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Abstract

We characterize the optimal debt-maturity management of an impatient government in a
small open-economy. The Government issues a continuum of finite-life bonds that differ in
their maturity. It takes into account the price impact of each issuance. The optimal issuance
of any bond equals the product of the liquidity coefficient times the difference between the
market price and the domestic valuation. This property holds in presence of income or
interest-rate risk and the option to default. The model sheds light on the different forces that

shape an optimal maturity distribution.
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1 Introduction

Any government faces a large-stakes problem, to design a strategy for the quantity and matu-
rity of its debt. This paper presents a new framework to think about that design.

The framework makes two innovations. First, it puts forth the importance of liquidity fric-
tions, the notion that an abrupt adjustment of debt at a given maturity can impact its price. This
is a common consideration by practitioners, but has been neglected by normative theory. The
second innovation is technical. Debt-management problems have been studied under a rich set
of shocks, but the curse of dimensionality quickly restricts the number and class of bonds that
can be considered. Quantitative studies typically model bonds that mature exponentially and
work with two maturities.! In practice, governments issue in many maturities and never issue
bonds that mature exponentially. The framework here flips things around. Shocks can only
occur once, but the Government can issue simultaneously a continuum of bonds of arbitrary
coupon structure. The framework is tractable, portable, and easy to compute.

The goal of building this framework is to make a step forward towards a better compre-
hension of an optimal debt-maturity design. To this end, we lay out a continuous-time small-
open economy environment. An impatient government chooses the issuance or (re-)purchase
of fixed-coupon bonds within a continuum of maturities. Its financial counterparts are risk-
neutral international investors. The Government’s objective is to smooth consumption. The
Government faces income and interest risk and can default when those risks materialize. Lig-
uidity costs emerge because bonds are auctioned to primary dealers that take time to liquidate
bond holdings after an auction, as in Duffie et al. (2005). The larger the auction, the lower the
price. Bond markets are specific to a maturity, as in Vayanos and Vila (2009).

A general principle emerges. The problem can be studied as if the Government delegates
issuances to a continuum of subordinate traders, each in charge of a single maturity. Each trader
computes a domestic valuation of the bond of his maturity. To compute its valuation, the trader
uses a common discount designated by the Government. Each trader then applies a simple rule

to determine how much to issue of his maturity:
A% issuance/GDP = liquidity coefficient - A%value gap.

This simple rule says that the optimal issuance of a bond of a given maturity is the product of a
value gap and a liquidity coefficient. The value gap is the difference between the price and the
domestic valuation at a given maturity, as a percentage of the price. A positive value gap indi-

cates that the trader would otherwise want to issue as much debt as possible. Liquidity costs

This limitation is easily understood with a simple example. If we want to construct a yearly model where the
government issues a single 30 year, zero-coupon bond, we need at least 30 state variables: a 30 year bond becomes
a 29 year bond the following year, and a 28 year bond the year after, and so on. By contrast, a bond that matures
by 5 per cent every year is still a bond that matures by 5 per cent the year after its issuance.



contain that desire through as reflected by the liquidity coefficient. The liquidity coefficient can
be read off from data on turn-over rates and intermediation spreads. The lower the liquidity
coefficient, the greater the issuance for a positive value gap. The nature of risk or default alters
the details behind the valuations, but the overall principle is the same.

The principle delivers the optimal solution as long as the Government designates the correct
discount factor. This discount factor should emerge from a fixed-point problem in the path of
consumption: An imputed consumption path maps into a Government discount factor. This
discount factor, delivers a path for debt through the issuance rule. Ultimately, the path for
debt produces a new consumption path. In the optimal solution, both consumption paths must
coincide. This fixed-point problem is solved through a numerical algorithm and allows the
computation of rich transitional dynamics.

The paper exploits this principle to shed light on optimal maturity management. The pa-
per is built in layers. The first layer is perfect foresight. Under perfect foresight, steady-state
issuances are tilted towards longer horizons because longer maturities have a larger value gap.
The amount of outstanding debt decreases with maturity because long-term bonds become
short-term bonds as they mature, but not the other way around. Without liquidity costs, the
maturity profile is indeterminate, but remains determinate as liquidity costs vanish.

Two economic forces govern the transitional dynamics of the maturity structure, consump-
tion smoothing and yield management. We investigate these forces by calculating the perfect-
foresight transitional dynamics that follow unexpected shocks. Both forces are uncovered only
thanks to the liquidity costs. Without liquidity costs, the domestic discount factor and short-
term rate coincide, so even if the Government smooths consumption the maturity structure
is indeterminate. With liquidity costs, the maturity structure is determinate because the dis-
count factor is not equal to the short-term rate, and that difference compounds with maturity.
The consumption smoothing force is activated when the consumption path changes domestic
discounts and, as a result, modifies domestic valuations. Yield management operates when
short-term rates affect bond prices. Consumption smoothing lengthens the maturity during
downturns: when a shock produces a drop in consumption, the domestic discount remains
temporarily high. This reduces domestic valuations, particularly for longer maturities. The
economic intuition is that the payment streams are delayed by long-term bonds, and as a re-
sult, with a higher discount, these are valued less. Thus, the Government bears a higher price
impact upon the issuance of long-term debt during a downturm. By constrast yield manage-
ment shortens the maturity when short-term rates increase temporarily. The intuition is that
there is little discount in short-term bonds to begin with, so at short horizons valuation gaps
are always small. When rates increase, long-term bonds are priced with a higher discount, so
the valuation gap decreases more for long maturity bonds.

The second layer incorporates risk. To make the problem tractable, we study an econ-

omy where interest or income shocks occur once. The anticipation of risk introduces an ex-
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tra term into the domestic valuations: coupon payments are adjusted by the ratio of post- to
pre-shock marginal utilities. We characterize the risky steady state (RSS). The RSS is the steady
state reached when the government expects the shock, but the shock has not yet materialized.?
The debt distribution at the RSS reveals how risk introduces a new force, insurance. Insurance
shapes the maturity profile in two ways. First, the Government tries to hedge by generating
capital gains from its portfolio in adverse states. Liquidity costs make a perfect hedge too
costly, even if it is available. Second, the Government self insures. Self insurance shows up in
the ratio of marginal utilities because a future drop in consumption increases that ratio and,
thus, raises valuations. By raising valuations, self insurance reduces the stock of debt. Self in-
surance also lengthens the average maturity because coupon payments are inflated by the ratio
of marginal utilities, and this increases valuations especially for long-term debt. The intuition
is that long-term bonds are less likely to have expired by the time a shock arrives, and this
reduces the expected costs of debt repayments under a negative shock.

The final layer incorporates strategic default. We allow the Government to default the in-
stant it is hit by the shock. Default implies an output loss and the permanent exclusion from
financial markets, but allows the Government to erase all debts. Default is exercised only if
it renders a higher value to the Government. Prior to default, the Government commits to a
debt program. With default, prices and valuations are corrected by a default-risk premium.
Valuations are also adjusted by an additional term which we dub the revenue-echo effect. The
echo effect appears only in the valuations because traders anticipate that a marginal increase in
their issuances marginally raise the chances of default in the future. The increase in default risk
echoes back in time through market prices that anticipate the risk. This anticipation reduces
revenue collections from issuances. In terms of the maturity structure, the default premium
and the echo effect are a force that shortens debt maturity. Both effects close the value gap. The
paper ends with a list of potential applications and extensions of the framework.

Related literature. Maturity management appears in various areas of finance: international,
public, and corporate. The framework here captures forces that have been previously identified.
An advantage of the framework is that it allows for a large number of securities of realistic
coupon structure.

