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Abstract

We study the dynamics of workforce participation when same-group men-

toring lowers education costs. Our continuous-time overlapping-generations

model considers a majority and a minority population group of identically

distributed talent. Under sufficiently decreasing returns to mentoring, and

in high-skill sectors, we find that a social planner should enforce an over-

representation of minority workers relative to their population share. Such

a composition never arises endogenously as a steady state, and thus requires

persistent government intervention. We discuss how this intuition qualita-

tively differs from existing models of workforce composition and the “glass

ceiling effect”, and contrast different policy instruments.
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1 Introduction

This much is known: Mentorship opportunities arise more readily between mem-

bers of the same race or gender, with important repercussions on professional

achievement. As today’s graduates turn into tomorrow’s mentors, these effects po-

tentially exacerbate with time. But what does this mean for the optimal minority

representation in the workforce?

Motivated by this question, we provide a dynamic labor market framework to

study inter-generational mentoring and its impact on labor force composition and

total surplus. In a nutshell, we assume that labor force evolution is governed by

workers’ education decisions. The cost of education is dictated by idiosyncratic

talent and the availability of mentors of the same group. Our starkest results are

twofold: First, the share of minority workers in the surplus-maximizing labor force

can be higher than in the overall population. This occurs when individual surplus

varies more with talent than with mentor availability. Second, the optimal inter-

vention in such a situation is persistent. It remunerates agents for their ongoing

recruitment externalities on future generations.

Our model builds on the following stylized facts from the empirical literature.

First, mentoring relationships are stronger between members of the same demo-

graphic group. Dreher and Cox Jr. (1996) find that female MBA students and

MBA students of color are less likely to form mentoring partnerships with white

men, which has a sizable impact on later compensation. Similarly, Ibarra (1992)

finds differential patterns of network connectivity across genders. Second, the

lack of similar role models affects the academic performance and labor market

outcomes of minority students in ways that cannot be explained by differences

in innate ability. The literature documents a boost in student performance and

graduation rates when taught by same-group teachers (Bettinger and Long, 2005;

Dee, 2007). Notably, the performance gap between white and underrepresented

minority students drops by 20-50 percent in courses taught by a minority instruc-

tor (Fairlie et al., 2014), and one year with an own-race instructor increases math

and reading scores by 2 to 4 percentile points (Dee, 2004). These performance

boosts are especially pronounced for minority students of the highest ability levels
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(Carrell et al., 2010; Ellison and Swanson, 2009). The literature also documents a

bias where faculty fails to identify talented minority students (Card and Giuliano,

2016) or perceives other-race students as inattentive (Dee, 2005). Third, these

achievement differences arise early on and manifest themselves through different

education choices. For instance, the undergraduate student body for economists

has roughly the same composition as the academic workforce, indicating that the

selection stems from education choices rather than differential attrition patterns

(Bayer and Rouse, 2016).

Formally, we consider an unsaturated, competitive labor market in continuous

time that is drawing from a population composed of a majority and a minority.

Every person belongs to one of two groups, which can refer to gender, race, disabil-

ity status or other socio-demographic characteristics. There is a constant inflow

of juniors. The instant a junior is born, he can invest in education. An educated

junior seeks employment in a competitive labor market and turns into a senior.

Each senior lives for an exponentially distributed time and provides mentoring to

new juniors. As such, every worker provides mentoring during his entire life but

receives mentoring benefits at the education stage.

The cost of education is a function of innate talent and mentoring quality. A

lack of suitable mentors makes it harder for minority juniors to obtain a degree

than for their peers of equal talent.1 The key parameters in our model are talent

concentration, mentor capacity and majority share. Talent concentration measures

the dispersion of talent in the population. If all individuals have equal talent, the

concentration is zero. High-skill sectors (doctors, lawyers, professors) have high

talent concentration. We assume no ex-ante differences in talent distribution across

the two groups. Mentor capacity captures the average number of mentees one

mentor can look after at a point in time. The type of mentor interaction matters:

Capacity is high for classroom instruction but low for one-on-one coaching. Finally,

majority share refers to the percentage of majority group members in the overall

population. The share is roughly 0.5 in the case of gender and larger in the case

1We assume a fixed mentoring technology but are agnostic about the drivers of this comple-
mentarity. Seniors from the same minority may be more efficient mentors, or they may increase
acceptance and understanding for minority students more broadly.
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of race in the United States, where around 76.9% of the population is white.2

Investment in education is generally inefficient since juniors only account for

the mentoring they receive, not the surplus they generate for future generations.

Due to competition and free entry, neither do firms internalize the effect of today’s

hires on tomorrow’s candidate pool when setting wages. A temporary intervention

can move the economy from one steady state towards a more efficient one, as long

as it is strong enough to affect convergence.3 For sufficiently high mentor capacity

or talent concentration, top talent from both groups works in the optimal stable

steady state. Yet, the failure to internalize mentoring externalities means that even

the best steady state achieves less than optimal social surplus. In those situations,

a patient planner chooses to persistently intervene in favor of the minority. A

surprising feature of the optimal intervention is that it may over-represent the

minority group in the workforce.4 This happens if the two population pools are of

uneven size and mentor capacity is large.

Both temporary and persistent regulation can be implemented in different ways.

We consider educational subsidies (scholarships) and workplace hiring quotas, and

identify the winners and losers of each policy. In our framework, the optimal

educational subsidies are budget neutral in the long run. Hiring quotas are equally

effective as long as the competitive environment allows for group-specific wages.

When wage disparities are restricted due to cultural norms or firm-intern politics,

hiring quotas however cause significant crowding out of mediocre majority workers.

The dire employment prospects dampen their investment, yet some of them still

pursue an ex-post worthless education. This can result in strong opposition to

2See U.S. Census Bureau QuickFacts, as retrieved from https://www.census.gov/

quickfacts/fact/table/US/RHI125216 on 09/29/2017.
3This might explain why different empirical studies can reach opposing conclusions depending

on whether a certain affirmative action policy has been “strong enough” to push the economy
into a more desirable convergence region. It is consistent with the finding in Bettinger and Long
(2005) that female instructors do positively influence course selection and major choice in some
disciplines, but that there are no positive and significant effects in some male-dominated fields.
It is also in line with the finding in Casas-Arce and Saiz (2015) that political parties that were
most affected by a quota in Spain benefited the most in the long run.

4To be clear, the majority group still dominates in the optimal workforce, but not as much as
in the population. It is never optimal for the minority to dominate in the skilled labor force, as
for example in South Africa (Commission for Employment Equity, 2017). At such an (unstable)
starting point, the optimal intervention at first favors the population majority.
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hiring quotas among educated majority workers who are excluded from the labor

market. To minimize this job insecurity, our model suggests that efficient wages

under a hiring quota are higher for minority than for majority workers.5

We assume a specific functional form to present our results most intuitively,

and to motivate our mentorship boost function from a discrete matching market.

Our main findings are however robust to other talent distributions or mentoring

technologies. We document this by showing that over-representation of the mi-

nority and persistent intervention arise without parametric assumptions as long as

the marginal mentoring gain from over-representation is smaller for the majority

than for the minority, and as long as surplus varies more with talent than with

mentoring.

Our argument is qualitatively different from one motivated by fairness, whose

objective is ‘equal opportunity for equal talent’ regardless of group membership.

This distinction is important because fairness was the main driver behind the ini-

tial affirmative action movement, and its vocabulary has since been adopted by

the movement’s opponents (Leonhardt, 2012). If fairness is the objective, affirma-

tive action is justified only insofar as it remedies historical injustice, and should

render itself obsolete in a relatively short amount of time. Echoing this view,

past discrimination takes center stage in the debate surrounding recent Supreme

Court decisions on university admissions (Kahlenberg et al., 2014). Persistent mi-

nority overrepresentation is not a ‘fair’ outcome: A minority student is in fact

‘over-compensated’ for his lack of suitable mentors relative to a majority student

of equal talent. The crucial point of departure is that the equality of the two

students is fictional under mentoring externalities: The minority student possesses

rare mentoring skills that do more for future talent recruitment than those of his

majority twin. A surplus-maximizing intervention remunerates him for that valu-

able skill. It generally does so indefinitely unless the two groups make up equal

shares of the underlying population. In other words, gender-based policies eventu-

ally become obsolete even under surplus maximization, but not necessarily those

5Wage gaps that favor men are thus particularly harmful if they persist under hiring quotas,
as is the case in Norway (Bertrand et al., 2014), and mediocre men may be among the biggest
losers.
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based on race or other minority characteristics.

Our analysis is meant to be understood within a growing theoretical literature

on workforce under-representation. The main takeaway from this literature is that

different root causes of the observed hiring imbalance reach opposing verdicts on

affirmative action: Under taste-based discrimination (Becker, 1957), affirmative

action is essentially a zero-sum game where the benefit to the minority is offset by

a direct utility loss of the majority.6 Under statistical discrimination, employment

quotas may actually reinforce negative stereotypes against certain groups (Coate

and Loury, 1993). The intuition is the following: When minority employment

is mandated by law, firms may have to hire minority members even if they are

unskilled. This in turn may actually reduce the minority’s returns to education and

thereby further lower equilibrium skill investment. Finally, quotas are completely

ineffective in altering beliefs when agents infer their personal success probability

from their own group’s employment history as in Chung (2000). We complement

this discussion by allowing for tangible mentoring complementarities, and show

that this sheds a more positive light on affirmative action policies.

Structurally, our analysis is in line with Ben-Porath (1967) who views human

capital as being produced using innate talent and other inputs (which could be

mentoring).7 Most relevant, this paper builds on and extends the analysis of Athey

et al. (2000), who study optimal promotion decisions in long-lived firms. We both

assume that seniors offer an additive mentorship boost to juniors of varying tal-

ent, and that the size of this boost is increasing in the availability of same-group

mentors. The crucial difference is that they assume that the two population pools

are of equal size, while our starkest results arise precisely when they are not. Only

then do the policy recommendations go substantially beyond fairness concerns,

as explained above. Only then is the optimal intervention persistent. And only

6Taste-based discrimination also arises when leadership is threatened by the appointment of
different demographic groups. A quota can then strengthen the meritocracy of political elections,
as Besley et al. (2017) empirically demonstrate.

7Becker and Tomes (1979); Restuccia and Urrutia (2004); Herskovic and Ramos (2017) apply
this to overlapping generations frameworks with income and innate talent as the main input
variables. They show that affirmative action is most effective if targeted towards the lower end of
the income distribution. We abstract away from income differences and purely focus on cultural
or gender differences that are known to play a role in mentoring relationships.
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unequal pools can accurately capture a possible “glass ceiling effect” in multilevel

organizations, causing us to raise doubt on some of their conjectures.8 We are able

to obtain these more general results and keep track of an unsaturated and decen-

tralized labor market thanks to a novel continuous-time overlapping generations

setup.

The remainder of the paper is structured as follows: In Section 2 we set up

our model of labor force participation and mentoring. We formally derive the

evolution of an unregulated labor force in Section 3, and analyze its steady states.

In Section 4, we define long-term social surplus and compare the optimal labor force

composition between temporary and persistent policy interventions. We conclude

that section by contrasting specific policy instruments under varying assumptions

regarding wage determination. Finally, in Section 5, we discuss the robustness of

our findings with respect to the previously made parametric assumptions. Section 6

concludes.

