulkadiroğlu

& Sönmez (2003) proposed two candidate mechanisms for school choice, the Deferred

Acceptance (DA) mechanism and the Top Trading Cycles (TTC) mechanism (Gale

& Shapley 1962, Shapley & Scarf 1974). These mechanisms have been considered

and implemented by school districts across the US (Abdulkadiroğlu & Sönmez 2003,

Abdulkadiroğlu et al. 2005, Pathak & Sönmez 2013, IIPSC 2017).

In choosing between TTC and DA, school districts face a non-trivial trade-off

between efficiency and transparency, among other considerations. Boston public

schools commended TTC for its efficiency, but were concerned about its lack of

transparency, citing uncertainty as to whether priorities under TTC were serving

their intended role.1 Most school districts have favored DA, which produces a stable

assignment in which a student’s priority plays an intuitive role in determining her

assignment.2 However, DA does not generally produce an efficient assignment.

This paper provides a theoretical framework for clarifying this trade-off. We

develop a characterization of TTC that allows us to theoretically quantify the effi-

ciency gains of TTC over other mechanisms. It relies on a novel cutoff representation

of the TTC outcome that clarifies the role of priorities in determining each student’s

assignment, but also reaffirms some of the aforementioned concerns. Such cutoff char-

acterizations have also proved useful for price-theoretic analysis and empirical work

(Abdulkadiroğlu, Angrist, Narita & Pathak 2017, Agarwal & Somaini 2018, Kapor

et al. 2016).

Empirical work suggests that in some settings TTC can lead to significantly higher

welfare than DA (Abdulkadiroğlu, Agarwal & Pathak 2017, Calsamglia et al. 2018),

while in other examples TTC and DA produce very similar results (Abdulkadiroğlu

et al. 2009, Pathak 2016). By developing a tractable framework with a continuum of

students we are able to provide, to our knowledge, the first theoretical quantification

of welfare under TTC. We theoretically show that TTC can lead to large efficiency

gains over DA when preferences and priorities are uncorrelated.3

1Boston Public Schools considered both TTC and DA when redesigning its school choice in 2005,
and decided in favor of using DA, stating (BPS 2005): “The behind the scenes mechanized trading
[in TTC] makes the student assignment process less transparent.”

2In the words of Boston Public School, “students will receive their highest choice among their
school choices for which they have high enough priority to be assigned” (BPS 2005).

3Our results contrast with the finding of (Che & Tercieux Forthcoming) that TTC and DA
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We also show that the two mechanisms lead to similar outcomes when students

have a preference and priority for their neighborhood school, corroborating a conjec-

ture by Pathak (2016). We evaluate TTC and DA for different priority structures,

and find that the choice of priority structure can have a larger welfare effect than the

choice of mechanism.

The tractability of the framework is enabled by a novel cutoff characterization of

the TTC assignment. We show that the TTC assignment can be concisely described

by cutoffs {pcb}, one for each pair of schools b, c. These cutoffs parallel prices in

competitive equilibrium, with students’ priorities serving the role of endowments.

We show that these cutoffs can be tractably calculated in a continuum model. In

addition, the cutoff representation yields for each student a budget set of schools at

which she gained admission, and these budget sets allow for tractable expressions

for welfare under random utility models. We provide closed form expressions for the

cutoffs and for student welfare in parametric settings.

Our cutoff characterization clarifies the role of priorities in determining the TTC

assignment. Students can use priority at school b to gain admission to school c if

their priority at school b is above the cutoff pcb. Each student is assigned to her most

preferred school for which she gained admission. Thus, priority at a school allows a

student to gain admission at a range of schools.

While our cutoff characterization provides a simpler description of the TTC as-

signment, we show there is no simpler cutoff representation of TTC. Thus, the concern

that TTC is ‘less transparent’ than DA remains valid, as DA can be described using

a cutoff for each school, while TTC requires a cutoff for each pair of schools.

Using our cutoff characterization, we can leverage tools from price theory to un-

derstand how policy decisions affect the TTC assignment. We provide comparative

statics with respect to changes in the popularity of schools and identify which stu-

dents gain or lose. We evaluate policy decisions such as the design of priorities and

investment in school quality and find significant implications for welfare.

Applying these tools to optimize a school district’s investment in schools reveals

that optimal investment decisions under DA and TTC can be very different. We set

up a model where students have a common preference for quality, which depends on

school-specific investment,4 as well as horizontal taste shocks. Comparative statics

lead to similar welfare when the number of agents and items are both large and preferences are
uncorrelated.

4Examples of such changes include increases in school infrastructure spending (Cellini et al.
2010), increases in school district funding (Hoxby 2001, Jackson et al. 2016, Johnson & Jackson
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reveal a tension between maximizing choice and investing in cost-effective schools

where investment generates the most added quality. This is because a larger difference

in the vertical quality of the schools leads to smaller budget sets for students and less

efficient sorting on horizontal taste shocks.

We quantify this trade-off, and find that these effects have different magnitudes

under DA and TTC. A simple parameterized economy shows these differences can

lead to differences in optimal investment. Under TTC optimal investment makes all

schools equally popular, maximizing student choice and welfare gains from horizontal

sorting. Under DA the optimal investment is focused on the most cost-effective

school, because DA does not allow as much choice and achieves less welfare gains

from horizontal sorting.

Given that priorities serve a different role under DA and TTC, a school district

that adapts TTC may want to accordingly change the priority structure. We analyze

how changes to the priority structure affect the TTC assignment and find that TTC

priorities are “bossy” in the sense that changes in priority among a set of students

that do not alter their assignment can nonetheless alter the assignment of other

students. This can be seen as another undesirable property of TTC, and suggests

challenges in designing priority structures for TTC.

A few technical aspects of the analysis may be of interest. The tractability of

our framework relies on a novel approach to analyzing TTC in terms of trade balance

equations. The TTC algorithm can be characterized by its aggregate behavior over

many cycles: any collection of cycles must maintain trade balance, that is, the number

of students assigned to each school is equal to the number of students who claimed

or traded a seat at that school. For smooth continuum economies we reformulate

the trade balance equations into a system of equations that fully characterizes TTC.

These equations provide a recipe for calculating the TTC assignment. The trade

balance equations also circumvent many of the measure theoretic complications in

defining TTC in the continuum. Finally, we make use of a connection to Markov

chain theory to show that a solution to the marginal trade balance equations always

exists, and to characterize the possible trades.

2017), reduction in class size (Krueger 1999, Chetty et al. 2011) and changes in an individual
school’s funding (Dinerstein et al. 2014), but our theoretical model is not specific to any of these
examples.
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1.1 Related Literature

Abdulkadiroğlu & Sönmez (2003) introduced school choice as a mechanism design

problem and suggested the TTC mechanism as a desirable solution. Since then, TTC

has been considered for use in a number of school choice systems. Abdulkadiroğlu

et al. (2005) discuss how the city of Boston debated between using DA and TTC for

their school choice systems and ultimately chose DA.

Cutoff representations have been instrumental for empirical work on DA and re-

lated mechanisms. Abdulkadiroğlu, Angrist, Narita & Pathak (2017) use admission

cutoffs to construct propensity score estimates. Agarwal & Somaini (2018), Ka-

por et al. (2016) structurally estimate preferences from rank lists submitted to non-

strategy-proof variants of DA. Both build on the cutoff representation of Azevedo

& Leshno (2016). We hope that our cutoff representation of TTC will be similarly

useful for empirical work on TTC.

Dur & Morrill (2017) show that the outcome of TTC can be expressed as the

outcome of a competitive market where there is a price for each priority position

at each school, and agents may buy and sell exactly one priority position. Our

characterization differs in that it requires a lower dimensional set of cutoffs that does

not grow with the number of positions, and in that it provides a method for directly

calculating these cutoffs which allows for welfare calculations and comparative statics.

This paper contributes to a growing literature that uses continuum models in

market design (Avery & Levin 2010, Abdulkadiroğlu et al. 2015, Ashlagi & Shi 2015,

Che et al. Forthcoming, Azevedo & Hatfield 2015). Our description of the continuum

economy uses the setup of Azevedo & Leshno (2016), who characterize stable match-

ings in terms of cutoffs that satisfy a supply and demand equation. Our results from

Section 4.4 imply that the TTC cutoffs depend on the entire distribution and cannot

be computed from simple supply and demand equations.

Several papers also study TTC in large markets. Hatfield et al. (2016) show that

even in a large market it is possible that a school is assigned less preferred students

when it improves its quality. Our framework allows us to provide comparative statics

that quantify the changes in the TTC assignment and identify the affected students.

We examine a parameterized setting and find that newly assigned students include

students of arbitrarily low priority. Che & Tercieux (Forthcoming, 2018) study the

properties of TTC in a large market where the heterogeneity of items grows as the

market gets large, whereas our setting considers a large population of agents and a

fixed number of item types. The results in Section 4 show that TTC has different
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properties in these different large markets.

Ma (1994), Pápai (2000) and Pycia & Ünver (2017) give characterizations of

more general classes of Pareto efficient and strategy-proof mechanisms in terms of

clearing trade cycles. While our analysis focuses on the TTC mechanism, we believe

that our trade balance approach will be useful in analyzing these general classes of

mechanisms. Abdulkadiroğlu, Che, Pathak, Roth & Tercieux (2017) show that TTC

minimizes the number of blocking pairs subject to strategy-proofness and Pareto

efficiency. Additional axiomatic characterizations of TTC were given by Dur (2012)

and Morrill (2013, 2015a). These characterizations explore the properties of TTC,

but do not provide methods for calculating the TTC outcome or evaluating welfare.

Several variants of TTC have been suggested in the literature. Morrill (2015b)

introduces the Clinch and Trade mechanism, which differs from TTC in that it iden-

tifies students who are guaranteed admission to their first choice and assigns them

immediately without implementing a trade. Hakimov & Kesten (2014) introduce

Equitable TTC, a variation on TTC that aims to reduce inequity. In Section 4.4

we show how our model can be used to analyze such variants of TTC and com-

pare their assignments. Other variants of TTC can also arise from the choice of

tie-breaking rules. Ehlers (2014) shows that any fixed tie-breaking rule satisfies weak

efficiency, and Alcalde-Unzu & Molis (2011), Jaramillo & Manjunath (2012) and Sa-

ban & Sethuraman (2013) give specific variants of TTC that are strategy-proof and

efficient. The continuum model allows us to characterize the possible outcomes from

different tie-breaking rules.

He et al. (Forthcoming) propose an alternative pseudo-market approach for dis-

crete assignment problems that extends Hylland & Zeckhauser (1979) and also uses

admission cutoffs. Miralles & Pycia (2014) show a second welfare theorem for discrete

goods, namely that any Pareto efficient assignment of discrete goods without trans-

fers can be decentralized through prices and endowments, but require an arbitrary

endowment structure.

1.2 Organization of the Paper

Section 2 presents our cutoff characterization under the standard discrete TTC model.

Section 3 presents the continuum TTC model and provides our main technical contri-

butions that allow for direct calculation of the TTC cutoffs, assignment and welfare.

Section 4 applies our framework to calculate and compare welfare under DA and
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TTC, provide comparative statics, analyze allocation of resources to schools, and

inspect effects of changes in priorities. Section 5 provides concluding remarks.

Appendix A provides the technical intuition for the continuum TTC model. Ap-

pendix B.1 shows that the continuum TTC model is consistent with the discrete

TTC model and provides an example of a computation of the discrete TTC alloca-

tion through the continuum framework. Omitted proofs can be found in the online

appendix.

2 TTC in School Choice

2.1 The Discrete TTC Model

In this section, we describe the standard model for the TTC mechanism in the school

choice literature, and outline some of the properties of TTC in this setting.

Let S be a finite set of students, and let C = {1, . . . , n} be a finite set of schools.

Each school c ∈ C has a finite capacity qc > 0. Each student s ∈ S has a strict

preference ordering �s over schools. Let Chs (C) = arg max�s {C} denote s’s most

preferred school out of the set C. Each school c ∈ C has a strict priority ordering

�c over students. To simplify notation, we assume that all students and schools are

acceptable, and that there are more students than available seats at schools.5 It

will be convenient to represent the priority of student s at school c by the student’s

percentile rank rsc = |{s′ | s �c s′}| / |S| in the school’s priority ordering. Note that

for any two students s, s′ and school c we have that s �c s′ ⇐⇒ rsc > rs
′
c and that

0 ≤ rsc < 1.

A feasible assignment is µ : S → C ∪ {∅} where |µ−1(c)| ≤ qc for every c ∈ C.
If µ(s) = c we say that s is assigned to c, and we use µ(s) = ∅ to denote that the

student s is unassigned. As there is no ambiguity, we let µ(c) denote the set µ−1(c)

for c ∈ C ∪ {∅}. A discrete economy is E = (C,S,�S ,�C, q), where C is the set

of schools, S is the set of students, q = {qc}c∈C is the capacity of each school, and

�S= {�s}s∈S , �C= {�c}c∈C.
Given an economy E, the discrete Top Trading Cycles algorithm (TTC) calculates

an assignment µdTTC (· | E) : S → C ∪ {∅}. We omit the dependence on E when it

is clear from context. The algorithm runs in discrete steps as follows.

5This is without loss of generality, as we can introduce auxiliary students and schools that
represent being unmatched.
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Algorithm 1 (Top Trading Cycles). Initialize unassigned students S = S, available

schools C = C, capacities {qc}c∈C .

While there are still unassigned students and available schools:

• Each available school c ∈ C offers a seat by pointing to its highest priority

remaining student.

• Each student s ∈ S who was offered a seat points to her most preferred remain-

ing school.

• Select at least one trading cycle, that is, a list of students s1, . . . , s`, s`+1 =

s1 such that si+1 was offered a seat at si’s most preferred school. Assign all

students in the cycles to the school they point to.6

• Remove the assigned students from S, reduce the capacity of the schools they

are assigned to by 1, and remove schools with no remaining capacity from C.