The framework also incorporates liquidity costs. There is a large literature that studies both,
theoretically and empirically, the sources and magnitudes of liquidity costs. The formulation
of liquidity costs here builds on two ideas. As in Vayanos and Vila (2009), markets for bonds
of different maturity are segmented. As in Duffie et al. (2005), issuances are intermediated by

2The concept of RSS is equivalent to the one that appears in Coeurdacier et al. (2011). The analysis of the
RSS is the only tractable solution that does not rely on approximations. Transitional dynamics prior to the shock
is not analytically tractable. Furthermore, if instead of a single jump, we consider multiple jumps, complexity
escalates. An analogous challenge appears in models of incomplete markets which is why the literature uses the
approximation in Krusell and Smith (1998) or similar approaches. To our knowledge, this is the first paper to
employ the RSS in a model with an aggregate shock when the state variable is a distribution.



dealers that face a high discount and need time to reallocate assets. In Vayanos and Vila (2009),
a finite mass of long-lived investors demand bonds of a specific maturity. Investors trade with
intermediaries that trade in all maturities. The price impact in that model depends on the
overall outstanding amount of bonds of a specific maturity. In our framework, a large flow of
customers contact dealers, independently of the outstanding amount at a maturity. Therefore,
in our case the price impact depends on the issued amount, because it affects the time taken by
dealers to offload bonds to investors. Liquidity costs introduce the yield management force that
shapes the optimal maturity profile under risk neutrality. The framework, notwithstanding, can
also be used to study maturity management without liquidity costs.

Beyond the theoretical appeal, there is substantial evidence various forms of liquidity costs
in different asset classes, as surveyed by Vayanos and Wang (2013b) or Duffie (2010). In the
specific case of fixed-income securities, studies that provide evidence suggestive of the pres-
ence of liquidity costs are Cammack (1991), Duffee (1996), Spindt and Stolz (1992), Fleming
(2002), Green (2004), Pasquariello and Vega (2009), and Krishnamurthy and Vissing-Jorgensen
(2012) for US Treasury markets, by Dutffie et al. (2003), Naik and Yadav (2003b) and Cheung et
al. (2005) for sovereign bond markets, Edwards et al. (2007) and Feldhutter (2011) for US cor-
porate bond markets, and Green et al. (2007) for US municipal bond markets. Our calibration
is based on inventory-depletion evidence in the US Treasuries market documented by Fleming
and Rosenberg (2008).

International finance stresses several forces that interact with liquidity costs in our frame-
work. One force is insurance. A small-open economy effectively has access to complete markets
when income shocks are correlated with changes to the yield curve in a way that allows com-
plete asset spanning, as discussed in Duffie and Huang (1985). With full spanning, the maturity
design is governed by the formation of a hedge that perfectly insures the country. Maturity
plays no role when income shocks are uncorrelated with changes in rates, and in that case,
debt dynamics are governed only by self insurance (as in Chamberlain and Wilson (2000) or
Wang et al. (2016)). In between these extremes, there is are a range of cases without full asset
spanning, but with a role for both hedging and self insurance. In our framework, liquidity
costs make perfect hedges prohibitively costly, so self-insurance and partial hedging shape the
debt-maturity profile under risk regardless of the asset structure. We explain how the insurance
force is captured in the risk premium.

Another force is incentives. When the Government can default, it should take into consid-
eration how its current issuances affects the likelihood of a future default, in the future and
that which affects current prices (Eaton and Gersovitz, 1981). The effect of incentives is cap-
tured by the revenue-echo effect. In terms of maturity choice the literature has identified other
important trade offs. Bulow and Rogoff (1988) identified that without commitment to a debt
program, long-term debt is prone to debt dilution. The literature on sovereign default without
commitment has identified two important channel though which incentives affect the maturity
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choice. First, is debt dilution. Debt dilution occurs when the price of outstanding bonds fall
as a result of a new issuance. The expectation of debt dilution is a problem for a Government
that cannot commit because it raises the cost of long-term debt. Debt dilution is a force towards
the concentration of issuances at short maturities. Calvo (1988) and Cole and Kehoe (2000)
identified a force that operates in the opposite direction, roll-over risk. A solvent government
faces roll-over risk if it cannot refinance a large principal and, as a result, is forced to default.
Roll-over risk is a force towards spreading debt services.

Restrictions on the number of bonds and coupon structure are a serious limitation to sovereign
debt models. For example, a country could, in principle, construct a hedge with two bonds of
very short maturities. Thus, any trade off between debt dilution and hedging can be mitigated
if the country is able to choose its maturity structure. Another example of a limitation is that
roll-over risk can be mitigated if the country can issue a perpetuity. To our knowledge, this is
the first paper to study a debt-management problem where the control is the entire distribution
of debt.* Although our model does not feature roll-over risk and abstracts from debt dilution,
it lays the foundations of a framework that can, later on, be enriched to address these issues.

Maturity choice is also a classic theme in public finance models. Angeletos (2002) and Buera
and Nicolini (2004) show how to implement optimal taxes under complete-markets (in a Lucas
and Stokey, 1983) with a menu of bonds that differ in maturity. Buera and Nicolini (2004) argue
that portfolios that provide insurance are very volatile. Liquidity costs can make debt profiles
more realistic. Recently, Bhandari et al. (2017a), Bhandari et al. (2017b), Debortoli et al. (2017)
and Debortoli et al. (2018) study maturity choice when markets are incomplete as in (in an
Aiyagari et al., 2002, economy). In corporate finance, Diamond and He (2014) and DeMarzo
and He (2016) build versions of Leland and Toft (1996) where maturity is a dynamic choice.
There is no reason why our framework cannot be adapted to answer questions in either area.

On the technical front, the framework employs infinite-dimensional optimization techniques
similar to those applied in heterogeneous agent models. Lucas and Moll (2014) study a problem
with heterogeneous agents that allocate time between production and technology generation.
Nufio and Moll (2018) study a constrained-efficient allocation in a model with heterogeneous
agents and incomplete markets. Nufio and Thomas (2018) study optimal monetary policy in a
heterogeneous-agent model with incomplete markets and nominal debt. The contribution rel-

3 Aguiar et al. (Forthcoming) show analytically that under debt dilution, once the country has issued long-term
debt, it should leave it untouched until maturity. Chatterjee and Eyigungor, 2012, Chatterjee and Eyigungor, 2015,
and Hatchondo et al., 2016 are quantitative models of these effects. Hatchondo and Martinez (2009), Arellano and
Ramanarayanan (2012), and Hatchondo et al. (2016) are quantitative studies that study the interaction between
insurance, debt dilution, and roll-over risk. Passadore and Xu (2018) study a model with a feedback loop between
default risk and secondary-market liquidity. Dovis et al. (Forthcoming) studies a risk-sharing problem and shows
that the problem can be decentralized.

4There are two alternative frameworks that allow for richer debt structures, Sanchez et al. (2018) and Bocola
and Dovis (2018). In Sanchez et al. (2018) the maturity of the entire stock of debt is a choice, but to get around the
curse of dimensionality, the Government is allowed to change maturity by one period every period. In Bocola and
Dovis (2018), instead, debt is a consol but its maturity can be changed at a quadratic cost.



ative to those studies is that this paper introduces the risky steady-state approach to study the
impact of aggregate risk. This feature is novel, and allows for an exact characterization that can

be used to analyze models with aggregate risk.

2 Maturity management with liquidity costs

2.1 Model setup

Time is continuous. The model features two exogenous state variables, {y(t),r*(t)}, respec-
tively representing an endowment process and a short-term interest rate process. The vector of
exogenous states is X(t) = [y(t),r*(t)]. For any variable, endogenous or exogenous, we em-
ploy the notation xe = lim ;X (#) to refer to its asymptotic value and x;; to refer to its steady
state value, if it exists.” All of the partial-differential equations (PDE) that we present here have
exact solutions which are presented in Table A in Appendix A.