2 Model

2.1 General model

We study a game in continuous time. At every instant in time t ∈ R two infinite

pools of juniors are born, hereafter referred to as group i = 1 (majority) and

group i = 2 (minority). Each junior is additionally indexed by the innate type

θ ∈ Θ ≡ [0,∞) which determines her talent x(θ) ∈ [0,∞). We assume the talent

function x : [0,∞) → (0,∞) to be decreasing. The constant inflow of group-i

juniors with innate type θ is given by the Lebesgue measure on Θ scaled by a

constant β1 > β2 > 0. More precisely, group-i juniors with talent in (x(θ), x(θ′)]

arrive with constant flow rate βi(θ
′−θ) for θ′ > θ. All qualitative results are driven

by the ratio b = β1
β1+β2

≥ 0.5, which we refer to as majority share.

Upon birth, each junior has a one-time opportunity to invest into costly edu-

cation, thereafter becomes a senior, seeks employment and acts as a mentor for

new juniors. Education is instantaneous, binary and the only determinant of later

8See Page 22 for a detailed discussion, and Page 30 for additional comments.
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productivity.9 Life expectancy follows a standard exponential distribution with

parameter 1.10

There is a fixed cost of education c > 0, which is reduced both by the junior’s

individual talent x(θ) and the group-specific strength of mentoring µi. In an instant

where there is a mass Li of group-i seniors and a total mass ` of juniors who invest

into education, the strength of mentoring µi = µ(Λi) is determined by the non-

decreasing mentorship boost function µ : [0,∞) → [0, 1), where Λi = Li
`

is the

ratio of group-i seniors to juniors. This captures four important features: First,

mentorship is a scarce resource that is limited by the ratio of seniors to juniors.

Second, mentoring is only effective between a senior and junior of the same group.

Third, if there are many juniors, it is harder for juniors to find a good match.

Fourth, seniors of the opposite group then indirectly hurt juniors: They do not

affect the junior’s own cost of education, but attract additional juniors from the

opposite group, and thereby increase competition for mentors. We discuss a micro

foundation of these assumptions in Section 2.2.

The benefit of education is collected once juniors become seniors. Seniors seek

jobs in a competitive and unsaturated labor market. Earnings are determined

through market forces: We assume that each unit mass of educated senior workers

contributes one unit to a firm’s profit flow, uneducated workers contribute nothing.

Assuming free entry of firms, the life expectancy of 1 ensures that the expected

lifetime earnings wi of each educated senior equal 1 in an unregulated labor market,

and that uneducated workers earn nothing.

Individual rationality implies that a junior invests in education if and only if

her expected lifetime earnings outweigh the cost of education. Formally, a group-i

junior with talent x(θ), born in an instant with a stock Li of group-i seniors, joins

9Real-world examples that fit this (admittedly stylized) description include sectors where a
diploma is the main hiring criterion. One may think of specialized exams such as the Bar license
for lawyers or the PE license for engineers. In Section 5, we discuss how the model can be adapted
when other characteristics also affect productivity.

10To make sure that all strategies are defined at any instant, we assume that a senior still
serves as a mentor at the time of her death.
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a mass ` of her peers in pursuing education if and only if

c− x(θ)− αµ
(
Li
`

)
≤ wi, (IR)

where α > 0 measures the relative importance of mentoring versus innate talent.

As in Athey et al. (2000), we assume that there are no complementarities between

talent and mentorship boost.11

2.2 Talent function and mentoring boost

For expositional clarity, we use concrete parametric functions for the main part of

our paper and demonstrate robustness of our core results in Section 5. For talent,

we consider the function

x(θ) = λe−λθ

depicted in Figure 1a.12 This function normalizes the total talent in a unit-scale

population
∫∞

0
λe−λθdθ to 1 but allows us to vary the concentration of talent

through λ. High concentration means that a small elite possesses abundant talent,

low concentration reduces this heterogeneity. Practically, λ is particularly large

for specialized education that requires rare skills, such as for doctors, lawyers or

actors.

For mentoring, we consider the mentorship boost function

µ(Λi) = 1− e−qΛi , (1)

where we call q the mentor capacity. This function can be micro founded as follows:

Consider the limit of a discrete matching market with nLi seniors of group i and nl

juniors (of any group), as n→∞. Each senior-junior link exists with probability
q
nl

, where mentor capacity q denotes the average number of juniors a mentor can

11We discuss the relevance and implications of this assumption in Section 5.
12Note that x is not a density function, and this is not equivalent to exponentially distributed

talent. We chose this formulation to stay as close as possible to Athey et al. (2000), and to
allow for unbounded population pools given our interest in unsaturated labor markets. Section 5
considers finite population mass and makes the talent distribution explicit.
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Figure 1: Parametric functions used in the main part of the paper.

oversee.13 The randomness of mentor assignment captures the matching frictions

mentioned above. A junior of group i enjoys a mentorship boost of 1 if and only if

he or she is being mentored by at least one group-i mentor.14 By the Law of Rare

Events, the number of same-group mentors per junior can be approximated by the

Poisson distribution as n grows. The probability of finding a same-group mentor,

and hence the expected mentorship boost for a junior of group i, converges to the

expression in Equation (1). The mentor capacity q modifies both the level and

the curvature of the mentorship boost function, as illustrated in Figure 1b. This

parameter is high for industries where the relevant skills are imparted through

classroom instruction, and low where mentoring requires individual coaching. De-

creasing trends in the time invested in mentoring (DeLong et al., 2008) will also

affect market dynamics through this channel.

Two restrictions on the cost parameter are necessary for realism and tractabil-

ity, so as to ensure that labor supply never completely dries out or explodes. To

this end, we impose the following parameter restriction for the remainder of the

paper:

0 < c− 1− αµ(1) < λ. (A1)

These bounds ensure that education is too costly for zero-talent juniors under the

maximal steady-state mentorship boost µ(1), but affordable to the most talented

13For n large enough, the link probabilities are non-degenerate, 0 < q
nl < 1.

14See Section 5 for an example where cross-group mentoring is also beneficial.
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junior.

2.3 Equilibrium notion and steady state

In every instant, the pool of seniors L = (L1, L2) acts as a state variable. An

equilibrium is characterized by an equilibrium wage wi, and the investment deci-

sion for each junior that satisfies the individual rationality constraints (IR). The

outcome in an instant with state L can be described by the mass of juniors who

invest from each group l = (l1, l2), where li ≥ 0 denotes the mass of group-i juniors

who invest.

The instantaneous investment determines labor force dynamics. As educated

juniors themselves turn into seniors, junior investment also affects the evolution

of the senior labor force. Their inflow offsets the exit of seniors, whose individual

lifespans follow a standard exponential distribution with intensity 1. Senior labor

force L(t) = (L1(t), L2(t)) ∈ R2
+ therefore evolves according to the differential

equation

L̇(t) = l(t)−L(t), (2)

with li(τ) ≥ 0 denoting the mass of group-i juniors born at time τ who invest in

education given the current stock of seniors being L(t).

Besides the intertemporal dynamics of the labor force, we are interested in long

run steady state outcomes. In line with the literature, we define steady states as

fixed points of the system and stable steady states as fixed points that are robust

to small perturbations.15

Definition. The economy is in a steady state when L̇ = 0 or, equivalently, l = L.

A steady state L̂ ∈ R2
+ is stable whenever a small perturbation does not affect the

long-term convergence, i.e., when there exists ε > 0 such that for all L(0) ∈ R2
+

with ‖L(0)− L̂‖ < ε, limt→∞ L(t) = L̂.

For brevity of exposition, we drop all dependence on t for the remainder of

this paper and phrase everything in terms of the two-dimensional state variable

L. This is possible because junior investment (IR) depends on calendar time only

15This same concept is sometimes referred to as “asymptotically stable” in the literature.
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through the senior labor force L. Exponential life expectancy (2) ensures the same

for labor force evolution L̇.

3 Dynamics of an unregulated economy

3.1 Uniqueness of the instantaneous equilibrium

Combining individual rationality constraints (IR) across juniors, the equilibrium

conditions for junior investment l = (l1, l2) given the mentoring pool L = (L1, L2)

arec− x
(
l1
β1

)
− αµ

(
L1

l1+l2

)
= w1 or

(
l1 = 0 and c− λ− αµ

(
L1

l1+l2

)
> w1

)
,

c− x
(
l2
β2

)
− αµ

(
L2

l1+l2

)
= w2 or

(
l2 = 0 and c− λ− αµ

(
L2

l1+l2

)
> w2

)
,

(3)

where wage wi = 1 for the case without market intervention. This system of

equations admits a unique solution l that responds predictably to changes in wage.

(In Section 4.4, we discuss how quotas may generate group-specific wages.)

Proposition 1. The equilibrium investment by juniors, l ∈ R2
+ = [0,∞)2\{(0, 0)},

is uniquely determined by (3) for any senior labor force L ∈ R2
+. Moreover, group-i

investment li is increasing in wi and decreasing in wj for j 6= i.

Proof. See Appendix A.

3.2 Steady state analysis

In this section, we identify necessary and sufficient condition for the existence of

both homogeneous and mixed stable steady states. In doing so, we are primarily

interested in the labor force composition φ = L1

L1+l2
rather than its total size L =

L1 + L2.16 We will show that the mixed stable steady state with composition φ̂

generally over-represents the majority relative to the population, φ̂ > b. Some of

16Indeed, the former is a sufficient for the steady state analysis since Equation (3) uniquely
determines the corresponding L (see Lemma 2 in the appendix).
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our results involve limits, and so we strengthen Assumption (A1) to

c− 1− α > 0. (A1+)

In other words, we assume that educational investment remains bounded even

under the maximal mentorship boost µ = 1.

Theorem 1 (Steady States). Consider an economy that satisfies Assumption (A1).

(a) The economy admits two homogeneous steady states φ ∈ {0, 1} if and only if

c− λ ≥ 1. (hSS)

They are stable if and only if the inequality (hSS) is strict.

(b) The economy admits a mixed steady state φ ∈ (0, 1) if and only if

c− 1− αµ(0.5) < x(0) = λ. (mSS)

(c) Under Assumption (A1+) and for sufficiently high mentor capacity q or talent

concentration λ, there exists a unique stable mixed steady state with φ arbi-

trarily close to majority share b.

(d) Any stable mixed steady state over-represents the majority, φ̂ > b, whenever

β1 > β2 and

c− 1− α > αe−q/2. (mSS+)

Proof. See Appendix A.

When mentoring is required for investment of even the most educated individ-

uals (hSS), a stable homogeneous steady state exists (claim a). This is precisely

because group-i investment ceases completely once it is severely underrepresented

in the workforce. Property (mSS) states that mentor availability Λ = 0.5 is suf-

ficient to attract at least some investment. This is of course necessary for the
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existence of a mixed steady state (claim b) where at most one group may exceed

the mentorship boost µ(0.5). As it turns out, it is also sufficient.

The economy may admit multiple stable mixed steady states, but we can offer

a partial characterization of their composition. To gain intuition, consider the

break-even talent x̂i that solves Equation (IR). If either mentor capacity or talent

concentration is large, x̂i hardly responds to differences in mentor availability since

µ(Λ) → 1 as q → ∞ and x′(x−1(x̂)) → −∞ as λ → ∞. As a result, the mixed

stable steady state is unique and approaches majority share b (claim c). More gen-

erally, we show that all stable mixed steady states involve an over-representation of

the majority under (mSS+) due to mentoring frictions (claim d). Property (mSS+)

can be interpreted as a lower bound on c, q or α.17

To prove Theorem 1 formally, we rely on the Hartman-Grobman Linearization

Theorem to characterize the steady states of the labor force. In a visual repre-

sentation of the labor force evolution L̇ as a vector map, the theorem formalizes

the idea that a steady state is stable if and only if all surrounding arrows point

towards it. In the case of Figure 2,18 there are three stable steady states: Two are

homogeneous (L1, 0), (0, L2) ∈ R2
+ and one is mixed. The starting pool of mentors

L ∈ R2
+ determines towards which of these the labor force will ultimately converge.

