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Abstract

We develop new measures of time-varying risk aversion and economic uncer-
tainty that can be calculated from observable financial information at high fre-
quencies. To do so, we formulate a dynamic no-arbitrage asset pricing model for
the two main risky asset classes, equities and corporate bonds. The joint dynamics
among asset-specific cash flows, macroeconomic fundamentals and risk aversion fea-
ture time-varying heteroskedasticity and non-Gaussianity. We use returns but also
realized volatility and option prices to help distinguish time variation in economic
uncertainty (the amount of risk) from time variation in risk aversion (the price of
risk). We find that variance risk premiums on equity are very informative about risk
aversion, whereas credit spreads and corporate bond volatility are highly correlated
with economic uncertainty. Our model-implied risk premiums outperform standard
instrument sets for predicting excess returns on equity and corporate bonds. A fi-
nancial proxy to our economic uncertainty predicts output growth negatively and
significantly, even in the presence of the VIX.
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I Introduction

Changes in risk appetite are increasingly viewed as an important determinant of

asset price dynamics. The behavioral finance literature (see, e.g., Lemmon and Port-

naiguina, 2006; and Baker and Wurgler, 2006) has developed “sentiment indices” to

discuss financial market anomalies whereas in the “structural” dynamic asset pricing lit-

erature, habit models featuring time-varying risk aversion have become prominent (see

Campbell and Cochrane (1999) and a large number of related articles). Reduced-form

asset pricing models, aiming to simultaneously explaining stock return dynamics and op-

tion prices, have also concluded that time-varying prices of risk are important drivers

(see, e.g., Bakshi and Wu, 2010; Broadie, Chernov, and Johannes, 2007; Pan, 2002).

Risk aversion has also featured prominently in recent monetary economics papers that

suggest a potential link between loose monetary policy and the risk appetite of market

participants, spurring a literature on what structural economic factors drive risk aversion

changes (see, e.g., Rajan, 2006; Adrian and Shin, 2009; Bekaert, Hoerova, and Lo Duca,

2013). A growing literature has suggested that aggregate risk aversion may be linked to

financial constraints, time-varying leverage or risk preferences of financial intermediaries

(see, e.g., He and Krishnamurthy, 2013; Adrian and Shin, 2013). In international finance,

Miranda-Agrippino and Rey (2015) and Rey (2015) suggest that global risk aversion is a

key transmission mechanism for US monetary policy to be exported to countries world-

wide and is a major source of asset return comovements across countries (see also Xu,

2017). Finally, several papers on sovereign bonds (e.g. Bernoth and Erdogan, 2012) have

stressed the importance of global risk aversion in explaining their dynamics and contagion

across countries.

Given the real-world importance of understanding asset pricing dynamics, financial

institutions have developed a wide variety of “sentiment” or “risk aversion” indices (see

Coudert and Gex, 2008, for a survey), with (sometimes tenuous) links to the asset pricing

literature. Our goal is to develop a measure of aggregate time-varying risk aversion that is

both consistent with the structural asset pricing literature and relatively easy to estimate

and compute, so that it can be compared to existing indices and tracked over time. To do

so, we build on a dynamic asset pricing model related to the habit models of Campbell and

Cochrane (1999), Menzly, Santos, and Veronesi (2004) and Wachter (2006). Analogous

to Bekaert, Engstrom, and Xing (2009) and Bekaert, Engstrom, and Grenadier (2010),

we allow for a stochastic risk aversion component that is not perfectly correlated with

fundamentals. Essentially, our risk aversion measure constitutes a second factor in the

pricing kernel that is not driven exclusively by macroeconomic fundamentals.

Our approach is agnostic regarding the economic sources of the non-fundamental
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component of risk aversion. It may truly reflect sentiment induced by news (see the recent

experimental evidence in Cohn, Engelmann, Fehr, and Maréchal, 2015), or even reflect

mood swings induced by the weather (Kamstra, Kramer, and Levi, 2003). It could also

reflect those unmodeled institutional factors (such as endogenous risk constraints faced

by financial institutions) that end up affecting the aggregate risk aversion implied by the

aggregate pricing kernel.

In implementing our approach, we confront several challenges. First, we must sep-

arately identify both the price of risk (risk aversion) and the amount of risk (economic

uncertainty). After all, a large class of successful models (see e.g. Bansal, Kiku, Shalias-

tovich, and Yaron, 2014) relies on time variation in economic uncertainty as the main

mechanism to generate variation in financial risk premiums. Moreover, uncertainty shocks

play an increasingly prominent role in dynamic macro-models (see Bloom, 2009; Chris-

tiano, Motto, and Rostagno, 2014), perhaps contributing to a recent cottage industry of

creating indices of economic uncertainty (see e.g. Baker, Bloom, and Davis, 2016; Ju-

rado, Ludvigson, and Ng, 2015). Accounting for uncertainty in fundamentals empirically

is challenging because the empirical macro literature suggests that macro shocks feature

non-Gaussian distributions with time-varying second and higher order moments (Hamil-

ton, 1990; Fagiolo, Napoletano and Roventini, 2008; Gambetti, Pappa and Canova, 2008;

Adrian, Boyarchenko, and Giannone, 2018). To accommodate these non-linearities in

a tractable fashion, we use the Bad Environment-Good Environment (BEGE, hence-

forth) framework developed in Bekaert and Engstrom (2017). Shocks are modeled as

the sum of two variables with de-meaned gamma distributions, whose shape parameters

vary through time. The model delivers conditional non-Gaussian shocks, with changes in

“good” or “bad” volatility also changing the conditional distribution of the process. By

realistically modeling economic uncertainty, our model delivers an economic uncertainty

index, essentially the conditional variance of industrial production, as a by-product.

Second, to develop the risk aversion measure in an internally consistent manner,

we must solve for asset prices as a function of preferences and cash flow dynamics. Fo-

cusing on the two main risky asset classes, corporate bonds and equities, we also use

the BEGE-class of models to capture their cash flow dynamics (dividends or earnings for

equities; default rates for corporate bonds).1 Despite the fact that the model accommo-

dates non-Gaussianities, our formulation admits (quasi) closed-form solutions for asset

prices within the affine class. Summing up, the model has three channels for generat-

ing time-variation in risk premiums and volatility for asset returns: (1) macroeconomic

1In contrast, a number of articles develop time-varying risk aversion measures motivated by models
that really assume “constant” prices of risk and hence are inherently inconsistent (see, for example,
Bollerslev, Gibson, and Zhou, 2011), or fail to fully model the link between fundamentals and asset
prices (see e.g. Bekaert and Hoerova, 2016).
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fundamental uncertainty, (2) stochastic risk aversion and (3) cash flow uncertainty.

Third, to identify the model parameters and stochastic risk aversion, it is paramount

to go beyond information in returns and historical risk premiums—which are known to be

noisy. We use both realized variances and option-implied variances to help estimate the

model and thus identify the risk aversion process. A large empirical literature (see e.g.

Andersen, Bollerslev, Diebold and Labys, 2003) shows that realized variances can be mea-

sured fairly precisely and provide accurate forecasts of future return variances. Moreover,

conditional return variances are an exact function of the relevant state variables (includ-

ing risk aversion) in our pricing framework (see Joslin, Le, Singleton (2013) for a similar

observation in a term structure model). Therefore, realized variances greatly facilitate

identifying the risk aversion process. There is also a large literature on inferring risk and

risk preferences from option prices, which we discuss in more detail in Section II. Option-

implied volatility, such as the famous VIX index in the equity market, reflects both the

physical return distribution, including the probability of crashes, and risk aversion. The

risk aversion of rational agents creates a demand for insurance against potential losses,

making (out-of-money) put options relatively more expensive than call options. Such

expensive put options are the source of the consistent presence of a positive variance risk

premium (often empirically measured as the difference between the VIX index-squared

and the physical conditional return variance) (see Bekaert and Hoerova, 2016; Bakshi

and Madan (2006) for formal arguments). Option data should also be informative about

conditional risk premiums, which are difficult to observe from the data. Martin (2017)

uses option-implied variances to provide bounds on equity premiums, and several articles

(see Bollerslev and Todorov, 2011; Liu, Pan, and Wang, 2004; Santa-Clara and Yan,

2010) suggest that compensation for rare events (“jumps”) accounts for a large fraction

of equity risk premiums. We therefore use both realized and option -implied variances to

estimate the model and to infer the risk aversion process.

The remainder of the paper is organized as follows. Sections II and III present

the model and estimation strategy in detail. Section IV briefly outlines the data we

use. Section V presents the estimation results and extracts risk aversion and uncertainty

from asset prices. It also discusses the links between the risk aversion estimates and

various financial variables. We find significant time variation in the volatilities and higher-

order moments of the fundamentals, especially in real activity. The time variation in

uncertainty is dominated by strongly countercyclical “bad” volatility. Moreover, we find

that macroeconomic uncertainty is highly correlated with uncertainty about risky asset

cash flows, both for the equity and corporate bond markets. Nonetheless, we do find

evidence of independent time variation in the volatility of corporate bond loss rates.

The extracted risk aversion process loads most significantly on equity risk neutral
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variances (with a positive sign) and realized variances (with a negative sign), support-

ing the variance premium as a good proxy for aggregate risk aversion. This finding is

consistent with recent work in the consumption-based asset pricing literature, showing

the variance premium to be very informative in identifying equilibrium models featuring

complex data generating processes for the fundamentals (see Drechsler and Yaron, 2010;

Bollerslev, Tauchen, and Zhou, 2009; Bekaert and Engstrom, 2017). The risk aversion

process is much more rapidly mean reverting than would be implied by habit models,

which is consistent with the results in Martin (2017). Economic uncertainty is highly

correlated with corporate bond volatility and, especially, with credit spreads.

In Section VI, we show that our model-implied risk premiums significantly predict

equity returns, whereas our economic uncertainty index predicts output negatively and

significantly. We then also link our measures of risk appetite and uncertainty to alter-

native indices, including ones produced by practitioners. Finally, we illustrate the use of

the indices at high frequencies by examining their behavior around the Bear Stearns and

Lehman Brothers bankruptcies. Concluding remarks are in Section VII.

II Modeling Risk Appetite and Uncertainty

In this section, we first define our concept of risk aversion in general terms in

Section II.A. We then build a dynamic model with stochastic risk aversion and macro-

economic factors affecting the cash flows processes of two main risky asset classes, corpo-

rate bonds and equity. The state variables are described in Section II.B and the pricing

kernel in Section II.C.

II.A General Strategy

An ideal measure of risk aversion would be model-free and does not confound time

variation in economic uncertainty with time variation in risk aversion. There are many

attempts in the literature to approximate this ideal, but invariably various modeling

and statistical assumptions are necessary to tie down risk aversion. For example, in the

options literature, a number of articles (Aıt-Sahalia and Lo, 2000; Engle and Rosenberg,

2002; Jackwerth, 2000; Bakshi, Kapadia and Madan, 2003; Britten-Jones and Neuberger,

2000; Bliss and Panigirtzoglou, 2004) appear at first glance to infer risk aversion from

equity options prices in a model-free fashion, but it is generally the case that the utility

function is assumed to be of a particular form and/or to depend only on stock prices.2

Another strand of the literature relies on general properties of pricing kernels. A

2This is also true for the recent debate about the recoverability of physical probabilities from option
prices, which claims to identify risk aversion as well (Ross, 2015; Carr and Wu, 2016).
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strictly positive pricing kernel or stochastic discount factor, Mt+1, under no-arbitrage

conditions, implies that for all gross returns, R,

Et [Mt+1Rt+1] = 1 (1)

It is then straightforward to derive that any asset’s expected excess return can be written

as an asset specific risk exposure (“beta”, or βt) times a price of risk (or λt), which applies

to all assets (see also Coudert and Gex, 2008):

Et [Rt+1]−Rf
t = βtλt (2)

where Rf
t is the risk free rate, βt = −Colpt(Rt+1,Mt+1)

V art(Mt+1)
, and λt = V art(Mt+1)

Et(Mt+1)
.

Unfortunately, this price of risk is not equal to time-varying risk aversion, and in

particular may confound economic uncertainty with risk aversion. In a simple power util-

ity framework, it is easy to show that the price of risk is linked to both the coefficient of

relative risk aversion and the volatility of consumption growth, the latter being a reason-

able measure of economic uncertainty. Importantly, we use the terms “risk aversion” and

“risk appetite” as each other’s inverse. Gai and Vause (2006) and Pflueger, Siriwardane,

and Sunderam (2018) however use the term “risk appetite” to indicate the price of risk,

that is the product of “risk aversion” and “the amount of risk.”

Our approach is to start from a fairly general utility function defined over both

consumption (“fundamentals”) and a “non-fundamental” factor. Our measure of risk

aversion is then the coefficient of relative risk aversion implied by the utility function. We

specify a fairly general consumption process accommodating time variation in economic

uncertainty and use the utility framework to price assets, given general processes for

their cash flows. Therefore, while certainly not model free, our risk aversion process

is consistent with a wide set of economic models that respect no-arbitrage conditions.

Moreover, we can use any risky asset for which we can model cash flows to help identify

risk aversion. The identification of the risk aversion process takes into account that

economic uncertainty varies through time and controls for non-Gaussianities in cash flow

processes.

Consider a period utility function in the HARA class:

U

(
C

Q

)
=

(
C
Q

)1−γ
1− γ

(3)

where C is consumption and Q is a process that will be shown to drive time-variation in

risk aversion. Essentially, when Q is high, consumption delivers less utility and marginal
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utility increases. For the general HARA class of utility functions,

Q =

(
a

γ
− b

C

)−1
= f(C) (4)

where a and γ are positive parameters, and b is an exogenous benchmark parameter

or process. Note that γ (the curvature parameter) is not equal to risk aversion in this

framework. In principle, all parameters (a, γ, b) could have time subscripts, but we only

allow time-variation in b. Note that the Q process depends on consumption, but we do

not allow b to depend on consumption. This excludes internal habit models, for example.

The coefficient of relative risk aversion for this class of models is given by

RRA = −CU
′′(C)

U ′(C)
= aQ (5)

and is thus proportional to Q. Note that dQ
dC

= −b
(
a
γ
C − b

)−2
< 0; in good times when

consumption increases, risk aversion decreases.

For pricing assets, we need to derive the log pricing kernel which is the intertemporal

marginal rate of substitution in a dynamic economy. We assume an infinitely lived agent,

facing a constant discount factor of β, and the HARA period utility function given above.

The pricing kernel is then given by

mt+1 = ln(β) + ln

[
U ′(Ct+1)

U ′(Ct)

]
= ln(β)− γ∆ct+1 + γ∆qt+1 (6)

where we use t to indicate time, lower case letters to indicate logs of uppercase variables,

and ∆ to represent the difference operator.

To get more intuition for this framework, note that the Campbell and Cochrane

(1999) (CC henceforth) utility function is a special case. CC use an external habit

model, with utility being a power function over Ct −Ht, where Ht is the habit stock. Of

course, we can also write

Ct −Ht =
Ct
Qt

(7)

with Qt = Ct

Ct−Ht
. So the CC utility function is a special case of our framework with

a = γ and b = H. As Ct gets closer to the habit stock, risk aversion increases. Qt is

thus the inverse of the surplus ratio in the CC article. CC also model qt exogenously but

restrict the correlation between qt and ∆ct to be perfect. The “moody investor” economy

in Bekaert, Engstrom, and Grenadier (2010) is also a special case. In that model, qt is

also exogenously modeled, but has its own shock; that is, there are preference shocks

not correlated with fundamentals. Another special case is the model in Brandt and
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Wang (2003), but their risk aversion process specifically depends on inflation in addition

to consumption growth. In fact, DSGE models in macro-economics routinely feature

preference shocks (see e.g. Besley and Coate, 2003). For example, in the famous New

Keynesian Smets and Wouters (2007) model, there is a persistent preference shock not

directly related to fundamentals, which could reflect pure “animal spirits.”

The experimental literature (see e.g. Cohn, Engelmann, Fehr, and Maréchal, 2015)

shows that the subjective willingness to take risk is indeed lower during a recession, which

is simulated by “priming” people with a stock market crash (versus boom), and that this

risk aversion is rooted in emotions of fear. Even if this is the dominant source of preference

variation, it is unlikely that the aggregate component of this type of counter-cyclical risk

aversion is perfectly correlated with aggregate consumption growth. Another channel

that may cause changes in aggregate risk aversion is shifts in the wealth distribution. If

we think of risk aversion of the representative agent as the wealth weighted average of

risk aversion in the economy, it is conceivable that in bad times, the wealth of the richer

people goes down proportionally more than that of poorer people (because more of their

wealth is tied up in risky asset classes). This in turn would then increase aggregate risk

aversion.

Therefore, our approach specifies a stochastic process for q (risk aversion), which

is partly but not fully driven by fundamentals (consumption growth) and features an

independent shock.

II.B Economic Environment: State Variables

II.B.1 Macroeconomic Factors

In canonical asset pricing models agents have utility over consumption, but it is well

known that consumption growth and asset returns show very little correlation. Moreover,

consumption data are only available at the quarterly frequency. Because the use of options

data is key to our identification strategy and these data are only available since 1986, it is

important to use macro-economic data that are available at the monthly frequency. We

therefore chose to use industrial production, which is available at the monthly frequency,

as our main macroeconomic factor. In the macro-economic literature, much attention

has been devoted recently to the measurement of “real” uncertainty (see e.g. Jurado,

Ludvigson and Ng, 2015) and its effects on the real economy (see e.g. Bloom, 2009).

We add to this literature by using a novel econometric framework to extract two macro

risk factors from industrial production: “good” uncertainty, denoted by pt, and “bad”

uncertainty, denoted by nt.

Specifically, the change in log industrial production index, θt, has time-varying
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conditional moments governed by two state variables: pt and nt. The conditional mean is

modeled as a persistent process to accommodate a time-varying long-run mean of output

growth:

θt+1 = θ + ρθ(θt − θ) +mp(pt − p) +mn(nt − n) + uθt+1, (8)

where the growth shock is decomposed into two independent centered gamma shocks,

uθt+1 = σθpωp,t+1 − σθnωn,t+1. (9)

The shocks follow centered gamma distributions with time-varying shape parameters,

ωp,t+1 ∼ Γ̃ (pt, 1) (10)

ωn,t+1 ∼ Γ̃ (nt, 1) , (11)

where Γ̃ (x, 1) denotes a centered gamma distribution with shape parameter x and a unit

scale parameter. The shape factors, pt and nt, follow autoregressive processes,

pt+1 = p+ ρp(pt − p) + σppωp,t+1 (12)

nt+1 = n+ ρn(nt − n) + σnnωn,t+1, (13)

where ρx denotes the autoregressive term of process xt+1, σxx the sensitivity to shock

ωx,t+1, and x the long-run mean. We denote the macroeconomic state variables as,

Y mac
t =

[
θt pt nt

]′
, and the set of unknown parameters are θ, ρθ,mp,mn, n, σθp, σθn, ρp,

σpp, ρn, and σnn.

In this model, the conditional mean has an autoregressive component, but macro

risks also affect expected growth. This can both accommodate cyclical effects (lower

conditional means in bad times), or the uncertainty effect described in Bloom (2009).