Households. We consider a small open economy. There is a single freely-traded consump-
tion good. The economy is populated by a representative household with preferences over
expenditure paths, {c (t)}, given by

Vo = /Oooe_ptu(c(t))dt,

where p € (0,1) is the discount factor and U (-) an increasing and concave utility function.
Government. The economy features a benevolent Government that issues bonds to foreign
investors on behalf of households. Bonds differ by their time-to-maturity. Denote by T the time
to maturity of a given bond. Issuances are chosen among a continuum of maturities, T € [0, T},
where T is an exogenous maximum maturity. The maturity of a given bond falls with time,
% = —1, and the bond is retired once T = 0. Prior to maturity, the bond pays an instantaneous
constant coupon 4 and one unit of good when the principal matures. The outstanding stock
of bonds with a time-to-maturity T at  is denoted by f (7, t). We call {f (7,)},¢[o 7] the debt

profile at time ¢. The law of motion of f (7, t) follows a Kolmogorov-Forward equation (KFE):

of _

of
5= L(T,t) + (2.1)

gl

with boundary conditions f(T*,t) = f(0~,t) = 0. The intuition behind the equation is that,
given T and t, the change in the quantity of bonds of T—maturity, df /dt, equals the issuances
at that maturity, ¢ (7, t), plus the netflow of bonds, df /07. The latter term captures the instanta-
neous outflow towards smaller maturities and the instantaneous inflow from bonds of higher

maturities. Issuances, ¢ (T, ), are chosen from a space of functions Z : [0, T| x (0,00) — R that

°In the case of the exogenous variables {y, 7*} we use both subscripts indistinctly.
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meets some technical conditions.® When negative, issuances are interpreted as bond purchases
or repurchases. The initial stock of T maturity debt is given, f(7,0) = fo (7). The Government’s

budget constraint is:

T
() =y =FON+ [ lg(r e =of (xn]dr 22)

where y () is the (exogenous) output endowment, with steady state value y,;. In this budget,
—£ (0, ) is the principal repayment, § fOT fdt are total coupon payments from all outstanding
bonds, and fOT q:dT the funds received from debt issuances at all maturities. Finally, g (7, 1) is
the issuance price of a bond of maturity T at date ¢ in the primary market. The price depends
on the issuance amount.

International investors. The Government trades bonds with competitive risk-neutral inter-
national investors. The issuance price, g, has two components, a frictionless market price and a
liquidity cost :

qg(t,t,1) = &(T/,_tl — A(T,t, ll . (2.3)
market price  liquidity costs
The first component, (7, t), is the arbitrage-free market price of the domestic bond. This price
depends on the path of the international risk-free interest rate, r*(¢). Given this risk-free rate,
the market price (7, t) has a PDE representation:

)yt t) =06+ aa—lf — g—l_/;, (2.4)

with a boundary condition (0, t) = 1.” Except if indicated otherwise, we assume that § = r%,.

Liquidity costs. The second component in the issuance price, A (7, t, 1), represents a liquidity
cost associated with the issuance (or purchase) of : bonds of maturity T at date ¢t. In Appendix B
we present a wholesale-retail model of the bond market, whose solution yields the formulation
of the liquidity cost that we employ throughout the paper. The spirit is similar to models that
teature OTC frictions like Duffie et al. (2005). The main virtue of this friction is that it produces
a price impact, which has been extensively documented in bonds markets.

In particular, we assume that to issue bonds of the maturity T at date ¢, the Government
decides to auction ¢ (7,t) bonds. The participants of that auction are a continuum of invest-
ment bankers. Bankers participate in the auction and buy large vintages of bonds. This is the
wholesale market. Then, bankers offload bonds to international investors in a retail (secondary)
market. As in Duffie et al. (2005), bankers have higher costs of capital than investors. In par-

®In particular Z is the space of functions ¢(t,t) on [0, T] x [0, %) such that e~*g is square Lebesgue-integrable.

The solution to this PDE is (7, t) = e~ ST wdu 5 /; f“ e~ Ji " (Wdugs Tt is a continuous-time net present
value formula, which can be recovered from the PDE via the method of characteristics or as an immediate appli-
cation of the Feynman-Kac formula.



ticular, the bankers’ cost of capital is r*(¢) + 7, where 7 > 0 is a spread. In the retail market,
bankers are continuously contacted by investors. The contact flow is pyss per instant. Each
contact results in an infinitesimal bond purchase by investors from a banker’s bond inventory.
Thus, in an interval At, the stock of bonds sold by the banker is pyssAt. We assume that bankers
extract all the surplus from the international investors.

The key friction that translates into a liquidity cost for the Government is that it takes time
for bankers to liquidate their bond portfolios. This, together with the fact that bankers have
an inventory holding cost due to the finance premium, implies that the larger the auction, the
longer the waiting time to resell a bond and, thus, the lower the price the banker is willing to
offer in an auction. As auction size vanishes, the opposite occurs, and the price converges to
the market price ¢(7, t). These properties are common to OTC models, e.g., Duffie et al. (2005
In Appendix B we present an exact solution to the auction price as a function of the market
price and the issuance size. Here, we present an approximation, a first-order Taylor expansion

around ; = 0, which yields a convenient linear expression for the auction price:

T iz, ). (2.5)

1
g(L, T,t) = P(t,t) — 5

Thus, the approximate liquidity cost function is A (1, t,1) ~ $Ay(t, ). The term A is a liquidity
cost coefficient which increases with the spread and decreases with the contact volume.®

We now return to the Government’s problem and make no further reference to the source of
the liquidity costs.

Government problem. The Government maximizes the utility of the households given by

VIFCOL = max [Ceruem)ar 26)

subject to the law of motion of debt (2.1), the budget constraint (2.2), the initial condition f,
and debt prices (2.3). The object V is the value functional, which maps the initial debt profile

given fp, into a real number. It is a functional because the state variable is infinite-dimensional.

2.2 Solution: the debt issuance rule

We can employ infinite-dimensional optimization techniques to solve the Government’s prob-

lem. This section presents a gist of the approach. A full proof is found in Appendix D.1. The

8 An implicit assumption behind this formulation is that there are no congestion externalities: the contact rate is
independent of the outstanding debt at a given maturity. A departure from this assumption, produces a strategic
behavior similar to the case with default, as we discuss in the extensions of Section 5.



main idea is to formulate a Lagrangian:
S T
L[, f] = / e U (y(t) — (0,1 +/ [g(t,T,0) (T, t)—6f(T,t)] dT) dt
0 0

., /Ooo /OT e_ptj (1,1) <_% +i(T,t) + %) dtdt,

where we substitute out consumption from the objective function by use of the budget con-
straint (2.2). The necessary conditions are obtained by a classic variational argument. The
idea is that at the optimum the optimal issuance and debt paths cannot be improved. A first
condition is that no infinitesimal variation around the control ¢ can produce an increase in the

Lagrangian. This implies that:

U’ (c(t)) <q (t,7T,1) + %l (T, t)) = —j(t,1). (2.7)

This necessary condition is intuitive: the issuance of a (7, f)-bond produces a marginal cost and
a marginal benefit and both margins must be equal at an optimum. The marginal benefit is the
marginal utility of the marginal increase in consumption; the marginal increase in consumption
equals the average price of that bond, g, plus the price impact of an additional issuance, %l. The
marginal cost of the issuance is summarized in the Lagrange multiplier, —j, which captures the
forward-looking information on the bond repayment.

A second condition is that no infinitesimal variation over the state f can yield an improve-
ment in value. The solution cannot be improved as long as the Lagrange multipliers j satisfy
the following partial differential equation (PDE):

pj (t,t) = =U"(c(t)) 6+ % - %, Te€(0,T), (2.8)
with a boundary condition: j (0,f) = —U’ (c (t)).