TTC satisfies a number of desirable properties. An assignment µ is Pareto effi-

cient for students if no group of students can improve by swapping their allocations,

and no individual student can improve by swapping her assignment for an unassigned

object. A mechanism is Pareto efficient for students if it always produces an assign-

ment that is Pareto efficient for students. A mechanism is strategy-proof for students

if reporting preferences truthfully is a dominant strategy. It is well known that the

TTC school choice mechanism is both Pareto efficient and strategy-proof for students

(Abdulkadiroğlu & Sönmez 2003). Moreover, when type-specific quotas must be im-

posed, TTC can be easily modified to meet quotas while still maintaining constrained

Pareto efficiency and strategy-proofness (Abdulkadiroğlu & Sönmez 2003).

2.2 Cutoff Characterization and the Role of Priorities

Our first contribution is that the TTC assignment can be described in terms of n2

cutoffs {pcb}, one for each pair of schools.

Theorem 1. Let E be an economy. The TTC assignment is given by

µdTTC(s | E) = max
�s
{c | rsb ≥ pcb for some b} ,

6Such a trading cycle must exist, since every vertex in the pointing graph with vertex set S ∪C
has out-degree 1.
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where pcb is the percentile in school b’s ranking of the worst ranked student at school

b that traded a seat at school b for a seat at school c during the run of the TTC

algorithm on E. If no such student exists, pcb = 1.

Cutoffs serve a parallel role to prices in Competitive Equilibrium, and each stu-

dent’s vector of priorities at each school serves as her endowment. For each student

s, the cutoffs p = {pcb}b,c combine with student s’s priorities rs to give s a budget

set B (s,p) = {c | rsb ≥ pcb for some b} of schools she can attend. TTC assigns each

student to her favorite school in her budget set.

The cutoffs pcb in Theorem 1 can be easily identified after the mechanism has

been run. Hence Theorem 1 provides a concise way of communicating the TTC

assignment to students. Students can calculate their budget set from their privately

known priorities and the publicly given cutoffs, allowing them to verify that they were

indeed assigned to their most preferred school in their budget set. If a student does

not receive a seat at a desired school c, it is because she does not have sufficiently

high priority at any school. We illustrate these ideas in Example 1.

Example 1. Consider a simple economy where there are two schools each with

capacity q = 120, and a total of 300 students, 2/3 of whom prefer school 1. Student

priorities were selected such that there is little correlation between student priority

at either school and between student priorities and preferences. Figure 1a illustrates

the preferences and priorities of each of the students. Each colored number represents

a student. The location of the student in the square indicates their priority, with the

horizontal axis indicating priority at school 1 and the vertical axis indicating priority

at school 2. Numbers indicate students’ preferred schools, and all students find both

schools acceptable. Colors indicate students’ assigned schools under TTC.

The cutoffs p and resulting budget sets B (s,p) for each student are illustrated

in Figure 1b. The colors in the body of the figure indicate the budget sets given to

students as a function of their priority at both schools. The colors along each axis

indicate the schools that enter a student’s budget set because of her priority at the

school whose priority is indicated by that axis. For example, a student has the budget

set {1, 2} if she has sufficiently high priority at either school 1 or school 2. Note that

students’ preferences are not indicated in Figure 1b as each student’s budget set is

independent of her preferences. The assignment of each student is her favorite school

in her budget set.

Figure 1 shows the role of priorities in determining the TTC assignment in Exam-

ple 1. Students with higher priority have a larger budget set of schools from which
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(b) Budget sets for the economy E.

Figure 1: The economy and TTC budget sets for Example 1.

they can choose. A student can choose her desired school if her priority for some

school is sufficiently high. Priority for each school is considered separately, and pri-

ority from multiple schools cannot be combined. For example, a student who has

top priority for one school and bottom priority at the other school is assigned to her

top choice, but a student who has the median priority at both schools will not be

assigned to school 1.

2.3 The Structure of TTC Budget Sets

The cutoff structure for TTC allows us to provide some insight into the structure of

the assignment. For each student s, let Bb (s,p) = {c | rsb ≥ pcb} denote the set of

schools that enter student s’s budget set because of her priority at school b. Note

that Bb (s,p) depends only on the n cutoffs pb = {pcb}c∈C. A student’s budget set is

the union B (s,p) = ∪bBb (s,p). Figure 1(b) depicts B1 (s,p) and B2 (s,p) for the

economy of Example 1 along the x and y axes respectively.

The following proposition shows that budget sets Bb (s,p) can be given by cutoffs

pb that share the same ordering over schools for every b. We let C(c) = {c, c+ 1, . . . , n}
denote the set of schools that have a higher index than c.

Proposition 1. There exists a relabeling of school indices such that there exist cutoffs

p = {pcb} that describe the TTC assignment

µdTTC(s) = max
�s
{c | rsb ≥ pcb for some b} ,

and for any school b the cutoffs are ordered,7

7The cutoffs p defined in Theorem 1 do not necessarily satisfy this condition. However, the
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p1
b ≥ p2

b ≥ · · · ≥ pbb = pb+1
b = · · · = pnb . (1)

Therefore, under such relabeling the set of schools Bb (s,p) student s can afford via

her priority at school b is either the empty set φ or Bb (s,p) = C(c) = {c, c+ 1, . . . , n}
for some c ≤ b. Moreover, each student’s budget set B (s,p) = ∪bBb (s,p) is either

B (s,p) = φ or B (s,p) = C(c) for some c.

When there exist TTC cutoffs that satisfy inequality (1) we say that the schools

are labeled in order, and for all pairs of schools c ≤ b we say that b is more affordable

than c. The cutoff ordering proved in Proposition 1 implies that budget sets of dif-

ferent students are nested, and therefore that the TTC assignment is Pareto efficient.

The cutoff ordering is a stronger property than Pareto efficiency, and is not implied

by the Pareto efficiency of TTC. For example, serial dictatorship with a randomly

drawn ordering will give a Pareto efficient assignment, but there is no relationship

between a student’s priorities and her assignment.

Proposition 1 allows us to give a simple illustration for the TTC assignment

when there are n ≥ 3 schools. For each school b, we can illustrate the set of schools

Bb (s,p) that enter a student’s budget set because of her priority at school b as in

Figure 2 (under the assumption that schools are labeled in order). This generalizes

the illustration along each axis in Figure 1(b), and can be used for any number of

schools. It is possible that pcb = 1, meaning that students cannot use their priority

at school b to trade into school c.

Figure 2: The schools Bb (s,p) that enter a student’s budget set because of her priority at school b.
The cutoffs pcb are weakly decreasing in c, and are equal for all c ≥ b (i.e. pbb = pb+1

b = · · · = pnb ).
That is, a student’s priority at b can add one of the sets C(1), C(2), . . . , C(b), φ to her budget set. If
any school enters a student’s budget because of her priority at b, then school b must also enter her
budget set because of her priority at b.

Dur & Morrill (2017) provide a characterization of TTC as a competitive equilib-

rium where a priority value function v(r, b) specifies the price of priority r at school

b and students are allowed to buy and sell one priority. Given TTC cutoffs {pcb}

following relabeling of schools and cutoffs p̃ gives the same assignment and satisfy the condition:
the schools are relabeled in the order in which they reach capacity under TTC, and the cutoffs p̃
are given by p̃cb = mina≤c p

a
b .
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where schools are labeled in order, the TTC assignment and priority value function

v (r, b) = n −min {c | r ≥ pcb} constitute a competitive equilibrium. We introduce a

framework in Section 3 that allows a direct calculation of this competitive equilibrium

as a solution to a set of equations.

2.4 Transparency of the TTC Assignment

Our cutoff characterization provides a more transparent way to communicate the

TTC outcome. A student can determine her assignment using just the cutoffs and

her priorities, as she has a school c in her budget set if and only if her priority at

some school b meets the cutoff pcb. Hence the school district can publish the TTC

cutoffs and let students verify that they were assigned to their most preferred school

in their budget set. This also suggests the following non-combinatorial description

of the TTC assignment. For each school b, students receive b-tokens according to

their priority at school b, and students with higher b-priority receive more b-tokens.

The TTC algorithm publishes cutoffs {pcb}. Students can use one kind of token and

purchase a single school, and the required number of b-tokens to purchase school c is

pcb. Theorem 1 shows the cutoffs can be observed after running TTC.8

Thus our characterization makes the ‘behind the scenes mechanized trading’ (BPS

2005) in TTC more transparent. The cutoffs make it simple to see, ex post, which

priorities can be traded to get into which school: priority at a school b can be traded

for a seat at school c if and only if it meets the cutoff pcb.

Our characterization also highlights some aspects of TTC which may make it seem

less transparent. Example 1 shows that the TTC assignment cannot be expressed

in terms of a single cutoff for each school, as the assignment cannot be described

by fewer than 3 cutoffs. One can extend this to construct economies with n schools

where the assignment cannot be described by fewer than 1
2
n2 cutoffs. Hence the

cutoff structure under TTC is provably more complicated than the cutoff structure

under DA.9

In addition, the characterization highlights that a priority at a school can add

8We thank Chiara Margaria, Laura Doval and Larry Samuelson for suggesting this explanation.
9This can be formalized in the language of VC theory (Vapnik & Chervonenkis 1971) as follows.

Suppose we let HTTC be the set family containing: (1) the sets of priorities for which students
would have school i in their budget set under TTC for some economy; and (2) the sets of priorities
for which students would not have school i in their budget set under TTC for some economy, for a
given school i in a finite set of schools C = {1, 2, . . . , n}. Suppose we similarly define HDA. Then
the VC dimension of HTTC is n+ 1, and the VC dimension of HDA is 2.
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many schools to the student’s budget set, which may not be the intended purpose of

the priority (e.g., sibling priority at a popular school).

Finally, we note that while in general n2 cutoffs are required to describe the TTC

assignment, the structure of the TTC budget sets makes it possible for each student

to consider only n of these cutoffs when verifying their assignment. Specifically,

Proposition 1 provides a popularity ordering of schools under TTC: if a student does

not have a school c in their budget set, then they do not have any of the more

popular schools in their budget set (i.e. schools b with b < c when schools are labeled

in order). Hence a student s can verify that her assigned school µ (s) is her best

possible assignment by considering only the least popular school c that she prefers to

µ (s) (i.e. the school c = max {c′ | c′ �s µ (s)} if the schools are labeled in order) and

checking whether she has sufficiently high priority at some school b to be assigned to

school c. However, we note that revealing a popularity ordering of schools may be

seen as another undesirable property of TTC.

2.5 Limitations

Although the cutoff structure is helpful in understanding the structure of the TTC

assignment, there are several limitations to the cutoffs computed in Theorem 1 and

Proposition 1. First, while the cutoffs can be determined by running the TTC algo-

rithm, Theorem 1 does not provide a direct method for calculating the cutoffs from

the economy primitives. In particular, it does not explain how the TTC assignment

changes with changes in school priorities or student preferences. Second, the budget

set B (s,p) given by the cutoffs derived in Theorem 1 does not correspond to the set

of possible school assignments that student s can achieve by unilaterally changing

her reported preferences.10,11 We therefore introduce the continuum model for TTC

10More precisely, given economy E and student s, let economy E′ be generated by changing the
preferences ordering of s from �s to �′. Let µdTTC (s | E) and µdTTC (s | E′) be the assignment of
s under the two economies, and let p be the cutoffs derived by Theorem 1 for economy E. Theorem
1 shows that µdTTC (s | E) = max�s B (s,p) but it may be µdTTC (s|E′) 6= max�′ B (s,p).

11For example, let E be an economy with three schools C = {1, 2, 3}, each with capacity 1. There
are three students s1, s2, s3 such that the top preference of s1, s2 is school 1, the top preference of
s3 is school 3, and student si has top priority at school i. Theorem 1 gives the budget set {1} for
student s1, as p1 =

(
2
3 , 1, 1

)
, p2 =

(
1, 23 , 1

)
and p3 =

(
1, 1, 23

)
, since the only trades are of seats at

c for seats at the same school c. However, if s1 reports the preference 2 � 1 � 3 she will be assigned
to school 2, so an appropriate definition of budget sets should include school 2 in the budget set for
student s1. Also note that no matter what preference student s1 reports, she will not be assigned
to school 3, so an appropriate definition of budget sets should not include school 3 in the budget
set for student s1.
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which allows us to directly calculate the cutoffs, allowing for comparative statics.

Using the continuum model, we present in Section 3.5 cutoffs that yield refined bud-

get sets which provide for each student the set of schools that she could be assigned

to by unilaterally changing her preferences. This formulation proves that TTC is

strategy-proof.

3 TTC in a Continuum Model

3.1 Model

We consider the school choice problem with a continuum of students and finitely many

schools, as in Azevedo & Leshno (2016). There is a finite set of schools denoted by

C = {1, . . . , n}, and each school c ∈ C has the capacity to admit a mass qc > 0 of

students. A student θ ∈ Θ is given by θ =
(
�θ, rθ

)
. We let �θ denote the student’s

strict preferences over schools, and let Chθ (C) = max
�θ

(C) denote θ’s most preferred

school out of the set C. The priorities of schools over students are captured by the

vector rθ ∈ [0, 1]C . We say that rθb is the rank of student θ at school b, or the b-rank

of student θ. Schools prefer students with higher ranks, i.e. θ �b θ′ ⇔ rθb > rθ
′

b .

Definition 1. A continuum economy is given by E = (C,Θ, η, q) where q = {qc}c∈C
is the vector of capacities of each school, and η is a measure over Θ.

We make some assumptions for the sake of tractability. First, we assume that all

students and schools are acceptable. Second, we assume there is an excess of students,

that is,
∑

c∈C qc < η (Θ). Finally, we make the following technical assumption that

ensures that the run of TTC in the continuum economy is sufficiently smooth and

allows us to avoid some measurability issues.

Assumption 1. The measure η admits a density ν. That is for any measurable

subset of students A ⊆ Θ

η(A) =

∫
A

ν(θ)dθ.

Furthermore, ν is piecewise Lipschitz continuous everywhere except on a finite grid,12

bounded from above, and bounded from below away from zero on its support.13

12A grid G ⊂ Θ is given by G =
{
θ | ∃c s.t. rθc ∈ D

}
, where D = {d1, . . . , dL} ⊂ [0, 1] is a finite

set of grid points. Equivalently, ν is Lipschitz continuous on the union of open hypercubes Θ \G.
13That is, there exists M > m > 0 such that for every θ ∈ Θ either ν(θ) = 0 or m ≤ ν(θ) ≤M .
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Assumption 1 is general enough to allow embeddings of discrete economies, and

is satisfied by all the economies considered throughout the paper. However, it is not

without loss of generality, e.g. it is violated when all schools share the same priorities

over students.14

An immediate consequence of Assumption 1 is that a school’s indifference curves

are of η-measure 0. That is, for any b ∈ C, x ∈ [0, 1] we have that η({θ | rθb = x}) =

0. This is analogous to schools having strict preferences in the standard discrete

model. As rθb carries only ordinal information, we may assume each student’s rank is

normalized to be equal to her percentile rank in the school’s preferences, i.e. for any

b ∈ C, x ∈ [0, 1] we have that η({θ | rθb ≤ x}) = x.