The shocks reflect the BEGE framework of Bekaert and Engstrom (2017), implying that

the conditional higher moments of output growth are linear functions of the bad and

good uncertainties. For example, the conditional variance and the conditional unscaled

skewness are as follows,

Conditional Variance: Et

[(
uθt+1

)2]
= σ2

θppt + σ2
θnnt,

Conditional Unscaled Skewness: Et

[(
uθt+1

)3]
= 2σ3

θppt − 2σ3
θnnt.

This reveals the sense in which pt represents “good” and nt “bad” volatility: pt (nt)

increases (decreases) the skewness of industrial production growth.
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The industrial production process is a key determinant of the consumption growth

process, but we model consumption growth jointly with the cash flow processes for equities

imposing the economic restriction that those processes are cointegrated.

II.B.2 Cash Flows and Cash Flow Uncertainty

To model the cash flows for equities and corporate bonds, we focus attention on

two variables that exhibit strong cyclical movements, namely earnings (see e.g. Longstaff

and Piazzesi, 2004) and corporate defaults (see e.g. Gilchrist and Zakraǰsek, 2012).

Corporate Bond Loss Rate To model corporate bonds, we must model the possibility

of defaults. Suppose a portfolio of one-period nominal bonds has a promised payoff of

C ≡ exp (c) at (t+ 1), but will in fact only pay an unknown fraction Ft+1 ≤ 1 of

that amount. Therefore, the nominal payoffs for a one-period zero-coupon defaultable

corporate bond at period t+1 is C×Ft+1 = exp(c+ln(Ft+1)) = exp(c−lt+1). Thus, lt+1 is

defined as −ln(Ft+1) = −ln(1−Lt+1) where Lt+1 (i.e., 1−Ft+1) is the aggregate corporate

loss rate, which can be computed as the default rate times one minus the recovery rate.

We provide more detail on the pricing of defaultable bonds in the asset pricing section

(Section II.C).

The dynamic system of the aggregate corporate bond log loss rate, lt, is modeled

as follows:

lt+1 = l0 + ρlllt +mlppt +mlnnt + σlpωp,t+1 + σlnωn,t+1 + ult+1 (14)

ult+1 = σllpωlp,t+1 − σllnωln,t+1 (15)

ωlp,t+1 ∼ Γ̃(lpt, 1), (16)

ωln,t+1 ∼ Γ̃(ln, 1), (17)

where the variance equation is,

lpt+1 = lp+ ρlp(lpt − lp) + σlplpωlp,t+1, (18)

ln > 0. (19)

The conditional mean depends on an autoregressive term and the good and bad

uncertainty state variables pt and nt. The loss rate total disturbance is governed by

three independent heteroskedastic shocks: the good and bad environment macro shocks

{ωp,t+1, ωn,t+1} and the (orthogonal) loss rate shock ul,t+1. The loss rate shock follows a

typical BEGE process, but we only allow ωlp’s shape parameter to be time-varying.3

3This final model is not chosen at random. We experimented with 5 other models (i.e., with and
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This dynamic system allows macro-economic uncertainty to affect both the condi-

tional mean and conditional variance of the loss rate process. However, it also allows

the loss rate to have an autonomous autoregressive component in its conditional mean

(making lt a state variable) and accommodates heteroskedasticity not spanned by macro-

economic uncertainty. This “financial” cash flow uncertainty has a time-varying com-

ponent, denoted by lpt, and a constant component denoted by ln. If σllp and σlplp are

positive, as we would expect, the loss rate and its volatility are positively correlated;

that is, in bad times with a high incidence of defaults, there is also more uncertainty

about the loss rate, and because the gamma distribution is positively skewed, the (un-

scaled) skewness of the process increases. We would also expect the sensitivities to the

good (bad) economic environment shocks, σlp (σln) to be negative (positive): intuitively,

defaults should decrease (increase) in relatively good (bad) times.

The conditional variance of the loss rate is σ2
lppt + σ2

lnnt + σ2
llplpt + σ2

llnlnt, and

its conditional unscaled skewness is 2
(
σ3
lppt + σ3

lnnt + σ3
llplpt − σ3

llnlnt
)
. We denote the

financial state variables as, Y fin
t =

[
lt lpt

]′
. The set of unknown parameters are l0, ρll,

mlp, mln, σlp, σln, σllp, σlln, lp, ρlp, σlplp, and ln.

Log Earnings Growth Log earnings growth, gt, is defined as the change in log real

earnings of the aggregate stock market. It is modeled as follows:

gt+1 = g0 + ρgggt + ρ′g,macY
mac
t + ρ′g,finY

fin
t

+ σgpωp,t+1 + σgnωn,t+1 + σglpωlp,t+1 + σglnωln,t+1 + ugt+1 (20)

ugt+1 = σggωg,t+1 (21)

ωg,t+1 ∼ N(0, 1). (22)

The conditional mean is governed by an autoregressive component and the three macro

factors; the time variation in the conditional variance comes from the good and bad un-

certainty factors, and the loss rate uncertainty factor. The earnings shock is assumed

to be Gaussian and homoskedastic, implying that the time variation in the conditional

variance of earnings growth is spanned by macro-economic uncertainty and the finan-

cial uncertainty present in default rates. In principle, the earnings growth rate shock

can also be modeled using a heteroskedastic gamma shock. However, we fail to re-

ject the null that the residuals series, after controlling for the heteroskedastic funda-

mental shocks, are Gaussian and homoskedastic. The set of unknown parameters is

without cyclical mean, AR(1), relaxing heteroskedasticity assumptions on the loss rate BEGE shocks,
using a single gamma shock structure or BEGE.), and the model chosen outperforms other models on
standard model selection criteria. Details on alternative models are available upon request.
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{g0, ρgg,ρ′g,mac,ρ′g,fin, σgp, σgn, σglp, σgln, σgg}.

Log Consumption-Earnings Ratio We model consumption as stochastically coin-

tegrated with earnings so that the consumption-earnings ratio becomes a relevant state

variable. Define κt ≡ ln
(
Ct

Et

)
which is assumed to follow:

κt+1 = κ0 + ρκκκt + ρ′κ,macY
mac
t + ρ′κ,finY

fin
t

+ σκpωp,t+1 + σκnωn,t+1 + σκlpωlp,t+1 + σκlnωln,t+1 + uκt+1 (23)

uκt+1 = σκκωκ,t+1 (24)

ωκ,t+1 ∼ N(0, 1). (25)

Similarly to earnings growth, there is an autonomous conditional mean component but

the heteroskedasticity of κt is spanned by other state variables. As with log earnings

growth, we fail to reject Gaussianity and homoskedasticity of uκt+1. The set of unknown

parameters is {κ0, ρκκ,ρ′κ,mac,ρ′κ,fin, σκp, σκn, σκlp, σκln, σκκ}.

Log Dividend Payout Ratio The log dividend payout ratio, ηt, is expressed as the

log ratio of dividends to earnings. Recent evidence in Kostakis, Magdalinos, and Stam-

atogiannis (2015) shows that the monthly dividend payout ratio is stationary. We model

ηt analogously to κt and gt, again assuming a Gaussian and homoskedastic residual shock

(which can be justified in the data):

ηt+1 = η0 + ρηηηt + ρ′η,macY
mac
t + ρ′η,finY

fin
t

+ σηpωp,t+1 + σηnωn,t+1 + σηlpωlp,t+1 + σηlnωln,t+1 + uηt+1 (26)

uηt+1 = σηηωη,t+1 (27)

ωη,t+1 ∼ N(0, 1). (28)

The set of unknown parameters is {η0, ρηη,ρ′η,mac,ρ′η,fin, σηp, σηn, σηlp, σηln, σηη}. Using

ηt+1 and gt+1, dividend growth ∆dt+1, is given by ηt+1 − ηt + gt+1.

II.B.3 Pricing Kernel State Variables

In the model we introduced above, the real pricing kernel depends on consumption

growth and changes in risk aversion. To price nominal cash flows (or to price default

free nominal bonds), we also need an inflation process. We discuss the modeling of these

variables here.
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Consumption Growth By definition, log real consumption growth, ∆ct+1 = ln
(
Ct+1

Ct

)
=

gt+1 + ∆κt+1. Therefore, consumption growth is spanned by the previously defined state

variables and shocks.

Risk Aversion The state variable capturing risk aversion, qt ≡ ln
(

Ct

Ct−Ht

)
is, by defi-

nition, nonnegative. We impose the following structure,

qt+1 = q0 + ρqqqt + ρqppt + ρqnnt + σqpωp,t+1 + σqnωn,t+1 + uqt+1 (29)

uqt+1 = σqqωq,t+1 (30)

ωq,t+1 ∼ Γ̃(qt, 1). (31)

The risk aversion disturbance is comprised of three parts, exposure to the good

uncertainty shock, exposure to the bad uncertainty shock, and an orthogonal preference

shock. Thus, given the distributional assumptions on these shocks, the model-implied

conditional variance is σ2
qppt + σ2

qnnt + σ2
qqqt, and the conditional unscaled skewness

2
(
σ3
qppt + σ3

qnnt + σ3
qqqt
)
. With σqq = 0 and certain restrictions on σqp and σqn, the

model would imply a perfect correlation between the conditional correlation between risk

aversion and real activity, as in the Campbell-Cochrane (1999) model.

We model the pure preference shock also with a demeaned gamma distributed shock,

so that its variance and (unscaled) skewness are proportional to its own level. Controlling

for current business conditions, when risk aversion is high, so is its conditional variability

and unscaled skewness. This seems like a plausible assumption. For example, option-

implied volatilities, which are partially driven by risk aversion, are much more volatile

in stress times. The higher moments of risk aversion are perfectly spanned by macroe-

conomic uncertainty on the one hand and pure sentiment (qt) on the other hand. Note

that our identifying assumption is that qt itself does not affect the macro variables and

uq,t+1 represents a pure preference shock. The conditional mean is modeled as before: an

autonomous autoregressive component and dependence on pt and nt. The set of unknown

parameters describing the risk aversion process is {q0, ρqq, ρqp, ρqn, σqp, σqn, σqq}.

Inflation To price nominal cash flows, we must specify an inflation process. The con-

ditional mean of inflation depends on an autoregressive term and the three macro factors

Y mac
t . The conditional variance and higher moments of inflation are proportional to the

good and bad uncertainty factors {pt, nt}. The inflation innovation uπt+1 is assumed to be

Gaussian and homoskedastic. There is no feedback from inflation to the macro variables:

πt+1 = π0 + ρπππt + ρ′πyY
mac
t + σπpωp,t+1 + σπnωn,t+1 + uπt+1 (32)
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uπt+1 = σππωπ,t+1 (33)

ωπ,t+1 ∼ N(0, 1). (34)

The set of unknown parameters is {π0, ρππ,ρ′πy, σπp, σπn, σππ}.

II.B.4 Matrix Representation

The dynamics of all state variables introduced above can be written compactly in

matrix notation. We define the macro factors Y mac
t =

[
θt pt nt

]′
and other state

variables Y other
t =

[
πt lt gt κt ηt lpt qt

]′
. Among the ten state variables, the

industrial production growth θt, the inflation rate πt, the loss rate lt, earnings growth gt,

the log consumption-earnings ratio κt and the log divided payout ratio ηt are observable,

while the other four state variables, {pt, nt, lpt, qt} are latent. There are eight independent

centered gamma and Gaussian shocks in this economy. The system can be formally

described as follows (technical details are relegated to the Appendix):

Yt+1 = µ+AYt + Σωt+1, (35)

where constant matrices, µ (10 × 1), A (10 × 10) and Σ (10 × 9), are implicitly defined,

Yt =
[
Y mac′

t Y other′

t

]′
(10 × 1) is a vector comprised of the state variable levels, and

ωt+1 =
[
ωp,t+1 ωn,t+1 ωπ,t+1 ωlp,t+1 ωln,t+1 ωg,t+1 ωκ,t+1 ωη,t+1 ωq,t+1

]′
(9 × 1) is

a vector comprised of all the independent shocks in the economy.

Note that, among the nine shocks, five shocks are gamma distributed—the good

uncertainty shock (ωp,t+1), the bad uncertainty shock (ωn,t+1), the right-tail loss rate

shock (ωlp,t+1), the left-tail loss rate shock (ωln,t+1), and the risk aversion shock (ωq,t+1).

The remaining four shocks are standard homoskedastic Gaussian shocks (i.e., N(0, 1)).

Importantly, given our preference structure, the state variables driving the time variation

in the higher order moments of these shocks are the only ones driving the time variation

in asset risk premiums and their higher order moments. Economically, we therefore rely

on time variation in risk aversion—as in the classic Campbell-Cochrane model and its

variants (see e.g. Bekaert, Engstrom, and Grenadier, 2010; Wachter, 2006)—and time

variation in economic uncertainty—as in the Bansal-Yaron (2004) model—to explain risk

premiums.4 The model’s implications for conditional asset return variances are critical

in identifying the dynamics of risk aversion (see also Joslin, Le, and Singleton, 2013).

Our specific structure admits conditional non-Gaussianity yet generates affine pric-

ing solutions. The model is tractable because the moment generating functions of gamma

4Previous research by Bekaert, Engstrom, and Xing (2009) and Bekaert and Engstrom (2017) also
combines time variation in economic uncertainty with changes in risk aversion.
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and Gaussian distributed variables can be derived in closed form, delivering exponentiated

affine functions of the state variables. In particular,

Et [exp(ν′Yt+1)] = exp

[
ν′S0 +

1

2
ν′S1Σ

otherS′1ν + fS(ν)Yt + S2(ν)ln

]
, (36)

where S0 (10 × 1) is a vector of drifts; S1 (10 × 4) is a selection matrix of 0s and 1s

which picks out the Jensen’s inequality terms of the four Gaussian shocks; Σother (4 × 4)

represents the covariance of the Gaussian shocks. The matrix fS(ν) (the scalar S2(ν))

is a non-linear function of ν, involving the feedback matrix and the scale parameters of

the gamma-distributed variables, see Appendix A.1 for more details.

II.C Asset Pricing

In this section, we present the model solutions. First, we formally define the real and

nominal pricing kernel as a function of the previously defined state variables. Assuming

complete markets, this kernel prices any cash flow pattern spanned by our state variable

dynamics. Second, asset prices for two risky assets—defaultable corporate bonds and

equities—are derived. The solution of the model shows that asset prices are (quasi) affine

functions of the state variables, which is crucial in developing the estimation procedure

in this paper. In particular, we derive approximate expressions for endogenous returns

to use in estimating the model parameters, and deriving a risk appetite index.

II.C.1 The pricing kernel

Taking the ratio of marginal utilities at time t+1 and t, we obtain the intertemporal

marginal rate of substitution which constitutes the real pricing kernel denoted by Mt+1.

As Equation (6) indicates, it has the same form as the pricing kernel in the Campbell

and Cochrane model, however, the kernel state variables and kernel shocks are quite

different. Unlike the CC model, changes in the log surplus consumption ratio (the inverse

of risk aversion) are not perfectly correlated with the consumption growth shock, and

consumption growth is heteroskedastic. The real pricing kernel in our model follows an

affine process as well:

mt+1 = m0 +m′2Yt +m′1Σωt+1, (37)

where m0, m1 (10×1), m2 (10×1) are constant scalar or matrices that are implicitly

defined using Equations (18)–(23) and (27)-(29). To price nominal assets, we define the

nominal pricing kernel, m̃t+1, which is a simple transformation of the log real pricing
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kernel, mt+1,

m̃t+1 = mt+1 − πt+1, (38)

= m̃0 + m̃′2Yt + m̃′1Σωt+1, (39)

where m̃0, m̃1 (10×1) and m̃2 (10×1) are implicitly defined. The nominal risk free rate,

r̃f t, is defined as − ln {Et [exp (m̃t+1)]} which can be expressed as an affine function of

the state vector.

II.C.2 Asset prices

In this section, we further discuss the pricing of the two risky assets—corporate

bonds and equities. The Appendix contains detailed proofs and derivations.

Defaultable Nominal Bonds Above, we assume that a one period nominal bond faces

a fractional (logarithmic) loss of lt. Given the structure assumed for lt and Equation (34),

the log price-coupon ratio of the one-period defaultable bond portfolio is

pc1t = ln {Et [exp (m̃t+1 − lt+1)]} (40)

= b10 + b1′1 Yt, (41)

where b10 and b1′1 are implicitly defined. Consider next a portfolio of multi-period zero-

coupon defaultable bonds with a promised terminal payment of C at period (t+N). As

for the N -period bond, the actual payment will be less than or equal to the promised

payment, and the ex-post nominal payoff can be expressed as exp (c− lt+N). We ignore

the possibility of early default or prepayment. Then, the price-coupon ratio of this bond at

period (t+N − 1), one period before maturity, PC1
t+N−1, is exp (b10 + b1′1 Yt+N−1). Given

the Euler equation and the law of iterated expectations, it then follows by induction that

all earlier dated zero-coupon nominally defaultable corporate bond prices are similarly

affine in the state variables, in particular:

pcNt = ln
{
Et[M̃t+1PC

N−1
t+1 ]

}
,

= bN0 + bN ′1 Yt. (42)

The assumed zero-coupon structure of the payments before maturity implies that the

unexpected returns to this portfolio are exactly linearly spanned by the shocks to Yt.
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Equities Equity is a claim to the dividend stream; let Pt denote the ex-dividend price

of the claim, then, the price-dividend ratio, PDt, is given by:

PDt = Et

[
Mt+1

(Pt+1 +Dt+1)

Dt

]
(43)

=
∞∑
n=1

Et

[
exp

(
n∑
j=1

mt+j + ∆dt+j

)]
︸ ︷︷ ︸

≡Fn
t

, (44)

When n = 1, F 1
t = Et[exp(mt+1 +∆dt+1)] can be expressed as an exact exponential affine

function of the state vector. Recursively, the n-th summation term yields the following

identity:

F n
t = Et

[
exp

(
n∑
j=1

mt+j + ∆dt+j

)]
(45)

= Et
[
exp(mt+1 + ∆dt+1)F

n−1
t+1

]
. (46)

Therefore, by induction, any summation term with n>1 can also be expressed as an

exponential affine function of the state vector. Therefore, the price-dividend ratio is the

sum of an infinite number of exponential affine functions of the state vector, with the

coefficients following simple difference equations.

II.C.3 Asset Returns

Given that the log price-coupon ratio of a defaultable corporate bond can be ex-

pressed as an exact affine function of the state variables, it immediately implies that

the log nominal return (before maturity), r̃cbt+1 = pct+1 − pct, can be represented in

closed-form. For equities, the log nominal equity return is derived as follows, r̃eqt+1 =

ln
(
PDt+1+1
PDt

Dt+1

Dt
exp(πt+1)

)
. It is therefore a non-linear but known function of the state

variables. We approximate this function by a linear function (See the Appendix for de-

tails). Note that this procedure is very different from the very popular Campbell-Shiller

(1988) model which approximates returns with a linear expression. Because they approx-

imate the return expression and then price future cash flows with approximate expected

returns, their procedure accumulates pricing errors. We approximate a known quasi-affine

pricing function in deriving a return expression.