Each Lagrange multiplier is forward-looking because it captures future repayment costs
in the form of a continuous-time present-value formula. The first term, —Uu’'s, is a disutil-
ity flow associated with the future marginal cost of coupon payments. The second and third
terms, dj /0t and 9j/9d7, capture the change in flow utility as time and the maturity of the bond
progress. For interpretation purposes, it is convenient to translate the multiplier j from utiles
into consumption units. This change of units is useful to transform each multiplier into a fi-
nancial cost. Define a transformed multiplier via v (7, t) = —j (,t) /U’ (c (t)) . We refer to v as
the domestic valuation of a (7,t)-bond. Aided with this definition, we re-express the first-order
conditions (2.7) and (2.8) as )

q

3, (t,t) +q(t,T,0) =v(T,t), 2.9)



and the PDE,

Jv  Jv
r(fH)v(t,t) =0+ 5 9 ifte (0,T], (2.10)

with terminal condition v (0,t) = 1. The rate r () is

U (e (#)) e(t) c(t)
H=p— . 2.11
S N O)G @
Different from r* (f), the rate r (¢) is the infinitesimal discount factor. Under CRRA utility,

U(c) = Cl{jgl, the internal discount factor satisfies the classical formula r(t) = p + o¢(t) /c(t).

There is a remarkable connection between the domestic valuation (2.10) and the market-price
equations (2.4). Both, the domestic valuation and the market price, are net-present values of the
cash-flows associated with each bond. The only difference between them is the interest used
to discount. In the case of the market price the bond is discounted at r* whereas the domestic
valuation uses r. The optimal issuances given by (2.9) depend on the spread between the two
valuations. The next proposition summarizes the discussion into a full characterization of the
problem’s solution:

Proposition 1. (Necessary conditions) If a solution {c(t),1(T,t), f (T, ) }1oq to (2.6) exists then do-
mestic valuations satisfy equation (2.10),0ptimal issuances 1 (T,t) are given by the issuance rule (2.9)
and the evolution of the debt distribution can be recovered from the law of motion for debt, (2.1), given
the initial condition fy. Finally, c(t) and r(t) must be consistent with the budget constraint (2.2) and
the formula for the internal discount, (2.11).

Proof. See Appendix D.1. O

There are two noteworthy features of the solution. The first feature is a decentralization result:
We can interpret the solution as if the Government designates a continuum of traders, one for
each 7, to give an internal price to its debt, given the internal discount factor r. Each trader
then issues debt according to the rule in (2.9). Of course, the discount factor must be internally
consistent with the consumption path produced by issuances.

The second feature is that issuances are given by a simple debt issuance rule. Consider the

liquidity cost function (2.5), the optimal-issuance condition (2.9) can be written as:

1 (T, t) —o(T,t)
\—X’/ ) lP(T’ t) . (2.12)

liquidity coefficient

(T, t) =

value gap

The rule states that the optimal issuance of a (7,t)-bond should equal the product of the in-
verse liquidity coefficient and a value gap. This value gap is the difference between the market
price ¢, and the domestic valuation of a bond v, relative to the market price. When the value

gap is positive, a trader would wants to issue as much debt as possible because the market
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price exceeds the valuation of that debt. A force contains the desire to issue: the liquidity cost
that captures the reduction in price as the issuance becomes larger. This force appears as the
coefficient 1/A. The lower A , the greater the issuance.

The long-run behavior of the solution can be characterized analytically. In some instances,
the solution reaches a steady state and in others the solution converges asymptotically to zero
consumption. Whether there is a well-defined steady state with positive consumption depends
on the value of A. In Appendix D.3 we characterize the asymptotic behavior of the solution. In
particular, we obtain an expression for a threshold A,. A steady state exists if and only if A > A,.
If A < A,, there is no steady state: consumption decreases asymptotically at the exponential rate
ré, — p and r () converges to a limit value o, (1).” Naturally, A, depends on the Government’s
relative impatience.

In the case where A > A,, the solution renders an analytic expression for the steady state,

with market prices and valuations:

1—e =T 1—er7

Pss(T) =9 +e 5T and vg(T) = 5T +e FT. (2.13)

rss
Since, 6 = r},, we have that all bonds are issued at par 155(7) = 1 and vss(7) = rﬁsl_e’%m + e PT,
Issuances at steady state, i55 (T) follow from (2.12), and the outstanding debt satisfies fs(7) =
/. TT 1ss(s)ds, so their expressions are given by:
1ss (T) = P =5 (1—e7*7) and fis(7) = P = /T (1—e)ds (2.14)
SS - p}\ EN p)—\ . . .
We can investigate these expressions to learn about the forces that govern the steady state debt
profile. In a deterministic environment, the entire maturity structure is determined by the desire
to spread out issuances to minimize the liquidity costs. In steady state, issuances are increasing
in maturity—in fact, increasing and concave in maturity. For the shortest maturity, ¢ (0)=0
because domestic valuations coincide with market prices. We can see that issuances increase
in maturity, which can be verified through the derivative of the issuance rule with respect to
maturity,
Olss _ p — 15
— == T > 0.
oT A
Intuitively, differences in valuations are higher for longer maturities, as the Government dis-
counts future cash-flows at a compounding rate greater than r; whereas investors value all
bonds at 1. This means that at the margin, the Government is willing to receive a lower price

on a longer maturity bond, which is why it tolerates a higher price impact on longer bonds.

9The asymptotic discount factor r« (1) is increasing and continuous in A with bounds 7« (1,) = pand re (0) =
*

Vgs-
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By contrast to the maturity distribution of issuances, the distribution of the maturity of the
stock of debt is decreasing in maturity. The reason is simple, there is always a bigger stock of
short-term debt because there is always a constant flow of long-term bonds that become short-
term bonds at steady state. In other words, the outstanding amount of short term debt is the
sum of past flows of longer-term debt, something obvious from the expression for fss (7). Ceteris
paribus, as we increase the spread (p — rZ;) the maturity profile shifts towards longer maturities
and the overall stock of debt increases. The liquidity cost coefficient decreases issuances in
equal proportion.

A final property is that the Government’s problem has a dual cost-minimization problem.
The dual is the problem of minimizing the net-present value of financial expenses, given the
discount  (t) constructed out of a desired consumption path c(t). Formally, the dual problem
is

00 y T T
min / e~ Jor(s)ds (f (0,1) —|—/ Sf (t,t)dt — / g(t,t,0)u(T, t)dr) dt (2.15)
{t()reT Jo 0 0

where 7(t) is given by (2.11), and the minimization is subject to the law of motion of debt (2.1),
the initial condition fy, and debt prices satisfy (2.3). The object in parenthesis is the net flow of
tinancial receipts. This dual is consistent with a mandate for a debt-management office should

minimize the financial expenses of a given expenditure path. The proof is in Appendix D.2.

2.3 No liquidity costs and vanishing liquidity costs

Proposition 1 characterizes the optimal debt profile in presence of liquidity costs. We charac-
terize the solution both without liquidity costs and at the limit when liquidity costs vanish. As
expected, at the case without liquidity costs, the maturity profile is indeterminate. By contrast,
the limit solution as liquidity costs vanish features an uniquely determined debt profile.

Consider first the case without liquidity costs, i.e., A = 0. The necessary conditions for
a solution are still summarized in Proposition 1. Since the issuance rule (2.9) still holds, any
interior solution must satisfy an equality between domestic valuations and prices, v (7,t) =
Y (7, t) for any 7. This requires r*(t) = r (t).

This feature of the limit solution should be familiar: internal discount-factors are equal to
the interest rate in standard consumption-savings problems. This observation is enough to

characterize the solution at the limit. Denote the market value of the Government’s debt as:

T
B(t) = /O ¢ (T, 8) f (T, 1) dr. 2.16)

Proposition 7 in Appendix D.4 shows that any solution of the Government problem with A = 0
yields the same value as a consumption-savings problem with a single instantaneous bond in
amount B(t), abudget constraint B(t) = —r*(¢)B(t) + y(t) — c(t) and an initial condition given
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by B(0) = fOT P (7,0) fo (T) dt. Hence, there are infinitely many solutions that satisfy (2.16) for
a B(t) that solves the problem with an instantaneous bond. The intuition is simple, given that
the yield curve is arbitrage free and the discount factor coincides with the interest rate there is
no way to structure debt to reduce the internal cost of debt. All bonds are redundant but the
path of consumption is consistent with *(¢) = r (t) and an intertemporal budget.