It is convenient to describe the distribution η by the following induced marginal

distributions. For each point x ∈ [0, 1]n and subset of schools C ⊆ C, let H
c|C
b (x) be

the marginal density of students who are top ranked at school b among all students

whose rank at every school a is no better than xa, and whose top choice among the set

of schools C is c.15 We omit the dependence on C when the relevant set of schools

is clear from context, and write Hc
b (x). The marginal densities H

c|C
b (x) uniquely

determine the distribution η.

As in the discrete model, an assignment is a mapping µ : Θ → C ∪ {∅} specify-

ing the assignment of each student. With slight abuse of notation, we let µ (c) =

{θ | µ (θ) = c} denote the set of students assigned to school c. An assignment µ is

feasible if it respects capacities, i.e. for each school c ∈ C we have η (µ(c)) ≤ qc. Two

allocations µ and µ′ are equivalent if they differ only on a set of students of zero

measure, i.e. η ({θ | µ (θ) 6= µ′ (θ)}) = 0.

Remark 1. In school choice, it is common for schools to have coarse priorities, and

to refine these using a tie-breaking rule. Our economy E captures the strict priority

structure that results after applying the tie-breaking rule.

14We can incorporate an economy where two schools have perfectly aligned priories by considering
them as a combined single school in the trade balance equations, as defined in Definition 2. The
capacity constraints still consider the capacity of each school separately.

15Formally

H
c|C
b (x)

def
= lim

ε→0

1

ε
η
({
θ ∈ Θ | rθ ∈ [(xb − ε) · eb,x) and Chθ (C) = c

})
=

∫
{θ|rθ∈[xb·eb,x) and Chθ(C)=c}

ν (θ) dθ,

where eb is the unit vector in the direction of coordinate b. In other words, H
c|C
b (x) is the density

of students θ with priority rθb = xb and rθa ≤ xa for all a ∈ C whose most preferred school in C is c.
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3.2 Calculating the TTC Assignment

In this section, we establish that in the continuum model the TTC assignment can

be directly calculated from trade balance and capacity equations. This allows us

to provide closed-form expressions for the TTC cutoffs, budget sets and welfare for

parametric economies. It also allows us to explain how the TTC assignment changes

with changes in the underlying economy.

We remark that our results are also of technical interest. Directly translating

the TTC algorithm to the continuum setting by considering individual trading cycles

is challenging, as a direct adaptation of the algorithm would require the clearing

of cycles of zero measure. We circumvent the technical issues raised by such an

approach by formally defining the continuum TTC assignment in terms of trade

balance and capacity equations, which characterize the TTC algorithm in terms of

its aggregate behavior over multiple steps. To verify the validity of our definition,

we show in Subsection B that continuum TTC can be used to calculate the discrete

TTC outcome. We provide further intuition in Appendix A.

We begin with some definitions. A function γ (t) : [0,∞)→ [0, 1]C is a TTC path

if γ is continuous and piecewise smooth, γc (t) is weakly decreasing for all c, and the

initial condition γ (0) = 1 holds. A function γ̃ (t) : [t0,∞)→ [0, 1]C̃ is a residual TTC

path if it satisfies all the properties of a TTC path except the initial condition, and

γ̃c (t) is defined only for t ≥ t0 > 0 and c ∈ C̃ ⊂ C. For a set
{
t(c)
}
c∈C ∈ R

C
≥ of times

we let t(c
∗) def= minc

[
t(c)
]

denote the minimal time. For a point x ∈ [0, 1]C, let

Dc (x)
def
= η

({
θ | rθ 6< x, Chθ (C) = c

})
denote the mass of students whose rank at some school b is better than xb and their

first choice is school c. We will refer to Dc (x) as the demand for c. Recall that

Hc
b (x) is the marginal density of students who want c who are top ranked at school b

among all students with rank no better than x. Note that Dc (x) and Hc
b (x) depend

implicitly on the set of available schools C, as well as on the economy E .

A TTC path γ can capture the progression of a continuous time TTC algorithm,

with the interpretation that γc (t) is the highest c-priority of any student who remains

unassigned by time t. The stopping times
{
t(c)
}
c∈C indicate when each school fills

its capacity. To verify whether γ and
{
t(c)
}
c∈C can correspond to a run of TTC we

introduce trade balance conditions and capacity constraints as defined below.
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Definition 2. Let E = (C,Θ, η, q) be an economy. We say that the (residual) TTC

path γ (t) and positive stopping times
{
t(c)
}
c∈C ∈ R

C
≥ satisfy the trade balance and

capacity equations for the economy E if the following hold.

1. γ (·) satisfies the marginal trade balance equations given by∑
a∈C

γ′a (t)Hc
a (γ (t)) =

∑
a∈C

γ′c (t)Ha
c (γ (t)) (2)

for all c ∈ C and all t ≤ t(c
∗) = minc

[
t(c)
]

for which the derivatives exist.

2. The minimal stopping time t(c
∗) solves the capacity equations

Dc∗
(
γ
(
t(c
∗)
))

= qc∗

Da
(
γ
(
t(c
∗)
))
≤ qa ∀a ∈ C

(3)

and γc∗ (t) is constant for all t ≥ t(c
∗).

3. If C \ {c∗} 6= φ, define the residual economy Ẽ =
(
C̃,Θ, η̃, q̃

)
by C̃ = C \ {c∗},

q̃c = qc − Dc
(
γ
(
t(c
∗)
))

and η̃ (A) = η
(
A ∩

{
θ : rθ ≤ γ

(
t(c
∗)
)})

. Define the

residual TTC path γ̃ (·) : [t(c
∗),∞)→ [0, 1]C̃ by restricting γ (·) to t ≥ t(c

∗) and

coordinates within C̃. Then γ̃ and the stopping times
{
t(c)
}
c∈C̃ satisfy the trade

balance and capacity equations for Ẽ.

A brief motivation for the definition is as follows. TTC progresses by clearing

trading cycles, and in each trading cycle the number of seats offered by a school is

equal to the number of students assigned to that school. Equation (2) states that

over every small time increment the mass of students assigned to a school must be

equal to the mass of offers made by the school. While all schools have remaining

capacity, every assigned student is assigned to his first choice, and thus Dc (γ (t))

gives the mass of students assigned to school c at time t ≤ t(c
∗) in the algorithm. The

time t(c
∗) when school c∗ fills its capacity can be calculated as a solution to Equation

(3). Once a school exhausts its capacity we can eliminate that school and recursively

calculate the TTC assignment on the remaining problem with n−1 schools, which is

stated as condition (3). We provide more comprehensive intuition for the definition

and the results in Appendix A.

In other words, the trade balance and capacity equations fully characterize and

provide a way to directly calculate the TTC assignment from the problem primitives.

We show in Appendix B that our characterization is consistent with discrete TTC.
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Theorem 2. Let E = (C,Θ, η, q) be an economy. There exist a TTC path γ (·) and

stopping times
{
t(c)
}
c∈C that satisfy the trade balance and capacity equations. Any

γ (·) ,
{
t(c)
}
c∈C that satisfy the trade balance and capacity equations yield the same

assignment µcTTC, given by

µcTTC (θ) = Chθ (B (θ,p)) ,

where the n2 TTC cutoffs {pcb} are given by

pcb = γb
(
t(c)
)
∀b, c

and the budget set for each student θ is given by B (θ,p) =
{
c : rθb ≥ pcb for some b

}
.

In other words, Theorem 2 provides the following a recipe for calculating the TTC

assignment. First, find γ̂ (·) that solves the marginal trade balance equations (2) for

all t. Second, calculate t(c
∗) from the capacity equations (3) for γ̂ (·). Set γ (t) = γ̂ (t)

for t ≤ t(c
∗). To determine the remainder of γ (·), apply the same steps to the residual

economy Ẽ which has one less school.16 This recipe is illustrated in Example 2. The

TTC path used in this recipe may not be the unique TTC path, but all TTC paths

yield the same TTC assignment.

Theorem 2 shows that the cutoffs can be directly calculated from the primitives

of the economy. In contrast to the cutoff characterization in the standard model

(Theorem 1), this allows us to understand how the TTC assignment changes with

changes in capacities, preferences or priorities. We remark that the existence of a

smooth curve γ follows from our assumption that η has a density that is piecewise

Lipschitz and bounded, and the existence of t(c) satisfying the capacity equations (3)

follows from our assumptions that there are more students than seats and all students

find all schools acceptable.

The following immediate corollary of Theorem 2 shows that in contrast with the

cutoffs given by the discrete model, the cutoffs given by Theorem 2 always satisfy

the cutoff ordering.

Corollary 1. Let the schools be labeled such that t(1) ≤ t(2) ≤ · · · ≤ t(n). Then

schools are labeled in order, that is,

p1
b ≥ p2

b ≥ · · · ≥ pbb = pb+1
b = · · · = p

|C|
b for all b.

16Continuity of the TTC path provides an initial condition for γ̃, namely γ̃c
(
t(c
∗)
)

= γc
(
t(c
∗)
)
∀c

.
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3.3 Example: Calculating TTC Budget Sets and Assignment

In this section, we illustrate how Theorem 2 can be used to calculate the TTC

assignment and understand how it depends on the parameters of the economy in

the following simple economy. This parameterized economy yields a tractable closed

form solution for the TTC assignment. For other economies the equations may not

necessarily yield tractable expressions, but the same calculations can be be used to

numerically solve for cutoffs for any economy satisfying our smoothness requirements.

Example 2. We demonstrate how to use Theorem 2 to calculate the TTC budget

sets and assignment for a simple parameterized continuum economy. The economy

E has two schools 1, 2 with capacities q1 = q2 = q with q < 1/2. A fraction p > 1/2

of students prefer school 1, and student priorities are uniformly distributed on [0, 1]

independently for each school and independently of preferences. This economy is

described by

H (x1, x2) =

[
px2 (1− p)x2

px1 (1− p)x1

]
,

where Hc
b (x) is given by the b-row and c-column of the matrix. A particular instance

of this economy with q = 4/10 and p = 2/3 is illustrated in Figure 3. This economy

can be viewed as a smoothed continuum version of the economy in Example 1.

Figure 3: The TTC path, cutoffs, and budget sets for a particular instance of the economy E in
Example 2. Students in the dark blue region have a budget set of {1, 2}, students in the light blue
region have a budget set of {2}, and students in the white region have a budget set of φ.

Calculating the TTC Cutoffs and Assignment We start by solving for γ from

the trade balance equations (2), which simplify to the differential equation17

17The original trade balance equations are
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γ′2 (t)

γ′1 (t)
=

1− p
p

γ2 (t)

γ1 (t)
.

Since γ (0) = 1, this is equivalent to γ2 (t) = (γ1 (t))
1
p
−1. Hence for 0 ≤ t ≤

min
{
t(1), t(2)

}
we set

γ (t) =
(

1− t, (1− t)
1
p
−1
)
.

We next compute t(c
∗) = min

{
t(1), t(2)

}
. Observe that because p > 1/2 it must be

that t(1) < t(2).18 Therefore, we solve D1
(
γ
(
t(1)
))

= q to get that t(1) = 1−
(
p−q
p

)p
and that

p1
1 = γ1

(
t(1)
)

= (1− q/p)p , p1
2 = γ2

(
t(1)
)

= (1− q/p)1−p .

For the remaining cutoffs, we eliminate school 1 and reiterate the same steps for the

residual economy where C̃ = {2} and q̃2 = q2 −D2
(
γ
(
t(1)
))

= q (2− 1/p).

For the residual economy the marginal trade balance equations (2) are trivial, and

we define the residual TTC path by γ (t) =
(
p1

1, p
1
2 −

(
t− t(1)

))
for t(1) ≤ t ≤ t(2).

Solving the capacity equation (3) for t(2) yields that

p2
1 = γ1

(
t(2)
)

= (1− q/p)p = p1
1, p2

2 = γ2

(
t(2)
)

= (1− 2q) (1− q/p)−p .

For instance, if we plug in q = 4/10 and p = 2/3 to match the economy in Example

1, the calculation yields the cutoffs p1
1 = p2

1 ≈ .54, p1
2 ≈ .73 and p2

2 ≈ .37, which are

approximately the same cutoffs as those for the discrete economy in Example 1.

Students in the upper L-shaped region
{
θ | rθ1 ≥ (1− q/p)p or rθ2 ≥ (1− q/p)1−p}

are assigned to their favorite school, students in the light blue rectangular region{
θ | rθ1 < (1− q/p)p and rθ2 ∈

[
(1− 2q) (1− q/p)−p , (1− q/p)1−p)} are assigned to school

2, and all other students are unassigned.

Necessity of the Trade Balance Equations Example 2 illustrates how the TTC

cutoffs can be directly calculated from the trade balance equations and capacity

equations, without running the TTC algorithm. Example 2 can also be used to

γ′1 (t) pγ2 (t) + γ′2 (t) pγ1 (t) = γ′1 (t) pγ2 (t) + γ′1 (t) (1− p) γ2 (t) ,

γ′1 (t) (1− p) γ2 (t) + γ′2 (t) (1− p) γ1 (t) = γ′2 (t) pγ1 (t) + γ′2 (t) (1− p) γ1 (t) .

18Otherwise, we have that t(2) = min
{
t(1), t(2)

}
and D1

(
γ
(
t(2)
))
≤ q, implying that

D2
(
γ
(
t(2)
))

= 1−p
p D1

(
γ
(
t(2)
))
< q.
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show that it is not possible to solve for the TTC cutoffs only from supply-demand

equations. In particular, the following equations are equivalent to the condition that

for given cutoffs {pcb}b,c∈{1,2}, the demand for each school c is equal to the available

supply qc given by the school’s capacity:

p ·
(
1− p1

1 · p1
2

)
= q1 = q

(1− p) ·
(
1− p1

1 · p1
2

)
+ p1

1

(
p1

2 − p2
2

)
= q2 = q.