To account for the approximation error, we allow for two asset-specific homoskedas-

tic shocks that are orthogonal to the state variable innovations. As a result, log nominal
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asset returns approximately satisfy the following factor model,

r̃it+1 = ξ̃i0 + ξ̃i′1Yt + r̃i′Σωt+1 + εit+1, (47)

where r̃it+1 is the log nominal asset return i from t to t + 1, ∀i = {eq, cb}; ξ̃i1 (10 × 1)

is the loading vector on the state vector; r̃i (10 × 1) is the loading vector on the state

variable shocks, and εit+1 is a homoskedastic error term with unconditional volatility σi.

Rather than exploiting the model restrictions on prices, we exploit the restrictions

the economy imposes on asset returns, physical variances and risk-neutral variances.

Given Equation (47) and the pricing kernel, the model implies that one period expected

log excess returns are given by:

RP i
t ≡ Et(r̃

i
t+1)− r̃f t =

{
σp(r̃

i) + ln

[
1− σp(m̃1 + r̃i)

1− σp(m̃1)

]}
pt

+

{
σn(r̃i) + ln

[
1− σn(m̃1 + r̃i)

1− σn(m̃1)

]}
nt

+

{
σlp(r̃

i) + ln

[
1− σlp(m̃1 + r̃i)

1− σlp(m̃1)

]}
lpt

+

{
σln(r̃i) + ln

[
1− σln(m̃1 + r̃i)

1− σln(m̃1)

]}
ln

+

{
σq(r̃

i) + ln

[
1− σq(m̃1 + r̃i)

1− σq(m̃1)

]}
qt

− m′1S1Σ
otherS′1r̃

i − 1

2

[
r̃i′S1Σ

otherS′1r̃
i + σ2

i

]
. (48)

Here (as before), m̃1 and r̃i are vectors containing the sensitivities of the log nominal

pricing kernel and the log nominal asset returns to the state variable shocks, respectively.

The symbols σp(x), σn(x), σlp(x), σln(x) and σq(x) represent linear functions of state

variables’ sensitivities to the good uncertainty shock (ωp,t+1), the bad uncertainty shock

(ωn,t+1), the right-tail loss rate shock (ωlp,t+1), the left-tail loss rate shock (ωln,t+1) and the

risk aversion shock (ωq,t+1). For instance, because m̃1 =
[
0 0 0 −1 0 −γ −γ 0 0 γ

]′
and Σ•9 =

[
0 0 0 0 0 0 0 0 0 σqq

]′
.5

The signs of state variable coefficients are also intuitive. Below we discuss the risk

aversion coefficient. σq(m̃1) = m̃1
′Σ•9 = γσqq > 0, where γ > 0 follows from the

concavity of the utility function and σqq > 0 implies positive skewness of risk aversion in

Equation (29). It immediately implies that an asset with a negative return sensitivity to

the risk aversion shock exhibits a higher risk premium when risk aversion is high. That is,

5Matrix Σ•j is the j-th column of the shock coefficient matrix in the state variable process, or Σ in
Equation (35).
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for such an asset, σq(r̃
i) < 0; then, it can be easily shown that σq(r̃

i)+ln
[
1−σq(m̃1+r̃i)

1−σq(m̃1)

]
≈

σq(r̃
i) − σq(r̃i)

1−σq(m̃1)
> 0. Under realistic parameter values, expected excess returns thus

vary through time and are affine in pt, nt, lpt (macroeconomic and cash flow uncertainties)

and qt (aggregate risk aversion).

The physical conditional return variance is obtained given the return loadings of

Equation (47):

V ARi
t ≡ V ARt(r̃

i
t+1) =

(
σp(r̃

i)
)2
pt +

(
σn(r̃i)

)2
nt +

(
σlp(r̃

i)
)2
lpt +

(
σq(r̃

i)
)2
qt

+
(
σln(r̃i)

)2
ln+ r̃i′S1Σ

otherS′1r̃
i + σ2

i︸ ︷︷ ︸
constant

, (49)

where S1 is defined in the appendix. The expected variance under the physical measure

is time-varying and affine in pt, nt, lpt and qt.

The one-period risk-neutral conditional return variance is:

V ARi,Q
t ≡ V ARQ

t (r̃it+1) =

(
σp(r̃

i)

1− σp(m̃1)

)2

pt +

(
σn(r̃i)

1− σn(m̃1)

)2

nt +

(
σlp(r̃

i)

1− σlp(m̃1)

)2

lpt

+

(
σq(r̃

i)

1− σq(m̃1)

)2

qt

+

(
σln(r̃i)

1− σln(m̃1)

)2

ln+ r̃i′S1Σ
otherS′1r̃

i + σ2
i . (50)

Note that the functions in Equation (50) are affine transformations from the ones in

Equation (49), using the “σ(m)” functions. Under normal circumstances, we would

expect that the relative importance of “bad” uncertainty, the loss rate’s uncertainty and

risk aversion increases under the risk neutral measure relative to the importance of “good”

uncertainty. In Equation (50), this intuition can be formally established as σn(m), σlp(m),

σq(m) are positive and σp(m) is negative. For example, as derived above, σq(m̃1) = γσqq

is strictly positive. Therefore, because σqq is likely a small number, as long as γ is not

very large, the risk neutral variance should load more heavily on qt than does the physical

variance.

III The Identification and Estimation of Risk Aver-

sion and Uncertainty

In what follows, we first describe our general estimation philosophy which is focused

on retrieving a risk aversion process that can be traced at high frequencies, and then

outline the estimation methodology in detail, which consists of two steps. The first step
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is the identification of macro-economic and cash flow uncertainties; the second step is the

actual estimation of the remainder of the model parameters and the identification of risk

aversion.

III.A General Estimation Philosophy

While there are 10 state variables in the model, there are only four latent state

variables that drive risk premiums and conditional physical and risk neutral variances

in the model as described in Equations (48)–(50). Three of these state variables, good

uncertainty, pt, bad uncertainty, nt and cash flow uncertainty, lpt, describe economic

uncertainty. We want to ensure that these variables are identified from macro-economic

and cash flow information alone and are not contaminated by asset prices. We therefore

pre-estimate these variables. This constitutes the first step in the estimation methodology.

Given the dynamics of these variables, there are a variety of ways that we can

retrieve risk aversion from the model and data on corporate bonds and equities. How-

ever, an important goal of the paper is to make risk aversion observable, even at high

frequencies. Under the null of the model, asset prices, risk premiums and variances are

an exact function of the state variables, including risk aversion. It thus follows that

(market-wide) risk aversion should be spanned by a judiciously chosen set of asset prices

and risk variables. Given our desire to generate a high frequency risk aversion index,

we select these instruments to be observable at high frequencies and to reflect risk and

return information for our two asset classes. In particular, we assume

qt = χ′zt, (51)

where zt is a vector of 6 observed asset prices and ones. The instruments include (1) term

spread (the difference between the 10-year and 3-month Treasury bond yield), (2) the

credit spread (the difference between Moody’s Baa yield and the 10-year Treasury bond

yield), (3) a “detrended” dividend yield or earnings yield, (4) the realized equity return

variance, (5) the risk-neutral equity return variance, and (6) the realized corporate bond

return variance.

The term spread may reflect information about the macro-economy (see e.g. Harvey,

1988) and was also included in the risk appetite index of Bekaert and Hoerova (2016). The

credit spread and price yields contain direct price information from the corporate bond

and equity market respectively and thus reflect partially information about risk premiums.

Ideally, we would include information on both risk-neutral and physical variances for both

equities and corporate bonds, but we do not have data on the risk neutral corporate bond

return variance. We use the realized variance for both markets, rather than an estimate
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of the physical conditional variance, because realized variances are effectively observed,

whereas conditional variances must be estimated. Given a loading vector χ, the risk

aversion process can be computed daily from observable data.

So far, the methodology is reminiscent of the FAVAR literature (see Bernanke,

Boivin, and Eliasz, 2005) and Stock and Watson (2002), where unobserved macro-factors

are identified using large date sets of observable macro-data using a spanning assumption.

However, in contrast to the above literature and all “principal component” type analysis,

we exploit the restrictions the economy imposes on risk premiums, and physical and risk

neutral variances to estimate the loadings of the time-varying risk aversion process. That

is, our risk aversion estimate is forced to satisfy the (dynamic) properties of risk aversion

implied by the above model: it is an element of the pricing kernel, which must, in turn,

correctly price asset returns and be consistent with observed measures of return volatility

under both the physical and risk-neutral measures. To do so, we adopt a GMM procedure

detailed in Section III.C.6

III.B Identifying Economic and Cash Flow Uncertainties

Given that there is no feedback from risk aversion to the three uncertainty state

variables, we can pre-estimate the uncertainty factors without using financial asset prices.

First, we use the monthly log real growth rate of industrial production to measure

θt. In the system for θt, described in Equations (8)–(13), there are three state variables,

which we collect in Y mac
t ,

Ŷ mac
t =

[
θt p̂t n̂t

]′
.7

We denote the filtered shocks,

ω̂mact =
[
ω̂p,t ω̂n,t

]′
.

The system is estimated using Bates (2006)’s approximate MLE procedure (see the Ap-

pendix for details).

Second, we must determine the latent cash flow uncertainty factor lpt, which de-

termines the time variation in the conditional variance of the log corporate bond default

rate. The dynamics of the variables are described in Equations (14)–(18). We use Bates’

approximate MLE to estimate the model parameters. Unlike the BEGE structure for real

shocks, for the idiosyncratic loss rate shock, only the right-tail shock is heteroskedastic.

We denote the estimated right-tail loss rate shape parameter as l̂pt, and the loss rate

6Imposing the model restrictions and no arbitrage through a positive pricing kernel also differentiates
the estimation from the approach taken in Bekaert and Hoerova (2016).

7In the remainder of the paper, a hat superscript is used to indicate estimated variables or matrices.
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shocks as ω̂lp,t+1 and ω̂ln,t+1.

III.C Identifying Risk Aversion

To identify the risk aversion process and the parameters in the spanning condition

(Equation (51) above), we exploit the restrictions the model imposes on return risk pre-

miums (equities and corporate bonds), physical variances (equities and corporate bonds)

and risk neutral variances (for equities only). The estimation is a GMM system in which

we use the same instruments as the ones used to span risk aversion (zt). Apart from

the χ parameters, we must also identify the parameters in the kernel (β, the discount

factor, and γ, the curvature parameter), and the scale parameter of the preference shock,

σqq. Note that the level of risk aversion is also driven by the qt process, so that γ and β

are not well identified. We impose γ = 2 and β = 0.999. The GMM system thus has 8

unknown parameters,

Θ = [χ0, χtsprd, χcsprd, χCF5yr, χrvareq, χqvareq, χrvarcb, σqq] ,

where the notation is obvious, and CF5yr refers to either a detrended dividend or earnings

yield (“DY5yr” or “EY5yr”), described later. Before the moment conditions can be

evaluated, we must identify the state variables and their shocks, the pricing kernel, and

the return shocks. The estimation process is therefore intricate and consists of six steps:

for each candidate Θ̂ = [χ̂′, σ̂qq] vector,

1. Identify the implied risk aversion series given the loading choices, q̂t = χ̂′zt. We im-

pose a lower boundary of 10−8 on qt during the estimation. This is consistent with

theory, as qt is motivated from a habit model (qt = ln (Qt) = ln
(

Ct

Ct−Ht

)
> 0). It

is also consistent with the distributional assumption for qt as the positive shape

parameter of the ωq shock.8

2. Identify the state variable levels (Yt) and shocks (Σωt+1).

The parameters of the state variable processes, {θt, pt, nt, lt, lpt}, are pre-determined

according to Section III.B. For the remaining cash flow state variables {πt, gt, κt, ηt},
we estimate the parameters in each iteration using simple projections. To iden-

tify the risk aversion-specific shock in the risk aversion process, we first project

q̂t+1 on q̂t, p̂t, n̂t, ω̂p,t+1 and ω̂n,t+1 to obtain the residual term ûqt+1, and then

divide it by σ̂qq to obtain the preference shock ω̂q,t+1 (see Equations (27)–(29)).

We later use the implied residual variance and unscaled skewness calculated us-

ing the distributional properties of gamma shocks as two moment conditions in

8However, for the best model, the minimum q is 0.32 and the boundary is non-binding.
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the GMM system. Now, given the choice of χ̂, a full set of state variables levels,

Ŷt =
[
Ŷ mac′
t πt lt gt κt ηt l̂pt q̂t

]′
, and the eight independent shocks, ω̂t+1

including ω̂qt+1, can be identified.9

3. Identify the nominal pricing kernel.

Consumption growth in this model is (endogenously) implied by two state variables,

real log earnings growth and (changes in) the log consumption-earnings ratio. Given

consumption growth (i.e., gt + ∆κt), the risk aversion process q̂t, γ and β, the

monthly nominal kernel is obtained:

̂̃mt+1 = ln(β)− γ∆ct+1 + γ (q̂t+1 − q̂t)− πt+1.

Constant matrices related to the log nominal kernel—m̃0, m̃1, m̃2 (as in the affine

representation of the kernel; see Equation (39))—are implicitly identified.

4. Estimate the return loadings.

In this step, we obtain the loadings of nominal asset returns on the state variable

shocks, controlling for time-varying conditional means. Note that there are 8 state

variables {θt, pt, nt, πt, gt, κt, lpt, qt} affecting the pricing kernel. The remaining state

variables, {lt, ηt}, correspond to cash flow state variables in the corporate bond and

equity markets. We estimate the loadings by simple projections, assuming the

asset-specific approximation shock is homoskedastic:

r̃it+1 = ξi0 + ξi′1 Ŷt + r̃i′Σ̂ω̂t+1 + εit+1, (52)

where r̃it+1 is the log nominal return for asset i, Σ̂ and ω̂t+1 are identified previously,

and εit+1 has mean 0 and variance σ2
i . To obtain asset moments, r̃i′ is the crucial

shock loading vector, but we also need σ̂i.

5. Obtain the model-implied endogenous moments.

We derive three moments for the asset returns: 1) the expected excess return implied

by the model (using the pricing kernel), RP i; 2) the physical (conditional expected)

return variance, V ARi, which only depends on the return definition in Equation (52)

and 3) the risk neutral conditional variance, V ARi,Q, which also uses the pricing

kernel. The expressions for these variables are derived in Equations (48)–(50) where

pt, nt, lpt,qt, r̃
i, Σother and σi have been estimated in previous steps.

9The parameters obtained from this substep are π0, ρππ, ρπθ, ρπp, ρπn, σπp, σπn, σπl, σππ, l0, ρll, ρlp, ρln,
σlp, σln, σll, g0, ρgg, ρgθ, ρgp, ρgn, σgp, σgn, σgl, σgg, κ0, ρκκ, ρκθ, ρκp, ρκn, σκp, σκn, σκl, σκκ, η0, ρηη, ρηθ, ρηp,
ρηn, σηp, σηn, σηl, σηη, v0, ρvv, ρvl, q0, ρqq, ρqp, ρqn, σqp and σqn.
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6. Obtain the moment conditions ε(Θ; Ψt) . Given data on asset returns and options,

we use the derived moments to define 7 error terms that can be used to create GMM

orthogonality conditions. There are three types of errors we use in the system. First,

neither risk premiums nor physical conditional variances are observed in the data,

but we use the restriction that the observed returns/realized variances minus their

expectations under the null of the model ought to have a conditional mean of zero:

ε1(Θ; Ψt) =



(
r̃eqt+1 − r̃f t

)
− R̂P

eq

t

RV AReq
t+1 − V̂ AR

eq

t(
r̃cbt+1 − r̃f t

)
− R̂P

cb

t

RV ARcb
t+1 − V̂ AR

cb

t

 , (53)

where r̃it+1 is the realized nominal return from t to t+1, rft is the risk free rate, and

RV ARi
t+1 is the realized nominal variance from t to t+ 1 defined as the sum of the

squares of the log high-frequency returns from t to t + 1 (see the Data section for

details). Here Ψt denotes the information set at time t. The risk neutral variance

can be measured from options data (see e.g. Bakshi and Madan, 2000; Bakshi,

Kapadia, and Madan, 2003), and so we use the error:

ε2(Θ; Ψt) =
[
QV AReq

t − V̂ AR
eq,Q

t

]
, (54)

where QV AReq
t is the ex-ante risk-neutral variance of reqt+1 calculated from the data.

We assume that ε2(Θ; Ψt) reflects model and measurement error, orthogonal to

Ψt. Finally, we also construct two moment conditions to identify σqq, exploiting

the model dynamics for uqt+1 (i.e., the shock to the risk aversion process as in

Equation (29)):

ε3(Θ; Ψt) =

[
(ûqt+1)

2 − (σ̂qq)
2q̂t

(ûqt+1)
3 − 2(σ̂qq)

3q̂t

]
(55)

Let ε1,2(Θ; Ψt) =
[
ε1(Θ; Ψt)

′ ε2(Θ; Ψt)
]

. Under our assumptions these errors are

mean zero given the information set, Ψt. We can therefore use them to create the

usual GMM moment conditions. Given our previously defined set of instruments,
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zt (7 × 1, including a vector of 1’s), we define the moment conditions as:

E [gt(Θ; Ψt, zt)] ≡ E


ε1,2(Θ; Ψt)︸ ︷︷ ︸

5×1

⊗ zt︸︷︷︸
7×1

ε3(Θ; Ψt)︸ ︷︷ ︸
2×1

 = 0︸︷︷︸
37×1

. (56)

Note that to keep the set of moment conditions manageable, we only use two mo-

ment conditions for the identification of σqq. Denote gt(Θ; Ψt, zt) (37 × 1) as the

vector of errors at time t, and gT (Θ; Ψ, z) (37 × 1) the sample mean of gt(Θ; Ψt, zt)

from t = 1 to t = T . Then, the GMM objective function is,

J(Θ; Ψ, z) ≡ Tg′T (Θ; Ψ, z)WgT (Θ; Ψ, z),

whereW is the weighting matrix. We use the standard GMM procedure, first using

an identity weighting matrix, yielding a first stage set of parameters Θ̂1. We then

compute the usual optimal weighting matrix as the inverse of the spectral density

at frequency zero of the orthogonality conditions, Ŝ1, using 5 Newey-West (1987)

lags:

Ŝ1 =

j=5∑
j=−5

5− |j|
5

Ê[gt(Θ̂1; Ψt, zt)gt−j(Θ̂1; Ψt−1, zt−1)′]. (57)

Then, the inverse of Ŝ is shrunk towards the identity matrix with a shrinkage

parameter of 0.1 in obtaining the second-step weight matrix W2:

W2 = 0.9Ŝ
−1

+ 0.1I37×37, (58)

where I37×37 is a identity matrix of dimension 37× 37. This gives rise to a second-

round Θ̂2 estimator. To ensure that poor first round estimates do not affect the

estimation, we conduct one more iteration with shrinkage, compute Ŝ2(Θ̂2), and

produce a third-round GMM estimator, Θ̂3. Lastly, the asymptotic distribution for

the third-step GMM estimation parameter is,
√
T (Θ̂3 −Θ0)→

d
N(0,Avar(Θ̂3)),

where Âvar(Θ̂3) = (G′T (Θ̂3)Ŝ−1
2 GT (Θ̂3))−1 and where GT denotes the gradient

of gT .