Now consider the limit solution as A — 0. In Appendix D.5, Proposition 8, we present a
general formula for the limiting distribution. In the particular case where § = ry;, the limiting
issuance distribution is determinate and equal to:

1—e'sT

lim 1 (7)

= P E——— K
A0 1—ersT

where « is a positive constant that guarantees that the budget constraint is consistent with
zero-consumption at the limit. The debt profile shares the qualitative features of the case with
positive liqudity costs of Proposition 1: debt issuances are also tilted toward long term bonds,
but now p plays no role. The result shows that there is a discontinuity in the limit as liquidity
costs vanish, since for any arbitrarily small cost the distribution is determined. This limiting

solution can be employed as a selection device that determines the maturity structure.

2.4 Quantitative analysis

Computational method. Despite the analytical expressions for the steady state, the computa-
tion of the transitional dynamics produced by the solution to the problem requires a numerical
algorithm. The idea follows directly from Proposition 1: Given a guess for {c (t)}, we obtain
the domestic discount factor r (t) through equation (2.11). This discount factor produces valu-
ations {v (7,t)} according to (2.10), which, in turn, determine the issuances ¢ (7, t) through the
optimal issuance rule (2.9). Issuances produce a path of debt profiles {f (,t)} obtained from
the law of motion of debt, (2.1). Given the produced debt profiles and the issuance policies,
the budget constraint, equation (2.2), determines a new consumption path. A transition to the
steady state is a fixed point problem in {c (¢)}, where the guess and resulting paths consump-
tion paths should coincide. All in all, the solution boils down to a fixed point in {c(t)}. We
present the details of this numerical algorithm in Appendix E.

Calibration. To provide further insights, we calibrate the model to the Spanish economy.
The objective of the calibration is to illustrate the ability of the model to generate realistic debt
profiles, and to study the qualitative and quantitative responses to unexpected income and
interest rate shocks. Following Aguiar and Gopinath (2006), we set the coefficient the value of
the coefficient of the utility function to, o, to 2, and the long-run annual risk-free rate, rj;, to 4
percent. We normalize income yss to 1 and the maximum maturity, T, to 20 years, as roughly

90 percent of Spanish debt has a maturity below 20 years. The coupon, 4, is set to 4 percent so
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Figure 2.1: Maturity distribution. Data for Spain in July 2018 and model in steady state.

the market price equals one at all maturities. Steady state output is normalized to one. In order
to calibrate the price impact of bonds, A, we need to set the values to the arrival rate, u, and
the spread, 1. In the model, 77 represents the cost of capital for market makers. We calibrate
this spread to 150 bp. As a reference, we obtain an approximation of the cost of capital of the
biggest five US banks in terms of their assets and compute the average spread.

We jointly calibrate the discount factor, p, and the arrival rate, y, to match the average level
of Spanish public debt and to replicate the average time that market makers require to exhaust
bond inventories. In particular, the calibration tries to match to two targets: First, the Spanish
Government Net Debt, obtained from the IMF WEO, was 46 percent of GDP over the period
1985-2016. Second, according to Fleming and Rosenberg (2008), US primary dealers exhaust
60 percent of their inventory one week after they participated in the US treasury primary mar-
ket.These two targets imply that, at steady state,

uT

———— = 0.6, and /Tf(r)dT = 0.46.
Jo t(r)dT 0

Accordingly, we set the value of u to 0.0011 and the value of p to 0.0416. The implied value of
A is 7.08. Note that %é ~ %i = —1A1. We can compute the elasticity of auction prices with
respect to changes in the size of the issue that is produced by this calibration, to get a sense of
the magnitude of price impact. The maximum value of issuances is 0.003, for a maturity of 20
years, and hence the elasticity of the auction price equals —% x 7.08 x 0.003 = 0.011. This means
that if the Government duplicates the size of its steady-state issuance of the 20 year bond, its
price falls by 1.1 percent at the time of the auction.
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Figure 2.2: Steady-state equilibrium objects as a function of the liquidity cost (A). Note: The thick

red line in panels (c) and (d) indicates the values at the threshold A,.

Steady state. Figure 2.1 presents the steady state debt profile generated by the calibrated
model against the data corresponding to Spanish debt profile of July 2018. Admittedly, the com-
parison has some limitations: we compare a steady state object of the model with an empirical
counterpart at a particular period. Nevertheless, the figure shows that albeit the simplicity, the
model reproduces the decreasing maturity profile of Spanish debt.

Under the calibration, the model has a proper steady state because the calibration satisfies
A > A,. Figure 2.2 displays steady-state objects as functions of A. The value of the threshold
Ao is 0.14, well below the calibrated value of A which is 7.08. Panels (a) and (b) show how, for
liquidity costs below the threshold, asymptotic consumption c« is zero as no steady state exists.
Similarly, as liquidity costs vanish, the discount factor 7« converges to the annual risk-free rate
of 4 percent. The thick red line, panels (c) and (d) indicates the values at the threshold A,. The
black lines above it are the values for A < A,. The limiting distribution is approached as A
approaches zero, but is relatively similar to the distribution at the threshold. This implies that,
even in the case of liquidity cost values such that no steady state exists, the debt and issuance
profiles are approximately the same as those at A = A,

Responses to unexpected shocks. We now study transitions after unexpected shocks to
income or the short-term rate. Transitions are initiated from a steady state debt profile. In the
experiments we reset either y (0) or #* (0) to an initial value, and then let the variable revert
back to steady state. Once either variable is reset, the entire path is anticipated. We study

the dynamics of the debt profile. These dynamics are governed by two forces: consumption
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smoothing and yield management. Both forces are counterbalanced by liquidity costs.

Consumption smoothing refers to the management of the debt profile with the purpose
of smoothing consumption along a transition. Consumption smoothing operates when the
Government is risk averse, ¢ > 0. This force operates even without liquidity costs, but the force
has an effect on the debt profile only with positive liquidity costs, A > 0. Without liquidity
costs, permanent income and the path of interest rates determine the consumption path, but
the debt maturity profile is indeterminate, as we discuss above. By contrast, when A > 0,
consumption smoothing influences the debt profile: this force is entirely summarized by the
internal discount r(t) = p + o¢(t)/c(t). In fact, when r* is constant ( = 1) the value gap
equals 1 — v. In such cases, consumption growth shapes the maturity profile directly from the
solution to v presented in Proposition 1: if a shock produces a growing consumption path,
the domestic discount increases and the debt distribution tilts towards longer maturities, as
valuations at longer horizons are more affected. Notice how this mechanism also induces an
increase in the volume of issuances.

Yield management is a more subtle force. This force determines how the debt profile changes
with bond prices, {(7,t). The force is present even when we shut down consumption smooth-
ing, ¢ = 0. This force is more subtle because we can only uncover it in presence of liquidity
costs, A > 0. Without liquidity costs, the internal discount coincides with the interest rate,
r (t) = r*(t), and since bond prices are arbitrage free, the Government is indifferent between
issuing at any two maturities. With liquidity costs, even if consumption smoothing is shut
down, the Government is no longer indifferent. The reason is that liquidity costs allow for
a gap between r (t) and r* (f). Any gap between these two rates gets compounded differently
along different horizons, and thus the Government is not indifferent between issuing at two dif-
ferent maturities. We can again observe how this force operates through the value gap. When
we shut down consumption smoothing, valuations are constant and equal to their steady state
value vss. By contrast, a shock to rates moves the market price. The solution to (2.4) immedi-
ately reveals that a shock that temporally increases short-term rates creates a force that reduces
debt issuances and shortens the maturity distribution by reducing bond prices, specially at long
maturities. When consumption smoothing is turned on, there is a race between both forces.