Theorem (Hartman-Grobman Linearization Theorem). A steady state L̂ is stable

if and only if all the eigenvalues of the Jacobian matrix ∂L̇
∂L

∣∣∣
L=L̂

have a negative

real part.

To establish the results in Theorem 1, we reduce the dimensionality of the prob-

lem by mapping all (stable) steady state compositions to the (downward crossing)

zeros of a one-dimensional auxiliary function. A convexity argument then rules

out downward crossing zeros over (0, b]. The following lemma captures the core of

the proof.

17The properties and assumptions are not mutually exclusive. Indeed, they hold for any educa-
tion cost c > 1, mentoring importance α < c−1 (A1+), talent concentration c−1−α < λ ≤ c−1
(hSS), and mentor capacity q large enough to satisfy (mSS) and (mSS+).

18Unless otherwise indicated, all figures are obtained with parameter values c = 2.1, α = 0.6,
λ = 1, β1 = 1.2, β2 = 1 and q = 3.
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Figure 2: Labor force evolution L̇ at any L. The three stable steady states are
highlighted along with their respective convergence regions.

Lemma 1. Let S : [0, 1]→ R be given by

S(φ) = (1− φ)bx−1(c− 1− αµ(φ))− φ(1− b)x−1(c− 1− αµ(1− φ)) (4)

=
1

λ

[
(b− φ) ln(λ)− (1− φ)b ln(c− 1− αµ(φ))

+ φ(1− b) ln(c− 1− αµ(1− φ))
]
.

Under Property (mSS), there exists a mixed steady state of composition φ if and

only if S(φ) = 0. The steady state is stable if and only if S ′(φ) < 0.

Proof. Property (mSS) ensures that total labor supply L is positive. The one-

to-one correspondence between steady-state composition and the roots of S then

stems directly from Equation (3) at a mixed steady state L = l = (φL, (1− φ)L),

since

(1− φ)bx−1(c− 1− aµ(φ))
(3)
=
φ(1− φ)

β1 + β2

L
(3)
= φ(1− b)x−1(c− 1− aµ(1− φ))

⇔ S(φ) = 0.
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Stability owes to the Hartman-Grobman Linearization Theorem and is relegated

to Appendix A.

In addition to these existence results, Lemma 1 also allows us to anticipate the

impact of parameter changes on the labor composition in a mixed stable steady

state. Figure 3 illustrates the result for changes in mentor capacity q.

Theorem 2 (Comparative Statics). Consider an economy that admits a mixed

stable steady state φ ∈ (b, 1) over unequal talent pools (b > 0.5). As

(a) pool sizes become more even, b̃ ∈ (0.5, b),

(b) talent becomes more concentrated, λ̃ > λ, or

(c) mentor capacity increases, q̃ > q,

there exists a mixed stable steady state φ̃ with smaller group-imbalance φ̃ ∈ (0.5, φ).

Proof. See Appendix A.

It is not surprising that the composition of the population (captured by ma-

jority share b) is positively related to that of the steady state labor force. What

is more interesting is that the strength of this relation varies across sectors. First,

higher talent concentration λ means that innate talent is more important to be

successful. Thus, conditional on being in a mixed steady state, we should expect a

more balanced labor force in high-skill professions. Similarly, skills taught through

class room instruction (for example college education) generate a lower steady-

state group imbalance than those acquired through individual advising (during

e.g. graduate school or executive coaching) where mentor capacity q is smaller.

To illustrate how to interpret these results, let us consider the “glass ceiling

effect”: It is a well-known phenomenon that the higher up the career ladder, the

larger is the realized group-imbalance.19 Theorems 1 and 2 suggest that this can be

due to two reasons. Either, we might be moving from a homogenous steady state

19Matsa and Miller (2011) report that women only make up 6% of corporate CEO’s and top
executives, despite representing 47% of the labor force.
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to a mixed steady state due to a historic shock, and it takes several generations

to converge to the new steady state composition. Or, the echelons of the career

ladder are fundamentally different jobs that require different skills. Lower-ranked

jobs require skills that are less concentrated in the population, but are taught

through classroom instruction where mentor capacity is high. If group-imbalance

is larger at the top in the steady state, this would imply that the reduction in

mentor capacity outweighs a the increase in talent concentration, at least from a

positive perspective. In the next section, we study the related normative question

of what the composition should be in order to maximize total surplus.

4 Optimal Policy Intervention

4.1 Welfare metric

Mentoring complementarities generate a tension between talent recruitment and

mentoring efficiency: Only a homogeneous labor force ensures perfect within-group

mentor assignments, but a more balanced labor force harnesses the top talent from

both groups. We base our efficiency analysis on total surplus, measured as total

productivity net educational investments,

π(L, l) =
2∑
i=1

∫ li

0

1− c+ x(θ/βi) + αµ

(
Li

l1 + l2

)
dθ (5)

=
2∑
i=1

βi
(
1− e−λ

li
βi

)
+ li

(
1− c+ αµ

(
Li

l1 + l2

))
,

where L ∈ R2
+ denotes the senior labor force and l ∈ R2

+ the new recruits. Perfect

competition in the hiring market ensures that this surplus is entirely captured by

educated juniors; their expected lifetime earnings outweigh their cost of education.

4.2 Optimal steady state

In a first step, we provide policy recommendations for interventions that are limited

in time. The temporary nature of the intervention allows us to restrict our analysis
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to (stable) steady states, as no other labor force can be sustained in the long term

absent ongoing market intervention. This simplifies the computation of surplus.

Indeed, when the labor force is constant (L = l), total surplus can be written as

π̃(φ, L) = π
(
(φL, (1− φ)L), (φL, (1− φ)L)

)
(6)

for labor force size L = L1 + L2 and composition φ = L1/L.

We have already established that there are often multiple stable steady states

(Theorem 1). A patient social planner cares to know which one maximizes surplus,

so that he can redirect the economy through a temporary intervention.

Theorem 3 (Optimal Steady State). For sufficiently large mentor capacity q or

high talent concentration λ, the surplus-maximizing stable steady state is mixed,

φ∗SS ∈ (0, 1).

Proof. See Appendix A.

As mentor capacity increases, even a handful of minority mentors can provide

a near-perfect boost to minority juniors. As a result, the efficiency tension resolves

in favor of talent recruitment, and surplus is maximized at a mixed steady state.

Similarly, if talent is sufficiently concentrated, the extra surplus from the most able

individuals outweighs any possible mentoring losses. In other words, temporary

market intervention is warranted when minority participation rates threaten to

vanish in an industry where talent is highly concentrated or mentoring is sufficiently

broad. This makes high-skill sectors with mentoring through classroom instruction

(such as graduate education) prime candidates for temporary course correction in

favor of the underrepresented group.

Combining the insight from Theorems 1 and 3 yields another important take-

away: Temporary intervention does not achieve a workforce that accurately reflects

the diversity in the population. Indeed, under Property (mSS+), the minority

(with β2 < β1) remains underrepresented at the mixed steady state in the sense

that φ > b. This has to do with the fact that minority mentors are harder to come

by, making it impossible to sustain proportional participation without ongoing in-

tervention. Perhaps surprisingly, we now show that an optimal long-term policy
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often overrepresents the minority for this precise reason.

4.3 Optimal long-run intervention

For tractability, we focus our analysis on the long-run surplus from constant in-

terventions by maximizing π̃(φ, L), rather than characterizing the most efficient

path L̇∗(L).20 This is relevant for a patient social planner who cannot adjust his

diversity targets over time. We are, at this point, agnostic about the exact im-

plementation of the policy goal. We simply assume that the planner can directly

choose any labor force composition φ and total participation L. In Section 4.4, we

show that such a goal can indeed be implemented through educational scholarships

or hiring quotas (as long as market wages are unrestricted).

Our main result is that the welfare-maximizing labor force coincides with a

mixed steady state if and only if the two pools are of the same size. In all other

cases, it is generally optimal for a social planner to intervene persistently. The

optimal labor force weighs talent recruitment against mentor assortativity. When

mentoring is indispensable for participation (hSS) but capacity is small, a homo-

geneous labor force is most efficient. Larger mentoring capacities make mentoring

mismatch less costly, since a junior is generally advised by multiple mentors. At

some point, the optimal labor force actually overrepresents minority worker rela-

tive to the population. This advocates recruitment of minority workers with talent

below the marginal majority worker – not just as a transitory course correction,

but as an ongoing policy. The stark result has a simple intuition: Students don’t

internalize their own positive mentoring externality on future generations. When

mentors are efficient (q large), the social returns warrant minority subsidies that

exceed the mentoring advantage of the majority.

Theorem 4 (Optimal Intervention). Long-run surplus π̃(φ, L) is maximized at

some φ∗ ∈ [0.5, 1) and L∗ > 0. Moreover, the optimal labor-force composition φ∗

depends on mentor capacity q and talent concentration λ:

20We should note that it is entirely possible to numerically describe the surplus-maximizing
path based on the partial differential equation 0 = (1 + r)πl(L, l) + πL(L, l) + πLl(L, l)(L− l),
where r is the planner’s discount rate. Our optimal intervention corresponds to the steady state
of this dynamic policy as r → 0.
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(a) If Property (hSS) holds with strict inequality and q is small enough, the optimal

labor force is homogeneous, φ∗ = 1.

(b) If q is large enough, the optimal labor force over-represents the minority φ∗ ∈
[0.5, b]. The bounds are strict φ∗ ∈ (0.5, b) whenever β1 > β2.

(c) Under (A1+), the optimal composition converges to that of the population

limq→∞ φ
∗=b.

(d) For large enough λ, the optimal labor force is more balanced than in the unique

mixed stable steady state, 0.5 ≤ φ∗ < φ̂, if and only if q > Q(b) = 1
2b−1

ln
(

b
1−b

)
.

Whenever the composition φ∗ corresponds to a steady state, so does total partici-

pation L∗.

Proof. See Appendix A.

To illustrate the individual claims, Figure 3 plots the optimal and steady state

labor force composition against mentor capacity. A stable mixed steady state

exists for q ≥ 2.74; it involves an over-representation of the majority. For small

q < 2.76, the surplus-maximizing labor force completely excludes the minority

(claim a). For intermediate q, the minority participates but is under-represented

relative to the population (φ ∈ (b, 1)). For large q > 4, this is reversed: The

optimal minority share in the workforce exceeds that of the population (claim b).

As q grows further, optimal and steady-state composition move towards that of

the population (claim c). Even for moderate mentor capacity, the optimal labor

force is generally more diverse than the steady state composition, as long as talent

is sufficiently concentrated (claim d). As a point of reference, we mention in the

introduction that the majority share of whites in the US is at roughly b = 0.77. If

the average ratio of students per mentor exceeds Q(0.77) = 2.24, ongoing policies

in favor of racial minorities may therefore enhance efficiency in high-skill sectors.