Any cutoffs p1
1 = p2

1 = x, p1
2 = (1 − q/p)/x, p2

2 = (1− 2q)x with x ∈ [1− q/p, 1]

solve these equations, but if x 6=
(

1− q
p

)p
then the corresponding assignment is

different from the TTC assignment. Section 4.4 provides further details as to how

the TTC assignment depends on features of the economy that cannot be observed

from supply and demand alone. In particular, the TTC cutoffs depend on the relative

priority among top-priority students, and not all cutoffs that satisfy supply-demand

conditions produce the TTC assignment.

3.4 Calculating TTC Welfare from Budget Sets

Model with Cardinal Utilities We are interested in quantifying the welfare of

the TTC assignment. In order to do so, we augment the model from Section 3.1 to

allow students to have cardinal utilities. A student θ̃ ∈ Θ̃ is given by θ̃ =
(
uθ̃, rθ̃

)
,

where for each school c the quantity uθ̃ (c) denotes the cardinal utility for student θ̃ of

attending school c. Each cardinal-utility student type θ̃ ∈ Θ̃ induces a student type

θ
(
θ̃
)

=
(
�, rθ̃

)
∈ Θ satisfying b � c if and only if uθ̃ (b) > uθ̃ (c).19 The measure

η̃ over Θ̃ specifies the distribution of cardinal-utility student types, and induces a

measure η, defined by η (A) = η̃
({
θ̃ | θ

(
θ̃
)
∈ A

})
over Θ. The TTC cutoffs and

assignment depend only on ordinal preferences and can therefore be computed using

the induced measure η.

Given an assignment µ, the welfare from the assignment is given by

W (µ) =

∫
θ̃∈Θ̃,µ(θ̃) 6=φ

uθ̃
(
µ
(
θ̃
))

dη̃.

We let WTTC = W (µTTC) denote the welfare from the TTC assignment.

19To guarantee strict preferences, if uθ̃ (b) = uθ̃ (c) let b � c iff b > c.
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Budget Sets and Welfare under TTC Given a set of cutoffs {pcb}, let B
(
θ̃,p
)

=

B
(
θ
(
θ̃
)
,p
)

denote the budget set of a student of type θ̃. The TTC assignment for

a student θ̃ can be defined in terms of the student’s budget set B
(
θ̃,p
)

by

µcTTC

(
θ̃
)

= Chθ
(
B
(
θ̃,p
))

,

where p are the TTC cutoffs and θ = θ
(
θ̃
)

is the induced student type with ordinal

preferences. These budget sets allow for a simple expression for welfare. For each set

of schools C ⊂ C, let

UC
(
θ̃
)

= E
[
max
c∈C

{
uθ̃ (c)

}]
denote the expected utility of a student θ̃ with budget set C, and let

AC =
{
θ̃ |B

(
θ̃,p
)

= C
}

denote the set of students with budget set C under TTC, where p are the TTC

cutoffs. Then for each set of schools C and each student θ̃ ∈ AC the assignment of

θ̃ under TTC is given by µcTTC

(
θ̃
)

= argmaxc∈C

{
uθ̃ (c)

}
, and social welfare under

the TTC assignment is equal to

WTTC =
∑
C⊂C

∫
AC

UC
(
θ̃
)
dη̃ .

We illustrate how to calculate welfare under TTC in Example 2 for a cardinal

utility model in Section 4.1.

3.5 Proper budget sets

The standard definition for a student’s budget set is the set of schools she can be

assigned to by reporting some preference to the mechanism. Specifically, let [E−s;�′]
denote the discrete economy where student s changes her report from �s to �′

(holding others’ reported preferences fixed), and let

B∗ (s | E)
def
=
⋃
�′
µdTTC (s | [E−s;�′])
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denote the set of possible school assignments that student s can achieve by unilaterally

changing her reported preferences. Note that s cannot misreport her priority.

We observed in Section 2.5 that in the discrete model the budget set B (s,p)

produced by cutoffs p = p (E) generated by Theorem 1 do not necessarily correspond

to the set B∗ (s | E). The analysis in this section can be used to show that the budget

sets B∗ (s | E) correspond to the budget sets B (s,p∗) for appropriate cutoffs p∗.

Proposition 2. Let E = (C,S,�S ,�C, q) be a discrete economy, let s ∈ S be a

student, and let

P (E) =
{
p | pcb = γb

(
t(c)
)

where γ (·) , t(c) satisfy trade balance and capacity for Φ (E)
}

be the set of all cutoffs that can be generated by some TTC path γ (·) and stopping

times
{
t(c)
}
c∈C. Then

B∗ (s | E) =
⋂

p∈P(E)

B (s,p) .

Moreover, there exists p∗ ∈ P (E) such that B∗ (s | E) = B (s,p∗) .

Proposition 2 allows us to construct proper budget sets for each agent that de-

termine not only their assignment given their current preferences, but also their

assignment given any other submitted preferences. This particular budget set repre-

sentation of TTC makes it clear that it is strategy-proof. In the appendix we prove

Proposition 2 and constructively find p∗.

4 Applications

4.1 Welfare under TTC vs. DA

In this section we consider a stylized economy where the student’s distance to a

school is indicative of the student’s preferences for the school.20 Distance to a school

is observable, and can be used to determine the priority ordering of the school. We

compare DA and TTC under random priority as well as under a priority system

that exploits observed distance. We calculate each of the resulting assignments and

compare them in terms of the resulting welfare and total distance traveled to the

assigned schools.

20The empirical matching literature commonly assumes students have a disutility from distance
traveled to school, see for example Abdulkadiroğlu, Agarwal & Pathak (2017).
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Formally, we consider an economy with a unit mass of students and two schools

C = {1, 2} with capacities q1 = q2 = 0.4. The utility of a student is determined by the

distances dθ̃1, d
θ̃
2 to each school and a random preference shock ε: uθ̃(1) = 2− dθ̃1 + εθ̃

for school 1 and uθ̃ (2) = 2−dθ̃2 for school 2. For tractability, distances are distributed(
dθ̃1, d

θ̃
2

)
∼ U [0, 1]2 and εθ̃ is distributed εθ̃ ∼ U [−1, 2] independently of dθ̃1, d

θ̃
2. The

utility of being unassigned is normalized to 0, and all schools are acceptable to all

students.

As benchmarks, we consider the welfare and total distance traveled under ran-

dom assignment, under the welfare-maximizing assignment and under the distance-

minimizing assignment. Random assignment of students to schools yields welfare

of WRand = q1E
[
uθ̃(1)

]
+ q2E

[
uθ̃(2)

]
= 1.4 and total distance traveled to assigned

school of DistRand = 0.5× (q1 + q2) = 0.4. The maximal feasible welfare, which can

be obtained by a competitive market with monetary transfers, is WMaxWF = 1.848;

this assignment results in a distance traveled of DistMaxWF = 0.291. The minimal

distance traveled to assigned school among all assignments that fill both schools is

DistMinDist = 0.193; this assignment results in welfare WMinDist = 1.607.

Uncorrelated Priority

In this case, priority is distributed
(
rθ̃1, r

θ̃
2

)
∼ U [0, 1]2 independently of dθ̃1, d

θ̃
2, ε

θ̃.

The probability that a randomly drawn student prefers school 1 is 2/3, and therefore

the joint distribution of ordinal preference and priorities is identical to that of the

economy in Example 2. The TTC assignment depends only on ordinal preferences,

and we can therefore use the calculation in Example 2 to get that the TTC cutoffs are

p1
1 = p2

1 ≈ .54, p1
2 ≈ .73 and p2

2 ≈ .37. Under these cutoffs a mass N{1,2} = 1−p1
1 ·p1

2 =

0.6 of students will have the budget set {1, 2}, another mass N{2} = p1
1 (p1

2 − p2
2) = 0.2

of students will have the budget set {2}, and the remaining 0.2 mass of students

remain unassigned. Thus, welfare under TTC with uncorrelated priorities is

WTTC,uncorr =
∑
C⊂C

∫
θ̃∈AC

uθ̃ (C) dη̃ = N{1,2} · E [us ({1, 2})] +N{2} · E [us ({2})]

= 0.6 · 79/36 + 0.2 · 3/2 = 1.6166 .

The total distance traveled is DistTTC,uncorr = 0.3667, which is lower than 0.4 because

students who have the full budget set {1, 2} are more likely to prefer and be assigned

to the closer school.

Under DA assignment only a mass 0.3 of students have the full budget set {1, 2},
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and the remaining students are either unassigned or can choose a single school.21

Welfare is WDA,uncorr = 1.503 and distance traveled is DistDA,uncorr = 0.38334. Be-

cause fewer students are able to choose their favorite school, the DA assignment is

worse than the TTC assignment in terms of both welfare and distance.

Welfare under both DA and TTC when priorities are uncorrelated with student

preferences is comparable to the welfare given by the assignment that minimizes

the total distance traveled. In other words, school choice mechanisms with poorly

designed priorities can perform poorly.

Proximity-Based Priority

School districts often wish to assign students to school that are close to their home,

and use the observable distance to school to prioritize students who live closer to

the school. We capture this by setting the priority of student s to be (rs1, r
s
2) =

(1− ds1, 1− ds2). This implies a correlation between having priority at a school and

preference for a school. For example,

Prob (1 � 2 | rs1 = x1, r
s
2 = x2) =

1

3
(3 + x2 − x1) .

Similar calculations yield that the marginal densities H (·) for this economy are

H (x1, x2) =

(
1
6x2 (4 + 2x1 − x2) 1

6x2(2− 2x1 + x2)
1
6x1 (4 + x1 − 2x2) 1

6x1(2− x1 + 2x2)

)
.

Numerically solving the trade balance and capacity equations yields the TTC cutoffs

p1
1 = p2

1 ≈ .554, p1
2 ≈ .762, p2

2 ≈ .361.22 Students in A{1,2} =
{
θ̃ | rθ̃1 ≥ p1

1 or rθ̃2 ≥ p1
2

}
have the budget set {1, 2}, students in A{2} =

{
θ̃ | rθ̃1 < p1

1 and p2
2 ≤ rθ̃2 < p1

2

}
have

the budget set {2}, and remaining students are unassigned. Welfare under TTC is

WTTC,corr =
∑
C⊂C

∫
s∈AC

us (C) dη̃

= N{1,2} · E
[
us ({1, 2}) | s ∈ A{1,2}

]
+N{2} · E

[
us ({2}) | s ∈ A{2}

]
= 1.7

21We find the DA assignment by solving for cutoffs (c1, c2) that solve the market clearing equations

(Azevedo & Leshno 2016)

D1 (c1, c2) = (1− c1) (c2 + 2/3 (1− c2)) = q1 D2 (c1, c2) = (1− c2) (c1 + 1/3 (1− c1)) = q2.

The unique solution is c1 = 0.5, c2 = 0.4.
22We provide the relevant expressions and Mathematica code in Appendix E.1.
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and distance traveled is

DistTTC,corr =

∫
s∈A{1,2}

1 {1 �s 2} ds1 + 1 {2 �s 1} ds2 dη̃ +

∫
s∈A{2}

ds2 dη̃ = 0.26,

where 1 {·} is the indicator function. Note that because preferences and priorities

are correlated it is necessary to identify which students receive which budget set.

Under DA welfare is WDA,corr = 1.68 and distance traveled is DistDA,corr = 0.215.

That is, TTC yields slightly higher welfare than DA but results in higher distance

traveled. This gives support to the concerns about TTC originally expressed by BPS.

If priorities are set by the district with the intent of minimizing distance traveled,

then TTC increase welfare but shifts away from the intended goal of the priorities.

Comparing across both priority structures, we see that the choice between TTC

and DA has a smaller effect than switching from uncorrelated priorities to distance

based priorities. In other words, designing priorities that appropriately reflect student

welfare can create larger welfare effects than choosing between mechanisms.

We also observe that TTC can yield higher utility than DA even when priorities

are correlated with preferences. This is because the presence of taste shocks means

that student preferences are not fully aligned with priorities. However, this may shift

away from the intended goals of these priorities.

Neighborhood priority and similarity of the DA and TTC assignments

Another measure of the difference between school choice mechanisms is the number

of students who receive a different assignment. Kesten (2006), Ehlers & Erdil (2010)

show that DA and TTC produce identical assignments only under strong conditions

that are unlikely to hold in practice. However, Pathak (2016) evaluates the two

mechanisms on application data from school choice in New Orleans and Boston,

and reports that the two mechanisms produce similar outcomes. Pathak (2016)

conjectures that the neighborhood priority used in New Orleans and Boston led

to correlation between student preferences and school priorities that may explain

the similarity between the TTC and DA allocations in these cities. We compare

the assignment and resulting welfare under DA and TTC in a family of markets

with varying alignment between student preferences and school priority, and find

quantitative support for this conjecture.

To study this conjecture, we consider a simple model with neighborhood priority.

There are n neighborhoods, each with one school and a mass q of students. Schools
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have capacities q1 ≤ · · · ≤ qn = q, and each school gives priority to students in their

neighborhood. For each student, the neighborhood school is their top ranked choice

with probability α; otherwise the student ranks the neighborhood school in position

k drawn uniformly at random from {2, 3, . . . , n}. Student preference orderings over

non-neighborhood schools are drawn uniformly at random.

We find that the proportion of students whose assignments are the same under

both mechanisms scales linearly with the probability of preference for the neighbor-

hood school α, supporting the conjecture of Pathak (2016).

Proposition 3. The proportion of students who have the same assignments under

TTC and DA is given by

α

∑
i qi
nq

.

Proof. We use the methodologies developed in Section 3.2 and in Azevedo & Leshno

(2016) to find the TTC and DA allocations respectively. For each school, students

with priority are given a lottery number uniformly at random in
[
n−1
n
, 1
]
, and students

without priority are given a lottery number uniformly at random in
[
0, n−1

n

]
, where

lottery numbers at different schools are independent. For all values of α, the TTC

cutoffs are given by pij = pji = 1 − qi
nq

for all i ≤ j, and the DA cutoffs are given by

pi = 1− qi
nq

. The derivations of the cutoffs can be found in Appendix E.2.

The students who have the same assignments under TTC and DA are precisely

the students at neighborhood i whose ranks at school i are above 1− qi
nq

, and whose

first choice school is their neighborhood school. This set of students comprises an

α
∑
i qi
nq

fraction of the entire student population, which scales proportionally with the

correlation between student preferences and school priorities.

4.2 Comparative Statics

We apply our model to provide comparative statics in economies where preferences

for schools are endogenously determined by the allocation of resources to schools.

Empirical evidence suggests that increased financing affects student achievements

(Jackson et al. 2016, Lafortune et al. 2016, Johnson & Jackson 2017) as well as de-

mand for housing (Hoxby 2001, Cellini et al. 2010), which indicate increased demand

for schools. Similarly, Krueger (1999) finds that smaller classes have a positive impact

on student performance, and Dinerstein et al. (2014) finds that increased funding for

public schools increases enrollment in public schools and reduces demand for private

schools.
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Under school choice, such resource allocation decisions can change the desirability

of schools and therefore change the assignment of students to schools. We explore

the implication of such changes in a stylized model. As a shorthand, we refer to an

increase in the desirability of a school as an increase in the quality of the school. We

explore comparative statics of the allocation and evaluate student welfare. Omitted

proofs and derivations can be found in the online Appendix.

Model with quality dependent preferences

We enrich the model from Section 3 to allow student preferences to depend on

school quality δ = {δc}c∈C, where the desirability of school c is increasing in δc.

An economy with quality-dependent preferences is given by E = (C,Υ, υ, q), where

C = {1, 2, . . . , n} is the set of schools and Υ is the set of student types. A student

s ∈ Υ is given by s = (us (· | ·) , rs), where us (c | δ) is the utility of student s for

school c given δ = {δc}c∈C and rsc is the student’s rank at school c. We assume

us (c | ·) is differentiable, increasing in δc and non-increasing in δb for any b 6= c. The

measure υ over Υ specifies the distribution of student types. School capacities are

q = {qc}, where
∑
qc < 1. We will refer to δc as the quality of c.

For a fixed quality δ, let ηδ be the induced distribution over Θ, and let Eδ =

(C,Θ, ηδ, q) denote the induced economy.23 We assume for all δ that ηδ has a Lipschitz

continuous non-negative density νδ that is bounded below on its support and depends

smoothly on δ. For a given δ, let µδ and {pcb (δ)}c∈C denote the TTC assignment and

associated cutoffs for the economy Eδ. We omit the dependence on δ when it is clear

from context.

One example of an economy with quality-dependent preferences is the logit econ-

omy, which combines heterogeneous idiosyncratic taste shocks with a common pref-

erences modifier δc.

Definition 3. A logit economy is an economy E = (C,Υ, υ, q) with quality-dependent

preferences, where students’ utilities for each school c are randomly distributed as

a logit with mean δc, independently of priorities and utilities for other schools, i.e.

us (c | δ) = δc+εcs where εcs are i.i.d. extreme value variables shifted to have a mean

of 0 (McFadden 1973). Schools’ priorities are uncorrelated and uniformly distributed,

and all students prefer any school to being unassigned.24

23To make student preferences strict we arbitrarily break ties in favor of schools with lower indices.
We assume the utility of being unassigned is −∞, so all students find all schools acceptable.

24Formally, us (φ | δ) = −∞. For welfare calculations we only consider assigned students.
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Comparative statics of the allocation

The following proposition gives the direction of change of the TTC cutoffs when there

are two schools and δ` increases for some ` ∈ {1, 2}. Throughout this subsection,

when considering a fixed δ we assume that schools are labeled in order, unless stated

otherwise.

Proposition 4. Consider E = (C = {1, 2} ,Υ, υ, q) and δ, δ̂ that induce economies

Eδ, Eδ̂ such that ηδ, ηδ̂ have full support.25 Suppose that δ̂ increases the quality of

school 2, i.e. δ̂2 ≥ δ2 and δ1 = δ̂1. Then a change from δ to δ̂ changes the cutoffs as

follows:

• p1
1 and p1

2 both decrease, i.e., it becomes easier to trade into school 1; and

• p2
2 increases, i.e. higher 2-priority is required to get into school 2.

Proposition 4 is illustrated in Figure 4. As first shown in Hatfield et al. (2016), an

increase in the desirability of school 2 can cause low 2-rank students to be assigned

to school 2. Note that individual students’ budget sets can grow or shrink by more

than one school.

Figure 4: The effect of an increase in the quality of school 2 on TTC cutoffs and budget sets. Dashed
lines indicate initial TTC cutoffs, and dotted lines indicate TTC cutoffs given increased school 2
quality. The cutoffs p11 = p21 and p12 decrease and the cutoff p22 increases. Students in the colored
sections receive different budget sets after the increase. Students in dark blue improve to a budget
set of {1, 2} from ∅, students in light blue improve to {1, 2} from {2}, and students in red have an
empty budget set ∅ after the change and {2} before.

25We assume full support to preclude multiplicity of the TTC cutoffs. The theorem extends to
general economies with appropriately chosen TTC cutoffs (see Appendix D.4 for more details).
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Closed Form Expressions for the Logit Economy

When there are n ≥ 3 schools, it is possible to show that an increase in the quality

of a school ` can either increase or decrease any cutoff. With additional structure

we can quantify the effect and provide precise comparative statics that mirror the

intuition from Proposition 4. Proposition 5 gives the TTC assignment in closed form

for the logit economy.

Proposition 5. Consider a logit economy (Definition 3) where schools are indexed

so that q1
eδ1
≤ q2

eδ2
≤ · · · ≤ qn

eδn
. Then the TTC cutoffs pcb for b ≥ c are given by26

pcb = (Rc)
eδb
πc

∏
a<c

(Ra)
eδb
πa
− eδb
πa+1 (4)

where πc =
∑

c′≥c e
δc′ is the normalization term for schools in C(c), for all c ≥ 1

the quantity Rc = 1 −
∑

c′<c qc′ −
πc
eδc
qc is the measure of unassigned, or remaining,

students after the c-th round, with R0 = 1.

Moreover, pcb is decreasing in δ` for c < ` and increasing in δ` for b > c = `.

Figure 5 illustrates how the TTC cutoffs change with an increase in the quality

of school `. Using equation (7), we derive closed form expressions for
dpcb
dδ`

, which can

be found in online Appendix E.3.

Figure 5: The effects of changing the quality δ` of school ` on the TTC cutoffs pcb under the logit

economy. If c < ` then
dpcb
dδ`

< 0 for all b ≥ c, i.e., it becomes easier to get into the more popular

schools. If c > ` then
dpcb
dδ`

= 0. If c = ` then
dpcb
dδ`

=
dp`b
dδ`

> 0 for all b > `, and p`` may increase or
decrease depending on the specific problem parameters. Note that although pcb and pc` look aligned in
the picture, in general it does not hold that pcb = pc` for all b.

26To simplify notation, when c = 1 we let
∏
c′<c

pc−1c′ = 1 and set ρ1 = q1/e
δ1 .
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Closed Form Expressions for Assignment Probabilities

Proposition 5 can be used to calculate admission probability under multiple tie-

breaking as follows. Consider an economy where priorities are determined by a mul-

tiple tie-breaking rule where the priority of each student at each school is generated by

an independent U [0, 1] lottery draw. As a result, students priorities will be uniformly

distributed over [0, 1]C and uncorrelated with student preferences. If in addition stu-

dent preferences are given by the MNL model, this is a logit economy. In the logit

economy the ex-ante probability that a student will gain admission to school c is

given by 1−
∏

b∈C p
c
b, with pcb given by Proposition 5.

Comparative statics of student welfare

We consider a social planner who can affect quality levels δ of schools in logit economy

E . Suppose that the social planner wishes to assign students to schools at which they

attain high utility, and for the sake of simplicity consider students’ social welfare as

a proxy for the social planner’s objective. Given assignment µ, social welfare is given

by

W (δ) =

∫
s∈Υ,µ(s)6=φ

us (µ (s) | δ) dυ.

We follow to provide expressions for welfare under different mechanisms for the logit

economy.

As a benchmark, we first consider neighborhood assignment µNH which assigns

each student to a fixed school regardless of her preferences. We assume this assign-

ment fills the capacity of each school. Social welfare is

WNH (δ) =
∑
c

qc · δc,

because E
[
εµ(s)s

]
= 0 under neighborhood assignment. Under neighborhood assign-

ment, the marginal welfare gain from increasing δ` is dWNH

dδ`
= q`, as an increase in

the school quality benefits each of the q` students assigned to school `.

The budget set formulation of TTC allows us to tractably capture student welfare

under TTC.27 A student who is offered the budget set C(c) = {c, . . . , n} is assigned

27Under TTC the expected utility of student s assigned to school µ(s) depends on the stu-
dent’s budget set B (s,p) because of the dependency of µ (s) on student preferences. Namely,
E [us (µ (s) | δ)] = δµ(s) + E

[
εµ(s)s | δµ(s) + εµ(s)s ≥ δc + εcs ∀c ∈ B (s,p)

]
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to the school ` = arg max
b∈C(c)

{δb + εbs}, and her expected utility is U c = ln
(∑

b≥c e
δb
)

(Small & Rosen 1981). Let N c be the mass of agents with budget set C(c). Then

social welfare under the TTC assignment given δ simplifies to

WTTC (δ) =
∑
c

N c · U c.

This expression for welfare also allows for a simple expression for the marginal

welfare gain from increasing δ` under TTC.

Proposition 6. For the logit economy, the change in social welfare WTTC (δ) under

TTC from a marginal increase in δ` is given by

dWTTC

dδ`
=q` +

∑
c≤`+1

dN c

dδ`
· U c.

Under neighborhood assignment dWNH

dδ`
= q`.

Proposition 6 shows that under TTC a marginal increase in the quality of school `

will have two effects. As under neighborhood assignment, it will increase the utility of

the q` students assigned to ` by dδ`. In addition, the quality increase changes student

preferences, and therefore changes the assignment. The second term captures the

indirect effect on welfare due to changes in the assignment. This effect is captured

by changes in the number of students offered each budget set.

The indirect effect can be negative. In particular, when there are two schools

C = {1, 2} the welfare effect of a quality increase to school 1 is28

dWTTC

dδ1

= q1 +
dN1

dδ1

· U1 +
dN2

dδ1

· U2

= q1 −
(
q1 · eδ2−δ1

) (
ln
(
eδ1 + eδ2

)
− δ2

)
< q1.

An increase in the quality of school 1 gives higher utility for students assigned to 1,

which is captured by the first term. Additionally, it causes some students to switch

their preferences to 1 � 2, making school 1 run out earlier in the TTC algorithm,

and removing school 1 from the budget set of some students. Students whose budget

set did not change and who switched to 1 � 2 are almost indifferent between the

schools and hence almost unaffected. Students who lost school 1 from their budget

28Recall that we assume that schools are labeled in order, and thus school 1 is the more selective
school. We use that N1 = q1 + q1e

δ1−δ2 , N2 = q2 − q1eδ2−δ1 .
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set may prefer school 1 by a large margin, and hence incur significant loss. Thus,

there is a total negative effect from changes in the assignment, which is captured by

the second term.

If a positive mass of students receive the budget set {2} (that is, N2 > 0),

improving the quality of school 2 will have the opposite indirect effect. Specifically,

dWTTC

dδ2

= q2 + q1 · eδ2−δ1
(
ln
(
eδ1 + eδ2

)
− δ2

)
> q2

which is larger than the marginal effect under neighborhood assignment.

If admission cutoffs into both schools are equal (that is, p1
2 = p2

2 and N2 = 0) we

say that both schools are equally over-demanded. In such a case, a marginal increase

in the quality of either school will have a negative indirect effect on welfare.29

4.3 Optimal Investment

In this section, we consider a school district’s problem of allocating resources to

improve schools. In Section 4.2 we observed that an increase in the quality of popular

schools can reduce student choice and have a negative indirect effect on welfare. We

investigate the magnitude of these effects in parameterized logit economies and solve

for the optimal distribution of school quality under different mechanisms. In doing

so, we quantify the trade-off between maximizing choice and directing investment to

the most cost-effective schools which generate highest direct returns from investment.

We find that this trade-off can result in very different optimal investment strategies

under DA and TTC: the optimal distribution of quality under TTC is equitable, in

that it makes all schools equally over-demanded; whereas the optimal distribution of

quality under DA is targeted at the most cost-effective school.

We first provide two illustrative examples showing the welfare-optimal quality

distribution for the logit economy under DA, TTC and neighborhood assignment.

This example also allows us to compare welfare across mechanisms. In the examples

below we fix the school labels and consider various δ. For some values of δ the schools

may not be labeled in order.

Example 3. Consider a logit economy with two schools and q1 = q2 = 3
8
, and let

Q = q1 + q2 denote the total capacity. Quality levels δ are constrained by δ1 + δ2 = 2

and δ1, δ2 ≥ 0.

29That is, if δ1 = δ2 then dWTTC

dδ1
< q1 and dWTTC

dδ2
< q2. If we fix δ1 + δ2 and consider WTTC (∆)

as a function of ∆ = δ1 − δ2 the function WTTC (∆) will have a kink at ∆ = 0 (see Figure 6c).
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(a) TTC, δ1 = δ2 = 1,
optimal investment.

(b) TTC, δ1 = 2, δ2 = 0. (c) Average student welfare
under TTC, δ1 +δ2 = 2.

(d) DA, δ1 = δ2 = 1,
optimal investment.

(e) DA, δ1 = 2, δ2 = 0. (f) Average student welfare
under DA, δ1 + δ2 = 2.

Figure 6: Illustration for Example 3. Figures (a) and (b) show the budget sets under TTC for
different quality levels, and Figure (c) shows the average welfare of assigned students under TTC
for quality levels δ1 + δ2 = 2 for different values of δ1− δ2. Figures (d) and (e) show the budget sets
under DA, and Figure (f) shows the average welfare of assigned students under DA.

Under neighborhood assignment WNH/Q = 1 for any choice of δ1, δ2. Under TTC

the unique optimal quality is δ1 = δ2 = 1, yielding WTTC/Q = 1 + E [max (ε1s, ε2s)] =

1+ln (2) ≈ 1.69. Any assigned student has the budget set B = {1, 2} and is assigned

to the school for which she has higher idiosyncratic taste. Welfare is lower when δ1 6=
δ2, because fewer students choose the school for which they have higher idiosyncratic

taste. For instance, given δ1 = 2, δ2 = 0 welfare is WTTC/Q = 1
2

(1 + e−2) log (1 + e2) ≈
1.20.

Under DA the unique optimal quality is also δ1 = δ2 = 1, yielding WDA/Q =

1+ 1
3

ln (2) ≈ 1.23. This is strictly lower than WTTC/Q because under DA only students

that have sufficiently high priority for both schools have the budget set B = {1, 2}.
Two thirds of assigned students have a budget set B = {1} or B = {2}, corresponding

to the single school for which they have sufficient priority. If δ1 = 2, δ2 = 0 welfare

under DA is WDA/Q ≈ 1.11.

In Example 3, TTC yields higher student welfare by providing all assigned stu-
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dents with a full budget set, thus maximizing each assigned student’s contribution

to welfare from horizontal taste shocks. However, the assignment it produces is not

stable. In fact, both schools admit students whom they rank at the bottom, and thus

virtually all unassigned students can potentially block with either school.30 Requiring

a stable assignment will constrain two thirds of the assigned students from efficiently

sorting on horizontal taste shocks.

We next provide an example where the two schools have different capacity, with

q1 > q2. To make investment in school 1 more cost-effective, we assume that (despite

having more students) school 1 requires the same amount of resources to increase

its quality for all its students. We also keep the constraint that δ1 + δ2 = 2. It

is straightforward to see that under neighborhood assignment the welfare optimal

distribution of quality is δ1 = 2, δ2 = 0, and we similarly find that this distribution

of quality is welfare optimal under DA. In contrast, we find the welfare optimal

distribution under TTC is equitable, in the sense that it makes all schools equally

overdemanded and gives all students full budget sets.

Example 4. Consider a logit economy with two schools and q1 = 1/2, q2 = 1/4,

and let Q = q1 + q2 denote the total capacity. Quality levels δ are constrained by

δ1 + δ2 = 2 and δ1, δ2 ≥ 0.

Under neighborhood assignment the welfare optimal quality is δ1 = 2, δ2 = 0,

yielding WNH/Q = 4/3 ≈ 1.33. Under TTC the unique optimal quality is δ1 =

1 + 1
2

ln (2) , δ2 = 1− 1
2

ln (2), yielding WTTC/Q = ln
(

3e√
2

)
≈ 1.75. Given these quality

levels any assigned student has the budget set B = {1, 2}. Given δ1 = 2, δ2 = 0

welfare is WTTC/Q ≈ 1.61. The quality levels that are optimal in Example 3, namely

δ1 = 1, δ2 = 1, yield WTTC/Q ≈ 1.46.

Under DA the unique optimal quality is δ1 = 2, δ2 = 0, yielding UDA/Q ≈ 1.45.

Given δ1 = 1, δ2 = 1 welfare under DA is WDA/Q ≈ 1.20.

Again in Example 4 we find that the optimal quality distribution under TTC

provides all assigned students with a full budget set, making all schools equally over-

demanded. The optimal quality distribution under neighborhood assignment and DA

allocates all resources to the school with higher capacity that yields the highest direct

returns from investment. A unit of investment to the higher capacity school increases

the utility of more students and hence gives larger direct effects on welfare. However,

30Note that this is not a concern in school choice settings where blocking pairs cannot be assigned
outside of the mechanism.
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(a) TTC, δ1 = δ2 = 1. (b) TTC, δ1, δ2 = 1± ln(2)
2 ,

optimal investment.

(c) Average student welfare
under TTC, δ1 + δ2 = 2.

(d) DA, δ1 = δ2 = 1. (e) DA, δ1 = 2, δ2 = 0,
optimal investment.

(f) Average student welfare
under DA, δ1 + δ2 = 2.

Figure 7: Illustration for Example 4. Figures (a) and (b) show the budget sets under TTC for
different quality levels, and Figure (c) shows the average welfare of assigned students under TTC
for quality levels δ1 + δ2 = 2 for different values of δ1 − δ2. Note that δ1 = δ2 = 1 is no longer
optimal. Figures (d) and (e) show the budget sets under DA, and Figure (f) shows the average
welfare of assigned students under DA.

under TTC an equitable distribution leads to more welfare gains from sorting on

horizontal tastes. This is because TTC allows for more choice, and so the benefits

from maximizing choice are greater under TTC than under DA or neighborhood

assignment. For general parameters the welfare gain from sorting can be lower or

higher than the welfare gains from directing all resources to the more efficient school.

Finally, consider a central school board with a fixed amount of resources K to

be allocated to the n schools. We assume that the cost of quality δc is the convex

function κc (δc) = eδc . This specification makes bigger schools more efficient.31 Using

Proposition 6 we solve for the optimal distribution of school quality. Despite the

heterogeneity among schools, social welfare is maximized when all assigned students

have a full budget set, which occurs when the amount allocated to each school is

31Note that κc is the total school funding. This is equivalent to setting the student utility of
school c to be to us (c | κc) = log (κc) + εcs = log (κc/qc) + log (qc) + εcs, which is the log of the
per-student funding plus a fixed school utility that is larger for bigger schools.
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proportional to the number of seats at the school.

Proposition 7. Consider a logit economy with cost function κc (δc) = eδc ∀c and

resource constraint
∑

c κc (δc) ≤ K. Social welfare is uniquely maximized when the

resources κc allocated to school c are proportional to the capacity qc, that is,

κc (δc) =
qc∑
b qb

K

and all assigned students θ receive a full budget set, i.e., B (θ,p) = {1, 2, . . . , n}
for all assigned students θ.

Under optimal investment, the resulting TTC assignment is such that every as-

signed student receives a full budget set and is able to attend their top choice school.

More is invested in higher capacity schools, as they provide more efficient investment

opportunities, but the investment is balanced across schools.

4.4 Design and Bossyness of TTC Priorities

We turn to investigate the design of priories under TTC. Section 2.2 shows that prior-

ities serve a different role under TTC and DA. Section 4.1 highlights the importance

of the priority design in determining welfare. The following analysis provides some

initial insight about how changes in priorities change the TTC assignment.

In the following example, we consider changes to the priority among highly ranked

students. Notice that any student θ whose favorite school is c and who is within the

qc highest ranked students at c is guaranteed admission to c. We find that changes to

the priority of these students can have an impact on the assignment of other students,

without changing the assignment of any student whose priority changed. This implies

that the TTC priorities are “bossy”, and that the question of designing priorities for

TTC may be non-trivial.

Example 5. The economy E has two schools 1, 2 with capacities q1 = q2 = q,

students are equally likely to prefer each school, and student priorities are uniformly

distributed on [0, 1] independently for each school and independently of preferences.

The TTC algorithm ends after a single round, and the resulting assignment is given

by p1
1 = p2

1 = p1
2 = p2

2 =
√

1− 2q. The derivation can be found in Appendix E.4.

Consider the set of students
{
θ | rθc ≥ m ∀c

}
for some m > 1 − q. Any student

in this set is assigned to his top choice. Suppose we construct an economy E ′ by
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arbitrarily changing the rank of students within the set, subject to the restriction

that their ranks must remain in [m, 1]2.32 The range of possible TTC cutoffs for E ′

is given by p1
1 = p2

1, p
1
2 = p2

2 where

p1
1 ∈ [p, p̄] , p2

2 =
1

p1
1

(1− 2q)

for p =
√

(1− 2q) m2

1−2m+2m2 and p =
√

(1− 2q) 1−2m+2m2

m2 . Figure 8 illustrates the

range of possible TTC cutoffs for E ′ and the economy E for which TTC obtains one

set of extreme cutoffs.

Figure 8: The range of possible TTC cutoffs in example 5 with q = 0.455 and m = 0.6. The points
depict the TTC cutoffs for the original economy and the extremal cutoffs for the set of possible
economies E ′, with the range of possible TTC cutoffs for E ′ given by the bold curve. The dashed line
is the TTC path for the original economy. The shaded squares depict the changes to priorities that
generate the economy E which has extremal cutoffs. In E the priority of all top ranked students is
uniformly distributed within the smaller square. The dotted line depicts the TTC path for E, which

results in cutoffs p11 =
√

(1− 2q) 1−2m+2m2

m2 ≈ 0.36 and p22 =
√

(1− 2q) m2

1−2m+2m2 ≈ 0.25.

Example 5 has several implications. First, it shows that it is not possible to

directly compute TTC cutoffs from student demand. The set of cutoffs such that

student demand is equal to school capacity (depicted by the grey curve in Figure 8)

are the cutoffs that satisfy p1
1 = p2

1, p
1
2 = p2

2 and p1
1p

2
2 = 1 − 2q. Under any of these

cutoffs the students in
{
θ | rθc ≥ m ∀c

}
have the same demand, but the resulting TTC

outcomes are different. It follows that the mechanism requires more information to

determine the assignment. However, Theorem 3 in Appendix A implies that the

changes in TTC outcomes are small if 1−m is small.

32The remaining students still have ranks distributed uniformly on the complement of [m, 1]2.
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A second implication is that the TTC priorities can be ‘bossy’ in the sense that

changes in the relative priority of high priority students can affect the assignment of

other students, even when all high priority students receive the same assignment. No-

tice that in all the economies considered in Example 5, we only changed the relative

priority within the set
{
θ | ∃c s.t. rθc ≥ m

}
, and all these students were always as-

signed to their top choice. However, these changes resulted in a different assignment

for low priority students. For example, if q = 0.455 and m = 0.4, a student θ with

priority rθ1 = 0.35,rθ2 = 0.1 could possibly receive his first choice or be unassigned.

Such changes to priorities may naturally arise when there are many indifferences in

student priorities, and tie-breaking is used. Since priorities are bossy, the choice of

tie-breaking between high-priority students can have indirect effects on the assign-

ment of low priority students.

The Clinch and Trade Mechanism

We can also use Example 5 to compare TTC with the Clinch and Trade (C&T)

mechanism introduced by Morrill (2015b). The C&T mechanism identifies students

who are guaranteed admission to their favorite school c by having priority rθc ≥ 1− q
and assigns them to c by ‘clinching’ without trade. Morrill (2015b) suggests that

this design choice is desirable because it can reduce the number of blocking pairs

induced by the assignment, and gives an example where the C&T assignment has

fewer blocking pairs than the TTC assignment. We can calculate the C&T assignment

by observing that we can equivalently implement C&T by running TTC on a changed

priority structure where students who clinched at school c have higher rank at c than

any other student.33 The following proposition builds on Example 5 and shows that

C&T may produce more blocking pairs than TTC.

Proposition 8. The Clinch and Trade mechanism can produce more, fewer or an

equal number of blocking pairs compared to TTC.

5 Discussion

The cutoff characterization developed in the paper provides a more transparent de-

scription of the TTC assignment. We hope that this characterization will help school

33For brevity, we abstract away from certain details of C&T mechanism that are important when
not all schools run out at the same round.
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districts in their evaluation of TTC by providing tools to quantify the welfare gains

and the role of priorities under TTC. The cutoff characterization can simplify how

the TTC outcome is communicated to students and their families, but also reaffirms

concerns about the complexity of TTC.

The tractability of the framework allows us to investigate other design decisions

by the school district, such as the allocation of resources to schools or comparison be-

tween different priority structures. These decisions can have substantial implications

for welfare, and our analysis shows that the resulting differences in welfare can be

larger than the welfare difference between DA and TTC. We also demonstrate that

the optimal decision itself can depend on the choice of school choice mechanism.

A number of examples provided in the paper utilized functional form assumptions

to gain tractability. We also demonstrated that our methodology can be used more

generally with numerical solvers. This provides a useful alternative to simulation

methods that can be more efficient for large economies, or for calculating an average

outcome for large random economies. For example, most school districts uses tie-

breaking rules, and current simulation methods perform many draws of the random

tie-breaking lottery to calculate the expected outcomes. Our methodology directly

calculates the assignment from the distribution. We leave the problem of determining

the optimal choice of tie-breaking lottery for future research.

Cutoff characterizations have been instrumental for empirical work on DA and

related mechanisms (Abdulkadiroğlu, Angrist, Narita & Pathak 2017, Agarwal &

Somaini 2018, Kapor et al. 2016). We hope that the cutoff characterization of TTC

will be similarly useful.

The model assumes for simplicity that all students and schools are acceptable.

It can be naturally extended to allow for unacceptable students or schools by eras-

ing from student preferences any school that they find unacceptable or that finds

them unacceptable. Type-specific quotas can be incorporated, as in Abdulkadiroğlu

& Sönmez (2003), by adding type-specific capacity equations and erasing from the

preference list of each type all the schools which do not have remaining capacity for

their type.
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Abdulkadiroğlu, A., Che, Y.-K. & Yasuda, Y. (2015), ‘Expanding choice in school

choice’, American Economic Journal: Microeconomics 7(1), 1–42.
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Abdulkadiroğlu, A., Pathak, P. & Roth, A. (2009), ‘Strategy-proofness versus effi-

ciency in matching with indifferences: Redesigning the nyc high school match’,

American Economic Review 99(5), 1954–1978.
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A Intuition for the Continuum TTC Model

In this section, we provide some intuition for our main results by considering a more

direct adaptation of the TTC algorithm to continuum economies. Informally speak-

ing, consider a continuum TTC algorithm in which schools offer seats to their highest

priority remaining students, and students are assigned through clearing of trading

cycles. This process differs from the discrete TTC algorithm as there is now a set

of zero measure of highest priority students at each school, and the resulting trading

cycles are also within sets of students of zero measure.

There are a few challenges in turning this informal algorithm description into a

precise definition. First, each cycle is of zero measure, but the algorithm needs to

appropriately reduce school capacities as students are assigned. Second, a school will

generally offer seats to multiple types of students at once. This implies each school

may be involved in multiple cycles at a given point, a type of multiplicity that leads

to non-unique TTC allocations in the discrete setting.

To circumvent the challenges above, we define the algorithm in terms of its ag-

gregate behavior over many cycles. Instead of tracing each cleared cycle, we track

the state of the algorithm by looking at the fraction of each school’s priority list

that has been cleared. Instead of progressing by selecting one cycle at a time, we

determine the progression of the algorithm by conditions that must be satisfied by

any aggregation of cleared cycles. These yield equations (2) and (3), which determine

the characterization given in Theorem 2.