To gather further insights on these two forces, we analyze the responses to unexpected
shocks to y(t) and r*(t) separately. Consider first the response to an income shock, displayed
in Figure 2.3. In the experiment, income follows dy(t) = «y (yss — y(t)) dt, the continuous-time
counterpart of an AR(1) deterministic process. We set y(0) to a level 5 percent under its steady
state value, corresponding to a major recession in Spain. The reversion coefficient, a,, is set to
0.2 in line with Spanish data. In this case, the only active force is consumption smoothing, as
the interest rate remains constant.

Figure 2.3 displays the transition. Panels (a) and (b) show how the fall in income pro-

duces a decline in consumption on impact followed by a recovery. The expected consumption-
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Figure 2.3: Response to an unexpected drop in income.

growth produces an increase in the domestic discount on impact which reverts down back
to steady state. Since there is an increase in domestic discounting, domestic valuations de-
crease, which acts like a reduction in the perceived cost of debt. Given that bond prices are
constant, the optimal issuance rule (2.12) dictates an increase in the issuances at all maturities,
as displayed in panel (e) and hence in the outstanding amount of total debt (panels c and f),
b(t) = fOT f (t,t) dt. One noticeable feature is that new issuances are not homogeneously dis-
tributed across maturities, but are more concentrated in longer maturities, as expected. This
is because long-term domestic valuations are more sensitive to changes in the discount. This
produces an increase in the average debt duration of the portfolio, computed as the average of
the Macaulay duration of each individual bond.

The intuition for the pattern is that in response to a negative income shock, the Government
attempts to smooth consumption by issuing more debt. Because of the liquidity costs, the Gov-
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Figure 2.4: Response to an unexpected shock to interest rates.

ernment smooths consumption only partially, and this generates the pattern that lengthens the
maturity.

Next, consider an unexpected shock to r* (t) as presented in Figure 2.4. We let dr*(t) =
ay (ri; — r*(t)) dt, with a, = 0.2 also taken from the Spanish data. On impact, the interest rate
increases from 4 to 5 percent. The shock produces a consumption drop of the same magnitude
as the income shock, which makes both shocks comparable. An interest shock turns on the
yield management force, in addition to consumption smoothing.

We can interpret the transition as follows. On impact, the domestic discount also jumps
to 5 percent, as shown in panel (a) of Figure 2.4. This narrows the valuation gap across all
maturities. The initial effect of a narrower valuation gap is a decrease in all issuances (panel e).
This captures the notion that upon an interest rates increase, the Government wants to sacrifice
present consumption to mitigate a higher debt burden. A noticeable feature is that the interest
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rate shock produces an initial reduction in the average debt duration. This occurs even though
the path of consumption resembles the one of the income shock that produces the opposite
prediction regarding the debt maturity. The reason why maturity shrinks with the rate shock
is that in this case, the valuation gaps decrease. The valuation gap is proxied by interest rate
gap r(t) — r*(t), which becomes closer with interest shocks, but widens again as consumption
recovers. This tells us that the yield management force dominates consumption smoothing.

In order to isolate the yield management channel, Figure F.1 found in the Appendix dis-
plays the transitions when ¢ = 0. The effects of Figure 2.4 are magnified because consumption
smoothing operates in the opposite direction than yield management. In Figure F.1, once the
shock arrives and bond prices decline the Government decides to directly repurchase debt,

specially at long maturities, and to resell it when prices goes up.

3 Risk

In the previous section we analyze the optimal debt-management under perfect foresight. This
section presents a characterization that allows for risk. The goal is to understand how the

anticipation of shocks affects the shape of the optimal debt profile and the ability to insure.

3.1 The model with risk

Risk is modeled as a single jump at a random date. We introduce notation to distinguish pre-
from post-jump variables: for any variable x we represent its value prior to the shock by a hat:
%(t), and use x(f) to express the value after the jump event.

The exogenous state X (f), comprising income, y(t), and the risk-free rate, r*(t), now fea-
tures a jump at a random date t°. Prior to the jump, the state is denoted as X (t). The random
time is exponentially distributed with a parameter ¢. Upon the jump, a new value of the state
is drawn, X (t°) ~ G(+|X (t°)), where G(-) is the conditional distribution of the exogenous state
given its value prior to the shock.!? We let {y(t°),r*(t°)} take values in the compact space
[75,75] % [y1,yn) and let G(-|X (#°)) be a discrete or continuous distribution. We denote the
conditional expectation operator under the distribution G (; X (t7)) by EX [-].

Once the jump occurs, each element x(t) € X(t) follows a continuous mean-reverting pro-

cess:

X(t) = —a*(x(f) — Xss)

where a* captures the speed of mean reversion to its steady-state value xss. Obviously, there

OFormally, X (t) is right continuous. If the jump occurs at #°, the left-limit X (#°) = lim,y0 X(s) jumps to some
new X (#°) ~ G(-; X (19)).
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is risk before the one-time jump, but after the jump the economy becomes the perfect-foresight
one of the previous section.

With risk, the bond price satisfies a standard pricing equation with a single jump. The flow
value of the bond, J, plus the expected price appreciation should be equal to the value of the
bond at the risk free rate #* (t) {)(t, t). Thus, the market price is now given by:

~ ~

() (T, t) =06+ %—lf — g—f + ¢EF [ (T, 6, X)) — ¢ (T, 1)], if t < 12, (3.1)

with the terminal condition (0,¢) = 1. As before, the market price ¢ (7,t, X;) denotes the
perfect foresight price of the bond after the shock if the initial state is X;, which still satisfies
(2.4). The price that the Government receives is still given by (2.5).

Prior to the shock, the Government problem is:

71700, X O] = max E

/to e Pt (¢ (t)) dt +e—Pt”1Ef§ [V [f(.,tO) X (tO)H] . (32
0

where V [ (e t9),X(t° )] is the value given by (2.6). The maximization is subject to the law
of motion of debt (2.1), the budget constraint (2.2), the initial condition f (-,0) = fy, and bond

prices are given by (3.1), just as in the perfect foresight environment.

3.2 Solution: Risk-adjusted valuations

To characterize the problem, we adapt the perfect-foresight solution to allow for risk. The
proof of the solution to the problem with risk is in Appendix D.6. The approach is the same
as the one used to prove Proposition 1: We construct a Lagragian and then apply infinite-
dimensional optimization techniques to obtain the first-order conditions. Proposition 2 below

is the analogue to Proposition 1.

Proposition 2. (Necessary conditions) If a solution {c(t),1 (T, t), f (T, 1)} to (3.2) exists, it satisfies
the same conditions of the perfect-foresight solution (Proposition 1) where valuations prior to the shock
now satisfy the PDE

00 99

?(£)0(t,t) :(5+§—g+4ﬂEf{ v(r,t)w—ﬁ(nt) , T€(0,T], (3.3)

with boundary condition 9 (0,t) = 1.

Proposition 2 shows how the decentralization scheme of the perfect foresight problem car-
ries over to the problem with risk: The optimal issuance rule still holds, but applies to the
pre-shock valuations, which now are adjusted for risk. After the shock, the transition and
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asymptotic limits coincide with those of the perfect foresight problem that takes as initial con-
dition the debt profile at the time of the shock.

This decentralization shows that the effect of risk is captured exclusively through a cor-
rection in domestic valuations. The PDE is similar to the one that corresponds to the riskless
case, equation (2.10). The only difference is the last term on the right. This term is akin to the
correction in any expected present-value formula that features a jump. In the particular case
of domestic valuations, the expression captures that upon the shock arrival valuations jump
from 9 (7,t) to v (7, t), latter term being corrected by the ratio of marginal utilities. This ratio
of marginal utilities captures an "exchange rate” between states. The domestic valuation after
the shock, v (7, t), is measured in goods after the arrival of the shock, but the valuation 9 (7, t)
is expressed in goods prior to the shock. The ratio of marginal utilities tells us how goods are
relatively valued in terms of utilities, before via-a-vis after the shock. If a shock produces a drop
in consumption, the ratio of marginal utilities associated with that state is greater than one.
This correction captures that payments associated with a bond are more costly in states where
marginal utility jumps. This extra kick in the valuations affect bonds of different maturity dif-
ferently, as we illustrate next.