To explain the intuition, Figure 4 displays the social surplus visually, as the area

under the talent curve up to the break-even point x̂i = c − 1 − αµ(Λi) for both

majority (hatched) and minority (solid gray). Decreasing returns-to-scale from
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2.76 4

Figure 3: Optimal (solid) and steady state (dashed) labor force composition as a
function of mentor capacity.

mentoring ensure that moving to a more balanced workforce affects the break-

even point for the minority more strongly, µ′(1− φ) ≥ µ′(φ) for φ > 0.5. This by

itself is not enough to raise overall surplus however, since the smaller µ′(φ) affects a

bigger mass of mentees φ. Visually, the question is not whether the vertical change

in x̂1 dominates that in x̂2, but which of the (green or blue) areas dominates.

Of course, when the cutoff x̂1 hardly responds at all (q → ∞), the former will

eventually imply the latter. Alternatively, when talent is highly concentrated (λ→
∞), the colored areas approach rectangles of width φL and (1− φ)L respectively.

It is now possible to establish a condition of ‘sufficiently decreasing returns to

scale’ (captured by Q(b)) that dictates the direction of the change in surplus.

Loosely speaking, persistent intervention in favor of the minority is beneficial when

individual surplus varies more with talent than with mentor availability.

Together, the conclusions of Theorems 1 and 4 reach beyond the special case of

constant labor provision: They imply that a sufficiently patient planner intervenes

persistently in favor of the minority in industries where the mentor-to-mentee

ratio is high enough, talent is concentrated, and the two pools are of unequal

size.21 In particular, there is no reason to assume that affirmative action policies

render themselves obsolete by virtue of their own success, contrary to the 2003

Supreme Court ruling which argued that “race-conscious admissions policies must

21Indeed, the result shows one particular intervention that – while not necessarily fully optimal
– generates positive social surplus, and hence dominates a ‘laisser-faire’ regime.

21



λ
x(li/βi)
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Figure 4: Changes in long-run social surplus when β1 + β2 = 1.

be limited in time” and expected them to disappear within 25 years.22 Theorem 4

also points to differences between race- and gender-based affirmative action. It

suggests a larger scope for welfare gains when the two pools are of uneven size. In

other words, we expect gender-based policies to be necessary only in the short run

(since b ≈ 0.5), but see grounds for ongoing race-based policies (since b � 0.5),

particularly in high-skill sectors.

It is useful to contrast our results with Athey et al. (2000)’s conjecture regarding

the “glass ceiling”. In their model, senior management plays the role of a surplus-

maximizing social planner; which is a different angle than the decentralized view

we have taken on Page 16. They observe that for b = 0.5, a marginal population

increase of one group shifts the optimal labor force composition towards that new

majority. From that, they conjecture that (a) a population increase for one group

shifts the optimal bias towards this group, and (b) representation inequalities are

exacerbated at each level in an organizational hierarchy.23 Our analysis warrants a

more nuanced view: (a) While a population increase shifts the optimal workforce

22Grutter v. Bollinger, 539 U.S. 306 (2003), pages 309-310.
23In their words: “If the initial ability of one type becomes less scarce, the promotion rates

and bias shift in favor of that type. One implication is that the entry of more women and
minorities into the workforce will cause firms to shift their optimal bias toward these groups.
Another implication is that in a multilevel organization, diversity might fall in higher levels of
the hierarchy. This follows because inequities in one level will lead to lower promotion rates for
the disadvantaged type, and thus inequities at one level will be reinforced at the next-higher
level.” (Athey et al., 2000, p.778f)
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representation towards that group, the bias (which they define as a lower talent

threshold) may actually be in favor of the other group, and (b) faced with an

uneven middle management, optimal promotion decisions at the top may very

well over-represent the dominated group.24 Thus, mentoring frictions alone do not

persuasively explain increasing attrition across echelons of the career ladder.

4.4 Policy Instruments

In the previous sections, we have shown conditions under which the policy maker

wishes to ensure junior investment l∗ rather than the myopic l given senior labor

force L with L1 > L2. We now turn our focus to the practical implementation of

such a policy. We compare two methods that can be expressed within our simple

model: Group -specific tuition schedules versus hiring restrictions. We first discuss

the implications in the text and then summarize the formal results in Theorem 5.

Educational incentives. The most direct market intervention modifies the cost-

benefit analysis of prospective students through a combination of group-specific

fellowships and tuition hikes.25 Let ∆ ∈ R2 denote such a transfer schedule where

∆i represents the net transfer to group i. Because the labor market remains

unrestricted, expected returns to education remain equal to w = 1. Consequently,

equilibrium investment l∗ under ∆ satisfies

c+ ∆i − x
(
l∗i
βi

)
− αµ

(
Li

l∗1 + l∗2

)
= 1 for i = 1, 2. (7)

We now show that the surplus-maximizing labor force can be implemented in a

way that approaches budget balance. Indeed, the surplus-maximizing labor force

24Moreover, if promotions represent the top end of the talent distribution, there is no reason
to assume any interactions between levels at all.

25Whenever we discuss fellowships ∆i > 0, those are assumed to be available to all interested
minority students. It is straightforward to see that ability-based fellowships only affect the
extensive margin if the available pool exceeds the unregulated student supply obtained from
Equation (3). This may explain why studies such as Prenovitz et al. (2016) fail to observe
additional minority recruitment for competitive scholarship programs on a very limited budget.
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satisfies the first order condition

0 =
∂π̃

∂L
(φ∗, L∗)

= 1− c+ φ∗x

(
φ∗L∗

β1

)
+ (1− φ∗)x

(
(1− φ∗)L∗

β2

)
(8)

+ αφ∗µ(φ∗) + α(1− φ∗)µ(1− φ∗).

Comparing Equations (7) and (8), we observe that the net investment disappears

as L tends to (φ∗L∗, (1− φ∗)L∗) since l∗1∆1 + l∗2∆2 → L ∂π̃
∂L

(φ∗, L∗) = 0.

Labor Force Quotas. Alternatively, the policy maker can restrict the recruit-

ment decisions of firms by setting caps on the group composition of new hires.

Norway is a prime example of such an approach, since it was the first country to

mandate quotas for managerial boards in publicly listed companies – a sector with

high skill concentration. Spain and Iceland have since implemented similar poli-

cies (Egan, 2012). Politicians typically distinguish between so-called hiring “goals”

and more explicit “quotas”, but that distinction is largely semantic from an eco-

nomic perspective (Fryer and Loury, 2005). For that reason, we simply impose

upper limits on the proportion of majority group members among all educated

new hires.26 We call a quota φ∗ binding at L if it forces the firm to recruit more

minority members than they would myopically. Formally, if l denotes the solution

to Equation (3) under wages w = 1, φ∗ is binding if and only if φ∗ < l1
l1+l2

.

Firm competition ultimately determines the market wage and the size of the

labor force. We study two cases, depending on whether the market allows for wage

differentials based on minority membership. We need some new notation since

regulation may jeopardize employment security: We denote the mass of educated

and employed group-i individuals by l ≥ l∗ respectively. We use w̃i to denote

the flow of wage payments to employed group-i individuals, resulting in expected

lifetime earnings of wi = l∗i /li · w̃i for each educated group-i job candidate.

There are limits to the compositions that can be implemented through a quota.

26Only quotas with restrictions on education can be effective. Otherwise, firms could always
costlessly meet any quota by hiring unqualified minority workers at a wage of zero.
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Notably, the zero-profit condition for firms equates the marginal cost of an educated

hire to the added productivity,

φ∗w̃1 + (1− φ∗)w̃2 = 1, (MC1)

Quotas generate desired investment levels only if educational investment is suffi-

ciently responsive to wage differences.27 To avoid lengthy digressions, we study

situations where education retains a positive net cost even to the most able indi-

vidual under perfect mentoring,

c− λ− α > 0. (A2)

Note that if α ≤ 1 or λ < 1, this follows from Property (hSS) or (A1+) respectively.

We also assume that the senior labor force contains at least some minority mentors,

L2 > 0, to avoid the possibility of a complete labor market shutdown.28

When wages are determined solely through market forces, all educated workers

find employment,

l = l∗. (MC2a)

Indeed, any oversupply of educated group-i workers would drive their lifetime earn-

ings to zero. Anticipating this, none of them would invest into education under

Assumption (A2), creating a contradiction. The size of the cohort l is uniquely de-

termined by the market wages wi via the individual rationality constraints (Propo-

sition 1). Taken together, the market clearing conditions (MC1) and (MC2a) thus

imply that a binding quota raises minority and depresses majority earnings relative

to the unconstrained market, w̃1 = w1 < 1 < w̃2 = w2. Contrary to scholarships,

a quota delegates the decision over the size of new hires to myopic firms and only

imposes bounds on their composition. For the constant intervention studied in

Theorem 4, this is however without long-term efficiency loss as firms and planner

27To avoid anticipatory investment, we assume that quotas are unexpected.
28Without minority mentors and if mentoring is critical (α � 0), a quota shuts down the

labor market: Minority investment remains zero even under the largest possible wages and con-
sequently, firms can hire nobody. In contrast, for any L2 > 0, Assumption (A1) ensures that any
wage w̃2 ≥ 1 attracts minority students as long as majority investment l1 is small enough. Low
wages w̃1 → 0 have the desired effect by Assumption (A2).
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agree on the optimal total participation. Indeed, the zero-profit condition (MC1) is

equal to budget balance when hiring bonuses are restated as subsidies ∆ = 1−w.

In some industries however, social or legal pressure prohibits paying unequal

wage to employees in the same position.29 Without differential hiring bonuses,

w̃1 = w̃2 (MC2b)

and the zero-profit condition (MC1) forces these market wages to 1. However, a

binding quota caps the demand for group-1 workers at φ∗

1−φ∗ l2 < 1, while all l2

educated minority workers are hired. Workers factor this employment insecurity

into their cost-benefit analysis of education (3) by expecting lifetime earnings of

w1 = φ∗

1−φ∗
l2
l1

and w2 = 1. Relative to the unregulated economy, this implies a

drop in total investment l, as well as equilibrium over-investment by the majority.

The reason is simply that a more balanced student body requires reduced lifetime

earnings for the majority by Proposition 1. This means that majority workers

waste their own resources on an ex-post worthless education and dilute mentoring

efficiency for everybody else. Of course, such a feature greatly reduces the appeal

of workplace quotas in situations where wage is sticky or subject to social scrutiny.

Theorem 5 summarizes the results from this section.

Theorem 5 (Policy Instruments). The policy maker can implement the optimal

long-run labor force L∗ through educational subsidies that are budget neutral in

the long run. Under Assumption (A2), a hiring quota φ∗ =
L∗1

L∗1+L∗2
implements the

same L∗ if and only if group-specific hiring bonuses are feasible. Otherwise, the

quota reduces total investment, and causes a positive mass of majority workers to

invest into education yet fail to secure employment.

Proof. See text and footnotes.

To illustrate, Figure 5 plots the evolution of key labor market variables under

a hiring quota. The optimal long-run composition φ∗ is more diverse than the

29This is the stated rationale behind the presidential memorandum ‘Advancing Pay Equal-
ity Through Compensation Data Collection’ (Presidential Memorandum, 79 Fed.Reg. 20751
(Nov.04, 2014), www.federalregister.gov/d/2014-08448). Firms also have internal incentives to
avoid group-specific wages, as pay gaps can have detrimental effects on worker morale and firm
output if the gaps are not easily accounted for by productivity differences (Breza et al., 2017).
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Figure 5: Labor force evolution starting at L = (0.8, 0.2) without market inter-
vention (solid line) or under a quota that imposes the optimal long-run
composition φ∗ = 0.57 in an environment with flexible (dashed) or com-
mon (dotted) wages.

mixed steady state φ̂ > φ∗. The starting value L(0) is such that an unconstrained

economy (solid line) converges to a homogeneous steady state (panel a). Imposing

quota φ∗ under flexible (dashed) or common wages (dotted) causes a temporary

drop in total labor force participation (panel b) and investment (panel c). The

effect is more pronounced under common wages where the quota amounts to a

hiring cap on majority workers. This leads to educational over-investment (shaded

area) from majority workers who ultimately remain unemployed. Costly over-

investment persists in the long run; causing surplus to converge to a level πC well

below the optimal level π∗, and even below the laisser-faire regime (panel d). In

such an environment, the policy maker could use scholarships to recover the dashed

path. Alternatively, he can implement a temporary quota that merely redirect the

economy towards the most efficient steady state φ̂, yielding long-term surplus π̂.
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5 Robustness

Determinants of productivity. We currently assume that productivity is bi-

nary and affected only by schooling. One natural extension is to also allow for in-

nate talent and mentoring to affect productivity directly, so that education boosts

the lifetime productivity of a worker with talent x and mentorship boost µ by

ω1x + ω2µ + ω3. If firms can observe talent and vary wages by worker, then their

perfect competition ensures that workers still reap their entire individual surplus.

A change of parameters c 7→ 1 + c−ω3

1+ω1
and α 7→ α+ω2

1+ω1
can then map this situation

into our existing model. Indeed, the mapping transforms the previously assumed

individual surplus

1− (c− x− αµ) 7→ 1

1 + ω1

·
[
ω1x+ ω2µ+ ω3︸ ︷︷ ︸

productivity

− (c− x− αµ)︸ ︷︷ ︸
cost

]
into a constant fraction of the new individual surplus. Since unregulated dynamics

and social surplus are both governed by the sign and relative size of individual

surplus, the qualitative results of our paper carry over unchanged.

Non-additive surplus. One limitation of our approach is the assumption that

talent and mentoring affect surplus additively. One can imagine scenarios where

the effectiveness of a given mentoring relationship depends not only on the mentor’s

group membership or education, but is affected (positively or negatively) by mentor

or mentee talent, and the mentor’s experience as both a mentor and a mentee.

We share this assumption with Athey et al. (2000), but it is difficult to relax.

Mathematically, the main difficulty is the path-dependence that results from any

such interaction or history-dependence in mentoring and talent. For tractability of

the steady state analysis, we both rely on the sufficiency of the current workforce

for its future evolution. It is however possible to qualitatively anticipate the impact

of non-additive surplus under interventions that maintain a constant labor force. In

these interventions, both the distribution of educated talent and mentor experience

are fixed in the long term. When the minority is over-represented 0.5 < φ < b, the

conditional talent distribution among educated majority workers is left-censored
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relative to that of minority workers, and a typical majority student experiences

better mentoring. As such, over-representation is reinforced if low-talent students

have greater returns from mentorship, if there is a negative correlation between

individual talent and mentoring skill, or if poorly mentored students turn into more

‘attune’ mentors later in life. The opposite is true if high-talent students are more

receptive mentees or if high-talent/well-mentored workers are more resourceful

mentors.

Nonparametric distributions. To demonstrate the robustness of our main

findings, we here abstain from parametric assumptions regarding talent distribu-

tion and mentorship boost. In line with the discussed above, we maintain the

additive structure by setting education cost equal to c−xi−αµ
(
Li
l

)
for a group-i

junior of talent xi. However, we allow for any absolutely continuous talent distribu-

tion F over R, and any twice differentiable, increasing mentorship boost function

µ : [0,∞) → [0, 1]. To incorporate different pool sizes, we assume that there is a

mass βi(1− F (x)) of group-i individuals of ability at least x.30

Individual optimality conditions (IR), labor market evolution and welfare are

as before, safe a change of variables from rank θ to ability level x. Total surplus

(5) then equals

π(L, l) =
2∑
i=1

∫ ∞
F−1

(
1− li

βi

)
(

1− c+ x+ αµ

(
Li

l1 + l2

))
βiF

′(x)dx. (9)

For tractability, we assume that 0 < F (c − 1) < 1; some but not all students

invest into education even without mentoring.31 We also assume that F is strictly

increasing over its convex range, so that there exist individuals at each intermediate

ability level. Finally, we assume that µ′ and µ′′ are both bounded over the interval

30Because our talent function x assumes infinite population pools, there is no direct translation
between the two frameworks. In spirit, F is the closest analogue to 1−x−1(x). The slight switch
in assumptions is deliberate: It allows to demonstrate in particular that our findings extend to
normally distributed talent.

31This assumption violates Property (hSS), and thus rules out completely homogeneous steady
states. However, the restriction still allows for multiple steady states, including almost homoge-
neous ones. The assumption trivially holds whenever ability is unbounded above and below, as
in the case of a normal distribution.
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[0, 1].

The main results of our paper are two-fold: The optimal labor force composition

over-represents minorities relative to their population share, and a patient planner

adopts a persistent, rather than temporary, market intervention. Both results

generalize to this broader class of functions, as long as the marginal mentoring gain

from over-representation is smaller for the majority than it is for the minority,

µ(b) + bµ′(b) < µ(1− b) + (1− b)µ′(1− b) (10)

and skill recruitment dominates mentoring (α small). This echoes the conditions

in Theorem 4(d): Mentoring must have sufficiently decreasing returns-to-scale to

satisfy (10), and individual surplus is primarily driven by talent rather than men-

toring.

Theorem 6 (Nonparametric). Suppose β1 > β2. If Property (10) holds, then there

exists α > 0 small enough such that

(a) the optimal labor force is majority-dominant but over-represents the minority

relative to its population share, φ∗ ∈ (0.5, b).

(b) a sufficiently patient planner intervenes persistently in favor of the minority.

Proof. See Appendix A.

Coincidentally, situations with small α are exactly the ones that Athey et al.

(2000, Prop. 2 and 4) identify as the settings where a fully balanced labor force

is both optimal and a stable steady state without intervention. In other words:

Extrapolating from a model with equal population pools might lead us to be-

lieve that course corrections are not necessary in industries where skill recruitment

dominates mentoring – when in fact these are the precise situation where surplus

maximization requires ongoing intervention.

To illustrate this robustness with an example, Figure 6 assumes normally dis-

tributed talent (panel a) and a different mentoring technology (panel b). As be-

fore, match opportunities arise randomly with probability q
nl

, and a junior receives
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Figure 6: Over-representation of the minority under normally distributed talent
with cross-group mentoring benefits.

a mentorship boost of 1 if at least one of the matches is successful. However, we

no longer assume that opportunities lead to a successful match if and only if both

sides belong to the same group. Instead, we assume that a possible match is suc-

cessful with probability pH = 0.8 if agents belong to the same group, and pL = 0.1

if they do not.32 Panel c reveals that the optimal composition φ∗ over-represents

the minority and improves total surplus by 4.20% relative to the economy’s unique

steady state φSS.33

6 Conclusion

We do not want this paper to be read in isolation. Affirmative action has many

important consequences and we focus primarily on its interaction with mentoring.

However, we believe that awareness of the dynamic consequences of mentoring

complementarities is crucial for the public discussion. On the most basic level, the

traits insights of our model are these: People differ in their ability to recruit and

mentor top talent from different socio-demographic backgrounds. Often, mentors

are most effective within their own social group. Like any other skills, it makes

sense to remunerate group-specific mentoring ability according to the shortness of

32As n → ∞, the expected mentorship boost at a steady state is then given by µ(φ) =

1− e−q(φpH+(1−φ)pL).
33We assume c = 4.4, α = 3, β1 = b = 0.7, β2 = 1− b = 0.3, and q = 8. Note that α is far from

marginal, and mentoring holds significant importance in this example. Together with x = −5,
x̄ = 1.7 and k = 0.14, this satisfies all conditions of Lemma 6 and hence the optimal labor force
over-represents the minority.
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its supply and its impact on future surplus. However, such remuneration does not

arise in an unregulated economy due to firm competition, and minority workers

fail to account for their future positive externalities in their education decisions.

Affirmative action policies, in the form of scholarships or hiring quotas, can act as

a correcting force. To guide the design of the optimal policy, a keen understanding

of wage determination is necessary to avoid unintended consequences.

Our main contribution is to show that the scale of these externalities can be

far larger than previous models suggest, to the point where they warrant an on-

going subsidy towards the minority that goes beyond a correction of historical

under-representation. In sectors that require rare skills, the forward-looking op-

timal remuneration generates a target workforce that is more diverse than the

population, where the net cost of education is lower for the minority than for the

majority.

Natural follow-up questions remain. First, we do not demonstrate or quantify

the strength of mentoring externalities. Their existence has been documented

empirically by studies mentioned in the introduction, but more research is needed

to get reliable estimates of their salience. Second, we assume a fixed ‘mentoring

technology’ and take these cross-racial or cross-gender mentoring hurdles as given.

We do not ask ‘What if mentoring itself could be improved?’ because we believe

that estimating the cost of such improvements is mainly an empirical question.

It is important to highlight that programs which facilitate mentor assignments

for minority juniors, or improve cross-group mentoring skills, tend to decrease

access hurdles in a way similar to minority scholarships. Policy makers have been

fostering such mentoring for minority youth,34 and the most successful diversity

programs are exactly those that increase cross-group exposure.35 These approaches

34One of the main goals of the presidential initiative “My Brother’s Keeper” is to connect
young men of color to mentoring and support networks (Obama, Barack. “Remarks by the
President on ‘My Brother’s Keeper’ Initiative.” The White House, Office of the Press Sec-
retary, 27 Feb 2014, https://obamawhitehouse.archives.gov/the-press-office/2014/02/
27/remarks-president-my-brothers-keeper-initiative).

35Dobbin and Kalev (2016) show that programs that increase contact among groups (in par-
ticular formal mentorship programs or voluntary task forces) are most effective in affecting the
minority representation among managers. Similarly, Beaman et al. (2009) show that increased
exposure to female leaders (through a quota system) reduces biases.
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chip away at the same obstacles that we study, albeit from an angle that is not

considered here.

A Additional Proofs

Proof of Proposition 1. Consider a total student body of size l, and let

`i(l) =


0 if c− λ− αµ (Li/l) > wi

∞ if c− αµ (Li/l) < wi

βix
−1 (c− wi − αµ (Li/l)) otherwise.

The equilibrium conditions (3) are equivalent to l = `1(l) + `2(l). Mentoring

µ(Li(t)/l) is strictly decreasing in l, and therefore so is `1(l) + `2(l) over the range

(0,∞). In other words, as l grows, school enrollment `1(l) + `2(l) weakly drops,

implying a single crossing l = `1(l) + `2(l).

Similarly, `i(l) is increasing in wi and independent of wj. A raise in wi thus

shifts total school enrollment `1(l) + `2(l) upwards, and the single crossing to the

right. The extra supply comes entirely from group i; group-j enrollment `j(l) drops

due to the increase in l.

Lemma 2. At a homogeneous steady state with group i working, total labor supply

is given by L = βix
−1(c − 1 − αµ(1)). At a mixed steady state, total labor supply

is L = β1+β2
λ

(ln(λ)− bg(φ)− (1− b)g(1− φ)), where g(φ) = ln(c− 1− αµ(φ)). If

φ 6= b, this is equal to b(1−b)
λ(b−φ)

(g(φ)− g(1− φ))(β1 + β2).

Proof. At a homogeneous steady state, labor force participation is obtained di-

rectly by inverting the relevant equation in (3). At a mixed steady state, total

participation is given by L = β1x
−1(c − 1 − αµ(φ)) + β2x

−1(c − 1 − αµ(1 − φ)),

which simplifies to the expression above.

Lemma 3. The function g(φ) = ln(c− 1−αµ(φ)) is decreasing and convex under

Assumption (A1+). As q →∞, g(φ)→ ln(c− 1− α) and g′(φ)→ 0 pointwise for

all φ ∈ (0, 1). Finally, ∂g(φ)/∂q = φ
q
g′(φ) is increasing in φ.
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Proof. Negative monotonicity follows immediately from monotonicity of µ and the

logarithm function. Convexity follows since

g′′(φ) =
αqe−qφ

c− 1− αµ(φ)
q

(
1− α(1− µ(φ))

c− 1− αµ(φ)

)
> 0

by Assumption (A1+).

The limits are a direct consequence of limq→∞ µ(φ) = 1 and limq→∞ µ
′(φ) = 0.

Finally, ∂µ(φ)/∂q = φe−qφ = φ
q
µ′(φ) implies the expression for the partial

derivative. It is increasing in φ by convexity of g.

Supplement to the proof of Lemma 1. Consider a steady state with compo-

sition φ ∈ (0, 1). By the argument in the main text, S(φ) = 0. It remains to show

that φ is stable whenever S ′(φ) < 0.

The equation of motion L̇ = l(L) − L is C1 over R2
+. By the Linearization

Theorem, the steady state is therefore stable if and only if all eigenvalues of the

Jacobian ∂L̇
∂L

have a negative real part. For simplicity, we first rewrite the equations

in (3) as

F (l,L) =

 b
(

lnλ− g
(

L1

l1+l2

))
− λl1

β1+β2

(1− b)
(

lnλ− g
(

L2

l1+l2

))
− λl2

β1+β2

 = 0,

where g(φ) is as in Lemma 3.

The Implicit Function Theorem implies that at the steady state (φL, (1−φ)L),

∂l

∂L
= −

[
∂F

∂l

]−1
∂F

∂L

=

[
bφ

1−bg
′ (φ)− λL

β2

bφ
1−bg

′ (φ)

(1− φ)g′ (1− φ) (1− φ)g′ (1− φ)− λL
β2

]−1 [
b

1−bg
′ (φ) 0

0 g′(1− φ)

]
.

After simplification using Lemma 2, the characteristic polynomial
∣∣∣∂L̇∂L − γI∣∣∣ is

proportional to F (γ) = Aγ2 +Bγ + C with

A =
λL

β2

(
−(1− b)λL

β2

+ (1− b)(1− φ)g′(1− φ) + bφg′(φ)

)
< 0
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B = − 2

1− b

[
S ′(φ) +

S(φ)

b− φ

]2

−
[
S ′(φ) +

S(φ)

b− φ

] [
(1 + 2φ)g′(1− φ) + (3− 2φ)

b

1− b
g′(φ)

]
−
[
(1− b)φg′(1− φ)2 +

b2

1− b
(1− φ)g′(φ)2

]
C =

λL

β2

[
S ′(φ) +

S(φ)

b− φ

]
.

This is a downward sloping quadratic function since A < 0. The real part of its

roots are negative if and only if F (0) = C < 0 and F ′(0) = B < 0. At a steady

state, S(φ) = 0 and hence C < 0 if and only if S ′(φ) < 0, which in turn implies

B < 0.

Proof of Theorem 1. The first part of the theorem is immediate: When costs

are so low that the most able individuals invest even without any mentorship,

their labor supply never dries out. Under Property (hSS) however, no workers

get educated unless mentor availability exceeds some positive threshold Λ. This

ensures that the opposing group has a steady-state mentorship boost of µ(1), which

determines labor supply through Equation (3). Such a homogeneous steady state

is stable since small enough perturbations maintain minority mentor availability

below Λ.

Let us now turn to mixed steady states l = L =
(
φ̂L̂, (1 − φ̂)L̂

)
∈ R2

+, where

the individual cost-benefit analyses in Equation (3) simplify to

c− x

(
φ̂L̂

β1

)
− αµ(φ̂) = 1 and c− x

(
(1− φ̂)L̂

β2

)
− αµ(1− φ̂) = 1. (11)

The proof makes heavy use of the auxiliary function S defined in Lemma 1, whose

roots pin down steady state composition. It is easily verified that Property (mSS) is

necessary for a steady supply of minority workers, for otherwise either at least one

of the left-side expressions exceeds 1. As for sufficiency, note that S is continuous

and (1− b)S(0) = −bS(1). For S(1) 6= 0, or, equivalently, λ 6= c− 1, the change of
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sign implies that S admits an interior root.36

The limiting behavior of g implies the existence of a unique stable mixed steady

state near b for q or λ large enough. We first show existence, and start with the

case q →∞ first. It follows from Lemma 3 that

S(b) = (1− b)b(g(1− b)− g(b)) > 0 (12)

vanishes as q grows, and its derivative admits a negative limit

S ′(b) = (1− b)g(1− b) + bg(b)− lnλ− (1− b)b(g′(1− b) + g′(b))

q→∞−−−→ k = ln(c− 1− α)− ln(λ)
(A1)
< 0.

The first order Taylor approximation implies that for δ > 0 arbitrarily small,

S(b+ δ) ≤ S(b) + δS ′(b)− k

2
δ.

The limit limq→∞ S(b)+δS ′(b) = δk implies that there exists Q1 large enough such

that

S(b+ δ) ≤ S(b) + δS ′(b)− k

2
δ <

k

2
δ − k

2
δ = 0 ∀q ≥ Q1. (13)

More generally, S(b+ δ) = −δ lnλ+ (1− b− δ)bg(b+ δ) + (b+ δ)(1− b)g(1− b− δ)
is decreasing in λ and unbounded below. Hence, there exists Λ1 > 0 such that

S(b+ δ) < 0 ∀λ > Λ1. (13’)

By continuity, Equation (12) and either (13) or (13’) imply that S(φ) crosses 0

downwards at some φ ∈ (b, b+ δ). By Lemma 1, this crossing constitutes a stable

steady state.

As for uniqueness, note first that ε = min
{

1, 1
α

√
c− 1− α

(√
λ−
√
c− 1− α

)}
is positive by Assumptions (A1) and (A1+). For large q or λ, we now partition

36In the special case that λ = c − 1, it follows that S′(1) = b(g(1) − g(0)) − (1 − b)g′(0) >
g′(0)(2b − 1) ≥ 0, where the inequalities hold by convexity and negative monotonicity of g(φ)
(see Lemma 3). Together with S(b) = (1− b)b(g(1− b)− g(b)) ≥ 0, this also implies a zero over
[b, 1).
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[0, 1] into five intervals and pin down the location stable steady state in one of

them.

First, consider the middle range I3 =
[

1−b
2
, 1+b

2

]
and note that

S ′(φ) = − ln(λ) + b ln(c− 1− αµ(φ)) + (1− φ)b
αµ′(φ)

c− 1− αµ(φ)

+ (1− b) ln(c− 1− αµ(1− φ)) + φ(1− b) αµ′(1− φ)

c− 1− αµ(1− φ)

< − ln(λ) + ln

(
c− 1− αµ

(
1− b

2

))
+

αµ′
(

1−b
2

)
c− 1− αµ

(
1+b

2

) .
This is unbounded below in λ and converges to − ln(λ) + ln(c − 1 − α) < 0 as

q → ∞. Consequently, there exist Λ2 and Q2 such that S is strictly decreasing

over I3 for either λ > Λ2 or q > Q2. A strictly decreasing function can have at

most one root.

Outside of this range, for λ > 1, |S(φ)| is uniformly bounded below,

|S(φ)| = |(b− φ) ln(λ)− (1− φ)b ln(c− 1− αµ(φ)) + φ(1− b) ln(c− 1− αµ(1− φ))|

> |b− φ| ln(λ)− ln(c− 1) >
1− b

2
ln(λ)− ln(c− 1)

λ→∞−−−→ −∞.

As a consequence, there exists Λ3 > 0 such that S admits no further roots for

all λ > Λ3. Alternatively, consider any q > Q3 = c−1
αε(1−b) ln

(
λ

c−1−α

)
− ln ε > 0.

Let φ0 = µ−1(1 − ε) = −1
q

ln ε, and note that µ′(φ0) = qε. Over the intervals

I1 ∪ I5 = ([0, φ0] ∪ [1− φ0, 1]) ∩ [0, 1],

S ′(φ) > − ln(λ) + ln(c− 1− α) + (1− φ0)(1− b)αµ
′(φ0)

c− 1

= − ln(λ) + ln(c− 1− α) + (1− b)αQ3ε

c− 1
+ ln ε(1− b) αε

c− 1
= 0.

In other words, any steady states over this range are unstable.

Finally, by the definition of ε, S(φ) is positive over I2 = [φ0,
1−b

2
],

S(φ) = (b− φ) ln(λ)− (1− φ)b ln(c− 1− αµ(φ)) + φ(1− b) ln(c− 1− αµ(1− φ))

> (b− φ) ln(λ)− (1− φ)b ln(c− 1− αµ(φ0)) + φ(1− b) ln(c− 1− α)
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>
b

2
ln

(
λ

c− 1− α

)
− b ln

(
1 +

αε

c− 1− α

)
= 0

and negative over I4 = [1+b
2
, 1− φ0],

S(φ) = (b− φ) ln(λ)− (1− φ)b ln(c− 1− αµ(φ)) + φ(1− b) ln(c− 1− αµ(1− φ))

< (b− φ) ln(λ)− (1− φ)b ln(c− 1− α) + φ(1− b) ln(c− 1− αµ(φ0))

< −1− b
2

ln

(
λ

c− 1− α

)
+ (1− b) ln

(
1 +

αε

c− 1− α

)
= 0.

For either q > max {Q1, Q2, Q3} of λ > max {Λ1,Λ2}, there exists therefore a

unique stable steady state φ, with φ ∈ (b, b+ δ).

Over-representation of the majority can be shown for b > 0.5 in two steps based

on Lemma 1. First, S admits no root over φ ∈ [0.5, b] since

S(φ) = (b−φ)x−1(c−1−αµ(φ))+φ(1−b)(x−1(c−1−αµ(φ))−x−1(c−1−αµ(1−φ))) > 0.

Indeed, by Property (mSS) and monotonicity of x, both terms are nonnegative.

The first term is strictly positive for φ < b, the second for φ > 0.5. Second, we

establish positivity of the following expression of g(φ) = ln(c − 1 − αµ(φ)) and

h(φ) = g(1− φ)− g(φ) whenever 0 < φ < 0.5 < b,

(b− φ)S ′(φ) + S(φ) = (1− b)b · h(φ)− (b− φ)((1− b)φg′(1−φ) + b(1− φ)g′(φ))

≥ 1

4
h(φ)−

(
1

2
− φ
)(

φ

2
g′(1− φ) +

1− φ
2

g′(φ)

)
≥ 1

4

[
h(φ) +

(
1

2
− φ
)
h′(φ)

]
(mSS+)
>

1

4
h

(
1

2

)
= 0.

The first inequality holds because the expression is decreasing in b. The second

inequality owes to convexity of g, and hence g′(1 − φ) > g′(φ). Finally, Prop-

erty (mSS+) ensures concavity of h(φ) over (0, 0.5) and implies the last inequality.

Together, these inequalities imply that any steady state (S(φ) = 0) with group-1

in the minority (b − φ > 0.5 − φ > 0) must have positive slope S ′(φ) > 0, and

hence be unstable.
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Proof of Theorem 2. S admits the following partial derivatives:

∂S

∂b
= (1− φ)(lnλ− g(φ)) + φ(lnλ− g(1− φ)) > 0,

∂S

∂λ
= (b− φ)/λ < 0,

∂S

∂q
= (1− φ)b

∂g(φ)

∂q
+ φ(1− b)∂g(1− φ)

∂q

= b
(1− φ)φ

q
g′(φ) + (1− b)(1− φ)φ

q
g′(1− φ) < 0.

which owes to the properties of g(φ) (see Lemma 3) and the positive labor supply

in any mixed steady state, which implies lnλ > g(1 − φ) > g(φ). The sign of

these derivatives implies that S(φ) < 0 for any of the changes mentioned in the

statement.

In addition, S remains positive at b > 0.5 since S(b) = (1−b)b
(
g(1−b)−g(b)

)
>

0 by Lemma 3. Continuity of S then implies the existence of a downward-crossing

(and by Lemma 1 a stable steady state) over (b, φ) ⊆ (0.5, φ).

Proof of Theorem 3. Define the single-group surplus

πi(m) = π̃(2−i, βix−1
(
c−1−αm

)
) = βi

[
1−
(

1− ln

(
c− 1− αm

λ

))
c− 1− αm

λ

]
for any mentoring level that attracts at least some students, c− 1−αm < λ. Note

that this quantity is smaller than βi and increasing in m. It is strictly positive since

1− ln(y) < 1
y

for y = c−1−αm
λ

∈ (0, 1) by concavity of the logarithm.37 As λ→∞,

most terms disappear and πi(m) → βi pointwise for all values of m. Similarly, as

q →∞, µ(φ)→ 1 and hence πi(µ(φ))→ πi(1) pointwise for all values of φ.

In Theorem 1, we establish the existence of a stable steady state arbitrarily

close to composition b for large enough q or λ. The surplus of that steady state

37The first-order Taylor approximation yields 0 = ln(1) < ln(y) + (1−y) ln′(y) = ln(y) + 1
y −1.
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eventually exceeds that of a homogeneous workforce since

π1(µ(b)) + π2(µ(1− b))→ β1 + β2 > βi > πi(µ(1)) as λ→∞

and

π1(µ(b)) + π2(µ(1− b))→ π1(1) + π2(1) > πi(µ(1)) as q →∞.

Eventually, this stable mixed steady state therefore dominates the homogeneous

ones in terms of social surplus. There may be an even better stable steady state,

but it must be mixed.

The next lemma establishes that the optimal long-term total labor force doesn’t

explode or disappear. Under Assumption (A1+), it establishes bounds on the L∗

that hold for all valid parameter values, i.e. all those q that satisfy Assump-

tion (A1).

Lemma 4. Long-term surplus π̃(φ, L) attains its maximum (φ∗, L∗) at some φ ∈
[0.5, 1] and L∗ ∈ (0, L̄] for L̄ = β1+β2

c−1−αµ(1)
. Under Assumption (A1+) and for

q > Q > ln(α)− ln(λ−c+1+α), the optimal labor force is contained in [L, β1+β2
c−1−α ],

where L > 0 only depends on Q.

Proof. The function ρ(Li, βi, L) = βi
(
1− e−λ

Li
βi

)
+Li (1− c+ αµ(Li/L)) is strictly

supermodular in its first two arguments since ∂2πi
∂Li∂βi

= λ2/β2
i Lie

−λLi
βi > 0. Since

π̃(φ, L) = ρ(φL, β1, L)+ρ((1−φ)L, β2, L), this implies that the optimal labor force

leans towards the majority group, φ∗ ≥ 0.5.

Note that L̄ is positive by Assumption (A1) and increasing in q. By continuity

and the Extreme Value Theorem, π̃ attains a supremum π̃(φ∗, L∗) over the compact

domain [0, 1]×(0, L̄]. This supremum is strictly positive and L∗ > 0 since π̃(φ, 0) ≡
0 and ∂

∂L
π̃(1, L) = λ + 1 − c + αµ(1) > 0 by Assumption (A1). It is a global

maximum since any larger labor force L > L̄ leads to negative surplus

π̃(φ, L) < β1 + β2 + φL
(
1− c+ αµ(φ)

)︸ ︷︷ ︸
<1−c+αµ(1)<0

+(1− φ)L
(
1− c+ αµ(1− φ)

)︸ ︷︷ ︸
<1−c+αµ(1)<0

40



< β1 + β2 + L̃
(
1− c+ αµ(1)

)
< 0.

For the lower bound, choose any Q > ln(α) − ln(λ − c + 1 + α) arbitrary. The

choice of Q ensures that Assumption (A1) holds. For a single working group, long-

term surplus under Q reduces to π̃(1, L;Q) =
∫ L

0
1− c+ x(l/β1) + αµ(1;Q)dl. Its

integrand is strictly decreasing in l, and zero exactly when l = L∗1 = β1x
−1(c −

1− αµ(1;Q)). Surplus is increasing in q and hence any optimal long-term surplus

is bounded below by π̃(1, L∗1;Q) > 0. Surplus is also bounded above by L · (1 −
c + λ + α) since the second term bounds each integrand. Together, these imply

that π̃(1, L∗1;Q) ≤ π̃(1, L∗1; q) ≤ π̃(φ∗, L∗; q) ≤ L∗(1 − c + λ + α) or, equivalently,

L∗ > L =
π̃(1,L∗1;Q)

1−c+λ+α
for all q > Q.

Proof of Theorem 4. The existence of a surplus-maximizing labor force with

positive supply and group-1 majority follows directly from Lemma 4. As for the

dependence on mentor capacity, we prove each claim in turn:

(a) Formally, we show that there exists q0 > q > 0 such that Assumption (A1)

holds for all q > q and φ∗ = 1 for all q ∈ [q, q0]. To do so, let q and q0 be

the unique solutions to c − 1 − λ − αµ(1) = 0 and c − 1 − λ − αµ(0.5) = 0

respectively. These solutions exist and are unique because the left-side expres-

sions are strictly decreasing in q, they tend to c − 1 − λ > 0 as q → 0 by

Property (hSS) and to c − 1 − λ − α < 0 as q → ∞ whenever (A1) holds for

any q. They are ordered as q0 > q since µ is strictly increasing in φ for any

positive q.

For q ∈ [q, q0], minority participation is always inefficient. To see this, consider

any φ ∈ (0.5, 1) and note that 1 − c + λ + αµ(1 − φ) < 0 since q < q0. In

other words, the marginal surplus from even the most able minority worker is

negative. Excluding them also improves the mentorship boost for the majority,

and hence

π̃(φ, L) = ρ(φL, β1, L)︸ ︷︷ ︸
<ρ(φL,β1,φL)

+ ρ((1− φ)L, β2, L)︸ ︷︷ ︸
<0=ρ(0,β2,φL)

< π̃(1, φL),
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where ρ is as in Lemma 4. This implies that the optimal labor force is homo-

geneous.

(b) The function M(φ) = φe−qφ + (1 − φ)e−q(1−φ) is the weighted sum of two

convex exponential functions. As such, it is bounded below by taking a first-

order Taylor approximation of each term at φ = φ0,

M(φ) ≥ φ(e−qφ0 + (φ− φ0)(−qe−qφ0)) + (1− φ)(e−q(1−φ0) + (φ− φ0)(qe−q(1−φ0)))

= e−qφ0φ(1− q(φ− φ0)) + e−q(1−φ0)(1− φ)(1 + q(φ− φ0)) = M(φ, φ0).

Similarly, N(φ, L) = β1e
−λφL

β1 +β2e
−λ (1−φ)L

β2 is the sum of two convex exponential

functions. It is bounded below by the second-order Taylor approximation at

φ = φ0,

N(φ, L) ≥ e
−λφ0L

β1

(
β1 − (φ− φ0)λL+ (φ− φ0)2 (λL)2

β1

)
+ e

−λφ0L
β2

(
β2 + (φ− φ0)λL+ (φ− φ0)2 (λL)2

β2

)
= N(φ, φ0, L).

Long-term surplus can be written as

π̃(φ, L) = β1 + β2 + L(1− c+ α)−N(φ, L)− αLM(φ).

Replacing M and N with M and N yields a quadratic upper bound π, for any

φ0.

Let now φ0 = b. For q > Q1 large enough, the coefficient of the leading term

φ2,

∂2π

∂φ2

∣∣∣∣
φ0=b

= −(λL)2

(
1

β1

+
1

β2

)
e
− λL
β1+β2︸ ︷︷ ︸

negative and independent of q

+αL q(e−qb + e−q(1−b))︸ ︷︷ ︸
→0 as q →∞

, (14)

42



is negative, making the upper bound concave. The first derivative

∂π̃

∂φ

∣∣∣∣
φ0=b

=
∂π

∂φ

∣∣∣∣
φ0=b

= −N1(b, b, L)︸ ︷︷ ︸
= 0

−αLM1(b, b)

= −αL
(
e−qb(1− qb)− e−q(1−b)(1− q(1− b)

)
< 0

is also negative for q > Q2 large enough.38

We conclude as follows: For q > max{Q1, Q2} large enough, surplus is locally

decreasing at φ = b since ∂π̃
∂φ

(φ, L) < 0. Together with the concave upper

bound that is tangent at φ = b, this implies that there exists a small enough

δ > 0 such that

π̃(b− δ, L) > π̃(b, L) = π(b, L) > π(φ, L) ≥ π̃(φ, L) ∀φ ∈ [b, 1].

In particular, this holds at the optimal total labor participation L∗.

(c) To show convergence of the optimal labor force composition, fix any ε > 0.

By Lemma 4 and Assumption (A1+), the optimal total labor force admits

an upper and lower bound that is independent of q, L < L∗ < L̄ for all

q > Q3 > ln(α)− ln(λ− c+ 1 +α) large enough. We have already established

that ∂N
∂φ

(b, L) ≡ 0 for any L > 0. Moreover, by Equation (14) and continuity

of β1+β2
b(2−b)(λL)2e−λL, there exists κ > 0 and Q4 > 0 such that

∂2π

∂φ2
(φ, L∗) < −κ ∀φ, ∀L ∈ [L, L̄] and ∀q > Q4.

Also, by convexity of the quadratic function M , its derivative converges uni-

formly to zero since M ′(1) ≤ M ′(φ) ≤ M ′(0) and limq→∞(c1 + c2q)e
−c3q for

any c1, c2 ∈ R and c3 > 0. As a consequence, there exists Q5 > 0 such that

|M ′(φ)| < κε
α
L̄−1 for all q > Q5.