Because the estimation involves several steps and is quite non-linear in the parameters, we

increase the chance of finding the true global optimum by starting from 24,000 different

starting values for χ̂ drawn randomly from a large set of possible starting values for each

parameter. The global optimum is defined as the parameter estimates generating the

lowest minimum objective function value.
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IV Data

Because we combine macro and cash flow data to estimate the dynamics of the

state variables, with financial data in the GMM estimation, we use the longest data

available for the various estimations of the state variable dynamics. The estimation of

the macroeconomic uncertainty state variables uses the period from January 1947 to

February 2015, and the estimation of the loss rate uncertainty state variable uses data

from January 1982 to February 2015. For the GMM estimation, the sample spans the

period from June 1986 to February 2015 (T=345 months). All estimations are conducted

at the monthly frequency.

IV.A State variables

Our output variable—delivering three state variables (θt, pt and nt)—is the change

in log real industrial production where the monthly real industrial production index is

obtained from the Federal Reserve Bank at St. Louis. Inflation (π), is defined as the

change in the log of the consumer price index (CPI) obtained from the Bureau of Labor

Statistics (BLS).

The fifth state variable, the log corporate bond loss rate (l), as indicated before

requires data on default rates and recovery rates for the US corporate bond market. We

obtain data on 3-month trailing all-corporate bond default rates and monthly recovery

rates spanning November 1980 to February 2015 from the Federal Reserve Board. We use

6 month moving averages of these raw data to compute the log loss rate representative

for each month.

The sixth state variable, real earnings growth (g), is defined as the change in log

real earnings per capita. Real earnings is the product of real earnings per share and the

number of shares outstanding during the same month. The seventh state variable, the log

consumption-earnings ratio (κ), uses real consumption and real earnings. Real monthly

consumption is defined as the sum of seasonally-adjusted real personal consumption ex-

penditures on nondurable goods and services; as widely recognized in the literature, the

consumption deflator is different from the CPI and is computed using monthly data in

this paper. The eighth state variable, the log dividend payout ratio (η), uses the log ratio

of real dividends and real earnings. Therefore, consumption growth (dividend growth) is

implicitly defined given g and κ (g and η).

The source for the consumption data is the U.S. Bureau of Economic Analysis

(BEA). The source for the dividends and earnings data is Robert Shiller’s website. We

use the 12-month trailing dividends and earnings, i.e., E12
t = Et−12 + ...Et−1 where Et

denotes the monthly earnings. There are no true monthly earnings data because almost all
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firms report earnings results only quarterly. According to Shiller’s website, the monthly

dividend and earnings data provided are inferred from the S&P four-quarter totals, which

are available since 1926. Calculating 12-month trailing values of earnings and dividends

is common practice to control for the strong seasonality in the data. Total market shares

are obtained from CRSP. To obtain per capita units, we divide real consumption and real

earnings by the population numbers provided by BEA.

IV.B Financial Variables

Daily equity returns are the continuously compounded value-weighted nominal mar-

ket returns with dividends from CRSP. The monthly return (req) is the sum of daily

returns within the same month. To create excess returns, we subtract the one-month

Treasury bill rate, also from CRSP. We use the square of the month-end VIX index (di-

vided by 120000) as the one-period risk-neutral conditional variance of equity returns

(QV AReq) which is obtained from the Chicago Board Options Exchange (CBOE) and

is only available from the end of January 1990. We use the VXO index prior to 1990,

also from CBOE, going back to June 1986. We construct the monthly one-period phys-

ical conditional variance of equity returns (PV AReq) in two steps. First, we calculate

the monthly realized variance as the sum of the squared daily equity returns within the

same month; then, we project the monthly realized variance onto the lagged risk-neutral

variance and the lagged realized variance to obtain the monthly PV AReq, as in Bekaert,

Hoerova, and Lo Duca (2013).

The daily corporate bond market return is the continuously compounded log change

in daily Dow Jones corporate bond total return index (source: Global Financial Data).

The monthly return (rcb) is the sum of daily returns within the same month. The con-

ditional variance under the physical measure (PV ARcb) is the projection of monthly

realized variance onto the lagged realized variance and the lagged credit spread (defined

as the difference between the month-end Baa yield and the 10-year zero-coupon Treasury

yield).

In some of our work below, we also use data on speculative corporate bonds, which

may be particularly informative about the economic environment (source: FRED, “ICE

BofAML US High Yield Total Return Index”). We obtain monthly realized speculative

corporate bond return variances using the methodology described above for overall cor-

porate returns. Because the daily index only starts in February 1990, we use an empirical

model to fill in the missing data from June 1986 to January 1990.10

In attempting to span risk aversion, we use several observed financial variables. The

10Th exact model is described in the Online Appendix.
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term spread is the difference between the 10-year Treasury yield and the 3-month Treasury

yield, where the yield data is obtained from the Federal Reserve Bank of St. Louis. The

credit spread is the difference between Moody’s Baa yield and the 10-year Treasury bond

yield. The detrended dividend yield is calculated as the difference between the raw

dividend yield and an moving average term that takes the 5 year average of monthly

dividend yields, starting one year before, or DY 5yrt = DYt −
∑60

i=1DYt−12−i where DYt

denotes the dividend yield level at time t (the ratio of 12-month trailing dividends and

the equity market price). We create an analogous detrended earnings yield variable using

earnings data.

V Estimation Results

In this section, we describe the estimation of the state variable processes, and the

actual risk aversion process.

V.A State Variable Dynamics

V.A.1 Macro-economic factors

While we entertained a number of alternative model specifications for industrial

production growth, the model described in Section II.B was best in terms of the standard

BIC criterion. The parameter estimates are reported in Table 1. Industrial production

growth features slight positive auto-correlation and high realizations of “bad” volatility

decrease its conditional mean significantly. The pt process is extremely persistent (almost

a unit root) and quasi Gaussian, forcing us to fix its unconditional mean at 500 (for such

values, skewness and kurtosis are effectively zero). The nt process has a much lower mean

featuring an unconditional skewness coefficient of 0.50 ( 2√
16.14

) and excess kurtosis of 0.37

( 6
16.14

). It is also less persistent than the pt process.

We graph the conditional mean and the pt and nt process in Figure 1 together with

NBER recessions. The strong countercyclicality of the nt process and the procyclicality of

the conditional mean of “technology” or output growth are apparent from the graph. We

also confirmed it by running a regression of the three processes (conditional mean, pt, and

nt) on a constant and a NBER dummy. The NBER dummy obtains a highly statistically

significant positive (negative) coefficient for the nt (conditional mean) equation. The

coefficient is in fact positive in the pt equation as well, but not statistically significant.

In fact, the nt regression features an adjusted R2 of almost 45%.

In Figure 2, we plot the conditional variance of industrial production and its con-

ditional skewness. Clearly, macro-economic uncertainty is highly countercyclical, and
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thus exposure to such uncertainty may render asset prices countercyclical as well. In-

terestingly, the scaled skewness coefficient is procyclical. This arises from the fact that,

while unscaled skewness is countercyclical, the countercyclicality of the variance in the

denominator dominates.

V.A.2 Cash flow dynamics

The loss rate process is persistent with the autocorrelation coefficient close to 0.83.

The pt-process does not significantly affect the loss rate process, neither through the con-

ditional mean or through shock exposures. However, the ωn,t shock has a statistically

significant effect on the loss rate process; moreover nt affects the loss rate’s conditional

mean with a statistically significant positive coefficient. The time-varying part of the

conditional variance, lpt, is persistent with an autoregressive coefficient of 0.86. This

process also exhibits substantial excess kurtosis (unconditional kurtosis = 1.15) and pos-

itive skewness (unconditional skewness = 0.90). The gamma shock generating negative

skewness, which has a time-invariant shape parameter, is nearly Gaussian, with the shape

parameter exceeding 100.

In Figure 3, we first plot the loss rate process l and its conditional mean. The loss

rate clearly spikes around recessions, from an overall average of 0.6% to 2.1% on average

in recessions (the maximum value is 5.6% during February 2009). The conditional mean

of the loss rate inherits the countercyclicality of the loss rate itself, given the loss rate’s

high persistence and it positive dependence on nt. Our model fits the positive skewness of

the loss rate process through the positively skewed ul shocks and the positive dependence

on ωn.

Then, we show the conditional higher-order moments of the loss rate process, in-

cluding the lpt process in the second half of Figure 3. While lpt is overall countrycyclical,

it appears to peak a few months after recessions. The conditional variance in the second

panel (V art(lt+1)) also appears countercyclical, which is the combined result of a coun-

tercyclical lpt process and a strongly countercyclical nt process (σln being positive). In

fact, a regression of lpt on a constant and a NBER dummy, yields a NBER coefficient of

6.78 with a t statistic of 3.03, but the t statistic increases to 8.87 when regressing total

variance on the NBER dummy.

We decompose the total conditional variance of the loss rate in its contributions

coming from lpt, pt and nt in Figure 4. The dominant sources of variation are lpt (ac-

counting for 29% of the total variance on average) and nt (accounting for 40%). The

relative importance of lpt drops slightly in recessions while that of nt increases. It tends

to peak when the economy starts recovering, reaching as high as 93%. The pt process has

a negligible effect on the loss rate variance. Clearly, the loss rate variance has substantial
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independent variation not spanned by macro-economic uncertainty.

With the loss rate process estimated, the dynamics of the other cash flow state

variables (earnings growth, the consumption earnings ratio and the payout ratio) follow

straightforwardly. We simply use linear projections of the variables onto the previously

identified state variables and shocks. The results are contained in Table 3. Earnings

growth is less persistent than the two ratio variables, but loads positively and signif-

icantly on industrial production growth. The nt state variable has a positive effect on

the conditional mean of the consumption-earnings and dividend-earnings ratio, indicating

that in recessions these ratios are expected to be larger than in normal times. This makes

economic sense as consumption and dividends are likely smoothed over the cycle whereas

earnings are particularly cycle sensitive (see also Longstaff and Piazessi, 2004). Yet, the

cyclicality of earnings growth does not show through a significant effect of nt but rather

appears through its positive dependence on industrial production growth directly and its

negative dependence on the loss rate. Again, the ratio variables load significantly, but

positively on the loss rate. The same intuition explains why the ratio variables load pos-

itively on ωn shocks and earnings growth loads negatively on this shock. The ωp and ωlp

shocks do not have a significant effect on these state variables. The ωln shock, which has

a negative effect on loss rates, somewhat surprisingly affects the ratio variables positively

and significantly.

The projections implicitly define the residuals shocks for the cash flow variables,

which were shown to be homoskedastic. Table 3 indicates that they still feature sub-

stantial and significant variability. We do not impose any correlation structure on these

shocks, and Table 4 shows that they are quite correlated. Essentially, because earnings

growth is quite variable, the ratio variables are positively correlated with one another

and negatively correlated with earnings growth. When pricing assets with the model,

this correlation structure must be accounted for (see below). The correlations with the

other state variable shocks and between these state variable shocks (ωp, ωn, ωlp, ωln)

ought to be zero in theory and the table shows that they are economically indeed close

to zero.

V.B Risk Aversion

Recall that we assume risk aversion to be spanned by 6 financial instruments. In

Table 5, we report some properties of these financial instruments. We show both dividend

and earnings yields, but we only use one of the yield variables in the estimation. First, all

of them are highly persistent. This is the main reason we use a stochastically detrended

dividend (AR(1)=0.982) or earnings yield (AR(1)=0.984) series rather than the actual

dividend or earnings yield series. The dividend yield shows a secular decline over part of
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the sample that induces much autocorrelation. This decline is likely due to American tax

policy and therefore not likely informative about risk aversion (see e.g. Boudoukh et.al,

2007). Second, the various instruments are positively correlated but the correlations never

exceed 85% so that we should not worry about multi-collinearity. Perhaps surprisingly,

the term spread is also positively correlated with the other instruments, even though it

is generally believed that high term spreads indicate good times, whereas the yield and

variance instruments would tend to be high in bad times. Third, 4 of the instruments show

significant positive skewness. This is critical as we have assumed that the risk aversion

dynamics are positively skewed through its gamma distributed shock (see Equation (31)),

and we need the linear spanning model to be consistent with the assumed dynamics for

risk aversion. The term spread, and earnings yields are significantly negatively skewed so

that a negative weight on one of them could also induce positive skewness in risk aversion,

but their skewness coefficients are much smaller in magnitude.

Table 6 reports the reduced form estimates in the spanning relation. The system

estimates 8 parameters with 37 moment conditions. The test of the over-identifying

restrictions fails to reject at the 5% level but we investigate the fit of the model along

various dimensions in more detail later. The significant determinants of the risk aversion

process are the credit spread, realized equity return and corporate bond return variances

and the equity return risk neutral variance. The positive coefficient on the risk neutral and

the negative coefficient on the physical realized equity return variances is consistent with

the idea that the variance risk premium may be quite informative about risk aversion in

financial markets (see also Bekaert and Hoerova, 2016). The implied risk aversion process

shows a 0.40 correlation with the NBER indicator and is thus highly counter-cyclical. We

also estimated the system using the detrended dividend yield instead of the earnings yield,

which produces very similar results. The two qt processes are 98% correlated.

In Table 7, we estimate the dynamic properties of the risk aversion process ac-

cording to Equation (29). All the parameters are estimated by OLS, except for the σqq

parameter, which is delivered by the GMM estimation (see Section III.C). The process

shows moderate persistence (an autocorrelation coefficient of 0.67) but the conditional

mean surprisingly shows a significant positive loading on pt, which accounts for 77% of

the variation in the conditional mean. Risk aversion shocks do not load significantly on

the macro-economic uncertainty shocks and therefore most of their variation is driven

by the risk aversion specific shock. It appears that economic models that impose a very

tight link between aggregate fundamentals and risk aversion, such as pure habit models

(Campbell and Cochrane, 1999) are missing important variation in actual risk aversion.

In addition, risk aversion is much less persistent than the risk aversion implied by these

models; the autocorrelation coefficient of the surplus ratio process in the CC model is
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0.99 at the monthly level; the first-order autocorrelation coefficient of qt derived in this

paper is 0.67.

While the test of the over-identifying restrictions fails to reject, Table 8 examines

in more detail how well the estimated dynamic system fits critical asset price moments in

the data. The moments are reported in monthly units; for example, the monthly equity

premium produced by the model is 78.5 basis points. All model moments are within two

standard errors of the data moments and most are within one standard error of the data

moment.11 The model over-estimates the equity premium but is still close to within one

standard error of the data moment. The corporate bond risk premium is only 4 basis

points higher than data moment. The model implied variance moments are all quite close

to their empirical counterparts. Finally, the table also reports the model-implied variance

and unscaled skewness of the risk aversion innovation, σ2
qqqt and 2σ3

qqqt (respectively).

Of all the asset return moments examined here, the only observed one is the risk

neutral variance (the VIX index). Because we have filtered state variables, we can verify

how well this process fits the actual observed risk neutral variance at each point in time.

Figure 5 graphs the empirical and model implied risk neutral variance. While the model

fails to match the distinct spikes of the VIX in several crisis periods, the fit is remarkably

good, with the correlation between the two series being 90.06%.

VI Risk Aversion, Uncertainty and Asset Prices

In this section, we first characterize the link between risk aversion and macroeco-

nomic uncertainty, on the one hand and asset prices, on the other hand. We compare the

time variation in risk aversion and macroeconomic uncertainty and document how our

measures correlate with extant measures of uncertainty and risk aversion.

VI.A Risk Aversion, Macro-Economic Uncertainty and the First

and Second Moments of Asset Returns

Figure 6 graphs the risk aversion process, which in our model is:

raBEXt = γ exp(qt). (59)

11Bootstrapped standard errors for the five asset price moments (equity risk premium, equity phys-
ical variance, equity risk-neutral variance, corporate bond risk premium, and corporate bond physical
variance) use different block sizes to accommodate different serial auto-correlations, to ensure that the
sampled blocks are approximately i.i.d.. In particular, Politis and Romano (1995) (and later discussed
in Politis and White, 2004) suggest looking for the smallest integer after which the correlogram appears
negligible, where the significance of the autocorrelation estimates is tested using the Ljung-Box Q Test
(Ljung and Box, 1978).
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The weak countercyclicality of the process is immediately apparent with risk aversion

spiking in all three recessions, but also showing distinct peaks in other periods. The

highest risk aversion of 6.31 is reached at the end of February in 2009, at the height of

the Great Recession. However, the risk aversion process also peaks in the October 1987

crash, the August 1998 crisis (Russia default and LTCM collapse), after the TMT bull

market ended in August 2002 and in August 2011 (Euro area debt crisis).

How important is risk aversion for asset prices? In this article’s model, the priced

state variables for risk premiums and variances are those entering the conditional co-

variance between asset returns and the pricing kernel and therefore are limited to risk

aversion qt, the macro-economic uncertainty state variables, pt and nt and the loss rate

variability lpt. In Table 9, we report the loadings of risk premiums and variances on the

4 state variables. To help interpret these coefficients, we scaled the projection coefficients

by the standard deviation of the state variables so that they can be interpreted as the

response to a one standard deviation move in the state variable. For the equity premium,

by far the most important state variable is qt which has an effect more than 10 times

larger than that of nt. The effects of pt and lpt are trivially small. The economic effect of

a one standard deviation change in qt is large representing 52 basis points at the monthly

level (this is a bit lower than the average monthly equity premium). For the corporate

bond premium, nt and qt are again the most important state variables. A one standard

deviation increase in nt increases the monthly corporate bond risk premium by 5 basis

points, representing more than 10% of the average monthly premium. The effect of qt is

about twice as large nt.

The coefficients for variances are somewhat harder to interpret, but nt and qt remain

the most important state variables with the former (latter) more important for corporate

bond (equity) variances. The one variable for which qt is only the third most important

variable is the corporate bond physical variance, which reacts more strongly to nt, and

lpt. Recall that lpt measures the idiosyncratic component in corporate loss rates but that

loss rates load very significantly on our business cycle variable.

Because the relationship between asset prices and state variables is affine, we

also compute a variance decomposition. That is, we compute, for x ∈ {p, n, v, q},
coefficient on xt × Cov(xt,Momt)

V ar(Momt)
where Mom represents an asset price moment like the

equity risk premium, or corporate bond physical variance. These variance proportions

add up to one. In the model, 96% of the equity risk premium’s variance is driven by

risk aversion; only 72.5% of the corporate bond risk premium is driven by risk aversion,

while more than 27% is accounted for by “bad” macro-economic uncertainty. The phys-

ical equity variance is predominantly driven by risk aversion (69%) while 89% of the

corporate bond return’s physical variance is driven by bad macroeconomic uncertainty.
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Nevertheless, macro-economic uncertainty also accounts for 31% of the variance of the

physical equity variance. It would be logical that the risk neutral variance would load

more on risk aversion and less on macroeconomic uncertainty than the physical variance

and this is indeed the case, with risk aversion accounting for 85% of the variance of the

risk neutral variance.

Bekaert, Hoerova and Lo Duca (2013) argue that the variance risk premium houses

much information about risk aversion. Is this true in our model? To answer this question,

we compute the model-implied variance risk premium as the difference between the risk

neutral variance and the physical variance. A projection on the 4 state variables reveals

that 96.8% of the variance of the variance risk premium is accounted for by risk aversion.

Conversely, regressing risk aversion on the variance premium, the coefficient is 160.40

with a t-stat of 93.37, and the R2 is 96.2%. Through the lens of our model, the variance

premium is clearly a good proxy for risk aversion.