Although Proposition 2 provides a characterization of the solution with risk, its computation
involves solving a fixed point problem over a family of debt distributions. The reason for this
complexity is that each instant prior to the shock is associated with a jump in consumption
from ¢ (t) to c(t). The size of the jump is itself a function of the distribution f (-,t°). The
potential consumption jump affects the choice of issuances, through its influence on valuations.
A solution to the transition then is a fixed point in a family of debt distributions, one for each
instant prior to the shock, that must be consistent with a consumption path after the shock.
This complexity renders the numerical solution of the problem unfeasible, and one is forced to
employ only approximate solutions. If instead of a single jump, we were to consider multiple
jumps, the complexity would escalate.!!

Our approach to analyze the influence of risk is to study the risky steady state (RSS) of the
problem. The approach is similar to the one introduced by Coeurdacier et al. (2011). In our
context, the RSS is defined as the asymptotic limit of variables prior to the realization of the
shock. In other words, the RSS is the state to which the solution converges when shocks are
expected to arrive but have not yet materialized. In our setting this amounts to state that we
study the solution as t° converges to infinity. We obtain an explicit solution to the valuations in
the RSS:

1 An analogous challenge appears in models of incomplete markets which is why the literature uses the approx-
imation in Krusell and Smith (1998).
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(3.4)
where v (7,0) is the valuation of the perfect-foresight problem with initial condition fyss.

The advantage of the RSS approach is that the RSS can be characterized as a fixed point in
the space of consumption policies, an object that is feasible to compute. In fact, the method
to calculate a solution adds only one more unknown to the perfect-foresight algorithm; now
we must obtain a RSS consumption. Namely, the idea is to propose a guess of c¢;ss and the
path {c(#) } and then compute the valuations using (3.4) for the RSS and (2.10) for the valuation
after the shock. We then obtain issuances from the simple issuance rule (2.12). Finally, given
issuances we compute the debt profile in the RSS using the law of motion of debt (2.1). Thus
budget constraint (2.2) yields a new c,s; and new path {c(¢)}. Naturally, {c(t)} is the solution
to the perfect-foresight problem where f(7,0) = fyss(7).

We can exploit a decomposition to explain how risk alters the debt distribution from a
steady-state to the RSS.The main force that shapes the maturity profile under risk is insurance.
Insurance is captured by the ratio of marginal utilities U’ (¢ (0)) /U’ (¢rss) in equation (3.3). In-
surance is achieved in two ways, via self-insurance and hedging. By self insurance we refer to the
fact that, in some cases, the Government may decide to reduce its RSS debt stock to minimize
the fall in consumption after a negative shock. If the shock produces a change in the valuation
of the portfolio, the Government might in principle, hedge the jump in consumption by build-
ing a portfolio that offsets the impact of the shock. Some examples without liquidity costs are
useful to understand self-insurance and hedging in further detail.

3.3 No liquidity costs

We now consider the case without liquidity costs, A = 0. With positive liquidity costs, adjust-
ments in portfolios are costly. By studying the problem at the limit where liquidity costs are
zero, we can understand the extent to which the Government can obtain insurance given the
set of bonds it has available. Thus, it clarifies the extent to which liquidity costs limit insurance.

Towards that goal, we note that the necessary conditions of the problem are the same with
and without liquidity costs, including the issuance rule. If the issuance rule holds, issuances
are bounded if and only if valuations and prices are equal, v = 1 and 0 = . If we substitute
v=1pand ? = 1/3 in the PDE for valuations, equation (3.3), and subtract the bond PDE from
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both sides, equation (3.1), we obtain a premium condition that must hold for all bonds:!?

s 08 — x [U(c(t) ¥(zt) A () — x [¢(T,1)
=98 W) gn) — O E L/?(m)}' 35)

The analysis of the different solutions of equation (3.5) provides useful information about the
role of hedging and self-insurance. We analyze each case in turn.

Perfect hedging: replicating the complete-markets allocation. Equation (3.5) replicates the
complete-markets allocation when consumption follows a continuous path, i.e., when ¢ (#°) =
c (t°; X ) for any realization of the shock. This is because international investors are risk-neutral
and the Government is risk averse. If consumption does not jump, condition (3.5) implies 7 =
7*. In a complete markets economy consumption growth satisfies % = r*(;)*p
that it follows in a deterministic problem. Naturally, there is no RSS with positive consumption

, the same rule

if r* (t) < p, but consumption converges asymptotically towards zero.

Consumption does not jump when it is possible to form a perfect hedge, a debt profile that
generates a capital gain that exactly offsets the shock. Any shock changes the net-present value
of income. Given the path of rates, the optimal consumption rule and the initial post-shock
consumption produce a net-present value of consumption. A perfect hedge thus produces the
capital gains such the net present value of consumption minus income at the time of the shock
(denoted by AB (1%, X (1°))) is covered to the point where pre- and post-shock consumption are
equal: ¢ (%) = ¢(t°). This must be true for any shock. In the context of the model, a perfect

hedge exists if the debt distribution satisfies at all times ¢

T
AB (£ X (1)) = —/0 (¥ (T, EX (8) — § (1,0)) F (1, ) dT (3.6)

for any possible realization of X (¢). This family of equations is a generalization of the discrete-
shock and discrete-bonds matrix conditions that guarantee market completion in Duffie and
Huang (1985), Angeletos (2002) or Buera and Nicolini (2004).13

In our model, perfect hedging is available in the case of an interest rate shock taking N
possible values. Then, there is continuum of solutions that satisfy equation (3.6). In this case
we can use a range of maturities [0, T] that is as short as we want to hedge. The shorter the
range, the more extreme the positions we obtain. A second observation has to do with the
direction of hedges. Consider the case of a single jump in interest rates (N = 1). To offset

the reduction in the net-present value of income, the debt profile must generate an increase in

12This equation is recovered also by solving the problem with A = 0 directly. The proof is available upon request.

13In the case of discrete shocks and discrete bonds, the existence of complete-markets solution requires the
presence of at least N + 1 bonds for N shocks. In the case of a continuum of shocks, the condition requires the
invertibility of a linear operator. Proving conditions on G that guarantee that family of solutions exceeds the
scope of the paper.In this case, equation (3.6) is just a system of N linear integral equations, for every t, known as
Fredholm equations of the first kind.
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wealth. This requires an increase in short-term assets and long-term liabilities.
No hedging: only self insurance. The opposite to the complete-markets outcome is the
case of income shocks. In this case bond prices do not change, 1 = ¢ = 1. Therefore, it is not

possible to generate capital gains with a debt profile. Instead, the only solution to (3.5) is:
. S X [W(e(t)
b _ 0+ o (B[] —1) -
ol .

t) o
This is a situation in which no hedging is available, because the asset space does not allow any

(@}

form of external insurance. Instead, the Government must self-insure. Self insurance is cap-
tured by the ratio of marginal utilities which effectively lowers 7 (¢). To solve for consumption,
this extreme case coincides with a single-bond economy without interest-rate risk. The jump in
consumption is given by the jump in the net present value of income. The solution to ¢ (t) in this
case is known and found, for example in Wang et al. (2016). Without presenting the solution
to c (t), we can already note that the ratio of marginal utilities increases as the level of assets
falls. This means that, provided a sufficiently low level of debt, the economy reaches a RSS with
positive consumption. The convergence in consumption is a manifestation of self-insurance.
General case. The general case with both income and interest rates shocks described by
equation (3.5) features an intermediate point between the two extreme cases described above
as both a partial hedging and self-insurance emerge.!* Furthermore, as long as the support
of the shocks has cardinality N the debt profile is indeterminate, as only N points of the debt

distribution are pinned down.!