Whenever |b− φ| > ε and q > max{Q3, Q4, Q5}, let L∗ = arg maxL{π̃(φ, L)}.
38For q large enough, the exponential terms in M ′(b) = e−qb(1 − qb − eq(2b−1)(1 − q(1 − b)))

dominate, eventually rendering both factors positive.
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It follows that

π̃(φ, L∗) ≤ π(φ, L∗) = π(b, L∗) + (φ− b)∂π
∂φ

(b, L∗) + (φ− b)2∂
2π

∂φ2
(b, L∗)

for the quadratic upper envelope π. At φ = b, the two are tangent and the

first derivative simplifies, hence

π(φ, L∗) = π̃(b, L∗)− α(φ− b)L∗M ′(φ) + (φ− b)2∂
2π

∂φ2
(b, L∗)

Finally, the bounds on M ′ and the concavity of π imply

π(φ, L∗) < π̃(b, L∗) + κε|φ− b| − (φ− b)2κ < π̃(b, L∗).

In other words, composition φ is strictly dominated by b, and limq→∞ φ
∗ = b.

(d) Let now φ0 = φ̂, and use a similar approach as in part (b). Since φ̂ is a mixed

steady state, Equation (3) implies for the leading coefficient

∂2π

∂φ2
= −λL

2

β1

x

(
φ̂L

β1

)
− λL2

β2

x

(
(1− φ̂)L

β2

)
+ αLq(e−qφ̂ + e−q(1−φ̂))

= −λL2(c− 1− α)

(
1

β1

+
1

β2

)
+ αL

((
q − λL

β1

)
e−qφ̂ +

(
q − λL

β2

)
e−q(1−φ̂)

)
.

Since total labor participation L is bounded below by Lemma 4, the upper

bound is concave for all λ > Λ1 big enough.

The first derivative

∂π̃

∂φ

∣∣∣∣
φ0=φ̂

=
∂π

∂φ

∣∣∣∣
φ0=φ̂

= −N1(φ̂, φ̂, L)− αLM1(φ̂, φ̂)

= L

[
x

(
φ̂L

β1

)
− x

(
(1− φ̂)L

β2

)
− α

(
e−qφ̂(1− qφ̂)− e−q(1−φ̂)(1− q(1− φ̂))

)]
(3)
= αL

[
e−qφ̂ − e−q(1−φ̂) − e−qφ̂(1− qφ̂) + e−q(1−φ̂)(1− q(1− φ̂))

]
= αL

[
qφ̂e−qφ̂ − q(1− φ̂)e−q(1−φ̂)

]
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has the same sign as Q(φ̂)− q. This allows us to conclude: If q > Q(b), there

exists δ > 0 small enough such that q > Q(b + δ). By Theorem 1, there

exists Λ2 big enough such that the unique stable steady state has composition

φ̂ ∈ [b, b+ δ), and hence surplus is locally decreasing at the steady state for all

λ > max {Λ1,Λ2}. If q < Q(b + δ), the opposite is true. Since this holds for

all levels L > 0, it also holds for the upper envelope, implying φ∗ ≶ φ̂.

Finally, total labor participation is optimal at any steady state, since the supply

constraints in Equation (3) ensure that the first order condition (8) holds at any

steady state (φ̂, L̂).

Proof of Theorem 6. To prove (a), we establish existence of an optimum by cit-

ing the Extreme Value Theorem and noting that π̃ is continuous over the bounded

set [0, 1]×[0, β1+β2]. We proceed by ruling out all optimal labor force compositions

other than (0.5, b).

To start, we rule out any φ < 0.5 through symmetry. In such a situation, the

simplified expression for long-run surplus (16) implies

π̃(1− φ, L)− π̃(φ, L) =

∫ (1−φ)L

φL

[
F−1

(
1− s

β1

)
ds− F−1

(
1− s

β2

)]
,

which is strictly positive whenever φ < 0.5. In other words, at any total labor size

L, composition 1− φ dominates φ.

To further restrict the range of optimal labor force compositions, we proceed

similar to the proof of Theorem 1. We define an auxiliary function Z : [0, 1]→ R
as

Z(φ) = b− φ− (1− φ)bF (c− 1− αµ(φ) + α(1− φ)M(φ))

+ φ(1− b)F (c− 1− αµ(1− φ)− αφM(φ))

for M(φ) = (1−φ)µ′(1−φ)−φµ′(φ). Lemma 5 shows that the roots of Z contain

the optimal interior composition φ. Lemmata 6 and 7 establish sufficient conditions

such that Z(φ) < 0 for all φ ∈ [b, 1), and Z(0.5) = (b−0.5)
(
1−F (c−1−αµ(0.5))

)
>
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0 for α > 0 small enough.

The last case to rule out is a homogeneous labor force with φ = 1. To do so,

we look at the sign of the partial derivative (see Lemma 5 for derivation details)

lim
φ→1

π̃φ(φ, L) = L

[
F−1

(
1− L

β1

)
− lim

p→1−
F−1(p) + α(µ(1)− µ(0) + µ′(1))

]
. (15)

If talent is unbounded above, limp→1− F
−1(p) =∞, no (bounded) mentoring gains

ever justify excluding (unbounded) talent. Conversely, if there exists a maximal

talent x̂, the optimal homogeneous labor size satisfies the first order condition

π̃L(1, L∗) = 0 and hence F−1
(

1− L∗

β1

)
= c − 1 − αµ(1). For any α ∈

(
0, c−1−x̂

µ′(1)

)
,

long-term surplus is then locally decreasing at the boundary, π̃φ(1, L∗) < 0, which

rules out an optimum at φ = 1.

To prove (b), we show that no steady state admits a labor force composition

φ ∈ [0.5, b]. Indeed, since F (c−1) < 1, a minimal mass of either group invests into

education regardless of mentoring. As before, we can identify mixed steady state

compositions through the roots of S. And as before, S(φ) > 0 for any φ ∈ [0.5, b].

Indeed, neither of the relevant parts of the proofs for Lemma 1 and Theorem 1(d)

rely on any functional form assumptions, and translate directly to this setting after

replacing x−1 by 1−F . Without persistent intervention, long term surplus is thus

bounded above by

max {π̃(φ, L) | φ ∈ [0, 0.5] ∪ [b, 1], L ∈ [0, β1 + β2]} ,

which is strictly dominated by the intervention identified above.

Lemma 5. Let Z : [0, 1]→ R be defined as in Theorem 6. Then Z(φ∗) = 0 at any

interior optimal labor force composition φ∗.

Proof. For constant interventions of composition φ and total size L, and after

a change of variables x 7→ s = βi(1 − F (x)), long-run surplus simplifies from
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Equations (6) and (9) to

π̃(φ, L) =

∫ φL

0

F−1

(
1− s

β1

)
ds+

∫ (1−φ)L

0

F−1

(
1− s

β2

)
ds (16)

+ L(1− c) + αL
(
φµ(φ) + (1− φ)µ(1− φ)

)
.

At any interior optimum, two first order conditions hold jointly:

0 = π̃φ = L

[
F−1

(
1− φL

β1

)
− F−1

(
1− (1− φ)L

β2

)
(17)

+ α(µ(φ)− µ(1− φ)−M(φ))

]
,

0 = π̃L = φF−1

(
1− φL

β1

)
+ (1− φ)F−1

(
1− (1− φ)L

β2

)
(18)

+ 1− c+ α(φµ(φ) + (1− φ)µ(1− φ)).

Multiplying (17) by 1−φ
L

and adding it to (18) is equivalent to

φL

β1

= 1− F (c− 1− αµ(φ) + (1− φ)αM(φ)) . (19)

Similarly, multiplying (17) by φ
L

and subtracting it from (18) is equivalent to

(1− φ)L

β2

= 1− F (c− 1− αµ(1− φ)− φαM(φ)) . (20)

The function Z is obtained by subtracting φ(1− b) times (20) from (1− φ)b times

(19). At the optimal composition, it must therefore equal (1 − φ)bφL
β1
− φ(1 −

b) (1−φ)L
β2

= 0.

Lemma 6. Assume that there exists k > 0 and x < x̄ such that F (x) > 0,

F (x̄) < 1, F ′ > 0 over [x, x̄] and

1− F (x1)

1− F (x2)
>

k

k + x1 − x2

∀x < x2 < x1 < x̄ (xNP)
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α
(
µ(φ)− µ(1− φ)−M(φ)

)
< k

(
φ(1− b)
b(1− φ)

− 1

)
∀φ ∈ [b, 1) (µNP)

c− 1− αµ(φ) + α(1− φ)M(φ) ∈ [x, x̄] ∀φ ∈ [0, 1] (A1NP)

Then Z(φ) < 0 for all φ ∈ [b, 1).

Proof. Assume φ ∈ [b, 1) and note that Z(φ) < 0 is equivalent to

1− F (x1)

1− F (x2)
>

(1− φ)b

(1− b)φ
, (21)

for x1 = c − 1 − αµ(1 − φ) − αφM(φ) and x2 = c − 1 − αµ(φ) + α(1 − φ)M(φ),

since (A1NP) ensures that the denominator is positive. The difference x1 − x2 is

bounded above by Property (µNP). We now proceed by cases:

• If φ = b, this upper bound equals zero, and hence x1 < x2. The strict

monotonicity of F implies that 1−F (x1)
1−F (x2)

> 1, and hence (21).

• If x1 ≤ x2, monotonicity of F similarly implies that 1−F (x1)
1−F (x2)

≥ 1, and 1 >
(1−φ)b
(1−b)φ for all φ > b.

• If x1 > x2, we apply the assumptions to conclude that

1− F (x1)

1− F (x2)

(xNP)
>

k

k + α
(
µ(φ)− µ(1− φ)−M(φ)

) (µNP)
>

(1− φ)b

(1− b)φ
.

Lemma 7. If there exists x < c− 1 < x̄ and v > 0 such that F (x̄) < 1 and F ′ < v

over [x, x̄], then there exists k > 0 such that Property (xNP) holds. Furthermore,

if both µ′ and µ′′ are bounded over [0, 1] and Property (10) is satisfied, then there

exists α > 0 small enough such that Properties (µNP) and (A1NP) also hold.

Proof. The upper bound on F ′ extends to the secant slope, F (x1) − F (x2) =∫ x1
x2
F ′(x)dx < v(x1−x2). Letting k = 1−F (x̄)

v
> 0, it thus follows that 1−F (x1) >

vk and

1− F (x1)

1− F (x2)
=

1

1 + F (x1)−F (x2)
1−F (x1)

>
1

1 + v(x1−x2)
1−F (x1)

>
1

1 + 1
k
(x1 − x2)

=
k

k + x1 − x2

.
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For the second claim, let M(φ) = (1 − φ)
(
µ(φ) − µ(1 − φ) −M(φ)

)
. Condition

(10) ensures that M(b) < 0. The bounds on µ′ and µ′′ translate to an upper

bound on M′, i.e. M′(φ) ≤ m1 for all φ ∈ (b, 1). It then follows that for any

α ∈
(

0, k
max{m1,1}b

]
and any φ ∈ [b, 1),

M(φ) =M(b)+

∫ φ

b

M′(y)dy
(10)
< m1(φ−b) ≤ k

αb
(φ−b) =

(1− φ)

α
k

(
φ(1− b)
b(1− φ)

− 1

)
.

Multiplying both sides by α
1−φ yields Property (µNP). Similarly, the bounds on

µ and µ′ imply bounds on µ(φ) + (1 − φ)M(φ) ∈ (−m2,m2) over [0, 1]. Prop-

erty (A1NP) holds for any α ∈
(

0,min
{
c−1−x
m2

, x̄−c+1
m2

})
, and that interval is

nonempty since c− 1 ∈ (x, x̄).
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