Finally, because the state variables perfectly explain conditional first and second

moments of asset returns in the model, they should help predict realized returns and

variances in the data. We test this in Table 10. We regress realized monthly excess returns

and variances in both the equity and corporate bond markets on 1) the 4 state variables,

or 2) the model-implied conditional moment (either the conditional risk premium or the

conditional variance). Not imposing the model restrictions on how the state variables

combine to the model implied conditional moment, slightly decreases the adjusted R2,

but for equity returns the R2 decreases strongly from 5.5% to 0.1%. In this case, the

coefficient on the model implied moment is about 0.61 and not significantly different

from 1, but it is significantly different from zero. For corporate bond risk premiums, the

coefficient is only borderline significantly different from zero. Not surprisingly, the R2s

are higher for the realized equity and corporate bond variances hovering around 20–25%.

The coefficients on the model-implied conditional moments are higher than 1 in this case.

When investigating the coefficients of individual state variables, risk aversion significantly

predicts equity returns and both realized variances. Bad economic uncertainty predicts

the realized variances and equity returns, the earlier with a negative sign. The latter

result is reminiscent of a result in Bekaert and Hoerova (2014). They show that the

variance risk premium predicts stock returns with a positive sign whereas uncertainty, as

measured by an estimate of the conditional variance in the stock market, predicts stock

returns with a negative sign. As nt is highly correlated with the stock market physical

variance and qt with the variance risk premium, this result is therefore no surprise. The

loss rate variance has an intuitive positive coefficient in the variance and corporate bond

return regressions but is not statistically significantly different form zero. However, it

predicts equity returns with a negative sign, with the coefficient significant at the 10%
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level. The last line reports correlations of the model-implied moments with the NBER

recession indicator, showing all of them to be significantly countercyclical.

Given the vast literature on return predictability, it is informative to contrast the

predictive power of our model implied premiums with the predictive power of the usual

instruments used in the literature. We do this exercise out of sample as the literature

has shown huge biases due to in sample over-fitting (Goyal and Welch, 2008). Our model

premium candidates are either derived from a projection of excess returns on the 4 state

variables (Model 2) or the actual model-implied risk premium (Model 1). We consider

three empirical models, depending on the instruments used: 1) earning yield, 2) earnings

yield, term spread and credit spread, 3) physical uncertainty and variance risk premium

estimate. For equity (corporate bond) returns, we use the physical uncertainty derived

from equity (corporate bond) returns. We then generate out-of-sample predictions for

the risk premiums according to the various empirical models by starting the sample after

five years of data and then running rolling samples to generate predictions from the

five-year point to one month before the end of the sample. For the model implied risk

premiums, Model 1 uses whatever the model predicts the premium to be. For Model 2,

the projections are also conducted in a rolling fashion, but note that the construction

of the state variables uses information from the full sample. With those competing risk

premium estimates in hand, we then run simple horse races over the full sample by

estimating:

r̃t+1 − rft = a Mod(t, i) + (1− a) Emp Mod(t, j) + et+1, for i = 1, 2, j = 1, 2, 3. (60)

The results are reported in Table 11. Using the implied risk premiums form the model

(Model 1) clearly outperforms the empirical model for equity returns with the “a”-

coefficients being well over 0.50, varying between 0.73 and 0.85. For corporate bond

returns, the “a”-coefficient varies between 0.45 and 0.56, with all “a”-coefficients highly

statistically different from zero. Thus, while the data suggest that the model implied

risk premiums are very useful in forecasting excess corporate bond returns out of sample

(despite the rather poor results in Table 10), the empirical instruments yield information

about risk premiums that is equally important.

Model 2 fares less well, with the coefficients only being above 0.5 for the equity

return regressions when the model is pitted against empirical models 2 and 3. Yet, the

“a”-coefficients remain statistically significant different from zero in all cases except for

corporate bond returns when pitted against the first instrument set. The “a”-coefficients

vary between 0.36 and 0.56 in the other 5 cases. We conclude that our model seems

to capture the predictable variation better, or at least as well, than the fitted values
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extracted from standard instruments used in the literature. While the model premium

is not strictly out of sample, the model imposes numerous restrictions relative to the

empirical models.

VI.B Interpreting Economic Uncertainty

An advantage of the risk aversion process we estimated is that because of its depen-

dence on financial instruments it can be computed at even a daily level. Unfortunately,

our filtered macro-economic uncertainty variables were extracted from industrial produc-

tion which is only available at the monthly level. Here we consider whether we can use

the financial instruments to approximate macro uncertainty. First, total macro-economic

uncertainty, the conditional variance of industrial production growth, is a function of

both pt and nt, σ
2
θppt + σ2

θnnt where the coefficient estimates of σp and σn are provided

in Table 1. In Table 12, we show the coefficients from a regression of uncertainty on

the financial instruments used to span risk aversion and two additional instruments, the

detrended dividend yield and realized variances of speculative bond returns. The R2

is almost 50% and uncertainty loads significantly on all instruments except for the re-

alized equity and speculative bond return variances. Unlike the risk aversion process,

uncertainty loads very strongly on both credit spreads and the physical corporate bond

variance. The term spread also has a significant negative effect on uncertainty (and no

effect on risk aversion). This makes sense as flattening yield curves are associated with

future economic downturns. The table also reports regressions from the two components

in macro-economic uncertainty, bad and good uncertainty, onto the instruments. Clearly,

the variation in macro-economic uncertainty is dominated by the bad component and

the coefficients for the bad component projection coefficients are very similar to those

of total uncertainty. We also report the results from a variance decomposition applied

to the fitted values of the regression. The credit spread explains almost 63% of the ex-

plained uncertainty variation. The dividend and earnings yield variables likely offset one

another partially with one contributing a positive, the other a negative amount to the

total variation but jointly the equity yield variables still explain close to 20%. Finally, the

risk neutral equity variance and the physical corporate bond return variance contribute

about 13-14% of the explained variation of uncertainty.

From this analysis, we create an uncertainty index representing the part of total

uncertainty that is explained by the financial instruments:

uncBEXt = χunc′zt. (61)

In Figure 7, we graph the financial instrument proxies to uncertainty and risk
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aversion for comparison. The correlation between actual uncertainty and risk aversion is

51%; when we use the proxy the correlation increases to 70%. Obviously, most of the time

crisis periods feature both high uncertainty and high risk aversion. There are exceptions

however. For example, the October 1987 crash happened during a time of relatively low

economic uncertainty. It also appears that at the end of the 90s, macro-uncertainty seems

to secularly increase, consistent with the Great Moderation ending around that time (see

also Baele et al., 2015).

Bloom (2009) has argued that uncertainty precedes bad economic outcomes. We

regress future real industrial production growth at various horizons on our uncertainty

index—its financial proxy and the actual one—and the risk aversion process. In addition,

we use the VIX as suggested in Bloom (2009). The results are in Table 13. We use

Hodrick (1992) standard errors to accommodate the overlap in the data. Panel A shows

univariate results. All indices predict growth with a negative sign at the one month, one

quarter and one year horizons. Our financial instrument uncertainty index generates the

highest R2 by far. This suggests that it is indeed macro uncertainty predicting output

growth, with the VIX having much lower predictive power in univariate regressions.

The actual macroeconomic uncertainty (Column “unctrue”) exhibits substantially more

predictive power than the VIX (Column “QV AR”), but still substantially less than the

combination of financial instruments most correlated with it (Column “uncBEX”). This

is likely due to the important role played by the credit spread in uncBEX ; with the credit

spread known to predict future economic activity (see De Santis, 2018, and the references

therein).

This result is confirmed in multivariate regressions. In Panel B, we use our risk aver-

sion index (raBEX), “financial instruments” uncertainty index (uncBEX), and the VIX

simultaneously. The “financial instruments” uncertainty index is statistically significant

for all horizons, whereas risk aversion (with a positive sign) and the VIX squared (with a

negative sign) are significant at the quarterly horizon and beyond. Thus, our uncertainty

index dominates the VIX index in terms of its predictive power for real activity. In Panel

C, the “financial instruments” uncertainty index is replaced by the actual economic un-

certainty. The latter variable is statistically significant at all three horizons. However,

the predictive power of the multivariate model drops substantially at all horizons being

only 1/4 to 2/3’s of that present in Panel B (by 24% ∼ 64%). Not surprisingly, Panel

D shows that the “financial instruments” uncertainty proxy also dominates actual eco-

nomic uncertainty (unctrue), when both are present. The actual economic uncertainty is

insignificant at all horizons.

In ongoing work, we also try to create a high frequency proxy to macro uncertainty,

that uses both past information in macroeconomic uncertainty and financial instruments.
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Because macro-uncertainty is highly persistent, past uncertainty plays a dominant role

in such an index.

Finally, we also examine the correlation between lpt, the idiosyncratic variance

component of corporate bond loss rates, with financial instruments, but the R2 in such

a regression is only 9% (see the Online Appendix for detailed results).

VI.C Correlations with Extant Measures

In this section, we examine the correlation of our risk aversion and uncertainty

indices with existing measures. For risk aversion, we consider three categories: risk aver-

sion indices based on “fundamental” habit models, sentiment indices and commercially

available risk aversions indices. For uncertainty, we focus on the recent uncertainty index

developed by Jurado, Ludvigson and Ng (2015) and the Baker, Bloom and Davis (2016)

political uncertainty measure.

Recall that in an external habit model such as Campbell and Cochrane (1999),

the curvature of the utility function is a negative affine function of the log “consump-

tion surplus ratio,” which in turns follows a heteroskedastic autoregressive process with

shocks perfectly correlated with consumption growth. We follow Wachter (2006) and cre-

ate a “fundamental” risk aversion process from consumption data and CC’s parameter

estimates, which we denote by RACC . Table 14 shows that it is only weakly correlated

with our risk aversion measure but the correlation is still significantly different from zero.

Clearly, the asset pricing literature should start accepting that risk aversion shows higher

frequency movements inconsistent with the focus on low frequency changes tightly linked

to consumption growth as in the extant habit models. Work by Bekaert, Engstrom and

Grenadier (2010) and Martin (2017) also suggests the existence of more variable risk

aversion in financial markets.12

The behavioral finance literature suggests that the sentiment of retail investors may

drive asset prices and cause non-fundamental price swings. As a well-known represen-

tative of this work, we use the sentiment index from Baker and Wurgler (2006). The

index is based on the first principal component of six (standardized) sentiment proxies

including: the closed-end fund discount, the NYSE share turnover, the number and the

average first-day returns of IPOs, the share of equity issues in total equity and debt is-

sues, and the dividend premium (the log-difference of the average market-to-book ratios

of payers and nonpayers). We denote their index by SentBW . High values mean positive

sentiment so we expect a negative correlation with our risk aversion indicator, and indeed

12When computing the same correlations, with our alternative risk aversion index (using the dividend
rather than the earnings yield as the equity yield instrument), all the correlations in Table 14 are quite
similar (but mostly slightly higher in absolute magnitude).

37



the correlation is significantly negative but still relatively small at -0.17.

Because the Baker-Wurgler index relies on financial data, it may not directly re-

flect the sentiment of retail investors. Lemmon and Portnaiguina (2006) and Qiu and

Welch (2006) therefore suggest using a consumer sentiment index such as the Michigan

Consumer Sentiment Index (MCSI). The correlation with this index is also negative,

as expected, and larger in absolute magnitude at -0.28. Hence, our risk aversion index

correlates more with a pure consumer sentiment index than with SentBW , derived from

financial variables.

Finally, many financial services companies create their own risk appetite indices.

As a well-known example, we obtain data on the Credit Suisse First Boston Risk Ap-

petite Index (RAI). The indicator draws on the correlation between risk appetite and

the relative performance of safe assets (proxied by seven to ten-year government bonds)

and risky assets (equities and emerging market bonds). The underlying assumption is

that an increasing risk preference shifts the demand from less risky investments to assets

associated with higher risks, thus pushing their prices up relative to low-risk assets (and

vice versa). The indicator is based on a cross-sectional linear regression of excess returns

of 64 international stock and bond indices on their risk, approximated by historic volatil-

ity. The slope of the regression line represents the risk appetite index. The index shows

a -0.48 correlation with our index and is thus highly correlated with our concept of risk

aversion.

Our uncertainty measure only uses industrial production data. Jurado, Ludvigson

and Ng (2015) use the weighted sum of the conditional volatilities of 132 financial and

macroeconomic series, with the bulk of them being macroeconomic. They have three ver-

sions of the measure depending on the forecasting horizon, but we focus on the one month

horizon, which is most consistent with our model. The correlation with our uncertainty

index is highly significant and substantial at 81%.

Macroeconomic uncertainty may be correlated with political uncertainty, which has

recently been proposed as a source of asset market risk premiums (Pastor and Veronesi,

2013). Baker, Bloom and Davis (2016) create a policy uncertainty measure, based on

newspaper coverage frequency, which we denote by UCBBD. The index shows a highly

significant correlation of 0.34 with our uncertainty index. One advantage of UCBBD

relative to the Jurado, Ludvigson, and Ng (2015) measure is that it can also be computed

at the daily frequency. However, our financial proxy to uncertainty can also be computed

at the daily frequency.
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VI.D Daily Risk Aversion and Uncertainty Indices

Monthly indices may hide important variation within the month in uncertainty and

risk aversion. To demonstrate this, Figure 8 shows how the indices behaved around two

critical events in the recent global financial crisis: the Bear Stearns collapse and bail

out and the Lehman Brothers bankruptcy. In general, Bear Stearns’ woes generated less

effect on our measures than did Lehman Brothers, as expected. To be more specific,

Figure 8 plots 2-month intervals of our daily risk aversion index (top plots) and our daily

financial instrument proxy to economic uncertainty index (bottom plots) around the two

events. By the end of February and March 2008, the risk aversion index reached 3.0

and 2.7, respectively; the difference is small, considering the substantive time variation

in the full sample. However, our daily risk aversion index climbed mildly to around 3.8

on the day of Bear Stearns bailout (March 14, 2008, Friday). The uncertainty index also

kept increasing until that day, in a mild way. Uncertainty and risk aversion drop steeply

afterwards. During August and September 2008, both risk aversion and uncertainty

gradually increase, with risk aversion rising to around 3.7 on the day of Lehman Brothers’

bankruptcy—which is the same value reached during Bear Stearns’ collapse. However, as

the magnification of the Lehman Brothers bankruptcy became clear to financial market

participants, both risk aversion and uncertainty continues to rise, with risk aversion rising

to 13.225 on October 10th which corresponds to the coordinated global action by central

banks to lower interest rate.13

VII Conclusion

We formulate a no arbitrage model where fundamentals such as industrial produc-

tion, consumption earnings ratios, corporate loss rates, etc. follow dynamic processes

that admit time-variation in both conditional variances and the shape of the shock distri-

bution. The agent in the economy takes this time-varying uncertainty into account when

pricing equity and corporate bonds, but also faces preference shocks imperfectly corre-

lated with fundamentals. The state variables in the economy that drive risk premiums

and higher order moments of asset prices involve risk aversion, good and bad economic

uncertainty and the conditional variance of loss rates on corporate bonds. We use equity

and corporate bond returns, physical equity and corporate bond return variances and

the risk neutral equity variance to estimate the model parameters and simultaneously

13On October 8th, the Federal Reserve and the central banks of the EU, Canada, UK, Sweden and
Switzerland cut their rates by half a point. China’s central bank cut its rate by .27 of a point. This was
done to lower LIBOR, thus lowering the cost of bank borrowing. Overnight bank lending rates dropped
in response, indicating a potential turning point in the crisis. (Source: Guardian, “Global rate cuts helps
ease overnight interbank rates,” October 8, 2008)
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derive a risk aversion spanning process . Risk aversion is a function of 6 financial instru-

ments, namely the term spread, credit spread, a detrended earnings yield, realized and

risk-neutral equity return variance, and realized corporate bond return variance.

We find that risk aversion loads significantly and positively on the risk neutral

equity variance and the realized corporate bond variance, and negatively on the realized

equity return variance. Risk aversion is much less persistent than the risk aversion process

implied by standard habit models. It is the main driver of the equity premium and the

equity return risk neutral variance. It also accounts for 68% of the conditional variance of

equity returns with the remainder accounted for by bad macro uncertainty. For corporate

bonds, bad economic uncertainty plays a relatively more important role. It accounts for

27% of the risk premium variation and 89% of the corporate bond physical variance.

Hence, different asset markets reflect differential information about risk appetite versus

economic uncertainty. Our model-implied risk premiums often beat standard predictors

of equity and corporate bond returns in an out-of-sample horse race, but the performance

for corporate bonds is weaker than for equities.

While our risk aversion measure is correlated with some existing risk appetite and

sentiment indices, the simplest approximation may be the variance risk premium in equity

markets which is 96% correlated with our risk appetite index.

Because the spanning instruments are financial data, we can track the risk aversion

index at higher frequencies. Similarly, we obtain a financial proxy to economic uncertainty

(the conditional variance of industrial production growth) which can be obtained at the

daily frequency as well. This measure is 81% correlated with the well-known Jurado,

Ludvigson and Ng (2015) measure, extracted from macro data. The financial proxy to

economic uncertainty predicts output growth negatively and significantly and is a much

stronger predictor of output growth than is the VIX. We plan to make both our risk

aversion and uncertainty indices available on our websites and update them regularly,

which could potentially be useful for both academic researchers and practitioners.

Our work has important implications for the dynamic asset pricing literature. Clearly,

to provide a unified framework explaining asset return dynamics in different asset classes,

both changes in risk aversion and economic uncertainty must be accommodated. In addi-

tion, aggregate risk aversion must contain a relatively non-persistent variable component.

Finally, we only used risky asset classes to create the risk appetite index, omitting

Treasury bonds, arguably the second most important asset class. In principle, given

a process for inflation our model should also price Treasury bonds. In fact, Cremers,

Fleckenstein and Ghandi (2017) claim that an implied volatility measure computed from

Treasury bonds predicts the level and volatility of macro-economic indicators better than

stock market implied indicators do. However, for our purposes, the problem with con-
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sidering Treasuries as determining general risk aversion is that they are often viewed as

the benchmark “safe” assets and are subject to occasional flights-to safety (see Baele et

al, 2017). This makes it ex-ante unlikely that a simple pricing model such as ours can

jointly price the three assets classes. We therefore defer incorporating Treasury bonds to

future work.
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Appendices

A The state variables

I.A Matrix representation of the state variables

In this section, we show the matrix representation of the system of ten state variables in this
economy. The ten state variables, as introduced in Section 3, are as follows,

Yt = [θt, pt, nt, πt, lt, gt, κt, ηt, lpt, qt]
′
,

where {pt, nt} denote the upside uncertainty factor and the downside uncertainty factor, as latent vari-
ables extracted from the system of output growth (i.e., change in log real industrial production index);
πt represents the inflation rate; lt represents the log of corporate loss rate; gt represents the log change
in real earnings; κt represents the log consumption-earnings ratio; ηt represents the log dividend payout
ratio; lpt represents the cash flow uncertainty factor, as the latent variable extracted from the system of
corporate loss rate lt; qt represents the latent risk aversion of the economy. The state variables have the
following matrix representation:

Yt+1 = µ+AYt + Σωt+1, (A.1)

where ωt+1 = [ωp,t+1, ωn,t+1, ωπ,t+1, ωlp,t+1, ωln,t+1, ωg,t+1, ωκ,t+1, ωη,t+1, ωq,t+1] (9 × 1) is a vector com-
prised of eight independent shocks in the economy. Among the nine shocks, {ωπ,t+1, ωln,t+1, ωg,t+1, ωκ,t+1, ωη,t+1}
shocks are homoskedastic. The conditional variance, skewness and higher-order moments of the following
four centered gamma shocks—ωp,t+1, ωn,t+1, ωlp,t+1, and ωq,t+1 —are assumed to be proportional to
pt, nt, lpt, and qt respectively. The underlying distributions for the rest four shocks are assumed to be
Gaussian with unit standard deviation.

The constant matrices are defined implicitly,

µ =



(1− ρθ)θ̄ −mpp̄−mnn̄ ≡ θ0
(1− ρp)p̄ ≡ p0
(1− ρn)n̄ ≡ n0

π0
l0
g0
κ0
η0
v0
q0


, (A.2)

A =



ρθ mp mn 0 0 0 0 0 0 0
0 ρp 0 0 0 0 0 0 0 0
0 0 ρn 0 0 0 0 0 0 0
ρπθ ρπp ρπn ρππ ρπl 0 0 0 ρπv 0
0 ρlp ρln 0 ρll 0 0 0 ρlv 0
ρgθ ρgp ρgn ρgl 0 ρgg 0 0 ρgv 0
ρκθ ρκp ρκn ρκl 0 0 ρκκ 0 ρκv 0
ρηθ ρηp ρηn ρηl 0 0 0 ρηη ρηv 0
0 0 0 0 0 0 0 0 ρvv 0
0 ρqp ρqn 0 0 0 0 0 0 ρqq


, (A.3)
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Σ =



σθp −σθn 0 0 0 0 0 0 0
σpp 0 0 0 0 0 0 0 0
0 σnn 0 0 0 0 0 0 0
σπp σπn σππ σπlp σπln 0 0 0 0
σlp σln 0 σllp −σlln 0 0 0 0
σgp σgn 0 σglp σgln σgg 0 0 0
σκp σκn 0 σκlp σκln 0 σκκ 0 0
σηp σηn 0 σηlp σηln 0 0 σηη 0
0 0 0 σvl 0 0 0 0 0
σqp σqn 0 0 0 0 0 0 σqq


. (A.4)

Given the moment generating functions (mgf) of gamma and Gaussian distributions, we show that
the model is affine, ∀ν ∈ IR10,

MY (ν) := Et [exp(ν′Yt+1)] = exp(ν′µ+ ν′AYt)Et [exp(ν′Σωt+1)]

= exp

[
ν′S0 +

1

2
ν′S1ΣotherS′1ν + fS(ν)Yt + S2(ν)vn

]
, (A.5)

where S0 = µ (10 × 1),

S1 =



0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


, (A.6)

Σother =


σ2
ππ σπg σπκ σπη
σgπ σ2

gg σgκ σgη
σκπ σκg σ2

κκ σκη
σηπ σηg σηκ σ2

ηη

 (cov-var matrix of {ωπ, ωg, ωκ, ωη}), (A.7)

fS(ν) = ν′A+



0
−σp(ν)− ln (1− σp(ν))
−σn(ν)− ln (1− σn(ν))

0
0
0
0
0

−σlp(ν)− ln (1− σlp(ν))
−σq(ν)− ln (1− σq(ν))



′

, (A.8)

S2(ν) = −σvn(ν)− ln (1− σvn(ν)) , (A.9)

σp(ν) = ν′Σ•1, (A.10)

σn(ν) = ν′Σ•2, (A.11)

σlp(ν) = ν′Σ•4, (A.12)

σvn(ν) = ν′Σ•5, (A.13)

σq(ν) = ν′Σ•9, (A.14)

where M•j denotes the j-th column of the matrix M .
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I.B Consumption growth

Consumption growth in this economy is endogenous defined and can be expressed in an affine
function:

∆ct+1 = gt+1 + ∆κt+1 (A.15)

= c0 + c′2Yt + c′1Σωt+1, (A.16)

(A.17)

where c0 = g0 + κ0, c1 =
[
0 0 0 0 0 1 1 0 0 0

]′
, and

c2 =



ρgθ + ρκθ
ρgp + ρκp
ρgn + ρκn

0
0
ρgg

ρκκ − 1
0
0
0


. (A.18)

B Asset Pricing

In this section, we solve the model analytically. First, given consumption growth and changes in
risk aversion, the log of real pricing kernel of the economy is derived as an affine function of the state
variables. Next, we show that asset prices of claims on cash flows from three different asset markets can
be expressed in (quasi) affine equations. The model is solved using the non-arbitrage condition. The goal
of this section is to derive the analytical solutions for the expected excess returns, the physical variance
of asset returns and the risk-neutral variance of asset returns in closed forms. The implied moments are
crucial for the estimation procedure.

II.A The real pricing kernel

The log real pricing kernel for this economy is given by,

mt+1 = ln(β)− γ∆ct+1 + γ∆qt+1 (B.1)

= m0 +m′2Yt +m′1Σωt+1, (B.2)

where m0 = ln(β) + γ(q0 − g0 − κ0), m1 =
[
0 0 0 0 0 −γ −γ 0 0 γ

]′
, and

m2 =



γ(−ρgθ − ρκθ)
γ(ρqp − ρgp − ρκp)
γ(ρqn − ρgn − ρκn)

0
0

−γρgg
−γ(ρκκ − 1)

0
0

γ(ρqq − 1)


. (B.3)

As a result, the moment generating function of the real pricing kernel is, ∀ν ∈ IR,

Et [exp(νmt+1)] = exp
[
νm0 + νm′2Yt

]
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· exp {[−νσp(m1)− ln (1− νσp(m1))] pt + [−νσn(m1)− ln (1− νσn(m1))]nt}
· exp {[−νσlp(m1)− ln (1− νσlp(m1))] lpt + [−νσq(m1)− ln (1− νσq(m1))] qt}

· exp

{
[−νσvn(m1)− ln (1− νσvn(m1))] vn +

1

2
ν2
[
m′1S1ΣotherS′1m1

]}
, (B.4)

where m0, m1, m2, S1, and Σother are constant matrices defined earlier, and

σp(m1) = m′1Σ•1, (B.5)

σn(m1) = m′1Σ•2, (B.6)

σlp(m1) = m′1Σ•4, (B.7)

σvn(m1) = m′1Σ•5, (B.8)

σq(m1) = m′1Σ•9. (B.9)

Accordingly, the model-implied short rate rft is,

rft = − ln {Et [exp(mt+1)]} (B.10)

= −m0 −m′2Yt (B.11)

+ [σp(m1) + ln (1− σp(m1))] pt + [σn(m1) + ln (1− σn(m1))]nt (B.12)

+ [σlp(m1) + ln (1− σlp(m1))] lpt + [σq(m1) + ln (1− σq(m1))] qt (B.13)

+ [σvn(m1) + ln (1− σvn(m1))] vn −
1

2

[
m′1S1ΣotherS′1m1

]
, (B.14)

= rf0 + rf ′2Yt. (B.15)

To price nominal assets, we define the nominal pricing kernel, m̃t+1, which is a simple transformation of
the log real pricing kernel, mt+1,

m̃t+1 = mt+1 − πt+1, (B.16)

= m̃0 + m̃′2Yt + m̃′1Σωt+1, (B.17)

where m̃0 = m0 − π0, m̃1 = m1 −
[
0 0 0 1 0 0 0 0 0 0

]′
, and

m̃2 = m2 −



ρπθ
ρπp
ρπn
ρππ
0
0
0
0
0
0


. (B.18)

The nominal risk free rate r̃f t is defined as − ln {Et [exp(m̃t+1)]}.

II.B Valuation ratio

It is a crucial step in this paper to show that asset prices are (quasi) affine functions of the state
variables. It is especially not obvious for equity price-dividend ratio, of which we provide proofs below.
First, we rewrite the real dividend growth in a general matrix expression:

∆dt+1 = gt+1 + ∆ηt+1

= h0 + h′2Yt + h′1Σωt+1, (B.19)
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where h0 = g0 + η0, h1 =
[
0 0 0 0 0 1 0 1 0 0

]′
, and

h2 =



ρgθ + ρηθ
ρgp + ρηp
ρgn + ρηn

0
0
ρgg
0

ρηη − 1
0
0


. (B.20)

The price-dividend ratio, PDt = Et

[
Mt+1

(
Pt+1+Dt+1

Dt

)]
, can be rewritten as,

PDt =

∞∑
n=1

Et

exp

 n∑
j=1

mt+j + ∆dt+j

 . (B.21)

Let Fnt denote the n-th term in the summation:

Fnt = Et

exp

 n∑
j=1

mt+j + ∆dt+j

 , (B.22)

and Fnt Dt is the price of zero-coupon equity that matures in n periods.

To show that equity price is an approximate affine function of the state variables, we first prove
that Fnt (∀n ≥ 1) is exactly affine using induction. First, when n = 1,

F 1
t = Et [exp (mt+1 + ∆dt+1)]

= Et
{

exp
[
(m0 + h0) + (m′2 + h′2)Yt + (m′1 + h′1)Σωt+1

]}
= exp

[
(m0 + h0) + (m′2 + h′2)Yt

]
· exp {[−σp(m1 + h1)− ln (1− σp(m1 + h1))] pt + [−σn(m1 + h1)− ln (1− σn(m1 + h1))]nt}
· exp {[−σlp(m1 + h1)− ln (1− σlp(m1 + h1))] lpt + [−σq(m1 + h1)− ln (1− σq(m1 + h1))] qt}

· exp

{
[−σvn(m1 + h1)− ln (1− σvn(m1 + h1))] vn +

1

2

[
(m′1 + h′1)S1ΣotherS′1(m1 + h1)

]}
= exp

(
e10 + e1′1 Yt

)
, (B.23)

where m0, m1, m2, h0, h1, h2, S1, and Σother are constant matrices defined earlier, and

σp(m1 + h1) = (m′1 + h′1)Σ•1, (B.24)

σn(m1 + h1) = (m′1 + h′1)Σ•2, (B.25)

σlp(m1 + h1) = (m′1 + h′1)Σ•4, (B.26)

σvn(m1 + h1) = (m′1 + h′1)Σ•5, (B.27)

σq(m1 + h1) = (m′1 + h′1)Σ•9, (B.28)
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and e10 = m0+h0+[−σvn(m1 + h1)− ln (1− σvn(m1 + h1))] vn+ 1
2

[
(m′1 + h′1)S1ΣotherS′1(m1 + h1)

]
,

and

e11 = m2 + h2 +



0
−σpm1 + h1)− ln (1− σp(m1 + h1))
−σn(m1 + h1)− ln (1− σn(m1 + h1))

0
0
0
0
0

−σlp(m1 + h1)− ln (1− σlp(m1 + h1))
−σq(m1 + h1)− ln (1− σq(m1 + h1))


. (B.29)

Now, suppose that the (n− 1)-th term Fn−1t = exp
(
en−10 + en−1′

1 Yt

)
, then

Fnt = Et

exp

 n∑
j=1

mt+j + ∆dt+j


= Et

Et+1

exp(mt+1 + ∆dt+1) exp

n−1∑
j=1

mt+j+1 + ∆dt+j+1



= Et


exp(mt+1 + ∆dt+1)Et+1

exp

n−1∑
j=1

mt+j+1 + ∆dt+j+1


︸ ︷︷ ︸

Fn−1
t+1


= Et

[
exp(mt+1 + ∆dt+1) exp

(
en−10 + en−1′

1 Yt+1

)]
= exp

(
en0 + en′1 Yt

)
, (B.30)

where en0 and en′1 are defined implicitly.
Hence, the price-dividend ratio is approximately affine:

PDt =

∞∑
n=1

Et

exp

 n∑
j=1

mt+j + ∆dt+j


=

∞∑
n=1

Fnt

=

∞∑
n=1

exp
(
en0 + en′1 Yt

)
. (B.31)

�

II.C Log nominal equity return

We apply first-order Taylor approximations to the log nominal equity return, and obtain a linear
system,

r̃eqt+1 = ln

(
Pt+1 +Dt+1

Pt
Πt+1

)
= ln

(
PDt+1 + 1

PDt

)
ln

(
Dt+1

Dt

)
ln (Πt+1)
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= ∆dt+1 + πt+1 + ln

[
1 +

∑∞
n=1 exp

(
en0 + en′1 Yt+1

)∑∞
n=1 exp

(
en0 + en′1 Yt

) ]

≈ ∆dt+1 + πt+1 + const. +

∑∞
n=1 exp

(
en0 + en′1 Ȳ

)
en′1

1 +
∑∞
n=1 exp

(
en0 + en′1 Ȳ

)Yt+1 −
∑∞
n=1 exp

(
en0 + en′1 Ȳ

)
en′1∑∞

n=1 exp
(
en0 + en′1 Ȳ

) Yt

= ξ̃eq0 + ξ̃eq′1 Yt + r̃eq′Σωt+1, (B.32)

where r̃eqt+1 is the log nominal return of asset i from t to t + 1, ξ̃eq0 is constant, ξ̃eq1 is a vector of state
vector coefficients, and r̃eq is a vector of shock coefficients. Thus, this step involves linear approximation.

More generally, to acknowledge the errors that are potentially caused by the linear approximations
(the Taylor approximation in log price-dividend ratio in the return equation), we write down the return
innovations for asset i with an idiosyncratic shock:

r̃it+1 − Et
(
r̃it+1

)
= r̃i′Σωt+1 + εit+1, (B.33)

where Et
(
r̃it+1

)
is the expected return, r̃i (10 × 1) is the asset i return loadings on selected state

variable innovations (the choice of which depends on the asset classes), and εit+1 is the Gaussian noise
uncorrelated with the state variable shocks but may be cross-correlated (with other asset-specific shocks).
The Gaussian shock εit+1 has an unconditional variance σ2

i .

II.D Model-implied moments

In this section, we derive three model-implied asset conditional moments— expected excess returns,
physical and risk-neutral conditional variances of nominal asset returns. The moments are crucial in
creating the moment conditions during the third step of model estimation.

II.D.1 One-period expected excess return

We impose the no-arbitrage condition, 1 = Et[exp(m̃t+1 + r̃it+1)] (∀i ∈{equity, treasury bond,
corporate bond}), and obtain the expected excess returns. Expand the law of one price (LOOP) equation:

1 = Et[exp(m̃t+1 + r̃it+1)]

= exp
[
Et(m̃t+1) + Et(r̃

i
t+1)

]
· exp

{[
−σp(m̃1 + r̃i)− ln

(
1− σp(m̃1 + r̃i)

)]
pt +

[
−σn(m̃1 + r̃i)− ln

(
1− σn(m̃1 + r̃i)

)]
nt
}

· exp
{[
−σlp(m̃1 + r̃i)− ln

(
1− σlp(m̃1 + r̃i)

)]
lpt +

[
−σq(m̃1 + r̃i)− ln

(
1− σq(m̃1 + r̃i)

)]
qt
}

· exp

{[
−σvn(m̃1 + r̃i)− ln

(
1− σvn(m̃1 + r̃i)

)]
vn +

1

2

[
(m̃′1 + r̃i′)S1ΣotherS′1(m̃1 + r̃i) + σ2

i

]}
,(B.34)

where m̃1, r̃i, σi, S1, and Σother are constant matrices defined earlier, and

σp(m̃1 + r̃i) = (m̃′1 + r̃i′)Σ•1,

σn(m̃1 + r̃i) = (m̃′1 + r̃i′)Σ•2,

σlp(m̃1 + r̃i) = (m̃′1 + r̃i′)Σ•4,

σvn(m̃1 + r̃i) = (m̃′1 + r̃i′)Σ•5,

σq(m̃1 + r̃i) = (m̃′1 + r̃i′)Σ•9. (B.35)

Given the nominal risk free rate derived earlier using real pricing kernel and inflation, the nominal excess
return is,

Et(r̃
i
t+1)− r̃f t =

{
σp(r̃

i) + ln

[
1− σp(m̃1 + r̃i)

1− σp(m̃1)

]}
pt

+

{
σn(r̃i) + ln

[
1− σn(m̃1 + r̃i)

1− σn(m̃1)

]}
nt
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+

{
σlp(r̃

i) + ln

[
1− σlp(m̃1 + r̃i)

1− σlp(m̃1)

]}
lpt

+

{
σq(r̃

i) + ln

[
1− σq(m̃1 + r̃i)

1− σq(m̃1)

]}
qt

+

{
σvn(r̃i) + ln

[
1− σvn(m̃1 + r̃i)

1− σvn(m̃1)

]}
vn − m̃′1S1ΣotherS′1r̃

i − 1

2

[
r̃i′S1ΣotherS′1r̃

i + σ2
i

]
(B.36)

where

σp(r̃
i) = r̃i′Σ•1, (B.37)

σn(r̃i) = r̃i′Σ•2, (B.38)

σlp(r̃
i) = r̃i′Σ•4, (B.39)

σvn(r̃i) = r̃i′Σ•5, (B.40)

σq(r̃
i) = r̃i′Σ•9, (B.41)

σp(m̃1 + r̃i) = (m̃′1 + r̃i′)Σ•1, (B.42)

σn(m̃1 + r̃i) = (m̃′1 + r̃i′)Σ•2, (B.43)

σlp(m̃1 + r̃i) = (m̃′1 + r̃i′)Σ•4, (B.44)

σvn(m̃1 + r̃i) = (m̃′1 + r̃i′)Σ•5, (B.45)

σq(m̃1 + r̃i) = (m̃′1 + r̃i′)Σ•9. (B.46)

II.D.2 One-period physical conditional return variance

The physical variance is easily obtained given the loadings:

V ARt(r̃
i
t+1) =

(
σp(r̃

i)
)2
pt +

(
σn(r̃i)

)2
nt +

(
σlp(r̃

i)
)2
lpt +

(
σq(r̃

i)
)2
qt

+
(
σvnr̃

i)
)2
vn + r̃i′S1ΣotherS′1r̃

i + σ2
i . (B.47)

II.D.3 One-period risk-neutral conditional return variance

To obtain the risk-neutral variance of the asset returns, we use the moment generating function
under the risk-neutral measure:

mgfQt (r̃it+1; ν) =
Et
[
exp

(
m̃t+1 + νr̃it+1

)]
Et [exp (m̃t+1)]

= exp
{
Et(m̃t+1) + νEt(r̃

i
t+1)

}
· exp

{[
−σp(m̃1 + νr̃i)− ln

(
1− σp(m̃1 + νr̃i)

)]
pt
}

· exp
{[
−σn(m̃1 + νr̃i)− ln

(
1− σn(m̃1 + νr̃i)

)]
nt
}

· exp
{[
−σlp(m̃1 + νr̃i)− ln

(
1− σlp(m̃1 + νr̃i)

)]
lpt
}

· exp
{[
−σq(m̃1 + νr̃i)− ln

(
1− σq(m̃1 + νr̃i)

)]
qt
}

· exp

{[
−σvn(m̃1 + νr̃i)− ln

(
1− σvn(m̃1 + νr̃i)