3.4 Quantitative analysis: the risky steady state

We now return to our calibration to analyze how quantitatively important are the forces that
shape the debt profile presence of risk. To do so, we obtain a RSS and compute post-shock
transitions. We compare these dynamics against the dynamics that begin at the deterministic
steady state (DSS) and follow the responses of unexpected shocks. Naturally in both cases the
economy converges to the DSS as time progresses. We calibrate the shock intensity ¢ to 0.02.
The value for the intensity is obtained by computing the cross-country frequency of a yearly
output decline greater or equal than 5 percent. We maintain the rest of the calibration.

The comparisons are reported in Figures 3.1 and 3.2 where solid lines denoted by 'DSS’ are

the dynamics of the perfect-foresight section and dashed lines denoted by 'RSS” describe the

A 4This case can be solved via dynamic programming using aggregate debt at market values B as a state variable.
B is defined as in (2.16) with pre-shock prices and debts. Equation (3.5) holds for every maturity, so given B, it
represents a family of first-order conditions for f(7,t). The debt profile then is associated with an insurance cost
of B.

15The proof is similar follows the one in Appendix D.8.
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Figure 3.1: Response to a shock to income. RSS is model starting at the risky steady state and DSS at
the deterministic steady state.

dynamics when the shock is expected.

Figure 3.1 reports responses to a shock that produces a 5 percent income drop. Compared
to the DSS, in the RSS the total debt stock prior to the shock (panels a and c) is smaller, 35 per
cent of GDP compared to 45 per cent. The reason for this decline is the self-insurance force.
Since rates do not move, the hedging ex-ante and yield-management ex-post are shut down.
Thus, the decline in the stock of debt is a race between two forces, consumption smoothing
and self-insurance. These forces are encoded in the valuations. Recall from the RSS valuation
formula (3.4) that two terms influence RSS valuations, the ratio of marginal utilities and post-
shock valuations. Panel (f) displays the valuation immediately after the shock arrival, v(t,0).
This value is lower than the DSS valuations, vss(7), reflecting that once the shock hits, 7 (t)

will increase. Despite that v (7,0) is lower than vs(7), the RSS valuation sare higher, v;ss(T)
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greater than v (7, 0), and this mechanically occurs because of the larger ratio of marginal utilities

lllll/((cé(r?})) = (8:3%)2 = 1.03. This tells us that self-insurance and consumption smoothing operate

in opposite directions.

Another feature is that duration is slightly higher in the RSS (panel d). The difference among
the patterns can be entirely explained through the valuations at the RSS, 9,s(7), displayed
in panel (f). Again, this pattern is the result of the two countervailing forces. The ratio of
marginal utilities steers valuations towards a shorter duration because shorter duration bonds
have a higher change avoiding a shock, which increases the valuation of its coupons. However,
as we saw under perfect foresight, once the shock hits, consumption-smoothing extends the
average duration to reduce rollovers. This is captured by the steepness of v(t,0). All in all,
self-insurance dominates, producing a lower stock of debt and consumption smoothing tilts
the distribution towards longer duration.

Next, consider the case of an interest rate shock. The stock of debt is 30 per cent of GDP in
the RSS, a smaller value than the 45 per cent in the deterministic steady state, as displayed in
panel (c) of Figure 3.2. The reduction is seen in all maturities (panel a). Again, we can dissect
what forces drive these results by examining the effects on valuations and prices. As with in-
come shock, consumption-smoothing operates in the opposite direction of self-insurance. Fur-
thermore, the internal discount is higher in this example —we can see this in the lower v (7, 0)
valuations. The result is that valuations are very similar between the deterministic steady state
and the risky steady state.

We can understand the role of the hedging by comparing the RSS solution to the RSS of a
risk-neutral government, ¢ = 0. This comparison is reported in in Figure F.2 in the Appendix.
The Figure reveals that the overall stock of debt is not modified substantially. However, we
do see the presence of some hedging. As discussed in the case without liquidity costs, the
correct hedge to an interest-rate shock is to hold more long-term debt on the margin and less
short-term debt. We observe that pattern, but the effect is small. This suggests that liquidity
costs introduce a cost to setup the hedge ex-ante, and a cost to unwind the position. In our
calibration, this cost is large and mutes the hedging force.

Once we know that valuations do not change and that hedging is not effective, we can con-
clude that the reduction in debt follows from yield management. That is, from the reduction in
the bond price in the RSS relative to the DSS (panel e). In the RSS, the price of bonds anticipates
a probable rate increase in the future. This translates into an effect that is akin to bringing the
rate closer to p. As a result, the Government avoids a high interest-rate expense and holds less
debt.

In terms of the debt duration (panel d), we do not see that the anticipation of the interest
shock changes the duration substantially. Most of the differences appear in ex-post, and they

respond to the different influence of consumption smoothing.
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Figure 3.2: Response to a shock to interest rates. RSS is model starting at the risky steady state and

DSS at the deterministic steady state.

4 Default

This section extends the model with risk to allow for the possibility of default. The nature of
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the problem changes because now bond prices depend on Government actions.

4.1 The option to default

Consider the model in Section 3.1 but now, upon the realization of the shock to X (), the Gov-

ernment has the option to default on all its debts. If the Government exercises the option, it

defaults on all debts and its value is

vP(t) = /too e PETIU (1 —x)y (1)) ds + .
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The value is the discounted utility of a fraction x of the endowment plus a a zero-mean random
variable, ;. The variable ¢; captures randomness around the decision to default. Thus, the post-
default value is also a random variable, centered around the expected value of moving into
perpetual autarky with an output loss x. Denote by ©(-) and 6(-) the cumulative distribution
and the probability density function of VP(t), respectively. Note that the Government can
hold foreign bonds (f(7,t) < 0). Default implies that these bonds are expropriated by foreign
investors.

If the Government chooses not to default after the shock, the economy becomes the perfect-
foresight economy that we have studied in Section 2. The Government strategically defaults
when VP () >V [ f(,t),X (t)} , that is, if the value after default is greater than the value ob-
tained by continuing to service its debts. In the latter case, the post-shock value coincides with
the perfect-foresight value of an initial debt profile f (-, t°). Therefore, at any given time the de-
fault probability is 1 — @ (V [f (,1),X (t)} ) and the probability of repayment is © <V [f (1), X (t)] > :

Market prices must be adjusted for credit risk. The corresponding pricing equation is:

P (T ) =6+ %—‘f - g—f + EX [@ (v [f(~,t),X(t)D Y (T,t,X (1) — (T,t)] Jift < 1O,

(4.2)
After the shock, the pricing equation is again (2.4). Prior to the shock, the price equation is
similar to the version with risk, but now the post-shock price is multiplied by the probability
of repayment. The idea is that the expected change in the price after the shock is the perfect-
foresight price times the repayment probability, ® (V') i. The option to default implies that the
Government’s actions affect bond prices, a new feature which alters the nature of the solution
to the Government’s problem.

With a default option, the Government’s problem now becomes:

max IE;

4.3
{i()yez *9)

/0 e (e (0) di +e B [max {VIf (), X ()], VP(, Xe) |

subject to the law of motion of debt, (2.1), the budget constraint, (2.2), and the pricing equation
4.2).

In this problem, the Government commits at time zero to a debt program prior to realization
of the shock. Notwithstanding, the Government cannot commit not to default. The assumption
of commitment is different from most of the literature on sovereign default.!'® In particular,
commitment eliminates the issue of "debt dilution" discussed, for instance, by Hatchondo et al.
(2016). To our knowledge, the solution to this problem without commitment must rely on a
numerical approximation. The solution with commitment can be interpreted as follows. