Beta Ambiguity and Security Return Characteristics

Zhe Geng and Tan Wang *

November, 2018

Abstract

We develop a model to study the cross-sectional properties of asset returns in the presence of ambiguity in the distribution of asset returns. In our model, the cross-sectional expected returns can be described by a three-factor model, capturing risk, mean ambiguity and variance-covariance ambiguity, respectively. Expected returns include a mean ambiguity premium, a variance-covariance ambiguity premium, as well as the standard risk premium. The expected returns exhibit cross-sectional characteristics consistent with the empirical fact that the overall beta-return relation and IVOL-return relation are both negative, but the beta-return relation is negative and stronger among over-priced stocks while positive and weaker among under-priced stocks, and the IVOL-return relation is negative and stronger among over-priced stocks but positive and weaker among under-priced stocks (Black, Jensen, and Scholes (1972), Ang et al. (2006), Liu, Stambaugh, and Yuan (2018), and Stambaugh, Yu, and Yuan (2015)).

*Zhe Geng and Tan Wang are with Shanghai Advanced Institute of Finance at Shanghai Jiao Tong University. We are grateful for the valuable comments from Jun Pan, Weidong Tian, the discussant at the 2018 China International Conference in Finance, Yu Yuan, and the conference participants at the 2018 China International Conference in Finance.
1 Introduction

In the numerous empirical stylized facts documented in the literature, the beta anomaly and the idiosyncratic volatility anomaly are perhaps the simplest fundamental and yet challenging empirical regularity to understand. Beta anomaly refers to the pattern in cross-section returns that security market line is too flat relative to the one predicted by the CAPM theory (Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973)). Idiosyncratic volatility anomaly refers to the negative relation between idiosyncratic volatility and subsequent stock returns (Ang et al. (2006)).

There is a large literature that aims at explaining the two anomalies. Recently, however, Stambaugh, Yu, and Yuan (2015) and Liu, Stambaugh, and Yuan (2018) offered additional evidence that provide a new perspective on the anomalies and raised issues with the existing explanations. Stambaugh, Yu, and Yuan (2015) find that when examined for the subsample of over-priced and under-priced stocks, the relations between mispricing and idiosyncratic volatility have opposite signs, which they argue is a challenge to the existing explanations of the idiosyncratic volatility anomaly. Similarly, Liu, Stambaugh, and Yuan (2018) show that while the security market line for over-priced stocks is flatter than that predicted by the standard CAPM theory as documented in the literature, the security market line for under-priced stocks is not flatter if not steeper. They argue that the existing explanations of the beta anomaly are difficult to reconcile with this evidence. They argue further that the beta anomaly is in fact closely related to the idiosyncratic volatility anomaly as a result of the positive correlation between beta and idiosyncratic volatility.

In this paper, we provide an explanation of the beta and idiosyncratic volatility anomalies that is consistent with the findings of Stambaugh, Yu, and Yuan (2015) and Liu, Stambaugh, and Yuan (2018). The individuals in our model are rational. The financial markets in our model are frictionless. The key ingredient of our model is that investors do not have perfect knowledge of the probability distribution of stock returns. As a consequence, investors ask for a premium as the compensation for that ambiguity. That premium is the mis-pricing, relative to the CAPM. Under natural assumptions, the premium exhibits a pattern that is consistent with the beta and idiosyncratic volatility anomalies.

In our model, agents are homogeneous and are fully aware that there is ambiguity about the probability law of stock returns and the data can only provide an approximation to the true distribution. Due to their aversion to ambiguity, they adjust their portfolios computed according to a reference distribution to account for the ambiguity. The adjustment leads to equilibrium
returns that deviate from those computed according to the reference distribution. We show that
the deviation can be tracked by two factor portfolios, one for the ambiguity in the expected returns
of the stocks and the other for the ambiguity in the covariances of the returns of the stocks. As
such the premia on those two factors (portfolios) are interpreted as the premia for the two sources
of ambiguity. It should, however, be emphasized that those two factors are not factors in the
traditional sense. They do not track any fundamental macro or aggregate risks. They capture
instead the systematic ambiguity in the stock returns.

When agents are ambiguity averse, the two factors earn positive ambiguity premia. Variation
in the loadings of stocks on these two factors lead to variation in the cross section of expected
returns. Stocks that have higher loading on those factors earn higher premia, while stocks that
have lower or negative loading on those factors earn lower or even negative premia. As there is no
good reason to believe that the reference distribution is related to the level of ambiguity, beta of
stocks calculated according to the reference distribution is unlikely to be related to the systematic
ambiguity of the stocks. As a consequence, if the stocks are double-sorted on mis-pricing and beta
or idiosyncratic volatility, the alphas can and in fact are likely to exhibit the pattern as shown in

Through simulation we show that our model produces qualitatively similar patterns of alphas
as shown in the literature. The security market line is flatter than predicted by CAPM. The overall
idiosyncratic volatility-return relation is negative. However, the beta-return relation is negative
and stronger among over-priced stocks while positive and weaker among under-priced stocks, and
the idiosyncratic volatility-return relation is negative and stronger among over-priced stocks, but
positive and weaker among under-priced stocks.

Our paper is related to two branches of the literature. One branch is that on ambiguity and
its implications for asset prices. To model ambiguity averse agents, we follow the multiple-prior
approach of Gilboa and Schmeidler (1989). The dynamic version of it is proposed by Epstein and
Schneider (2003). In the study of asset pricing implications of ambiguity, similar approach has been
taken by Dow and Werlang (1992), Epstein and Wang (1994, 1995), Chen and Epstein (2002) and
Epstein and Miao (2003), Kogan and Wang (2003), Easley and O’Hara (2009, 2010), among many
others. An alternative approach to modeling ambiguity averse agents is introduced by Hansen and
Sargent (2001) and Anderson, Hansen, and Sargent (2003). That approach is taken by Uppal and
ambiguity preference, approach to modeling ambiguity averse agents is introduced by Klibanoff,
Marinacci, and Mukerji (2005). Klibanoff, Marinacci, and Mukerji (2009), Hayashi and Miao (2011) provide a dynamic axiomatization of the smooth ambiguity preference. Ju and Miao (2012) propose a generalized recursive smooth ambiguity model which permits a three-way separation among risk aversion, ambiguity aversion, and inter-temporal substitution in a consumption-based asset-pricing model. The innovation of our model is that it allows for ambiguity both in the mean and in the variance-covariance matrix, while most of the existing literature assumes away the ambiguity in the variance-covariance matrix. Epstein and Ji (2013) consider ambiguity in the volatility of one asset. Liu and Zeng (2017) study the effect of correlation ambiguity on portfolio under-diversification. The paper that is closely related to ours is Kogan and Wang (2003). One difference is our introduction of ambiguity in variance-covariance matrix. The key difference is, however, in our focus on the role of ambiguity for understanding of the beta and the idiosyncratic volatility anomalies.

The second branch is the large literature on the beta anomaly and the idiosyncratic volatility anomaly, which is impossible to review completely given the limited space. Blitz, Falkenstein, and van Vliet (2014), Liu, Stambaugh, and Yuan (2018), and Hou and Loh (2016) provide excellent summaries of the literature. There several arguments in the existing explanations of the two anomalies. One common argument is based on trading constraints. For example, in their explanation of the flat security market line, Black (1972) assumes constraint on riskless borrowing. Frazzini and Pedersen (2014) assumes leverage constraint, Hong and Sraer (2016) and Liu, Stambaugh, and Yuan (2018) assume short-sale constraint. Another common argument is that investors exhibit particular preferences. It can be due to the desire to benchmark their portfolios (Baker, Bradley, and Wurgler (2011) and Christoffersen and Simutin (2016)), or preferences for positive skewness (Barberis and Huang (2008), Boyer, Mitton, and Vorkink (2010)), lottery-like payoffs (Bali, Cakici, and Whitelaw (2011)). Other explanation includes those based on earnings surprises (Jiang, Xu, and Yao (2009), Wong (2011)), one-month return reversal (Fu (2009), Huang et al. (2010)), illiquidity (Bali and Cakici (2008)), unpriced information risk (Johnson (2004)), and a missing factor (Chen and Petkova (2012)). As argued by Stambaugh, Yu, and Yuan (2015) and Liu, Stambaugh, and Yuan (2018) all the existing explanations have difficulty in reconciling with the their empirical findings.

The remainder of this paper is organized as follows. Section 2 describes our model. Section 3 presents the equilibrium asset pricing implications. Section 4 focus on the role of ambiguity for understanding beta and idiosyncratic anomalies. Section 5 summarizes the results and concludes.
2 The Model

2.1 The Setting

Similar to that in Kogan and Wang (2003), we consider a frictionless representative agent economy where the agent has constant absolute risk aversion utility with risk aversion parameter $\gamma > 0$,

\[U(x) = -\frac{e^{-\gamma x}}{\gamma}, \]

The agent is endowed with an initial wealth W_0, which is, without loss of generality, assumed to be equal to one. Consumption takes place at the end of the period. The agent trades $N+1$ assets, one riskless asset with riskless return r and N risky assets whose returns follow a joint normal distribution. The representative agent knows that the returns are jointly normally distributed. She is, however, ambiguous about the expected return vector μ and variance-covariance matrix Ω. It is this ambiguity that differentiate our setting from that of the CAPM theory. We turn now to the description of the ambiguity and the agent’s aversion to it.

2.2 Ambiguity and Ambiguity Averse Preferences

Due to the ambiguity, the agent’s preference can not be represented by the standard expected utility. It is instead represented by a max-min utility (Gilboa and Schmeidler (1989)).

\[
\min_{Q \in \mathcal{P}} \{ E^Q[u(W)] \},
\]

where \mathcal{P} is a set of probability priors.

For our study, the specification of \mathcal{P} is important. It is a confidence region around a reference probability measure P. Specifically, the set of priors, \mathcal{P}, is assumed to take the form

\[
\mathcal{P} = \left\{ Q : v_{J_k}^\top \Omega_{J_k}^{-1} v_{J_k} \leq 2\eta_{1,k}, \ tr(\Omega_{J_k}^{-1} U_{J_k}) - \ln |J_k + \Omega_{J_k}^{-1} U_{J_k}| \leq 2\eta_{2,k}, \ k = 1, ..., K \right\}
\]

where Q are probability measures under which the returns of the assets are jointly normally distributed with density function given by

\[f_Q(R) = (2\pi)^{-N/2} |\Omega|^{-1/2} e^{-\frac{1}{2}(R-\bar{\mu})^\top \Omega^{-1}(R-\bar{\mu})}, \]

J_k is a subset of $\{1, 2, \ldots, N\}$, $v = (\mu - \bar{\mu})$, $U = (\bar{\Omega} - \Omega)$, and v_{J_k} denotes the sub-vector consisting of the elements of v in the subset J_k. All the other notations with subscript J_k have similar meaning.
In the set \mathcal{P}, the probability measure for which $v = 0$ and $U = 0$ is the reference model and is denoted by P. The density function of the return distribution under P is given by

$$f(R) = (2\pi)^{-N/2}|\Omega|^{-1/2}e^{-\frac{1}{2}(R-\mu)^\top\Omega^{-1}(R-\mu)}.$$

The motivation of the specific form of \mathcal{P} is the same as in Kogan and Wang (2003) and Uppal and Wang (2003), which will be briefly described shortly. It is essentially a confidence region defined by log likelihood ratio or relative entropy (Anderson, Hansen, and Sargent (2003) and Uppal and Wang (2003)). In Kogan and Wang (2003), as there is no ambiguity about the variance-covariance matrix, $\eta_{2,k} = 0$, for $k = 1, \ldots, K$. The \mathcal{P} in (2) can accommodate ambiguity both in the mean and in variance-covariance matrix.

We now provide the detailed explanation of what set \mathcal{P} captures. We do so with two elaborated examples.

2.2.1 A Single Source of Information

As the true probability law of asset returns is unknown, an econometrician has to estimate a model of asset returns based on the data available. Suppose that there is only a single data source of the stock returns and the result of the estimation is the reference model P. This is the case where $K = 1$ and $J_1 = \{1, \ldots, N\}$. As the data is typically limited, the econometrician is not completely sure that his reference model P is indeed the true model. So he provides, along with the reference model P, a measure of his confidence that the true model is not far from the reference model, say, a 95% confidence region. Let Q be a probability measure that is potentially the true model. As the representative agent knows that the returns follow a joint normal distribution, the return under Q has density given by

$$f_Q(R) = (2\pi)^{-N/2}|\hat{\Omega}|^{-1/2}e^{-\frac{1}{2}(R-\hat{\mu})^\top\hat{\Omega}^{-1}(R-\hat{\mu})},$$

Under this measure, the expected return vector is $\hat{\mu}$ and the variance-covariance matrix is $\hat{\Omega}$. One measure of confidence the econometrician can use is the log likelihood ratio, $E^Q[\ln \xi]$, where $\xi = dQ/dP$ is the density of Q with respect to P. In terms of the reference probability, the likelihood ratio is the relative entropy, $E[\xi \ln(\xi)]$, of Q with respect to P. As argued in Kogan and Wang (2003) and Uppal and Wang (2003), $E[\xi \ln(\xi)]$ is a good approximation of the empirical log-likelihood when the number of observations is large.
It is readily verified that
\[
\frac{dQ}{dP} = \xi(R) = \frac{[\Omega]^{1/2} e^{-\frac{1}{2}(R-\mu)^\top \Omega^{-1}(R-\mu) + \frac{1}{2}(R-\mu)^\top \Omega^{-1}(R-\mu)} \Omega^{1/2}}{[\Omega]^{1/2}}.
\]
A bit of algebra shows
\[
E[\xi \ln(\xi)] = \frac{1}{2} \left[\text{tr}(\Omega^{-1}(\hat{\Omega} - \Omega)) - \ln \left| I + \Omega^{-1}(\hat{\Omega} - \Omega) \right| + (\mu - \hat{\mu})^\top \Omega^{-1}(\mu - \hat{\mu}) \right]
\]
(3)
Suppose that Q is the true model and it is in the confidence region specified in (2). Consider first the case where there is no ambiguity about the true variance-covariance matrix. Following (3) the relative entropy in this case, denoted by \(L_{\text{mean}}\), is given by
\[
L_{\text{mean}}^Q = \frac{1}{2} (\mu - \hat{\mu})^\top \Omega^{-1}(\mu - \hat{\mu})
\]
Thus the relative entropy of Q, \(L_{\text{mean}}^Q < \eta_{1,1}\). Suppose next the case where there is no ambiguity about the true mean return vector. The relative entropy in this case, denoted \(L_{\text{cov}}\), is given by
\[
L_{\text{cov}}^Q = \frac{1}{2} \left(\text{tr}(\Omega^{-1}(\hat{\Omega} - \Omega)) - \ln \left| I + \Omega^{-1}(\hat{\Omega} - \Omega) \right| \right)
\]
This in this case, the relative entropy of Q, \(L_{\text{cov}}^Q < \eta_{2,1}\).

Given \(L_{\text{mean}}^Q\) and \(L_{\text{cov}}^Q\), what (2) says is that for Q to be in \(\mathcal{P}\), its mean likelihood, measured by \(L_{\text{mean}}^Q\), must be less than \(\eta_{1,1}\) and its variance-covariance likelihood, measured by \(L_{\text{cov}}^Q\), must be less than \(\eta_{2,1}\).

2.2.2 Multiple Sources of Information
More realistically, the investors can obtain multiple data sources on the returns and each data source pertains to only a subset of the risky assets. To model multiple sources of information, let \(J_k = \{j_1, j_2, \ldots, j_{N_k}\}, \ k = 1, 2, \ldots, K\), be subsets of \(\{1, 2, \ldots, N\}\), and \(\cup_k J_k = \{1, 2, \ldots, N\}\). So overall the agent has some information about each asset. The distribution of asset returns for any source of information \(J_k\) is \(R_{J_k} = (R_{j_1}, R_{j_2}, \ldots, R_{j_{N_k}})\). We assume the reference probability law implied by the various sources of information coincides with the marginal distributions of the reference model \(\mathcal{P}\) (denoted as \(P_{J_k}\)). The density function of \(R_{J_k}\) under the true model Q is
\[
f(R_{J_k}) = (2\pi)^{-1/2} |\hat{\Omega}_{J_k}|^{-1/2} e^{-\frac{1}{2}(R_{J_k} - \hat{\mu}_{J_k})^\top \hat{\Omega}_{J_k}^{-1}(R_{J_k} - \hat{\mu}_{J_k})},
\]
which is the marginal distribution of Q (denoted as \(Q_{J_k}\)), where \(\hat{\mu}_{J_k}\) and \(\hat{\Omega}_{J_k}\) are the mean return vector and variance-covariance return matrix of \(R_{J_k}\). Thus, the likelihood ratio of the marginal
distribution Q_{J_k} with respect to P_{J_k} is

$$
\xi(R_{J_k}) = \frac{|\Omega_{J_k}|^{\frac{1}{2}}}{|\Omega_{J_k}|^{\frac{1}{2}}} e^{-\frac{1}{2}(R_{J_k} - \bar{\mu}_{J_k})^T \Omega_{J_k}^{-1}(R_{J_k} - \bar{\mu}_{J_k}) + \frac{1}{2}(R_{J_k} - \bar{\mu}_{J_k})^T \Omega_{J_k} (R_{J_k} - \bar{\mu}_{J_k})}.
$$

For convenience, we use the same notation $\hat{\Omega}_{J_k}^{-1} (\Omega_{J_k}^{-1})$ to denote the $N \times N$-matrix whose elements in the j_m-th row and j_n-th column, for j_m and j_n in J_k, is the same as the elements in the m-th row and n-th column of the matrix $\hat{\Omega}_{J_k}^{-1} (\Omega_{J_k}^{-1})$, otherwise it is zero. Then the relative entropy is

$$
E[\xi_{J_k} \ln(\xi_{J_k})] = \frac{1}{2} \left[tr(\Omega_{J_k}^{-1} (\hat{\Omega}_{J_k} - \Omega_{J_k})) - \ln |I + \Omega_{J_k}^{-1} (\hat{\Omega}_{J_k} - \Omega_{J_k})| + (\mu - \bar{\mu})^T \Omega_{J_k}^{-1} (\mu - \bar{\mu}) \right] \quad (4)
$$

With expression (4), we see that for a Q to be in the set \mathcal{P}, its mean likelihood and variance-covariance likelihood based on information k must be less than $\eta_{1,k}$ and $\eta_{2,k}$, respectively, for all $k = 1, \ldots, K$.

3 Portfolio Choice

Because of the presence of ambiguity, the representative agent’s portfolio choices will be different from that when there is no ambiguity. The agent will not only consider the trade-off between risk and return, but also the trade-off between those with ambiguity. To understand how the agent trades off ambiguity, risk and return, it is useful to introduce a metric for ambiguity. In the next two subsections, we will introduce our metric for mean return and variance-covariance ambiguity, respectively.

3.1 Measure of Mean Ambiguity

Suppose first that there is no variance-covariance ambiguity. In this case, the relative entropy including mean ambiguity only becomes

$$
E[\xi \ln(\xi)] = \frac{1}{2} (\mu - \bar{\mu})^T \Omega^{-1} (\mu - \bar{\mu}),
$$

Let θ denote the portfolio of the risky assets of the agent and $\theta^T R$ the portfolio return. The metric we use to measure the ambiguity in the mean return of the portfolio is given as

$$
\Delta_1(\theta) = \sup_{Q \in \mathcal{P}_1} \{ \theta^T (\mu - \bar{\mu}) \}, \quad (5)
$$

where

$$
\mathcal{P}_1 = \{ Q : E[\xi_{J_k} \ln(\xi_{J_k})] = (\mu - \bar{\mu})^T \Omega_{J_k}^{-1} (\mu - \bar{\mu}) \leq 2\eta_{1,k}, \ k = 1, 2, \ldots, K \}.
$$
By construction of the metric, the difference between the expected return of the portfolio under the reference model \(P \) and the true expected return of the portfolio, \(\theta^T(\mu - \hat{\mu}) \), falls into the interval \([-\Delta_1(\theta), \Delta_1(\theta)]\). Thus \(\Delta_1(\theta) \) is the maximum possible error in using the reference model \(P \) to gauge the true expected return of the portfolio, given the confidence region described by \(\mathcal{P}_1 \). Clearly, the smaller the \(\Delta_1(\theta) \), the less ambiguity there is about the expected return of the portfolio. Lemma 1 provides more on the metric.

Lemma 1 Let \(\theta \) be a portfolio of the risky assets of the agent. A solution to (5) exists. If the portfolio \(\theta \) is such that \(\theta_i \neq 0 \) for all \(i = 1, \ldots, N \), then the solution \(v(\theta) \) is unique and is given by,

\[
v(\theta) = \Omega_{\mu}(\theta)\theta,
\]

where \(\Omega_{\mu}(\theta) \)

\[
\Omega_{\mu}(\theta) = \left(\sum_{k=1}^{K} \lambda_{1,k}(\theta)\Omega_{J_k}^{-1} \right)^{-1}
\]

and \(\lambda_{1,k}, k = 1, \ldots, K, \) are Lagrangian multipliers for the \(K \) constraints in the definition of \(\mathcal{P}_1 \).

Obviously, \(\Delta_1(\theta) = \theta^T v(\theta) \) depends on the set \(\mathcal{P}_1 \) and the portfolio \(\theta \). The Lagrangian multipliers \(\lambda_{1,k}(\theta), k = 1, \ldots, K, \) measure how much each source of information contributes to the ambiguity of the portfolio. If \(\lambda_{1,k}(\theta) = 0, \) for example, the \(k \)th source of information does not help to reduce the ambiguity for the portfolio \(\theta \).

3.2 The Measure of Variance-Covariance Ambiguity

Now suppose that there is no ambiguity in the mean return vector. In this case,

\[
E\xi \ln \xi = \frac{1}{2} \left(tr(\Omega^{-1}(\bar{\Omega} - \Omega)) - \ln[I + \Omega^{-1}(\bar{\Omega} - \Omega)] \right)
\]

We define the measure of the ambiguity in variance-covariance by

\[
\Delta_2(\theta) = \sup_{Q_2 \in \mathcal{P}_2} \{ \theta^T U \theta \},
\]

where \(U = (\bar{\Omega} - \Omega) \) and

\[
\mathcal{P}_2 = \left\{ Q : \frac{1}{2} \left[tr(\Omega_{J_k}^{-1}(\bar{\Omega}_{J_k} - \Omega_{J_k})) - \ln[I_{J_k} + \Omega_{J_k}^{-1}(\bar{\Omega}_{J_k} - \Omega_{J_k})] \right] \leq \eta_{2,k}, \; k = 1, 2, \ldots, K \right\}.
\]

If \(\hat{\Omega} \) is the true variance-covariance matrix, then the true variance of the portfolio return is \(\theta^T \hat{\Omega} \theta \). However, under the reference model \(P \), the variance is \(\theta^T \Omega \theta \). Thus, by using the reference model,
given the confidence region described by P_2, the maximum error in the variance of the return of the portfolio is given by $\Delta_2(\theta)$.

Lemma 2 If the portfolio θ is such that $\theta_i \neq 0$ for all $i = 1, \ldots, N$, then the solution of (7) exists and is unique.

3.3 Portfolio Choice

Having defined the preference of the investor and the measure of ambiguity, we now turn to the portfolio choice problem of the agent. Using the utility function from (1), the representative agent’s utility maximization problem is

$$
\sup_{\theta} \min_{Q \in \mathcal{P}} \{E^Q[-\gamma^{-1}e^{-\gamma W}]\},
$$

where the set \mathcal{P} is as given in (2), subject to the agent’s wealth constraint

$$
W = W_0[\theta(R - r) + 1 + r].
$$

where 1 is the N-vector $(1, 1, \ldots, 1)^\top$.

Proposition 3 The agents utility maximization problem has a solution θ given by,

$$
\theta = \gamma^{-1}(\Omega + U(\theta))^{-1}(\mu - r1 - v(\theta)),
$$

where $v(\theta)$ and $U(\theta)$ are the solutions of (5) and (7), respectively, given the portfolio θ.

The solution (8) is fairly intuitive. When there is no ambiguity, that is, $v(\theta) = 0$ and $U(\theta) = 0$, (8) reduces to the standard mean-variance optimal portfolio. When there is only ambiguity in the expected returns, (8) reduces to the formula given in Kogan and Wang (2003). More generally, (8) says that in the presence of ambiguity, the agent behaves as if the true expected return vector of the assets is given by $\mu - r1 - v(\theta)$ and the variance-covariance matrix is given by $\Omega + U(\theta)$. The expected portfolio return is then $\theta(\mu - r1) + (1 + r) - \Delta_1(\theta)$ and the variance of the portfolio return is $\theta^\top \Omega \theta + \Delta_2(\theta)$. That is, the agent behaves as if the expected portfolio return is that under the reference model provided by the econometrician adjusted downward by $\Delta_1(\theta)$, which is the ambiguity in the mean, and the variance is that under the reference model adjusted upward by $\Delta_2(\theta)$, which is the ambiguity in the variance.
4 Equilibrium Expected Returns

To derive the equilibrium, let θ_m denote the market portfolio of risky assets. In equilibrium, the representative agent holds the market portfolio. By Proposition 3, the expected return on the individual stocks and on the market must satisfy

$$\mu - r1 = \gamma \Omega \theta_m + \gamma U(\theta_m)\theta_m + v(\theta_m)$$ \hspace{1cm} (9)

$$\mu_m - r = \gamma \theta_m^\top \Omega \theta_m + \gamma \theta_m^\top U(\theta_m)\theta_m + \Delta_1(\theta_m).$$ \hspace{1cm} (10)

In equilibrium, the representative agent must hold the market portfolio of the risky assets. The following theorem follows readily.

Theorem 4 The equilibrium vector of expected excess returns is given by

$$\mu - r1 = \lambda \beta + \lambda_\mu \beta_\mu + \lambda_\Omega \beta_\Omega,$$ \hspace{1cm} (11)

where

$$\beta = \frac{\Omega \theta_m}{\theta_m^\top \Omega \theta_m}, \quad \lambda = \gamma \theta_m^\top \Omega \theta_m = \gamma \sigma_m^2$$

$$\beta_\mu = \frac{\Omega_\mu(\theta_m)\theta_m}{\theta_m^\top \Omega_\mu(\theta_m)\theta_m}, \quad \lambda_\mu = \Delta_1(\theta_m) = \theta_m^\top \Omega_\mu(\theta_m)\theta_m$$

$$\beta_\Omega = \frac{U(\theta_m)\theta_m}{\theta_m^\top U(\theta_m)\theta_m}, \quad \lambda_\Omega = \gamma \Delta_2(\theta_m) = \gamma \theta_m^\top U(\theta_m)\theta_m.$$

where $\Omega_\mu(\theta_m)$ and $U(\theta)$ are solutions of (5) and (7), respectively.

Theorem 4 provides the characterization of equilibrium asset expected returns. It has rich implications for the cross section of asset returns. Equation (11) is the key equation that the analysis of beta anomaly and idiosyncratic volatility anomaly in Section 6 will be based on. The three terms on the right hand side of equation (11) have the natural interpretation that $\lambda \beta$ is the risk premium, $\lambda_\Omega \beta_\Omega$ is the variance-covariance ambiguity premium, and $\lambda_\mu \beta_\mu$ is the mean ambiguity premium. Clearly, when there is no ambiguity, the second and third terms on the right hand side of (11) are equal to zero and (11) reduces to the standard CAPM. The β is then the standard CAPM beta. Just as the interpretation for the risk premium where λ is the price of risk and β is the systematic risk, λ_μ and λ_Ω are the prices of ambiguity in the expected return and variance-covariance matrix, and β_μ and β_Ω are the systematic ambiguities in the expected return and variance-covariance matrix, respectively, which will be explained shortly.
While the risk premium is well understood from the standard CAPM theory, what exactly are those ambiguity premia and how are they related to the ambiguity introduced earlier in (5) and (7)? To understand the relation, consider first the case where there is only mean ambiguity. Let \(\theta_\mu \) be the portfolio defined by \(\theta_\mu = \Omega^{-1}\Omega_\mu(\theta_m)\theta_m \). The return of the portfolio is \(R_\mu = \theta_\mu^T R \). By Lemma 1, \(\nu(\theta_m) = \Omega_\mu(\theta_m)\theta_m = \Omega \theta_\mu \). Next let \(\theta \) be an arbitrary portfolio. As shown in Kogan and Wang (2003), the total ambiguity of the portfolio \(\theta \) is \(\theta^\top \nu(\theta) \) and its systematic ambiguity is \(\theta^\top \nu(\theta_m) \). Using the portfolio \(\theta_\mu \), the systematic mean ambiguity of the portfolio \(\theta \) is \(\theta^\top \Omega \theta_\mu \), which is the covariance between the return of the portfolio \(\theta_\mu \) and that of \(\theta_\mu \). According to Theorem 4, the mean ambiguity beta of the portfolio \(\theta \) is

\[
\beta_\mu(\theta) = \frac{\theta^\top \Omega \mu(\theta_m)\theta_m}{\theta_m^\top \Omega \mu(\theta_m)\theta_m} = \frac{\theta^\top \Omega \theta_\mu}{\theta_m^\top \Omega \mu(\theta_m)\theta_m} = \frac{\text{cov}(R_\theta, R_{\theta_\mu})}{\theta_m^\top \Omega \mu(\theta_m)\theta_m}
\]

Therefore, the mean ambiguity beta of the portfolio \(\theta_\mu \), \(\beta_\mu(\theta_\mu) \), is zero if and only if the systematic mean ambiguity of the portfolio \(\theta \) is zero. In other words, a portfolio earns mean ambiguity premium if and only if its systematic mean ambiguity is non-zero, and that systematic ambiguity is captured by the covariance between the return of the portfolio \(\theta_\mu \) and that of \(\theta_\mu \). Because of the relationship between the systematic mean ambiguity of \(\theta \) and the covariance between \(R_\theta \) and \(R_{\theta_\mu} \), \(\theta_\mu \) is a factor portfolio for the ambiguity of the expected returns. Any asset or portfolio that has non-zero loading on the factor will earn a (mean) ambiguity premium.

Similarly, the total variance-covariance ambiguity of the portfolio \(\theta \) is \(\theta^\top U(\theta) \theta \) and its systematic ambiguity is \(\theta^\top U(\theta_m)\theta_m \). Let \(\theta_\Omega \) be the portfolio defined by \(\theta_\Omega = \Omega^{-1}U(\theta_m)\theta_m \) and \(R_{\Omega} = \theta_\Omega^T R \) be its return. According to Theorem 4, the variance-covariance ambiguity beta of the portfolio \(\theta \) is

\[
\beta_\Omega(\theta) = \frac{\theta^\top U(\theta_m)\theta_m}{\theta_m^\top U(\theta_m)\theta_m} = \frac{\theta^\top \Omega \Omega_\Omega}{\theta_m^\top U(\theta_m)\theta_m} = \frac{\text{cov}(R_\theta, R_{\theta_\Omega})}{\theta_m^\top U(\theta_m)\theta_m}
\]

That is, the variance-covariance ambiguity beta of the portfolio \(\theta_\Omega \), \(\beta_\Omega(\theta_\Omega) \), is zero if and only if the systematic variance-covariance ambiguity of the portfolio \(\theta \) is zero. The portfolio earns variance-covariance ambiguity premium if and only if its systematic variance-covariance ambiguity, captured by \(\text{cov}(R_\theta, R_{\theta_\Omega}) \), is non-zero. The portfolio \(\theta_\mu \) is a factor portfolio for the variance-covariance ambiguity.

As a simple example to illustrate the contrast between the standard CAPM and Theorem 4, consider a market neutral strategy. When there is no ambiguity, a zero-beta portfolio \(\theta \) that neutralizes the standard market risk \((\theta^\top \beta = 0) \) delivers the market neutral returns. When there is ambiguity, however, the return on that portfolio may no longer be market neutral. The three
factor structure described in Theorem 4 suggests that a portfolio θ that also neutralize ambiguity, that is, the portfolio such that $\theta^T \beta = 0$, $\theta^T \beta_\mu$ and $\theta^T \beta_\Omega = 0$, is more likely to be market neutral.

Theorem 4 provides a three-factor structure for the expected returns of the asset. A fundamental question is whether such a prediction of Theorem 4 is empirically distinguishable from that of the CAPM theory. We provide two examples to elaborate on that.

One Source of Information

When there is only one source of information ($K = 1$), it can be shown that

$$\mu - r1 = (\gamma + \gamma \delta_1 + \delta_2) \Omega \theta_m$$

where $\delta_1 > 0$ and $\delta_2 > 0$ are two positive numbers. Thus it is as if the representative agent lives in a world with risk only and she has a higher level of risk aversion. The standard CAPM holds. This is reminiscent of the result in Anderson, Hansen, and Sargent (2003). This example shows that the presence of ambiguity does not necessarily leads to violation of CAPM. In this case, the standard zero-beta portfolio will neutralize with the confidence determined by \mathcal{P}, the uncertainty from both risk and ambiguity.

Multiple Non-overlapping Sources of Information

Another interesting case is one of non-overlapping sources of information. Suppose that there are K sources of information and they are non-overlapping in the sense that each source of information is about a subset of the N assets and the subsets do not overlap. In this case we can divide N assets into K non-overlapping groups and solve (5) and (7) to get explicit expressions for $\Delta_1(\theta)$ and $\Delta_2(\theta)$.

Lemma 5 Let θ be a portfolio weight vector and θ_{J_k} be the sub-vector of portfolio weights on assets in group k for $k = 1, \ldots, K$. If the K sources of information are non-overlapping, then the solutions of (5) and (7) are given by,

$$v(\theta) = \begin{bmatrix} \sqrt{2\eta_{1,1}}/\sigma_{J_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{2\eta_{1,K}}/\sigma_{J_K} \end{bmatrix} \begin{bmatrix} \theta_{J_1} \\ \vdots \\ \theta_{J_K} \end{bmatrix}$$

(12)
and

\[U(\theta) = \begin{bmatrix}
 2\Omega_{11}\theta_{1j}\theta_{1j}^\top \Omega_{11} & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & 2\Omega_{K1}\theta_{Kj}\theta_{Kj}^\top \Omega_{K1}
\end{bmatrix}
\] \hspace{1cm} (13)

where \(\sigma_{jk}^2(\theta_m) = \theta_{1j}^\top \Omega_{1j}\theta_{1j}, \lambda_{1,k} \) and \(\lambda_{2,k} \) are given as the solutions of

\[\lambda_{1,k} = \sqrt{2\eta_{1,k} \Omega_{1j}\theta_{1j} / 2\eta_{1,k}}, \quad 2\eta_{2,k} = -\ln \left(1 + \frac{2}{\lambda_{2,k} - 2} \right) + \frac{2}{\lambda_{2,k} - 2}. \] \hspace{1cm} (14)

Given the explicit solutions, it follows from Theorem (4) that, for the asset \(j \) in group \(k \), the mean ambiguity beta is, for \(j \in J_k \),

\[\beta_{\mu,j} = \frac{1}{\Delta_1(\theta_m) v_j(\theta_m)} = \frac{\sqrt{2\eta_{1,k} \sigma_{jk} J_k}}{\sum_{k=1}^K 2\eta_{1,k} \sigma_{jk}} \beta_{J_k,j}, \]

where \(\beta_{J_k,j} = \text{cov}(r_j, \theta_{jk}^\top R_{jk}) / \sigma^2(\theta_{jk}) \). Interestingly, the mean ambiguity beta of the market portfolio is the risk beta of portfolio \(\theta_{J_k} \) scaled down by a weight, with the weight being determined by the ambiguity.

For the variance-covariance ambiguity beta,

\[\beta_{\Omega,j} = \frac{[U(\theta_m)]_j}{\theta_m^\top U(\theta_m)} \frac{\theta_{1j}^\top U_{j_k}(\theta_m) \theta_{1j} [U_{j_k}(\theta_m)]_j}{\Delta_2(\theta_m)} \frac{\theta_{1j}^\top U_{j_k}(\theta_m) \theta_{1j}}{\theta_{1j}^\top U_{j_k}(\theta_m) \theta_{1j}} = \frac{2}{\lambda_{2,k} - 2} \sigma_{jk}^2 \beta_{J_k,j}. \]

Putting things together, we have the following corollary,

Corollary 6 If the \(K \) sources of information are non-overlapping, then the expected return on the individual asset \(j \) in the group \(k \) is given by

\[\mu_j - r = \gamma \sigma_m^2 \beta_j + \left(\sqrt{2\eta_{1,k} \sigma_{jk} J_k} + \frac{2\gamma \sigma_{jk}^2}{\lambda_{2,k} - 2} \right) \beta_{J_k,j}. \] \hspace{1cm} (15)

Corollary 6 shows that when there are more than one sources of information on the probability distribution of the returns, the equilibrium expected returns in our model differs from those in the CAPM theory.

5 Equilibrium Asset Prices

In this section, to prepare for the analysis in Section 6, we rewrite the equilibrium returns in Theorem 4 in terms of exogenous dividends and calculate the equilibrium prices. Suppose that
the vector of exogenous dividends D follows a normal distribution. The reference distribution is one with mean vector d and variance-covariance matrix Σ. Let P denote the equilibrium price vector. Let θ_m denote the market portfolio in terms of portfolio weights and $\tilde{\theta}_m$ denotes the market portfolio in terms of shares. Then

$$R_j = \frac{D_j}{P_j} - 1, \quad \mu_j = \frac{d_j}{P_j} - 1, \quad \Omega = \text{diag}(1/P)\Sigma\text{diag}(1/P),$$

$$R_m = \frac{\tilde{\theta}_m^\top D}{\tilde{\theta}_m^\top P} - 1, \quad \theta_m = \text{diag}(P)\tilde{\theta}_m, \quad (\Omega\theta_m) = \text{diag}(1/P)\Sigma\tilde{\theta}_m.$$

where $\text{diag}(x)$ is the diagonal matrix whose diagonal elements are given by the elements of vector x. Note that $\tilde{\theta}_m^\top 1$ is not necessarily equal to one as the riskless rate r is exogenously given.

When there is no ambiguity, the equilibrium price vector is given by,

$$P = \frac{1}{1 + r}(d - \gamma\Sigma\tilde{\theta}_m),$$

and the beta is given by

$$\beta = \frac{1}{\tilde{\theta}_m^\top \Sigma\tilde{\theta}_m}\text{diag}(1/P)\Sigma\tilde{\theta}_m.$$

The expected excess return of individual asset and market portfolio are respectively,

$$\mu - r1 = \gamma\text{diag}(1/P)\Sigma\tilde{\theta}_m, \quad \mu_m - r = \gamma\tilde{\theta}_m^\top \Sigma\tilde{\theta}_m.$$

The CAPM holds,

$$\mu_j - r = \frac{1}{P_j} \frac{(\Sigma\tilde{\theta}_m)_j}{\tilde{\theta}_m^\top \Sigma\tilde{\theta}_m} (\mu_m - r).$$

When there is mean ambiguity and variance-covariance ambiguity under independent source of information, Corollary 6 in Section 4 shows that the equilibrium price for the asset j in group k is

$$P_j = \frac{1}{1 + r} \left(d_j - \gamma(\Sigma\tilde{\theta}_m)_j - \left(\frac{2\gamma_{1,k}}{\theta_{1,k}^\top \Sigma_{1,k}\theta_{1,k}} + \frac{2\gamma}{(\lambda_{2,j} - 2)} \right) (\Sigma_{1,k}\tilde{\theta}_{1,k})_j \right). \quad (16)$$

Now we turn to the understanding of the beta and idiosyncratic volatility anomalies.

6 Understanding Anomalies

As discussed in the introduction, the literature has provided several possible explanations of the beta and idiosyncratic volatility anomalies. In this section, we show that the theory developed in the preceding sections can be applied to provide an alternative understanding of the beta and IVOL anomalies. While a serious empirical evaluation is beyond the scope of this paper, the simulation exercise provided highlights the economic mechanism that underlies our explanation.
6.1 Over-Pricing and Under-Pricing

An analysis of anomaly typically starts with the mis-pricing of assets according to a benchmark asset pricing theory. To provide our analysis of the beta anomaly and the idiosyncratic volatility anomaly, we first define what we mean by over-pricing and under-pricing in our model.\(^1\)

The setting of our model is that of CAPM, except that the representative agent has max-min utility instead of the expected utility. Thus the benchmark theory for over-pricing and under-pricing is CAPM. That is,

\[
\mu_j - r = \alpha_j + (\mu_m - r) \beta_j,
\]

and a non-zero \(\alpha_j\) implies mis-pricing. Asset \(j\) is under-priced if \(\alpha_j > 0\). It is over-priced if \(\alpha_j < 0\).

It then follows from Theorem 4 that

\[
\alpha_j = [\lambda - (\mu_m - r)] \beta_j + \lambda \mu \beta \mu,j + \lambda \Omega \beta \Omega,j.
\]

Since \(\mu_m - r = \lambda + \lambda \mu + \lambda \Omega\),

\[
\alpha_j = \left(\lambda \mu \left[\frac{\beta \mu,j}{\beta_j} - 1\right] + \lambda \Omega \left[\frac{\beta \Omega,j}{\beta_j} - 1\right]\right) \beta_j.
\]

Equation (17) is the basis on which we provide our analysis of the beta and idiosyncratic volatility anomalies.

6.2 Beta Anomaly

In the classical CAPM of Sharpe (1964) and Lintner (1965) theory, stocks with higher betas should earn higher premia than stocks with lower betas. However, the empirical evidence shows that high-beta stocks earn too little compared to low-beta stocks (Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973)). As noted in the introduction, there are several explanations in the literature. Here in this section, based on the theory developed earlier, we provide an alternative explanation of the beta anomaly.

The basic idea is that when there is ambiguity, equilibrium return should compensate investors for bearing both risk and ambiguity. However, if the econometrician takes CAPM as the true model and uses realized returns to estimate the expected return and beta for each asset, he will see violation of CAPM and may misunderstand it as beta anomaly.

\(^1\)It should be noted that there is not a universal benchmark theory. The benchmark theory used typically depends on the particular empirical anomaly being evaluated and the particular study. The benchmark we provide is based on the mean-variance framework we used to develop our theory.
We focus on the special case of (17) where there are non-overlapping sources of information about the mean of the liquidating dividends. We assume there is no ambiguity about the variance-covariance matrix and simulate the model as follows.

1. Set the number of stocks n to be 1000. We make 1000 draws from the normal distribution $N(200, 5)$ as the mean vector d of the 1000 liquidating dividends.\(^2\) We use US stocks monthly price and return data to estimate the monthly variance-covariance matrix of the liquidating dividends Σ as follows. We randomly choose 1000 stocks (we require that each stock should have over 20 years’ monthly data) and calculate the correlation matrix. We then draw 1000 times from $N(0.45, 0.08)$ and take the absolute values of the 1000 draws as the elements of the diagonal of Σ.\(^3\) The supply of each asset equals to 1. The risk aversion coefficient is 2. The risk-free rate is set to be $r = 3\%$, annualized.

2. Assume that there are non-overlapping sources of information about mean ambiguity of the liquidating dividends. We divide the 1000 stocks into two groups of 500 each. Draw 600 times from the joint dividends distribution $N(d, \Sigma)$ and take those samples as realized dividends for the assets (dividend data for 50 years). Calculate the equilibrium return based on the simulated dividends, $r_{j,t} = D_{j,t}/P_j - 1$. The mean ambiguity confidence level of the first group and the second group are $\eta_1 = 200$ and $\eta_2 = 250$ respectively.

3. The econometrician uses those realized returns to run regressions to estimate CAPM beta and to calculate the variance of the residuals as Ivol for each asset. Calculate the average of excess returns of each asset as the true return and the average of market excess returns as the true market excess return. Then define the alpha as the difference between the true return and the product term of CAPM betas multiplying average market excess return. We also use alphas to proxy for mispricing.

4. We double-sort the stocks by mis-pricing (α) and beta into 5 quintiles each and obtain 5×5 cells. For each cell, we compute the average of the αs of the stocks in that cell. We also compute the t-statistics of the average.

\(^2\)The particular choice of the mean of this distribution is not very important, as the price is proportional to the mean dividend. The standard deviation is to ensure the mean returns have some variation.

\(^3\)This is a convenient way of generating the a 1000×1000 variance-covariance matrix of dividends whose correlation matrix mimic that of the 1000 stocks chosen.
Table 1: Alphas for Portfolios Sorted on Beta and Mispricing

The table reports the alpha for portfolios formed by an independent 5 × 5 sort on Beta and Mispricing.

<table>
<thead>
<tr>
<th>Mispricing</th>
<th>Beta Quintile</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quintile</td>
<td>Lowest</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Highest</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Alpha (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>over-priced</td>
<td>-0.66</td>
<td>-0.63</td>
<td>-0.59</td>
<td>-0.69</td>
<td>-0.80</td>
<td>-0.15</td>
</tr>
<tr>
<td>2</td>
<td>-0.24</td>
<td>-0.24</td>
<td>-0.26</td>
<td>-0.25</td>
<td>-0.24</td>
<td>-0.01</td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>0.27</td>
<td>0.25</td>
<td>0.25</td>
<td>0.24</td>
<td>0.26</td>
<td>-0.01</td>
</tr>
<tr>
<td>under-priced</td>
<td>0.66</td>
<td>0.65</td>
<td>0.67</td>
<td>0.71</td>
<td>0.72</td>
<td>0.07</td>
</tr>
<tr>
<td>Over-Under</td>
<td>-1.32</td>
<td>-1.28</td>
<td>-1.26</td>
<td>-1.40</td>
<td>-1.53</td>
<td></td>
</tr>
<tr>
<td>All stocks</td>
<td>0.10</td>
<td>0.05</td>
<td>0.04</td>
<td>-0.07</td>
<td>-0.13</td>
<td>-0.24</td>
</tr>
<tr>
<td>B. T statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-15.54</td>
<td>-17.74</td>
<td>-20.74</td>
<td>-19.17</td>
<td>-15.80</td>
<td>-0.33</td>
</tr>
<tr>
<td>3</td>
<td>1.97</td>
<td>-0.65</td>
<td>1.22</td>
<td>1.17</td>
<td>1.87</td>
<td>0.65</td>
</tr>
<tr>
<td>4</td>
<td>21.32</td>
<td>24.28</td>
<td>22.70</td>
<td>19.04</td>
<td>13.05</td>
<td>-0.40</td>
</tr>
<tr>
<td>under-priced</td>
<td>20.30</td>
<td>16.24</td>
<td>15.29</td>
<td>14.41</td>
<td>19.77</td>
<td>1.35</td>
</tr>
<tr>
<td>All stocks</td>
<td>3.29</td>
<td>1.80</td>
<td>1.35</td>
<td>-2.14</td>
<td>-2.85</td>
<td>-4.21</td>
</tr>
</tbody>
</table>
The result of the simulation is reported in the Table 1. Panel A reports the averages of the \(\alpha \) and Panel B reports the \(t \)-statistics of the averages. In the middle of Panel A are the \(5 \times 5 \) cells of double-sort. The last row reports the average of \(\alpha \) of all stocks sorted by beta. The second last row are the differences in \(\alpha \) between the most over-priced and the most under-priced stocks. The last column of Panel A shows the differences, \(H - L \), between the average \(\alpha \) of the stocks with the highest beta and that with the lowest beta.

The reported result is consistent with the existing literature. First, the last row of Panel A shows that there is a negative relation between \(\alpha \) and beta, which is the beta anomaly reported in Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973), among others. Next, differentiating between over-priced and under-priced stocks, the first row of Panel A shows that among over-priced stocks, there is a negative relationship between \(\alpha \) and beta, while the fifth row shows that among under-priced stocks, there is a positive relationship between \(\alpha \) and beta, but the relation is not statistically significant. That is, if over-priced and under-priced stocks are differentiated, there is beta anomaly in the over-priced stocks and there is no beta anomaly in the under-priced stocks. If anything, the relation between \(\alpha \) and beta for the under-priced stocks is more likely to be positive, opposite to the sign in the beta anomaly. The middle rows, which are for stocks that are not obviously mispriced, \(\alpha \) and beta exhibit a flat relation. Third, Panel B of Table 1 shows that the negative relations between \(\alpha \) and beta for all stocks and for over-priced stocks, measured by \(H - L \) in the last column in Panel A, are statistically significant, while the positive relation between \(\alpha \) and beta for under-priced stocks is not statistically significant at the usual levels of confidence. Overall, the pattern of \(\alpha \) reported in Table 1 is qualitatively similar to that reported in Liu, Stambaugh, and Yuan (2018).

The basic intuition can be explained as follows. Consider the case where there is ambiguity in the mean only, which is the case for the simulation. In that case, (17) reduces to

\[
\alpha_j = \lambda \mu \left[\frac{\beta_{\mu,j}}{\beta_j} - 1 \right] \beta_j. \tag{18}
\]

This equation suggests that for assets with positive betas, which is the case for most assets in the real world data and in our simulation, there is over-pricing if and only if \(\beta_{\mu,j} < \beta_j \). If \(\beta_{\mu,j} \) and \(\beta_j \) are un-correlated, then, for over-priced (under-priced) stocks with positive betas, \(\alpha_j \) averaged for each beta quintile is decreasing (increasing) in \(\beta_j \) and hence \(H - L \) is negative (positive) for over-priced (under-priced) stocks. Thus, double sorting by mis-pricing and beta is likely to lead to what is seen in Table 1. When the ambiguity is not too large, \(\beta_{\mu,j} \) is relatively small and \(\frac{\beta_{\mu,j}}{\beta_j} < 1 \) for
most stocks. Consequently, over-pricing occurs more often than under-pricing and the result on under-priced stocks is less likely to be statistically significant.

The explanations of the beta anomaly provided in the literature are mostly based on short-selling or borrowing constraints. One argument is that when short-selling constraint is binding, investors behave as if they are holding the market portfolio and a zero-beta portfolio (Black (1972), Frazzini and Pedersen (2014)). The expected return on the zero-beta portfolio is higher than that of the riskless rate. Thus it appears that the security market line is flatter than the one predicted by the CAPM theory. Another argument is that heterogeneous expectations and short-sale constraints tend to lead to over-pricing of high beta stocks. Thus the security market line is flatter or even downward sloping in time of higher disagreement (Hong and Sraer (2016)). The third and more recent argument is that the beta anomaly maybe the consequence of the idiosyncratic volatility anomaly (Liu, Stambaugh, and Yuan (2018)).

As argued in Liu, Stambaugh, and Yuan (2018), while most of the explanations provided in the literature are consistent with the negative relation between α and beta as seen in the last row of Panel A of Table 1, the pattern of relations between α and beta when examine for over-priced and under-priced stocks separately, as shown in Panel A, present a challenge for those explanations. Liu, Stambaugh, and Yuan (2018) provided their own explanation. Their argument is based on limits to arbitrage. over-priced stocks are more difficult to arbitrage because of the higher cost in short sale, therefore the mispricing is stronger. under-priced stocks on the other hand are easier to arbitrage. The positive relation between α and beta is weaker. The well-known beta anomaly is the net result of relative stronger effect of the negative relation between α and beta for over-priced stocks over that of the under-priced stocks. What differentiates our explanation from those in the literature is that we assume neither short-sale constraints nor limits to arbitrage.

6.3 Idiosyncratic Volatility (IVOL) Anomaly

Idiosyncratic volatility anomaly is a puzzling empirical pattern that was first documented by Ang et al. (2006). Stocks with higher idiosyncratic volatility have subsequent lower returns. It is puzzling because traditional theories predict either no relation between idiosyncratic volatility and expected returns (CAPM theory) or a positive relation due to market incompleteness and frictions (Merton (1987), Hirshleifer (1988)). As referred to in the introduction, a number of explanations have been provided in the literature. In this section, we provide a new angle for understanding the IVOL anomaly.
We first describe the simulation result. We use the same simulation data as in the preceding section, but double sort the data by idiosyncratic volatility instead of beta. Specifically, we independently assign stocks to Mispricing (α) Quintiles and IVOL Quintiles and obtain 5×5 intersecting cells.

Table 2: Alphas for Portfolios Sorted on IVOL and Mispricing

The table reports the alpha for portfolios formed by an independent 5×5 sort on IVOL and Mispricing.

<table>
<thead>
<tr>
<th>Mispricing</th>
<th>IVOL Quintile</th>
<th>Quintile</th>
<th>Lowest</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Highest</th>
<th>H-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>over-priced</td>
<td>-0.62</td>
<td>-0.60</td>
<td>-0.60</td>
<td>-0.62</td>
<td>-0.91</td>
<td>-0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.22</td>
<td>-0.25</td>
<td>-0.27</td>
<td>-0.21</td>
<td>-0.26</td>
<td>-0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.26</td>
<td>0.26</td>
<td>0.28</td>
<td>0.26</td>
<td>0.28</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>under-priced</td>
<td>0.60</td>
<td>0.60</td>
<td>0.61</td>
<td>0.67</td>
<td>0.79</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over-Under</td>
<td>-1.22</td>
<td>-1.20</td>
<td>-1.21</td>
<td>-1.30</td>
<td>-1.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All stocks</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.09</td>
<td>-0.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. T statistics

over-priced	-12.76	-21.44	-20.34	-17.27	-22.08	-3.46
2	-18.87	-19.26	-21.06	-17.59	-15.30	-1.88
3	0.43	1.11	-0.37	0.04	0.90	0.54
4	24.07	24.51	21.63	17.44	15.80	0.62
under-priced	19.11	18.88	21.45	19.67	15.85	2.48
All stocks	1.19	0.64	0.59	0.48	-1.79	-2.13

The result is reported in the Table 2. Panel A reports the averages of the αs and Panel B reports the t-statistics of the averages. In the middle of Panel A are the 5×5 cells of double-sort. The last row reports the average of αs of all stocks sorted by IVOL. The second last row are the
differences in α between the most over-priced and the most under-priced stocks. The last column of Panel A shows the differences, $H - L$, between the average αs of the stocks with the highest IVOL and that with the lowest IVOL.

In Table 2, first we see that in the last row of Panel A, there is a negative relation between IVOL and return among over-priced stocks, which is the idiosyncratic volatility anomaly first reported in Ang et al. (2006). The rest of the result in Panel A has a similar pattern as in Panel of Table 1. When differentiating between over-priced and under-priced stocks, the first row of Panel A shows that among over-priced stocks, there is a negative relationship between α and IVOL, while the fifth row shows that among under-priced stocks, there is a positive relationship between α and IVOL, but the relation is not statistically significant. The middle rows, which are for stocks that are not obviously mispriced, α and IVOL exhibit a flat relation. Third, Panel B of Table 2 shows that the negative or positive relations between α and IVOL for all stocks, for over-priced stocks, or for under-priced stocks, measured by H-L in the last column in Panel A, are statistically significant. Overall, the result reported in Table 2 is qualitatively similar to that reported in Stambaugh, Yu, and Yuan (2015).

To provide the explanation of the result, we note that as in the case of beta anomaly, the mispricing is given by

$$\alpha_j = \lambda_{\mu} \left[\frac{\beta_{\mu,j}}{\beta_j} - 1 \right] \beta_j = \lambda_{\mu} [\beta_{\mu,j} - \beta_j]. \quad (19)$$

Note next that

$$\beta_{\mu,j} = \frac{(\Omega_{\mu,\theta_m})_j}{\theta_m^{\top} \Omega_{\mu,\theta_m}}, \quad \beta_j = \frac{(\Omega \theta)_j}{\theta^{\top} \Omega \theta}$$

Thus

$$\beta_{\mu,j} - \beta_j = \frac{\rho_{j,\Omega_{\mu}} \sigma_j}{\sqrt{\theta_m^{\top} \Omega_{\mu,\theta_m}}} - \frac{\rho_{j,\Omega} \sigma_j}{\sqrt{\theta^{\top} \Omega \theta}} = \left[\frac{\rho_{j,\Omega_{\mu}}}{\sqrt{\theta_m^{\top} \Omega_{\mu,\theta_m}}} - \frac{\rho_{j,\Omega}}{\sqrt{\theta^{\top} \Omega \theta}} \right] \sigma_j$$

where $\rho_{j,\Omega_{\mu}}$ is the correlation coefficient between the market portfolio and asset j when Ω_{μ} is taken as the variance-covariance matrix, and $\rho_{j,\Omega}$ is the correlation coefficient between the market portfolio and asset j when Ω is taken as the variance-covariance matrix. Clearly, ceteris paribus, the mispricing range is increasing in stock’s total volatility (σ_j). However, there is no reason to believe that $\frac{\rho_{j,\Omega_{\mu}}}{\sqrt{\theta_m^{\top} \Omega_{\mu,\theta_m}}}$ is always greater than $\frac{\rho_{j,\Omega}}{\sqrt{\theta^{\top} \Omega \theta}}$, or vice versa. In fact for over-priced stocks, α_j is negative and $\frac{\rho_{j,\Omega_{\mu}}}{\sqrt{\theta_m^{\top} \Omega_{\mu,\theta_m}}} < \frac{\rho_{j,\Omega}}{\sqrt{\theta^{\top} \Omega \theta}}$. Moreover, there is no reason to believe that σ_j is strongly correlated with $\frac{\rho_{j,\Omega_{\mu}}}{\sqrt{\theta_m^{\top} \Omega_{\mu,\theta_m}}} - \frac{\rho_{j,\Omega}}{\sqrt{\theta^{\top} \Omega \theta}}$. Then when over-priced stocked are divided into σ_j quintiles, there is likely a negative relation between mispricing and σ_j. As empirically, there is a strong correlation (over 95%) between total volatility and idiosyncratic volatility, that negative relation
implies a negative relation between mispricing and IVOL, which explains the first row of Panel.

The row for the under-priced stock in Panel can be explained by a similar argument. Again, when the ambiguity is not too large, $\beta_{\mu,j}$ is relatively small and $\beta_{\mu,j} < \beta_j$ for most stocks. Consequently, over-pricing occurs more often than under-pricing and the result on over-priced stocks is stronger and that for under-priced stocks. These arguments explain the other rows of Panel A.

So far, we have looked at the beta anomaly and idiosyncratic volatility separately. Since the same set simulation data exhibit both of these two anomalies as in the real world, one cannot help wonder if there is a deeper connection between the two. Now obviously, if there is a strong positive correlation between idiosyncratic volatility and beta, then beta anomaly and idiosyncratic volatility anomaly are highly related, one implying the other. So we next examine whether in our model there is a the positive relation between idiosyncratic volatility and beta.

We still use total volatility as a bridge to connect idiosyncratic volatility and beta. The total volatility can be decomposed as

$$\sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma_{i,\epsilon}^2.$$

Because of diversification, the total volatility of the market portfolio is typically much smaller than the volatility of individual stock's. Thus total volatility (σ_i) is highly correlated with idiosyncratic volatility ($\sigma_{i,\epsilon}$). This is consistent with empirical findings. Empirically, the correlations between total volatility and idiosyncratic volatility in the G7 countries are all over 95% (Ang et al. (2009)). On the other hand, the beta of an individual stock is

$$\beta_i = \rho_{i,m} \frac{\sigma_i}{\sigma_m}.$$

As there is no reason to believe that $\rho_{i,m}$ is highly correlated with σ_i, other things being equal, high total volatility should imply high risk beta. This argument suggests there is a positive relation between total volatility and beta, which is also what is true both in our simulation data set and in the real world (Stambaugh, Yu, and Yuan (2015) reports a correlation coefficient of 0.33).

7 Conclusion

We develop a model that is useful for understanding the cross-sectional characteristics of asset returns. The model is otherwise standard. The additional ingredient is that the agent is ambiguous about the probability distribution of the returns of the assets and he is ambiguity averse. The ambiguity can be about the mean as well as the variance-covariance matrix of the returns. The
equilibrium cross-sectional expected returns can be described by a three-factor model, capturing risk, mean ambiguity and variance-covariance ambiguity respectively. Expected returns include a mean ambiguity premium, a variance-covariance ambiguity premium, as well as the standard risk premium.

Our model helps explain a number of cross-sectional asset return behavior that is silent in standard models. Beta and idiosyncratic volatility are positively correlated. Overall the alpha in our model decreases with beta. However, when sorted by mis-pricing, alpha of over-priced assets decreases with beta, while alpha of under-priced assets increases with beta. The alphas’ exhibit similar characteristics when sorted by total or idiosyncratic volatility. Alpha of over-priced assets decreases with total or idiosyncratic volatility, while alpha of under-priced assets increases with total or idiosyncratic volatility. Overall alpha decreases with beta total or idiosyncratic volatility. As argued by Liu, Stambaugh, and Yuan (2018), these cross-sectional characteristics of asset returns help address the challenges faced in the literature in understanding the beta anomaly (Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973)) and the idiosyncratic volatility anomaly (Ang et al. (2006)).
A Appendix

A.1 Relative Entropy

Suppose that \(R \sim N(\mu, \Omega) \) under \(P \) and \(R \sim N(\hat{\mu}, \hat{\Omega}) \) under \(Q \). Then

\[
E[\xi \ln(\xi)] = E^Q[\ln(\xi)] = \frac{1}{2} E^Q \left[\ln \left(\frac{\Omega}{\Omega} \right) - (R - \hat{\mu})^\top \hat{\Omega}^{-1} (R - \hat{\mu}) + (R - \mu)^\top \Omega^{-1} (R - \mu) \right]
\]

\[
= \frac{1}{2} \ln \left(\frac{\Omega}{\Omega} \right) + \frac{1}{2} E_Q [-tr(\hat{\Omega}^{-1}(R - \hat{\mu})(R - \hat{\mu})^\top) + tr(\Omega^{-1}(R - \mu)(R - \mu)^\top)]
\]

\[
= \frac{1}{2} \ln \left(\frac{\Omega}{\Omega} \right) - N + tr(\Omega^{-1}\hat{\Omega}) + (\mu - \hat{\mu})^\top \Omega^{-1} (\mu - \hat{\mu})
\]

\[
= \frac{1}{2} \left[tr(\Omega^{-1} (\hat{\Omega} - \Omega)) - \ln |\Omega^{-1}\hat{\Omega}| + (\mu - \hat{\mu})^\top \Omega^{-1} (\mu - \hat{\mu}) \right],
\]
as is to be shown.

A.2 Proof of Lemma 1

The first statement of the lemma is the same as that in the lemma 1 in Kogan and Wang (2003). The second statement of the lemma is a straightforward application of the Lagrangian duality approach.

A.3 Proof of Lemma 2

Uniqueness: Note that the objective function is a linear function of \(\hat{\Omega} \). In order to prove the uniqueness of the solution, we first prove the convexity of the constraints function. For any \(k \in K \), denote

\[
g(\hat{\Omega}_{J_k}) = \frac{1}{2} \left[\ln \left(\frac{\Omega_{J_k}}{\hat{\Omega}_{J_k}} \right) - N_{J_k} + tr(\Omega_{J_k}^{-1}\hat{\Omega}_{J_k}) \right] - \phi^2 \eta_{2,k},
\]

\[
= \frac{1}{2} \left[- \ln(|\Omega_{J_k}|) + tr(\Omega_{J_k}^{-1}\hat{\Omega}_{J_k}) \right] + \frac{1}{2} \left[\ln(|\Omega_{J_k}|) - N_{J_k} \right] - \phi^2 \eta_{2,k},
\]

\[
= \frac{1}{2} \left[- \ln(|\Omega_{J_k}|) + tr(\Omega_{J_k}^{-1}\hat{\Omega}_{J_k}) \right] + C_k,
\]

where \(C_k = \frac{1}{2} \left[\ln(|\Omega_{J_k}|) - N_{J_k} \right] - \phi^2 \eta_{2,k} \) is a constant. Next we need to show, for any \(\hat{\Omega}_{J_k}^1, \hat{\Omega}_{J_k}^2 \) and \(a \in (0, 1) \),

\[
g(a\hat{\Omega}_{J_k}^1 + (1 - a)\hat{\Omega}_{J_k}^2) \leq ag(\hat{\Omega}_{J_k}^1) + (1 - a)g(\hat{\Omega}_{J_k}^2),
\]

as is to be shown.
Need to show,

\[-\ln(|a\hat{\Omega}_{J_k}^1 + (1-a)\hat{\Omega}_{J_k}^2|) + tr(\Omega_{J_k}^{-1}a\hat{\Omega}_{J_k}^1 + (1-a)\hat{\Omega}_{J_k}^2|) \leq \\
\ a[-\ln(|\hat{\Omega}_{J_k}^1|) + tr(\Omega_{J_k}^{-1}\hat{\Omega}_{J_k}^1)] + (1-a)[-\ln(|\hat{\Omega}_{J_k}^2|) + tr(\Omega_{J_k}^{-1}a\hat{\Omega}_{J_k}^2)],\]

which is,

\[\ln(|a\hat{\Omega}_{J_k}^1 + (1-a)\hat{\Omega}_{J_k}^2|) \geq a \ln(|\hat{\Omega}_{J_k}^1|) + (1-a) \ln(|\hat{\Omega}_{J_k}^2|),\]

From the simple version of Minkowski Inequality, if \(A\) and \(B\) are positive semidefinite Hermite Matrices, we can have,

\[|A + B| \geq |A| + |B|;\]

Therefore, only need to show,

\[\ln(a|\hat{\Omega}_{J_k}^1| + (1-a)|\hat{\Omega}_{J_k}^2|) \geq a \ln(|\hat{\Omega}_{J_k}^1|) + (1-a) \ln(|\hat{\Omega}_{J_k}^2|),\]

which is obvious because of the concavity of the log function.

Then we follow the same idea from lemma 1 in Kogan and Wang (2003). Suppose to the contrary that there exist two distinct solution \(\hat{\Omega}^1\) and \(\hat{\Omega}^2\). The convexity of all the constraints functions implies that for any \(a \in (0, 1)\), denote \(\hat{\Omega}^a = a\hat{\Omega}^1 + (1-a)\hat{\Omega}^2\) and let \(\hat{\Omega}_{J_k}^h, h = (1, 2, a)\) denote the corresponding solution for \(J_k\),

\[g(\hat{\Omega}_{J_k}^a) = \frac{1}{2} [\ln(\frac{|\Omega_{J_k}|}{|\hat{\Omega}_{J_k}^a|}) - N_{J_k} + tr(\Omega_{J_k}^{-1}\hat{\Omega}_{J_k}^a)] - \phi^2 \eta_{2,k}, \]
\[\leq a g(\hat{\Omega}_{J_k}^1) + (1-a) g(\hat{\Omega}_{J_k}^2), \]
\[\leq 0, \quad k = 1, 2, ..., K. \]

For \(k\) from 1 to \(K\), we want to find all the possible \(k\) satisfy the following,

\[\frac{1}{2} [\ln(\frac{|\Omega_{J_k}|}{|\hat{\Omega}_{J_k}^a|}) - N_{J_k} + tr(\Omega_{J_k}^{-1}\hat{\Omega}_{J_k}^a)] - \phi^2 \eta_{2,k} = 0, \quad \text{for} \ a = 0, 1, \bar{a}. \]

where \(\bar{a} \in (0, 1)\). Then we can have \(\hat{\Omega}_{J_k}^1 = \hat{\Omega}_{J_k}^2\) because of the convexity. Denote by \(A\) the set of such \(k\). If

\[J_A = \cup_{k \in A} J_k = 1, 2, ..., N, \]

25
then \(\hat{\Omega}^1 = \hat{\Omega}^2 \), contradiction. When \(J_A \neq 1, 2, \ldots, N \), WLOG, assume the first element is not in \(J_A \).

Thus for all \(\hat{\Omega} \) of the following form

\[
\hat{\Omega} = \begin{bmatrix}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1N} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{N1} & \sigma_{N2} & \cdots & \sigma_{NN}
\end{bmatrix}
\]

satisfy

\[
\frac{1}{2} \left[\ln \left(\frac{|\hat{\Omega}_{jk}|}{|\hat{\Omega}_{kk}|} \right) - N_{J_k} + \text{tr}(\hat{\Omega}_{jk}^{-1} \hat{\Omega}_{kk}) \right] - \phi^2 \eta_{2,k} = 0, \quad \text{for } k \in A.
\]

where \(\sigma_{ii} \in \mathcal{R}, \ i = 1, 2, \ldots, N \) is the variance (covariance). Note that for \(a = \frac{1}{2} \),

\[
\hat{\Omega}^a = \begin{bmatrix}
\frac{\sigma_{11}^2 + \sigma_{22}^2}{2} & \frac{\sigma_{12}^2 + \sigma_{22}^2}{2} & \cdots & \frac{\sigma_{1N}^2 + \sigma_{2N}^2}{2} \\
\frac{\sigma_{21}^2 + \sigma_{22}^2}{2} & \frac{\sigma_{22}^2 + \sigma_{22}^2}{2} & \cdots & \frac{\sigma_{2N}^2 + \sigma_{2N}^2}{2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\sigma_{N1}^2 + \sigma_{N2}^2}{2} & \frac{\sigma_{N2}^2 + \sigma_{N2}^2}{2} & \cdots & \frac{\sigma_{NN}^2 + \sigma_{NN}^2}{2}
\end{bmatrix}
\]

because \(J_A = 2, \ldots, N \). Then we have,

\[
\frac{1}{2} \left[\ln \left(\frac{|\hat{\Omega}_{jk}|}{|\hat{\Omega}_{kk}|} \right) - N_{J_k} + \text{tr}(\hat{\Omega}_{jk}^{-1} \hat{\Omega}_{kk}) \right] - \phi^2 \eta_{2,k} < 0, \quad \text{for } k \notin A.
\]

From continuity, there exists a \(\epsilon > 0 \) such that for all the \(\hat{\Omega} \) in (20) with \(\sigma_{ii} \in (\frac{\sigma_{11}^1 + \sigma_{11}^2}{2} - \epsilon, \frac{\sigma_{11}^1 + \sigma_{11}^2}{2} + \epsilon), \ i = 1, 2, \ldots, N \).

\[
\frac{1}{2} \left[\ln \left(\frac{|\hat{\Omega}_{jk}|}{|\hat{\Omega}_{kk}|} \right) - N_{J_k} + \text{tr}(\hat{\Omega}_{jk}^{-1} \hat{\Omega}_{kk}) \right] - \phi^2 \eta_{2,k} \leq 0, \quad \text{for } k \notin A.
\]

Combining with the case \(k \in A \), we have,

\[
\frac{1}{2} \left[\ln \left(\frac{|\hat{\Omega}_{jk}|}{|\hat{\Omega}_{kk}|} \right) - N_{J_k} + \text{tr}(\hat{\Omega}_{jk}^{-1} \hat{\Omega}_{kk}) \right] - \phi^2 \eta_{2,k} \leq 0, \quad \text{for } k = 1, 2, \ldots, K.
\]

As we mentioned before, the objective function is a linear function of \(\hat{\Omega} \), so we have,

\[
\frac{\theta^\top \hat{\Omega}^1 \theta}{\theta^\top \hat{\Omega} \theta} = \frac{\theta^\top \hat{\Omega}^2 \theta}{\theta^\top \hat{\Omega} \theta} = \frac{\theta^\top \hat{\Omega}^1 + \hat{\Omega}^2 \theta}{\theta^\top \hat{\Omega} \theta},
\]

But now, all the \(\hat{\Omega} \) in (20) with \(\sigma_{ii} \in (\frac{\sigma_{11}^1 + \sigma_{11}^2}{2} - \epsilon, \frac{\sigma_{11}^1 + \sigma_{11}^2}{2} + \epsilon), \ i = 1, 2, \ldots, N \) are in the choice set, we can choose specific \(\epsilon \) (\(\hat{\Omega}' \)) to achieve higher value of \(\frac{\theta^\top \hat{\Omega}' \theta}{\theta^\top \hat{\Omega} \theta} \), contradiction!
Next, we will apply the standard Lagrangian duality approach to solve the optimal matrix. We first write down the Lagrangian function as follows,

\[
L = \theta^\top \Omega \theta - \sum_{k=1}^{K} \lambda_{2,k} \left\{ \frac{1}{2} \left[\ln \left(\frac{\Omega J_k}{\Omega J_k} \right) - N + tr(\Omega J_k^{-1} \Omega J_k) \right] - \phi^2 \eta_{2,k} \right\}.
\]

Note that \(\partial tr(\Omega^{-1}U)/\partial u_{ij} = tr(\Omega^{-1}U_{ij}) \) where \(U_{ij} \) is the matrix which has zero everywhere except in the \(i \)th row and \(j \)th column where it is equal to 1. \(\partial \ln |I + \Omega^{-1}U|/\partial u_{ij} = (I + U)^{-1} \).

\[
tr(AB) = \sum_i \sum_j A_{ij}B_{ij}.
\]

The FOC is

\[
\frac{\partial L}{\partial \Omega} = \frac{\theta \theta^\top \circ S}{\theta \Omega \theta} - \sum_{k=1}^{K} \frac{\lambda_{2,k}}{2} \left(-\Omega J_k^{-1} + \Omega J_k^{-1} \right) = 0,
\]

where \(S \) is a sign matrix whose elements take 1 if there is variance-covariance ambiguity information about the corresponding elements in \(\Omega \) and takes 0 otherwise. \(\theta \theta^\top \circ S \) is the entry-wise product between two matrices, which produces another matrix where each element \(ij \) is the product of elements \(ij \) of the original two matrices. So

\[
\sum_{k=1}^{K} \lambda_{2,k}(\theta)[\Omega J_k(\theta)]^{-1} = \sum_{k=1}^{K} \lambda_{2,k}(\theta)\Omega J_k^{-1} - \frac{2\theta \theta^\top \circ S}{\theta \Omega \theta}.
\]

Note, similar with Lemma 1, the proof above is also based on the assumption that there are multiple sources of information \((K) \) and the information can cover all the assets in the market. So \(\sum_{k=1}^{K} \lambda_{2,k}(\theta)\Omega J_k^{-1} \) should be a full-rank matrix. If there is no variance-covariance ambiguity about some elements in the original \(\Omega \), the above equations becomes \(0 = 0 \) in the corresponding elements, which means those equations are redundant.

A.4 Proof of Proposition 1

The agents utility maximization problem is

\[
\sup_{\theta} \min_{Q \in \mathcal{P}} E^Q \left[-\frac{1}{\gamma} e^{-\gamma(\theta^\top (R-r1)+(1+r))} \right] = \sup_{\theta} \left[-\frac{1}{\gamma} e^{-\gamma[\theta^\top (\mu-r1)+1+r+\Delta_1(\theta)]+\frac{1}{2}\gamma^2[\theta^\top \Omega \theta + \Delta_2(\theta)]} \right],
\]

The FOC for \(\theta \) is given by

\[
\mu - r1 - \Delta'_1(\theta) - \gamma \Omega \theta - \frac{1}{2} \gamma \Delta'_2(\theta) = 0,
\]

So the optimal portfolio choice follows

\[
\mu - r1 = \Delta'_1(\theta) + \gamma \Omega \theta + \frac{1}{2} \gamma \Delta'_2(\theta).
\]
By envelope theorem, we have, \(\Delta'_1(\theta) = v(\theta) \) and \(\Delta'_2(\theta) = 2U(\theta) \). Thus

\[
\mu - r\mathbf{1} = v(\theta) + \gamma(\Omega + U(\theta))\theta,
\]

as is to be shown.

If there is only one source of information, we can write down the optimal solution explicitly.

For mean ambiguity,

\[
v^*(\theta) = \lambda_1^{-1}(\theta)\Omega \theta,
\]

plugging into the constraint, we can solve for \(\lambda_1(\theta) \),

\[
\lambda_1(\theta) = \sqrt{\frac{\theta^\top \Omega \theta}{2\eta_1}},
\]

so

\[
v^*(\theta) = \sqrt{\frac{2\eta_1}{\theta^\top \Omega \theta}} \Omega \theta.
\]

when ambiguity aversion coefficient \(\phi \) or mean ambiguity level \(\eta_1 \) takes 0, then \(\phi v^*(\theta) = 0 \). Hence there is no mean-ambiguity effect.

For variance-covariance ambiguity,

\[
\lambda_2(\theta)[\hat{\Omega}^*(\theta)]^{-1} = \lambda_2(\theta)\Omega^{-1} - \frac{2\theta\theta^\top}{\theta^\top \Omega \theta}.
\]

so

\[
\hat{\Omega}^*(\theta) = (\Omega^{-1} - \frac{2\theta\theta^\top}{\lambda_2(\theta)\theta^\top \Omega \theta})^{-1},
\]

\[
= \Omega + \frac{2}{[\lambda_2(\theta) - 2\theta^\top \Omega \theta]} \Omega \theta \theta^\top \Omega,
\]

plugging into the constraint, we can solve for \(\lambda_2(\theta) \),

\[
2\phi^2 \eta_2 = \ln\left(\frac{|\Omega|}{|\Omega^*(\theta)|} \right) - n + tr(\Omega^{-1}\hat{\Omega}^*(\theta))
\]

\[
= \ln\left(\frac{|\Omega|}{|\Omega||E + \frac{2}{[\lambda_2(\theta) - 2\theta^\top \Omega \theta]} \theta \theta^\top \Omega|} \right) - n + tr(E + \frac{2}{[\lambda_2(\theta) - 2\theta^\top \Omega \theta]} \theta \theta^\top \Omega)
\]

\[
= - \ln\left(\frac{|E + \frac{2}{[\lambda_2(\theta) - 2\theta^\top \Omega \theta]} \theta \theta^\top \Omega|}{|\lambda_2(\theta) - 2\theta^\top \Omega \theta|} \right) + \frac{2}{[\lambda_2(\theta) - 2\theta^\top \Omega \theta]} tr(\theta^\top \Omega)\theta
\]

\[
= - \ln\left(1 + \frac{2}{\lambda_2(\theta) - 2} \right) + \frac{2}{\lambda_2(\theta) - 2} = - \ln\left(1 + \frac{2}{\lambda_2 - 2} \right) + \frac{2}{\lambda_2 - 2}.
\]

when ambiguity aversion coefficient \(\phi \) or variance-covariance ambiguity level \(\eta_2 \) takes 0, then \(\frac{2}{\lambda_2 - 2} = 0 \), and \(\hat{\Omega}^*(\theta) = \Omega \). Hence there is no variance-covariance-ambiguity effect. ■
References