)]
vn +

1

2

[
(m̃′1 + νr̃i′)S1ΣotherS′1(m̃1 + νr̃i) + ν2σ2

i

]}
/ exp {Et(m̃t+1)}
/ exp {[−σp(m̃1)− ln (1− σp(m̃1))] pt + [−σn(m̃1)− ln (1− σn(m̃1))]nt}
/ exp {[−σlp(m̃1)− ln (1− σlp(m̃1))] lpt + [−σq(m̃1)− ln (1− σq(m̃1))] qt}

/ exp

{
[−σvn(m̃1)− ln (1− σvn(m̃1))] vn +

1

2

[
m̃′1S1ΣotherS′1m̃1

]}
= exp

{
νEt(r̃

i
t+1)

}
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· exp

{[
−σp(νr̃i)− ln

(
1− σp(m̃1 + νr̃i)

1− σp(m̃1)

)]
pt

}
· exp

{[
−σn(νr̃i)− ln

(
1− σn(m̃1 + νr̃i)

1− σn(m̃1)

)]
nt

}
· exp

{[
−σlp(νr̃i)− ln

(
1− σlp(m̃1 + νr̃i)

1− σlp(m̃1)

)]
lpt

}
· exp

{[
−σq(νr̃i)− ln

(
1− σq(m̃1 + νr̃i)

1− σq(m̃1)

)]
qt

}
· A(ν), (B.48)

where

A(ν) = exp

{[
−σvn(νr̃i)− ln

(
1− σvn(m̃1 + νr̃i)

1− σvn(m̃1)

)]
vn

}
+ exp

{
1

2

[
(m̃′1 + νr̃i′)S1ΣotherS′1(m̃1 + νr̃i)− m̃′1S1ΣotherS′1m̃1 + ν2σ2

i

]}
(B.49)

, and

σp(m̃
′
1 + νr̃i′) = (m̃′1 + νr̃i′)Σ•1, (B.50)

σn(m̃′1 + νr̃i′) = (m̃′1 + νr̃i′)Σ•2, (B.51)

σlp(m̃
′
1 + νr̃i′) = (m̃′1 + νr̃i′)Σ•4, (B.52)

σvn(m̃′1 + νr̃i′) = (m̃′1 + νr̃i′)Σ•5, (B.53)

σq(m̃
′
1 + νr̃i′) = (m̃′1 + νr̃i′)Σ•9. (B.54)

The first-order moment is the first-order derivate at ν = 0:

EQt (r̃it+1) =
∂mgfQt (r̃it+1; ν)

∂ν
|ν=0

= Et(r̃
i
t+1) +

σp(m̃1)σp(r̃
i)

1− σp(m̃1)
pt +

σn(m̃1)σn(r̃i)

1− σn(m̃1)
nt +

σlp(m̃1)σlp(r̃
i)

1− σlp(m̃1)
lpt +

σq(m̃1)σq(r̃
i)

1− σq(m̃1)
qt

+
σvn(m̃1)σvn(r̃i)

1− σvn(m̃1)
vn + m̃′1S1ΣotherS′1r̃

i. (B.55)

Note the similarity between Et(r̃
i
t+1) − EQt (r̃it+1) from this equation and the equity premium derived

before using the no-arbitrage condition. The second-order moment is derived,

V ARQt (r̃it+1) = EQt
(
(r̃it+1)2

)
−
(
EQt (r̃it+1)

)2
=

∂2mgfQt (r̃it+1; ν)

∂ν2
|ν=0 −

(
∂mgfQt (r̃it+1; ν)

∂ν
|ν=0

)2

=

(
σp(r̃

i)

1− σp(m̃1)

)2

pt +

(
σn(r̃i)

1− σn(m̃1)

)2

nt +

(
σlp(r̃

i)

1− σlp(m̃1)

)2

lpt +

(
σq(r̃

i)

1− σq(m̃1)

)2

qt

+

(
σvn(r̃i)

1− σvn(m̃1)

)2

vn + r̃i′S1ΣotherS′1r̃
i + σ2

i . (B.56)

C Variables and parameters

Table C.1: Variables. (In order of first appearance)
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Symbol
θt change in log real industrial production index or growth
pt positive uncertainty factor
nt negative uncertainty factor
ωp,t “good environment” shock
ωn,t “bad environment” shock
Y mac
t technology factors consisting of {θt, pt, nt}

ωmact technology shocks consisting of {ωp,t, ωn,t}
πt change in log historical consumer price index
uπt independent state variable shock of π
ωπ,t inflation shock
lt log corporate bond loss rate
ult independent state variable shock of l
ωl,t loss rate shock
gt change in log earnings
ugt independent state variable shock of e
ωg,t earnings shock
κt log consumption-earnings ratio
uκt independent state variable shock of κ
ωκ,t log consumption-earnings ratio shock
ηt log dividend payout ratio
uηt independent state variable shock of η
ωη,t log dividend payout ratio shock
lpt loss rate shock shape parameter
qt risk aversion
uqt independent state variable shock of q
ωq,t risk aversion shock
Yt a vector of 10 state variables
ωt a vector of 8 independent shocks
∆ct change in log consumption
mt log real pricing kernel
m̃t log nominal pricing kernel
y1t nominal short rate
PCt price-to-coupon ratio of one period defaultable bond
PDt price-dividend ratio
rit log asset return for assets i
Et−1

(
rit
)

expected return for assets i
uit asset-specific shock of assets i
V ARit−1 model-implied one-period physical conditional return variance of assets i

V ARi,Qt−1 model-implied one-period risk-neutral conditional return variance of assets i
zt a vector of observable asset prices / instruments
PV ARit empirical one-period physical conditional return variance of assets i for t+1
QV ARit empirical one-period risk-neutral conditional return variance of assets i for t+1

Table C.2: Parameters.

Symbol
θ̄ unconditional mean of growth
mp sensitivity of output growth on lagged upside uncertainty
mn sensitivity of output growth on lagged downside uncertainty
p̄ unconditional mean of positive uncertainty factor
n̄ unconditional mean of negative uncertainty factor
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ρp autocorrelation coefficient of positive uncertainty factor
ρn autocorrelation coefficient of negative uncertainty factor
σθp scale parameter of growth to “good environment” shock
σθn scale parameter of growth to “bad environment” shock
σpp scale parameter of positive uncertainty factor to “good environment” shock
σnn scale parameter of negative uncertainty factor to “bad environment” shock
j0 * constant in Variable j process
ρjj * autocorrelation coefficient of Variable j
ρjyp * sensitivity coefficient of Variable j to positive uncertainty factor
ρjyn * sensitivity coefficient of Variable j to negative uncertainty factor
ρjyθ * sensitivity coefficient of Variable j to output growth factor
ρjy * [ρjp, ρjn, ρjx]
σjp * scale parameter of Variable j to “good environment” shock
σjn * scale parameter of Variable j to “bad environment” shock

σjj ** unconditional volatility of ujt
σjj *** scale parameter of the state variable gamma shock ujt
σvl scale parameter of the lpt to the loss shock
µ constant vector in the state variable system (10 × 1)
A autocorrelation vector in the state variable system (10 × 10)
Σ scale / volatility parameter matrix of the 8 shocks (10 × 8)
c0 constant in the consumption growth process
c1 sensitivity vector of consumption growth to state variable shocks
c2 sensitivity vector of consumption growth to state variable levels
m0 constant in the real pricing kernel process
m1 sensitivity vector of real pricing kernel to state variable shocks
m2 sensitivity vector of real pricing kernel to state variable levels
ri return loadings on state variable shocks
σi unconditional volatility of uit
χ risk aversion loadings on observed asset prices

* for all j ∈ {π, l, g, κ, η, v, q}:
** for all j ∈ {π, g, κ, η}:

*** for all j ∈ {l, q}:
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[46] Gilchrist, S., and Zakrajšek, E. Credit spreads and business cycle fluctuations. The American
Economic Review 102, 4 (2012), 1692–1720.

[47] Hamilton, J. D. Analysis of time series subject to changes in regime. Journal of econometrics 45,
1-2 (1990), 39–70.

[48] Harvey, C. R. The real term structure and consumption growth. Journal of Financial Economics
22, 2 (1988), 305–333.

[49] He, Z., and Krishnamurthy, A. Intermediary asset pricing. American Economic Review 103, 2
(2013), 732–70.

[50] Hodrick, R. J. Dividend yields and expected stock returns: Alternative procedures for inference
and measurement. The Review of Financial Studies 5, 3 (1992), 357–386.

[51] Jackwerth, J. C. Recovering risk aversion from option prices and realized returns. The Review
of Financial Studies 13, 2 (2000), 433–451.

[52] Joslin, S., Le, A., and Singleton, K. J. Why gaussian macro-finance term structure models
are (nearly) unconstrained factor-vars. Journal of Financial Economics 109, 3 (2013), 604–622.

[53] Jurado, K., Ludvigson, S. C., and Ng, S. Measuring uncertainty. The American Economic
Review 105, 3 (2015), 1177–1216.

[54] Kamstra, M. J., Kramer, L. A., and Levi, M. D. Winter blues: A sad stock market cycle.
American Economic Review 93, 1 (2003), 324–343.

[55] Kostakis, A., Magdalinos, T., and Stamatogiannis, M. P. Robust econometric inference
for stock return predictability. The Review of Financial Studies 28, 5 (2015), 1506–1553.

[56] Lemmon, M., and Portniaguina, E. Consumer confidence and asset prices: Some empirical
evidence. The Review of Financial Studies 19, 4 (2006), 1499–1529.

[57] Liu, J., Pan, J., and Wang, T. An equilibrium model of rare-event premia and its implication
for option smirks. The Review of Financial Studies 18, 1 (2004), 131–164.

[58] Ljung, G. M., and Box, G. E. On a measure of lack of fit in time series models. Biometrika 65,
2 (1978), 297–303.

[59] Longstaffa, F. A., and Piazzesib, M. Corporate earnings and the equity premium. Journal of
Financial Economics 74 (2004), 401–421.

[60] Martin, I. What is the expected return on the market? The Quarterly Journal of Economics 132,
1 (2017), 367–433.

[61] Menzly, L., Santos, T., and Veronesi, P. Understanding predictability. Journal of Political
Economy 112, 1 (2004), 1–47.

[62] Miranda-Agrippino, S., and Rey, H. World asset markets and the global financial cycle. Tech.
rep., 2015.

[63] Pan, J. The jump-risk premia implicit in options: Evidence from an integrated time-series study.
Journal of financial economics 63, 1 (2002), 3–50.
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Table 1: The Dynamics of the Macro Factors

This tables reports parameter estimates from the model below using the monthly log growth rate of
U.S. industrial production from January 1947 to February 2015. This system involves latent processes
(good shape parameter governing positive skewness, pt, and bad shape parameter governing negative
skewness, nt) and is estimated using the MLE-filtration methodology described in Bates (2006). Bold
(italic) coefficients have <5% (10%) p-values.

θt+1 = θ + ρθ(θt − θ) +mp(pt − 500) +mn(nt − n) + uθt+1

pt+1 = 500 + ρp(pt − 500) + σppωp,t+1

nt+1 = n+ ρn(nt − n) + σnnωn,t+1

, where

uθt+1 = σθpωp,t+1 − σθnωn,t+1

ωp,t+1 ∼ Γ̃(pt, 1)

ωn,t+1 ∼ Γ̃(nt, 1)

σpp > 0

σnn > 0.

Standard errors are displayed in parentheses. Note that Row “ ωn,t loading” in Column “θt”
corresponds to the parameter estimate of σθn, and the actual loading of θt on ωn,t is −σθn; Row “ ωn,t
loading” in Column “pt” (“nt”) is +σpp (+σnn).

θt pt nt
mean 0.0000 500 (fix) 16.1421

(0.0005) (2.1453)
AR 0.1310 0.9997 0.9108

(0.0309) (0.0192) (0.0135)
mp 0.0000

(0.0003)
mn -0.0002

(0.0000)
ωp,t loading 0.0001 0.5528

(0.0000) (0.0707)
ωn,t loading 0.0017 2.1775

(0.0001) (0.1503)
LL 2861.308
BIC -5648.85
AIC -5700.62

57



Table 2: The Dynamics of the Corporate Loss Rate

This table reports parameter estimates for the corporate loss rate model using monthly data from June
1984 to February 2015. The actual nominal payoff of a one-period zero-coupon defaultable (risky)
corporate bond at period t+ 1 is C ×Ft+1 where Ft+1 < 1 is an unknown fraction of the total promised
payment C. The nominal payment can be rewritten as, CFt+1 = exp(c+ ln(Ft+1)) = exp(c− lt+1).
Thus, lt+1 is −ln(Ft+1) = −ln(1− Lt+1) where Lt+1 is corporate loss rate. The empirical proxy for Lt
is obtained using the following equality, DEFt × (1−RECOVt). Both the default rate DEFt and
recovery rate RECOVt pertain to the overall corporate bond market and are empirically constructed as
6-month trailing measures from 3-month trailing all-corporate bond default rate and monthly recovery
rate, respectively; both raw series are obtained from the Federal Reserve Board; (1−RECOVt) is the
monthly loss-given-default rate. The dynamic process of lt+1 is as follows:

lt+1 = l0 + ρlllt +mlppt +mlnnt + σlpωp,t+1 + σlnωn,t+1 + ult+1

ult+1 = σllpωlp,t+1 − σllnωln,t+1

ωlp,t+1 ∼ Γ̃(lpt, 1),

ωln,t+1 ∼ Γ̃(ln, 1),

where the variance equation is,

lpt+1 = lp+ ρlp(lpt − lp) + σlplpωlp,t+1,

ln > 0.

The mean equation is estimated by projection, the variance equation by Bates’ approximate
MLE-filtration. Standard errors are displayed in parentheses. Bold (italic) coefficients have <5% (10%)
p-values.

Mean:
l0 ρll mlp mln

-0.0009 0.8306 1.95E-06 0.0001
(0.0017) (0.0241) 3.57E-06 (0.0000)

Shock Sensitivities:
σlp σln σllp σlln

0.0000 0.0005 0.0006 0.0001
(0.0000) (0.0001) (0.0001) (0.0001)

Shape Parameter Dynamics:

lp ρlp σlplp ln
5.2153 0.8556 1.8615 103.58
(0.2566) (0.0126) (0.1809) (1.2566)

Model Specifications:
LL AIC BIC

1814.51 -3617.01 -3593.58
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Table 3: Cash Flow Dynamics

This table shows the estimation results of cash flow dynamics. The dynamic processes of cash flow
variables are expressed in Equation (20) for the log earnings growth, gt+1, Equation (23) for the log
consumption-earnings ratio, κt+1, Equation (26) for the log dividend-earnings ratio, ηt+1, and
Equation (32) for the inflation rate, πt+1. These coefficients are estimated using simple linear
projections. Bold (italic) coefficients have <5% (10%) p-values. Robust errors are shown in
parentheses. The adjusted R2 of the conditional mean part (with information set t) is reported in the
last row. The sample period is 1986/06 to 2015/02 (345 months).

earnings growth log CE log DE inflation
Coefficients on: gt+1 κt+1 ηt+1 πt+1

drift 0.0207 0.1451 -0.0966 0.0031
(0.0277) (0.0459) (0.0340) (0.0014)

AR 0.6589 0.9303 0.9102 0.3973
(0.0433) (0.0095) (0.0109) (0.0500)

θt 1.5181 -0.2731 0.1765 -0.0718
(0.6933) (0.8565) (0.8880) (0.0315)

pt -0.0001 0.0000 0.0000 0.0000
(0.0001) (0.0001) (0.0001) (0.0000)

nt 0.0005 0.0031 0.0037 -0.0001
(0.0007) (0.0008) (0.0008) (0.0000)

lt -1.2318 2.3791 2.1250
(0.7376) (0.9352) (0.9596)

lpt 0.0007 -0.0008 -0.0008
(0.0004) (0.0004) (0.0004)

ωp,t+1 loading -0.0001 0.0001 0.0001 0.0000
(0.0001) (0.0001) (0.0001) (0.0000)

ωn,t+1 loading -0.0033 0.0066 0.0068 0.0001
(0.0011) (0.0013) (0.0014) (0.0001)

ωlp,t+1 loading -0.0005 0.0008 0.0008
(0.0010) (0.0013) (0.0013)

ωln,t+1 loading -0.0002 0.0004 0.0004
(0.0001) (0.0001) (0.0002)

Gaussian shock volatility 0.0462 0.0558 0.0574 0.0023
(0.0018) (0.0021) (0.0022) (0.0001)

Adjusted R2 (conditional mean) 56.76% 98.34% 98.06% 20.85%
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Table 4: Shock Correlation Matrix

The table provides a correlation matrix of the shock structure of the economy. The shocks are
summarized as follows:

ωp,t+1: good uncertainty shock Γ̃(pt, 1);

ωn,t+1: bad uncertainty shock Γ̃(nt, 1);

ωlp,t+1: cash flow good uncertainty shock Γ̃(lpt, 1);

ωln,t+1: cash flow bad uncertainty shock Γ̃(vn, 1);
ωg,t+1: log earnings growth-specific shock N(0,1);
ωκ,t+1: log C/E-specific shock N(0,1);
ωη,t+1: log D/E-specific shock N(0,1);

ωq,t+1: risk aversion-specific shock Γ̃(qt, 1).

Bold (italic) coefficients have <5% (10%) p-values. The sample period is 1986/06 to 2015/02 (345
months).