A.1 Tracking the State of the Algorithm through the TTC

Path γ

Consider some point in time during the run of the discrete TTC algorithm before

any school has filled its capacity. While the history of the algorithm up to this

point includes all previously cleared trading cycles, it is sufficient to record only

the top priority remaining student at each school. This is because knowing the top

remaining student at each school allows us to know exactly which students were
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previously assigned, and which students remain unassigned. Assigned students are

relevant for the remainder of the algorithm only insofar as they reduce the number

of seats available. Because all schools have remaining capacity, all assigned students

are assigned to their top choice, and we can calculate the remaining capacity at each

school.

To formalize this notion, let τ be some time point during the run of the TTC

algorithm before any school has filled its capacity. For each school c, let γc (τ) ∈ [0, 1]

be the percentile rank of the remaining student with highest c-priority. That is, at

time τ in the algorithm each school c is offering a seat to students s for whom

rsc = γc (τ). Let γ (τ) be the vector (γc (τ))c∈C. The set of students that have already

been assigned at time τ is {s | rs 6< γ (τ)}, because any student s where rsc > γc (τ)

for some c must have already been assigned. Likewise, the set of remaining unassigned

students is {s | rs ≤ γ (τ)}. See Figure 9 for an illustration. Since all assigned

students were assigned to their top choice, the remaining capacity at school c ∈ C
is qc − |{s | rs 6< γ (τ) and Chs (C) = c}|. Thus, γ (τ) captures all the information

needed for the remainder of the algorithm.

𝛾(𝜏)

TTC path 𝛾 Assigned 
at time 𝜏

Unassigned 
at time 𝜏

Figure 9: The set of students assigned at time τ is described by the point γ (τ) on the TTC path.
Students in the grey region with rank better than γ (τ) are assigned, and students in the white region
with rank worse than γ (τ) are unassigned.

This representation can be readily generalized to continuum economies. In the

continuum, the algorithm progresses in continuous time. The state of the algorithm

at time τ ∈ R≥ is given by γ (τ) ∈ [0, 1]C, where γc (τ) ∈ [0, 1] is the percentile rank

of the remaining students with highest c-priority. By tracking the progression of the

algorithm through γ (·) we avoid looking at individual trade cycles, and instead track

how many students were already assigned from each school’s priority list.
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A.2 Determining the Algorithm Progression through Trade

Balance

The discrete TTC algorithm progresses by finding and clearing a trade cycle. This

cycle assigns a set of discrete students; for each involved school c the top student is

cleared and γc (·) is reduced. In the continuum each cycle is infinitesimal, and any

change in γ (·) must involve many trade cycles. Therefore, we seek to determine the

progression of the algorithm by looking at the effects of clearing many cycles.

Suppose at time τ1 the TTC algorithm has reached the state x = γ (τ1), where

γ (·) is differentiable at τ1 and d = −γ′ (τ1) ≥ 0. Let ε > 0 be a small step size,

and assume that by sequentially clearing trade cycles the algorithm reaches the state

γ (τ2) at time τ2 = τ1 + ε. Consider the sets of students offered seats and assigned

seats during this time step from time τ1 to time τ2. Let c ∈ C be some school. For

each cycle, the measure of students assigned to school c is equal to the measure of

seats offered34 by school c. Therefore, if students are assigned between time τ1 and τ2

through clearing a collection of cycles, then the set of students assigned to school c has

the same measure as the set of seats offered by school c. If γ (·) and η are sufficiently

smooth, the measures of both of these sets can be approximately expressed in terms

of ε ·d and the marginal densities {Hc
b (x)}b,c∈C, yielding an equation that determines

d. We provide an illustrative example with two schools in Figure 10. For the sake

of clarity, we omit technical details in the ensuing discussion. A rigorous derivation

can be found in online Appendix F.

We first identify the measure of students who were offered a seat at a school b or

assigned to a school c during the step from time τ1 to time τ2. If d = −γ′ (τ1) and ε

is sufficiently small, we have that for every school b

|γb (τ2)− γb (τ1)| ≈ εdb,

that is, during the step from time τ1 to time τ2 the algorithm clears students with

b-ranks between γb (τ1) = x and γb (τ2) = x− εdb. To capture this set of students, let

34Strictly speaking, the measure of students assigned to each school during the time step is equal
to the measure of seats at that school which were claimed by the student offered the seat or traded
by the student offered the seat during the time step (not the measure of seats offered). A seat can
be offered but not claimed or traded in one of two ways. The first occurs when the seat is offered
at time τ but not yet claimed or traded. The second is when a student is offered two or more
seats at the same time, and trades only one of them. Both of these sets are of η-measure 0 under
our assumptions, and thus the measure of seats claimed or traded is equal to the measure of seats
offered.
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Tb (x, εdb)
def
=
{
θ ∈ Θ | rθ ≤ x, rθb > x− εdb

}
denote the set of students with ranks in this range. For all ε, Tb (x, εdb) is the set of

top remaining students at b, and when ε is small, Tb (x, εdb) is approximately the set

of students who were offered a seat at school b during the step.35

To capture the set of students that are assigned to a school c during the step,

partition the set Tb (x, εdb) according to the top choice of students. Namely, let

T cb (x, εdb)
def
=
{
θ ∈ Tb (x, εdb) | Chθ (C) = c

}
,

denote the top remaining students on b’s priority list whose top choice is school c.

Then the set of students assigned to school c during the step is ∪aT ca (x, εda), the set

of students that got an offer from some school a ∈ C and whose top choice is c.

Figure 10: The set of students that are assigned during a small time step between τ1 and τ2. The
dot indicates γ (τ1) = x. The highlighted areas indicate the students T cb (x, εdb) who are offered a
seat during this step. Student in the blue (red) region receive an offer from school 1 (school 2). The
pattern indicates whether a student received an offer from his preferred school. Trade balance is
satisfied when there is an equal mass of students in the checkered regions.

We want to equate the measure of the set ∪aT ca (x, εda) of students who were

assigned to c with the measure of the set of students who are offered a seat at c,

which is approximately the set Tc (x, εdc). By smoothness of the density of η, for

35The students in the set Tb (x, εdb) ∩ Ta (x, εda) could have been offered a seat at school a and
assigned before getting an offer from school b. However, for small ε the intersection is of measure
O
(
ε2
)

and therefore negligible.
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sufficiently small δ we have that

η (T cb (x, δ)) ≈ δ ·Hc
b (x) .

Therefore, we have that36

η (∪aT ca (x, εda)) ≈
∑
a∈C

η (T ca (x, εda)) ≈
∑
a∈C

εda ·Hc
a (x) ,

η (Tc (x, εdc)) = η (∪aT ac (x, εdc)) ≈
∑
a∈C

εdc ·Ha
c (x) .

In sum, if the students assigned during the step from time τ1 to time τ2 are cleared via

a collection of cycles, we must have the following condition on the gradient d = γ′ (τ1)

of the TTC path, ∑
a∈C

εda ·Hc
a (x) ≈

∑
a∈C

εdc ·Ha
c (x) .

Formalizing this argument yields the marginal trade balance equations at x =

γ (τ1), ∑
a∈C

γ′a (τ1) ·Hc
a (x) =

∑
a∈C

γ′c (τ1) ·Ha
c (x) .

A.3 Interpretation of Solutions to the Trade Balance Equa-

tions

The previous subsection showed that any small step clearing a collection of cycles

must correspond to a gradient γ′ that satisfies the trade balance equations. We next

characterize the set of solutions to the trade balance equations and explain why any

solution corresponds to clearing a collection of cycles.

Let γ (τ) = x, and consider the set of valid gradients d = −γ′ (τ) ≥ 0 that solve

the trade balance equations for x∑
a∈C

da ·Hc
a (x) =

∑
a∈C

dc ·Ha
c (x) .

Consider the following equivalent representation. Construct a graph with a node for

each school. Let the weight of node b be db, and let the flow from node b to node c

be fb→c = db ·Hc
b (x). The flow fb→c represents the flow of students who are offered a

36These approximations make use of the fact that η (Tb (x, εdb) ∩ Ta (x, εda)) = O
(
ε2
)

for small
ε.
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seat at b and wish to trade it for school c when the algorithm progresses down school

b’s priority list at rate db. Figure 11 illustrates such a graph for C = {1, 2, 3, 4}.
Given a collection of cycles let db be the number of cycles containing node b. It is

straightforward that any node weights d obtained in this way give a zero-sum flow,

i.e. total flow into each node is equal to the total flow out of the node. Standard

arguments from network flow theory show that the opposite also holds, that is, any

zero-sum flow can be decomposed into a collection of cycles. In other words, the

algorithm can find a collection of cycles that clears each school c’s priority list at rate

dc if and only if and only if d is a solution to the trade balance equations.

Figure 11: Example of a graph representation for the trade balance equations at x. There is an edge
from b to c if Hc

b (x) > 0. The two communication classes are framed.

To characterize the set of solutions to the trade balance equations we draw on

a connection to Markov chains. Consider a continuous time Markov chain over the

states C, and transition rates from state b to state c equal to Hc
b (x). The stationary

distributions of the Markov chain are characterized by the balance equations, which

state that the total probability flow out of state c is equal to the total probability flow

into state c. Mathematically, these are exactly the trade balance equations. Hence

d is a solution to the trade balance equations if and only if d/‖d‖1 is a stationary

distribution of the Markov chain.

This connection allows us to fully characterize the set of solutions to the trade

balance equations through well known results about Markov chains. We restate them

here for completeness. Given a transition matrix P , a recurrent communication

class is a subset K ⊆ C, such that the restriction of P to rows and columns with

coordinates in K is an irreducible matrix, and P b
c = 0 for every c ∈ K and b /∈ K.

See Figure 11 for an example. There exists at least one recurrent communication

class, and two different communication classes have empty intersection. Let the set

of communicating classes be {K1, . . . , K`}. For each communicating class Ki there is

a unique vector dKi that is a stationary distribution and dKic = 0 for any c /∈ Ki. The

set of stationary distributions of the Markov chain is given by convex combinations

of
{
dK1 , . . . ,dK`

}
.
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An immediate implication is that a solution to the trade balance equations al-

ways exists. As an illustrative example, we provide the following result for when η

has full support.37 In this case, the TTC path γ is unique (up to rescaling of the

time parameter). This is because full support of η implies that the matrix H (x) is

irreducible for every x, i.e. there is a single communicating class. Therefore there is

a unique (up to normalization) solution d = −γ′ (τ) to the trade balance equations

at x = γ (τ) for every x and the path is unique.

Lemma 1. Let E = (C,Θ, η, q) be a continuum economy where η has full support.

Then there exists a TTC path γ that is unique up to rescaling of the time parameter

t. For τ ≤ minc∈C
{
t(c)
}

we have that γ(·) is given by

dγ(t)

dt
= d (γ(t))

where d(x) is the solution to the trade balance equations at x, and d (x) is unique up

to normalization.

On the Multiplicity of TTC Paths

In general, there can be multiple solutions to the trade balance equations at x, and

therefore multiple TTC paths. The Markov chain and recurrent communication

class structure give intuition as to why the TTC assignment is still unique. Each

solution dKi corresponds to the clearing of cycles involving only schools within the

set Ki. The discrete TTC algorithm may encounter multiple disjoint trade cycles,

and the outcome of the algorithm is invariant to the order in which these cycles are

cleared (when preferences are strict). Similarly here, the algorithm may encounter

mutually exclusive combinations of trade cycles
{
dK1 , . . . ,dK`

}
, which can be cleared

sequentially or simultaneously at arbitrary relative rates. Theorem 2 shows that just

like the outcome of the discrete TTC algorithm does not depend on the cycle clearing

order, the outcome of the continuum TTC algorithm does not depend on the order

in which
{
dK1 , . . . ,dK`

}
are cleared.

As an illustration, consider the unique solution dK for the communicating class

K = {1, 2}, as illustrated in Figure 11. Suppose that at some point x we have

H1
1 (x) = 1/2, H2

1 (x) = 1/2 and H1
2 (x) = 1. That is, the marginal mass of top

ranked students at either school is 1, all the top marginal students of school 2 prefer

37η has full support if for every open set A ⊂ Θ we have η(A) > 0.
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school 1, and half of the top marginal students of school 1 prefer school 1 and half

prefer school 2. The algorithm offers seats and goes down the schools’ priority lists,

assigning students through a combination of two kinds of cycles: the cycle 1 	where

a student is offered a seat at 1 and is assigned to 1, and a cycle 1� 2 where a student

who was offered a seat at 1 trades her seat with a student who was offered a seat at

2. Given the relative mass of students, the cycle 1 � 2 should be twice as frequent

as the cycles 1 	. Therefore, clearing cycles leads the mechanism to go down school

1’s priority list at twice the speed it goes down school 2’s list, or d1 = 2 · d2, which is

the unique solution to the trade balance equations at x (up to normalization).

Figure 12: Illustration of the gradient field d (·) and path γ (·) (ignoring the capacity equations).

Figure 12 illustrates the path γ (·) and the solution d (x) to the trade balance

equations at x. Note that for every x we can calculate d (x) from H (x). When

there are multiple solutions to the trade balance equations at some x, we may select

a solution d (x) for every x such that d (·) is a sufficiently smooth gradient field.

The TTC path γ (·) can be generated by starting from γ (0) = 1 and following the

gradient field.

A.4 When a School Fills its Capacity

So far we have described the progression of the algorithm while all schools have

remaining capacity. To complete our description of the algorithm we need to describe

how the algorithm detects that a school has exhausted all its capacity, and how the
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algorithm continues after a school is full.

As long as there is still some remaining capacity, the trade balance equations

determine the progression of the algorithm along the TTC path γ (·). The mass of

students assigned to school c at time τ is

Dc (γ (τ)) = η
({
θ | rθ 6< γ (τ) , Chθ (C) = c

})
.

Because γ (·) is continuous and monotonically decreasing in each coordinate, Dc (γ (τ))

is a continuous increasing function of τ . Therefore, the first time during the run of

the continuum TTC algorithm at which any school reached its capacity is given by

t(c
∗) that solves the capacity equations

Dc∗
(
γ
(
t(c
∗)
))

= qc∗

Da
(
γ
(
t(c
∗)
))
≤ qa ∀a ∈ C

where c∗ is the first school to reach its capacity.

Once a school has filled up its capacity, we can eliminate that school and apply

the algorithm to the residual economy. Note that the remainder of the run of the al-

gorithm depends only on the remaining students, their preferences over the remaining

schools, and remaining capacity at each school. After eliminating assigned students

and schools that have reached their capacity we are left with a residual economy that

has strictly fewer schools. To continue the run of the continuum TTC algorithm, we

may recursively apply the same steps to the residual economy. Namely, to continue

the algorithm after time t(c
∗) start the path from γ

(
t(c
∗)
)

and continue the path us-

ing a gradient that solves the trade balance equations for the residual economy. The

algorithm follows this path until one of the remaining schools fills its capacity, and

another school is removed.

A.5 Comparison between Discrete TTC and Continuum TTC

Table 1 summarizes the relationship between the discrete and continuum TTC algo-

rithms, and provides a summary of this section. It presents the objects that define the

continuum TTC algorithm with their counterparts in the discrete TTC algorithm.

For example, running the continuum TTC algorithm on the embedding Φ (E) of a

discrete economy E performs the same assignments as the discrete TTC algorithm,

except that the continuum TTC algorithm performs these assignments continuously
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and in fractional amounts instead of in discrete steps.

Discrete TTC → Continuum TTC Expression Equation

Cycle → Valid gradient d (x)
trade balance

equations

Algorithm progression → TTC path γ(·) γ′ (τ) = d (γ (τ))

School removal → Stopping times t(c) capacity equations

Table 1: The relationship between the discrete and continuum TTC processes.

Finally, we note that the main technical content of Theorem 2 is that there always

exists a TTC path γ and stopping times
{
t(c)
}

that satisfy the trade balance and

capacity equations, and that these necessary conditions, together with the capacity

equations (3), are sufficient to guarantee the uniqueness of the resulting assignment.

B Consistency with the Discrete TTC Model

In this section we first show that any discrete economy can be translated into a

continuum economy, and that the cutoffs obtained using Theorem 2 on this continuum

economy give the same assignment as discrete TTC. This demonstrates that the

continuum TTC model generalizes the standard discrete TTC model. We then show

that the TTC assignment changes smoothly with changes in the underlying economy.

To represent a discrete economy E =
(
C,S,�C,�S , q

)
with N = |S| students

by a continuum economy Φ (E) =
(
C,Θ, η, q

N

)
, we construct a measure η over Θ

by placing a mass at (�s, rs) for each student s. To ensure the measure has a

bounded density, we spread the mass of each student s over a small region Is ={
θ ∈ Θ |�θ=�s, rθ ∈ [rsc , r

s
c + 1

N
) ∀c ∈ C

}
and identify any point θs ∈ Is with stu-

dent s. The following proposition shows that the continuum TTC assigns all θs ∈ Is

to the same school, which is the assignment of student s in the discrete model. More-

over, we can directly use the continuum cutoffs for the discrete economy.

Specifically, for a discrete economy E = (C,S,�C,�S, q) with N = |S| stu-

dents, we define the continuum economy Φ (E) = (C,Θ, η, q
N

) as follows. For each

student s ∈ S and school c ∈ C, recall that rsc = |{s′ | s �c s′}| / |S| is the per-

centile rank of s at c. We identify each student s ∈ S with the N -dimensional cube
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Is =�s ×
∏

c∈C
[
rsc , r

s
c + 1

N

)
of student types with preferences �s, and define η to

have constant density 1
N
·NN on ∪sIs and 0 everywhere else.

Proposition 9. Let E =
(
C,S,�C,�S , q

)
be a discrete economy with N = |S|

students, and let Φ (E) =
(
C,Θ, η, q

N

)
be the corresponding continuum economy. Let

p be the cutoffs produced by Theorem 2 for economy Φ (E). Then the cutoffs p give

the TTC assignment for the discrete economy E, namely,

µdTTC (s | E) = max
�s
{c | rsb ≥ pcb for some b} ,

and for every θs ∈ Is we have that

µdTTC (s | E) = µcTTC (θs |Φ (E)) .

In other words, Φ embeds a discrete economy into a continuum economy that

represents it, and the TTC cutoffs in the continuum embedding give the same as-

signment as TTC in the discrete model. The intuition behind this result is that

TTC is essentially performing the same assignments in both models, with discrete

TTC assigning students to schools in discrete steps, and continuum TTC assigning

students to schools continuously, in fractional amounts. By considering the progres-

sion of continuum TTC at the discrete time steps when individual students are fully

assigned, we obtain the same outcome as discrete TTC.

Proof of Proposition 9. We show that given a discrete economy, the cutoffs of TTC

in a continuum embedding Φ give the same assignment as TTC on the discrete model,

µdTTC (s | E) = max
�s
{c : rsb ≥ pcb for some b} = µcTTC (θs |Φ (E)) ∀θs ∈ Is.

Fix a discrete cycle selection rule ψ. We construct a TTC path γ such that TTC

on the discrete economy E with cycle selection rule ψ gives the same allocation as

TTC (γ|Φ (E)). Since the assignment of discrete TTC is unique (Shapley & Scarf

1974), and the assignment in the continuum model is unique (Proposition 2), this

proves the proposition.

Consider a point during the run of discrete TTC when all schools are still available.

At this point, denote by xc the c-rank of the student pointed to by school c for

all c ∈ C , and denote by S (x) the set of assigned students. By construction,

x ∈ X =
{

0, 1
N
, 2
N
, . . . , 1

}C
. In the next step the discrete TTC clears a cycle and
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schools point to their favorite remaining student. Let K be the set of schools in

the cycle, and let dc = 1{c∈K}. Denote by yc the c-rank of the student pointed to

by school c after the cycle is cleared for all c ∈ C , and denote by S (y) the set of

assigned students after the cycle is cleared. Note that x− y = 1
N
d.

Suppose that in continuum TTC there is a TTC path such that γ (t1) = x+1· 1
N
∈

X. First, notice that by time t1 the continuum TTC has assigned θ ∈ Is if and only

if s ∈ S (x). Second, we will show that γ (t) = x− (t− t1) 1
N
d+ 1

N
for t ∈ [t1, t1 + 1)

satisfies the trade balance equations, and thus the continuum TTC can progress to

γ (t1 + 1) = y + 1 · 1
N
∈ X. To see that, observe that Hc

b

(
x + 1 · 1

N

)
= 1 if in

the discrete TTC school c is the favorite school of the student with b-rank xb, and

Hc
b

(
x + 1 · 1

N

)
= 0 otherwise. On the path γ (t) we have that for every b, c ∈ K

Hc
b (γ (t)) = Hc

b

(
x + 1 · 1

N

)
· (1− (t− t1))

and if b ∈ K and c /∈ K then Hc
b (γ (t)) = 0.

Therefore for any c ∈ K∑
a∈C

daH
c
a (γ (t)) = (1− (t− t1)) =

∑
a∈C

dcH
a
c (γ (t)) ,

and for any c /∈ K ∑
a∈C

daH
c
a (γ (t)) = 0 =

∑
a∈C

dcH
a
c (γ (t)) .

Thus, the trade balance equations hold for t ∈ [t1, t1 + 1), and there is a continuum

TTC path such that γ (t1) = x, γ (t2) = y.

The claim follows by induction on the number of cycles cleared so far in discrete

TTC.

Proposition 9 shows that the TTC assignment defined in Theorem 2 provides a

strict generalization of the discrete TTC assignment to a larger class of economies.

We provide an example of an embedding of a discrete economy in Appendix B.1.

Next, we show that the continuum economy can also be used to approximate suf-

ficiently similar economies. Formally, we show that the TTC allocations for strongly

convergent sequences of economies are also convergent.
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Theorem 3. Consider two continuum economies E = (C,Θ, η, q) and Ẽ = (C,Θ, η̃, q),

where the measures η and η̃ have total variation distance ε. Suppose also that both

measures have full support. Then the TTC allocations in these two economies differ

on a set of students of measure O(ε|C|2).

In Section 4.4, we show that changes to the priorities of a set of high priority

students can affect the final assignment of other students in a non-trivial manner.

This raises the question of what the magnitude of these effects are, and whether

the TTC mechanism is robust to small perturbations in student preferences or school

priorities. Our convergence result implies that the effects of perturbations are no more

than proportional to the total variation distance of the two economies, and suggests

that the TTC mechanism is fairly robust to small perturbations in preferences.

B.1 Example: Embedding a discrete economy in the contin-

uum model

Consider the discrete economy E =
(
C,S,�S ,�C, q

)
with two schools and six stu-

dents, C = {1, 2}, S = {a, b, c, u, v, w}. School 1 has capacity q1 = 4 and school 2 has

capacity q2 = 2. The school priorities and student preferences are given by

1 : a � u � b � c � v � w, a, b, c : 1 � 2,

2 : a � b � u � v � c � w, u, v, w : 2 � 1.

In Figure 13, we display three TTC paths for the continuum embedding Φ (E) of

the discrete economy E. The first path γall corresponds to clearing all students in

recurrent communication classes, that is, all students in the maximal union of cycles

in the pointing graph. The second path γ1 corresponds to taking K = {1} whenever

possible. The third path γ2 corresponds to taking K = {2} whenever possible. We

remark that the third path gives a different first round cutoff point p1, but all three

paths give the same allocation.
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TTC path γall clears all students in recurrent communication classes.

TTC path γ1 clears all students who want school 1 before students who want school 2.

TTC path γ2 clears all students who want school 2 before students who want school 1.

Figure 13: Three TTC paths and their cutoffs and allocations for the discrete economy in example
B.1. In each set of two squares, students in the left box prefer school 1 and students in the right box
prefer school 2. The first round TTC paths are solid, and the second round TTC paths are dotted.
The cutoff points p1 and p2 are marked by filled circles. Students shaded dark blue are assigned to
school 1 and students shaded dark light are assigned to school 2.

Calculating the TTC paths

In this section, we calculate the TTC paths γall, γ1 and γ2. We consider only solu-

tions d to the trade balance equations (2) that have been normalized so that d·1 = −1.
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For brevity we call such solutions valid directions. The relevant valid directions are

shown in Figure 14.

We first calculate the TTC path in the regions where the TTC paths are the

same. At every point (x1, x2) with 5
6
< x1 ≤ x2 ≤ 1 the H matrix is

[
x2 − 5

6
0

x1 − 5
6

0

]
,

so d = [−1, 0] is the unique valid direction and the TTC path is defined uniquely

for t ∈
[
0, 1

6

]
by γ (t) = (1− t, 1). This section of the TTC path starts at (1, 1) and

ends at
(

5
6
, 1
)
. At every point

(
5
6
, x2

)
with 5

6
< x2 ≤ 1 the H matrix is

[
0 1

6

0 0

]
, so

d = [0,−1] is the unique valid direction, and the TTC path is defined uniquely for

t ∈
[

1
6
, 1

3

]
by γ (t) =

(
5
6
, 7

6
− t
)
. This section of the TTC path starts at

(
5
6
, 1
)

and

ends at
(

5
6
, 5

6

)
.

At every point (x1, x2) with 2
3
< x1, x2 ≤ 5

6
the H matrix is

[
0 1

6
1
6

0

]
, and so

d =
[
−1

2
,−1

2

]
is the unique valid direction, the TTC path is defined uniquely to lie

on the diagonal γ1 (t) = γ2 (t), and this section of the TTC path starts at
(

5
6
, 5

6

)
and ends at

(
2
3
, 2

3

)
. At every point x =

(
1
3
, x2

)
with 1

3
< x2 ≤ 2

3
the H matrix is[

0 6x2 − 2

0 0

]
, and so d = [0,−1] is the unique valid direction, and the TTC path is

parallel to the y axis. Finally, at every point
(
x1,

1
3

)
with 0 < x1 ≤ 2

3
, the measure

of students assigned to school 1 is at most 3, and the measure of students assigned

to school 2 is 2, so school 2 is unavailable. Hence, from any point
(
x1,

1
3

)
the TTC

path moves parallel to the x1 axis.

We now calculate the various TTC paths where they diverge.

At every point x = (x1, x2) with 1
2
< x1, x2 ≤ 2

3
the H matrix is

[
0 0

0 0

]
(i.e. there

are no marginal students). Moreover, at every point x = (x1, x2) with 1
3
< x1, x2 ≤ 1

2

the H matrix is

[
1
6

0

0 1
6

]
. Also, at every point x = (x1, x2) with 1

3
< x1 ≤ 1

2
and

1
2
< x2 ≤ 2

3
, the H matrix is

[
1
6

0

0 0

]
. The same argument with the coordinates

swapped gives that H =

[
0 0

0 1
6

]
when 1

2
< x1 ≤ 2

3
and 1

3
< x2 ≤ 1

2
. Hence in all

these regions, both schools are in their own recurrent communication class, and any

vector d is a valid direction.

The first path corresponds to taking d =
[
−1

2
,−1

2

]
, the second path corresponds
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Figure 14: The valid directions d (x) for the continuum embedding Φ (E). Valid directions d (x) are
indicated for points x in the grey squares (including the upper and right boundaries but excluding
the lower and left boundaries), as well as for points x on the black lines. Any vector d (x) is a valid
direction in the lower left gray square. The borders of the squares corresponding to the students are
drawn using dashed gray lines.

to taking d = [−1, 0] and the third path corresponds to taking d = [0,−1]. The first

path starts at
(

2
3
, 2

3

)
and ends at

(
1
3
, 1

3

)
where school 2 fills. The third path starts

at
(

2
3
, 2

3

)
and ends at

(
2
3
, 1

3

)
where school 2 fills. Finally, when x =

(
1
3
, x2

)
with

1
3
< x2 ≤ 1

2
, the H matrix is

[
0 1

0 1

]
and so d = [0,−1] is the unique valid direction,

and the second TTC path starts at
(

1
3
, 1

2

)
and ends at

(
1
3
, 1

3

)
where school 2 fills. All

three paths continue until
(
0, 1

3

)
, where school 1 fills.

Note that all three paths result in the same TTC allocation, which assigns students

a, b, c, w to school 1 and u, v to school 2. All three paths assign the students assigned

before p1 (students a, u, b, c for paths 1 and 2 and a, u, b for path 3) to their top choice

school. All three paths assign all remaining students to school 1.
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