ωp ωn ωπ ωlp ωln ωg ωκ ωη ωq
ωp 1 -0.1129 0.0000 -0.0011 -0.0007 0.0000 0.0000 0.0000 0.0000
ωn 1 0.0000 -0.0912 -0.0828 0.0000 0.0000 0.0000 0.0000
ωπ 1 0.0943 -0.0442 0.1060 -0.0120 -0.0536 0.0360
ωlp 1 -0.1877 0.0000 0.0000 0.0000 0.0296
ωln 1 0.0000 0.0000 0.0000 -0.1789
ωg 1 -0.6765 -0.6589 0.0613
ωκ 1 0.9863 -0.0413
ωη 1 -0.0351
ωq 1
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Table 5: Financial Instruments Spanning Risk Aversion

This table presents summary statistics of the 6 financial instruments that are used to span our risk
aversion measure: “tsprd” is the difference between 10-year treasury yield and 3-month Treasury yield;
“csprd” is the difference between Moody’s Baa yield and the 10-year zero-coupon Treasury yield;
“EY5yr” (“DY5yr”) is the detrended earnings (dividend) yield where the moving average takes the 5
year average of monthly earnings yield, starting one year before; “rvareq” and “rvarcb” are realized
variances of log equity returns and log corporate bond returns, calculated from daily returns; “qvareq”
is the risk-neutral conditional variance of log equity returns; for the early years (before 1990), we use
VXO and authors’ calculations. Bold (italic) coefficients have <5% (10%) p-values. Block bootstrapped
errors are shown in parentheses. The sample period is from 1986/06 to 2015/02 (345 months).

tsprd csprd DY5yr EY5yr rvareq qvareq rvarcb

Correlation Matrix

tsprd 1 0.3524 0.2595 0.2526 0.1269 0.1244 0.2952
csprd 1 0.4990 0.5083 0.4786 0.5988 0.5330

DY5yr 1.0000 0.8966 0.1678 0.1650 0.3101
EY5yr 1 0.1399 0.1564 0.3359
rvareq 1 0.8431 0.5943
qvareq 1 0.5376
rvarcb 1

Summary Statistics

Mean 0.0179 0.0231 -0.0030 -0.0074 0.0029 0.0040 0.0002
Boot.SE (0.0006) (0.0004) (0.0003) (0.0008) (0.0003) (0.0002) (0.0000)

S.D. 0.0116 0.0075 0.0061 0.0149 0.0059 0.0037 0.0003
Boot.SE (0.0003) (0.0005) (0.0003) (0.0007) (0.0014) (0.0005) (0.0000)
Skewness -0.2322 1.7891 0.0959 -0.3495 8.1198 3.7225 4.2227
Boot.SE (0.0810) (0.2515) (0.1882) (0.1502) (1.5951) (0.5123) (0.6872)
AR(1) 0.9668 0.9640 0.9822 0.9843 0.4312 0.7462 0.5775

SE (0.0137) (0.0143) (0.0083) (0.0068) (0.0488) (0.0360) (0.0441)
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Table 6: Reduced-Form Risk Aversion Parameters

This table presents the GMM estimation results for risk aversion, qt = χ′zt, using equity market and
corporate bond market asset prices. The utility curvature parameter, γ, is fixed at 2 in the estimation.
The first-step GMM weighting matrix is an identity matrix; the second-step weighting matrix builds on
the Newey-West spectral density function with 5-month lags, and then is shrunk towards an identity
matrix where the shrinkage parameter is 0.1. The GMM system also consistently estimates σqq.
Therefore, the system has 8 unknown parameters. The p-value of Hansen’s overidentification test (J
test) is calculated from the asymptotic χ2 distribution with the degree of freedom being 29 (37-8).
Bold (italic) coefficients have <5% (10%) p-values. Efficient standard errors are shown in parentheses.
The sample period is 1986/06 to 2015/02 (345 months).

qt
Efficient GMM Estimators

constant 0.059
(0.011)

χtsprd 0.222
(0.511)

χcsprd 1.948
(0.564)

χEY 5yr 0.126
(0.265)

χrvareq -20.195
(0.460)

χqvareq 61.196
(1.551)

χrvarcb 105.721
(11.500)

Correlation with the NBER Indicator

ρ(qt, NBERt) 0.401
(0.045)

Model Specifications

Hansen’s J 41.2904
p-value 0.0649
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Table 7: Structural Risk Aversion Parameters

This table presents the model-implied risk aversion process parameters. In the first panel, parameter
estimates are obtained either from simple projection or from the GMM procedure introduced earlier
(see Table 6). The second and third panels report the variance decomposition (VARC) results of the
conditional mean and shock structure of q̂t+1, respectively. In the second panel, VARC of a linear

variable x is as follows, V ARC = βx
cov(ŷ,x)
var(ŷ) ) where ŷ = Êt(q̂t+1). VARC in the third panel is

calculated using the residual, ŷ = q̂t+1 − Êt(q̂t+1). Therefore, the sum of VARC in explaining the
conditional mean and the shock structure is 100% each. Bold (italic) coefficients have <5% (10%)
p-values. Robust and efficient standard errors are shown in parentheses. The sample period is 1986/06
to 2015/02 (345 months).

q̂t+1 = q0 + ρqq q̂t + ρqpp̂t + ρqnn̂t + σqpω̂p,t+1 + σqnω̂n,t+1 + uqt+1,

uqt+1 = σqqωq,t+1,

ωq,t+1 = Γ̃(qt, 1).

Structual Risk Aversion Parameters, qt+1

◦ Projection ◦ GMM
Constant pt nt qt ωp,t+1 ωn,t+1 ωq,t+1

Est -0.0886 0.0003 0.0037 0.6712 0.0004 -0.0004 0.1557
(SE) (0.0566) (0.0001) (0.0007) (0.0387) (0.0002) (0.0023) (0.0019)

Conditional Mean Variance Decomposition (65% of Total Variance)
pt nt qt

VARC 1.06% 18.74% 80.20%

Shock Structure Variance Decomposition (35% of Total Variance)
ωp,t+1 ωn,t+1 ωq,t+1

VARC 0.77% 0.02% 99.22%
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Table 8: Fit of Moments

This table evaluates the fit of conditional moments of equity and corporate bond returns. Column
“Model” reports the averages of the relevant model-implied conditional moments. The “Empirical
Averages” represent the sample averages of the excess returns (for “Mom 1” and “Mom 4”), the sample
averages of empirical conditional variances (for “Mom 2”, “Mom 3”, and “Mom 5”). For “Mom 6” and
“Mom 7”, “Risk Aversion Innovation” is uqt+1 in Equation (29). The variance and unscaled skewness
rows compare the average model-implied conditional moments with the unconditional moments. Bold
numbers denote a distance of less than 1.645 standard errors from the corresponding empirical point
estimate. Block bootstrapped standard errors are shown in parentheses; we allow the block size to vary
for different moments: block sizes=[0 6 15 1 10] for Mom 1 to Mom 5, respectively. Asymptotic
standard errors (standard deviation divided by square root of the number of observations) are reported
for Mom 6 and Mom 7. The sample period is 1986/06 to 2015/02 (345 months).

Moment Model Empirical Average Boot.SE/SE

Mom 1 Equity Risk Premium 0.00785 0.00530 (0.00246)
Mom 2 Equity Physical Variance 0.00346 0.00286 (0.00051)
Mom 3 Equity Risk-neutral Variance 0.00412 0.00397 (0.00049)
Mom 4 Corporate Bond Risk Premium 0.00429 0.00388 (0.00050)
Mom 5 Corporate Bond Physical Variance 0.00023 0.00024 (0.00003)
Mom 6 Risk Aversion Innovation Variance 0.00767 0.00929 (0.00195)
Mom 7 Risk Aversion Innovation Unscaled Skewness 0.00239 0.00216 (0.00111)

Table 9: Asset Prices and the State Variables

This table reports the decomposition of model-implied conditional moments by the underlying dynamic
drivers. The closed form solutions of each conditional moments are shown in the main text. The asset
conditional moments are explained by four premium state variables, {pt, nt, lpt, qt}. This table presents
1. scaled coefficients for interpretation purpose and 2. variance decomposition. 1. The coefficients are
multiplied by standard deviations of the corresponding state variables of the same column and then

multiplied by 10000. 2. VARC (as previously defined) is coefficient*Cov(xt,Momt)
V ar(Momt)

where x ∈ {p, n, v, q}
and Mom is from Mom 1 to Mom 5. The variance decomposition is reported in a bold italic font. The
sum of the four VARCs in the same add up to 100% by design.

Model-implied coefficients of moments on state variables {pt, nt, lpt, qt}
Moment pt nt lpt qt

Mom 1 Equity Risk Premium 0.1473 4.0169 -0.0852 52.6093
VARC 0.014% 4.014% -0.033% 96.004%

Mom 2 Equity Physical Variance 0.0492 3.1165 0.0555 5.6090
VARC -0.042% 31.249% 0.148% 68.645%

Mom 3 Equity Risk-neutral Variance 0.0493 3.0708 0.0554 11.8273
VARC 0.000% 14.717% 0.086% 85.197%

Mom 4 Corporate Bond Risk Premium 0.0625 4.7338 0.1157 9.8541
VARC -0.025% 27.310% 0.187% 72.528%

Mom 5 Corporate Bond Physical Variance 0.0004 0.1610 0.0408 0.0101
VARC -0.076% 88.928% 7.921% 3.227%
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Table 10: Predicting Realized Excess Returns and Variances

This table reports the regression coefficients of realized future excess returns and realized variances of
equity and corporate bond on model implications. In the first set of analysis, moment realizations are
regressed on the four premium state variables, {pt, nt, lpt, qt}. The coefficients are multiplied by
standard deviations of the corresponding state variables of the same column and then multiplied by
100. In the second set of analysis, moment realizations are regressed on “Model-Implied Moments”
which are risk premiums (for realized excess returns) and physical variances (for realized variances).
Bold (italic) coefficients have <5% (10%) p-values. Adjusted R2s are reported. Standard errors are
shown in parentheses. The sample period is 1986/06 to 2015/02 (345 months).

r̃eqt+1 − rft RV AReqt+1 r̃cbt+1 − rft RV ARcbt+1

pt -0.2263 0.0146 -0.0821 -0.0007
(0.2649) (0.0313) (0.0944) (0.0015)

nt -1.1843 0.1461 0.0530 0.0081
(0.2974) (0.0352) (0.1059) (0.0016)

lpt -0.4346 0.0014 0.0674 0.0010
(0.2483) (0.0294) (0.0885) (0.0014)

qt 0.8623 0.1976 0.0911 0.0071
(0.2916) (0.0345) (0.1039) (0.0016)

Model-Implied Moments 0.6108 2.1525 0.1553 3.9400
(0.2460) (0.2025) (0.0907) (0.4189)

Adjusted R2 5.5% 0.1% 25.0% 24.8% 1.4% 0.9% 24.4% 20.6%

ρ(NBER) 0.4361 0.5798 0.5651 0.7041
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Table 11: Out-Of-Sample Exercise

This table evaluates the ability of in-sample (see Section III.C) and out-of-sample risk premium
estimates of equity returns and corporate bond returns to explain realized future excess returns. To be
more specific, model-implied risk premium estimates (from the paper) and empirical risk premium
estimates (from a wide set of empirical predictors that are widely-used in the stock return
predictability literature) are both included to predict one-month future excess returns. 1.
Model-implied risk premium estimates, “Mod”: “Mod (1)” indicates the in-sample (full-sample)
estimates of model-implied risk premiums, the dynamics of which are determined by {pt, nt, lpt, qt}.
“Mod (2)” indicates the out-of-sample estimates of model-implied risk premiums: Define a 60-month
rolling window from t− 60 to t− 1, then project one-period ahead excess returns on the 4 premium
state variables, and then use the coefficient estimates to obtain Et(r̃t+1 − rft), repeatedly. 2.
Empirical risk premium estimates, “Emp Mod”: We also consider three out-of-sample empirical
risk premium estimates that use three instruments sets (subsets of zt), respectively: (1) 5-year
detrended earnings-price ratio, (2) 5-year detrended earnings-price ratio + term spread + credit
spread, (3) market return physical uncertainty plus variance risk premium estimate. The table then
reports the optimal combination of Mod and Emp Mod estimates which minimize the sum of squared
innovations. Least Square standard errors are shown in parentheses. Bold (italic) coefficients have <5%
(10%) p-values (against zero). The (full) sample period is 1986/06 to 2015/02 (345 months).

Least-Square Estimate of a in
r̃t+1 − rft = a×Mod(t, i) + (1− a)× Emp Mod(t, j) + et+1

i = 1, 2; j = 1, 2, 3
◦ Equity: ◦ Corporate Bond:

Mod (1) Mod (2) Mod (1) Mod (2)
Emp Mod (1) 0.7322 0.3987 0.4501 0.1051

(0.0958) (0.0894) (0.0740) (0.0778)
Emp Mod (2) 0.8483 0.5628 0.5509 0.3614

(0.0878) (0.0848) (0.0591) (0.0720)
Emp Mod (3) 0.7609 0.5619 0.5579 0.4507

(0.0758) (0.0763) (0.0579) (0.0836)
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Table 12: Projecting Macroeconomic Uncertainty on Financial Instruments

This table presents regression results of the estimated monthly macroeconomic uncertainty (from
industrial production growth) on a set of monthly asset prices; some are used to span the time-varying
risk aversion. “Total” is the total industrial production growth variance, which is a function of pt and
nt, σ

2
θppt + σ2

θnnt. “×103” in the header means that the coefficients and their SEs reported are
multiplied by 1000 for reporting convenience.“VARC” reports the variance decomposition. Bold (italic)
coefficients have <5% (10%) p-values. Robust and efficient standard errors are shown in parentheses.
Adjusted R2s are reported. The sample period is 1986/06 to 2015/02 (345 months).

(×103) (×103) (×103)

Total VARC Upside VARC Downside VARC

constant -0.009 0.006 -0.015
(0.005) (0.000) (0.005)

χtsprd -0.577 -2.33% -0.004 2.70% -0.573 -2.47%
(0.112) (0.002) (0.112)

χcsprd 2.024 62.69% -0.016 6.52% 2.040 62.32%
(0.246) (0.004) (0.246)

χDY 5yr 2.343 41.57% -0.162 139.79% 2.505 44.74%
(0.456) (0.007) (0.456)

χEY 5yr -0.609 -22.57% 0.048 -55.56% -0.657 -24.28%
(0.189) (0.003) (0.189)

χrvareq -0.257 -3.76% -0.002 -0.03% -0.255 -3.65%
(0.620) (0.010) (0.621)

χqvareq 1.190 13.25% 0.066 5.20% 1.124 12.20%
(0.669) (0.010) (0.670)

χrvarcb 17.792 13.67% -0.056 0.37% 17.848 13.49%
(5.927) (0.092) (5.935)

χrvarcbSPEC -2.233 -2.51% -0.108 1.01% -2.125 -2.35%
(5.564) (0.087) (5.571)

R2 50.20% 70.80% 50.60%
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Table 13: On the Predictive Power of Risk Aversion and Uncertainty for Future Output
Growth

This table reports the coefficient estimates of the following predictive regression,

θt+k = ak + b′kxt + rest+k,

where θt+k represents future industrial production growth during period t+ 1 and t+ k (
∑k
τ=1 θt+τ )

and xt represents a vector of current predictors. We consider (1) our GMM-implied risk aversion index,
raBEX , (2) our financial instrument proxy of economic uncertainty, uncBEX , (3) the risk-neutral
conditional variance (the square of the month-end VIX (after 1990) / VXO (prior to 1990) index
divided by 120000), QV AR, and (4) the true total macroeconomic uncertainty filtered from industrial
production growth unctrue. The coefficients are scaled by the standard deviation of the predictor in the
same column for reporting purposes. Hodrick (1992) standard errors are reported in parentheses, and
adjusted R2s are in %. Bold (italic) coefficients have <5% (10%) p-values.

raBEX uncBEX QV AR unctrue

A. Univariate

1m -0.002 -0.003 -0.002 -0.002
(0.001) (0.000) (0.001) (0.001)
7.2% 20.6% 6.5% 13.1%

1q -0.005 -0.008 -0.005 -0.007
(0.001) (0.001) (0.002) (0.001)
14.9% 37.9% 15.3% 26.5%

4q -0.006 -0.017 -0.008 -0.010
(0.003) (0.004) (0.003) (0.004)
2.5% 17.7% 3.7% 6.5%

B. Multivariate (1) R2

1m 0.001 -0.003 0.000 21.2%
(0.001) (0.001) (0.001)

1q 0.004 -0.009 -0.003 39.1%
(0.001) (0.002) (0.001)

4q 0.021 -0.025 -0.011 22.8%
(0.004) (0.005) (0.002)

C. Multivariate (2) R2

1m 0.000 0.000 -0.002 14.1%
(0.001) (0.001) (0.001)

1q 0.001 -0.003 -0.006 29.6%
(0.001) (0.002) (0.001)

4q 0.010 -0.012 -0.010 8.1%
(0.003) (0.003) (0.003)

D. Multivariate (3) R2

1m 0.001 -0.003 0.000 -0.001 21.5%
(0.001) (0.001) (0.001) (0.001)

1q 0.004 -0.008 -0.003 -0.002 40.4%
(0.001) (0.001) (0.001) (0.001)

4q 0.021 -0.027 -0.011 0.003 23.1%
(0.004) (0.006) (0.002) (0.003)
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Table 14: Alternative Risk Aversion and Uncertainty Measures.

This table report the correlation between our risk aversion and economic uncertainty indices and
existing measures. For risk aversion (Panel A), we consider three categories. A.1) We follow Wachter
(2006) to create a fundamental risk aversion process from inflation-adjusted (real) quarterly

consumption growth (
∑4
j=0 ∆ct−j); A.2) we consider the well-known sentiment index by Baker and

Wurgler (2006) from the behavior finance literature, and the Michigan Consumer Sentiment Index
(that directly measures the consumer sentiment); A.3) we also consider an industry index, the Credit
Suisse First Boston Risk Appetite Index. For economic uncertainty (Panel B), we consider B.1) the
macroeconomic uncertainty index created by Jurado, Ludvigson, and Ng (2015), and B.2) the
Economic Policy Uncertainty Index created by Baker, Bloom, and Davis (2016). Correlations are
calculated using overlapping samples at the monthly frequency. Standard errors are shown in
parentheses. Bold correlation coefficients have <5% p-values.

A. Correlations with Extant Risk Aversion Indices

A.1) “Fundamental” Habit Model:
Wachter (2006) / Campbell and Cochrane (1999) 0.1307
A.2) Sentiment Index: (0.0534)
Baker and Wurgler (2006) -0.1652

(0.0531)
Michigan Consumer Sentiment Index -0.2752

(0.0518)
A.3) Industry Index -0.4830
Credit Suisse First Boston Risk Appetite Index (0.0471)

B. Correlations with Extant Uncertainty Indices

B.1) Macroeconomic Uncertainty:
Jurado, Ludvigson, and Ng (2015) 0.8094

(0.0316)
B.2) Political Uncertainty:
Baker, Bloom, and Davis (2016) 0.3428

(0.0506)

69



194701 195504 196308 197112 198004 198808 199612 200504 201308
-0.04

-0.02

0

0.02

0.04

0.06
conditional mean

194701 195504 196308 197112 198004 198808 199612 200504 201308
0

500

1000

pt

194701 195504 196308 197112 198004 198808 199612 200504 201308
0

20

40

60

80

nt

Figure 1: Filtered state variables extracted from industrial production growth. The
estimation results are displayed in Table 1. The plot covers the estimation period from
January 1947 to February 2015. The shaded regions are NBER recession months from
the NBER website.
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Figure 2: Model-implied conditional moments of industrial production growth. The
shaded regions are NBER recession months from the NBER website.
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Figure 3: Loss rate and its conditional moments. The dynamics and estimation results
are shown in Table 2. From top to bottom: loss rate lt+1, conditional mean, the cash
flow uncertainty state variable lpt, and the total conditional variance. The plot covers
the estimation period from June 1984 to February 2015. The shaded regions are NBER
recession months from the NBER website.
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Figure 4: Conditional variance decomposition of the loss rate. (Conditional) Variances
of four independent gamma shocks in the system contribute to the magnitude and the
dynamics of total loss rate: real economic shocks, ωp and ωn, and pure cash flow shock,
ωlp and ωln. Among them, only ωln is homoskedastic, capturing the left-tail behavior of
the pure loss rate movement that is not explained by the economic shocks. The shaded
regions are NBER recession months from the NBER website.
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Figure 5: Model-implied and empirical risk-neutral conditional variances of equity market
returns. The shaded regions are NBER recession months from the NBER website. The
two series are 90.06% correlated.
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Figure 6: The risk aversion index (γ exp(qt)). The utility curvature parameter γ is 2.
The shaded regions are NBER recession months from the NBER website.
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Figure 7: Risk aversion index (black/left y-axis) and Uncertainty index (red/right y-axis).
The risk aversion index denoted as raBEX = γ exp(qt) and the uncertainty index denoted
as uncBEX are linear functions of a set of financial instruments. Correlation between the
two series is 70.43%. The shaded regions are NBER recession months from the NBER
website.
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Figure 8: Risk aversion and economic uncertainty at daily frequencies around the Bear
Stearns and Lehman Brothers Collapses in 2008.
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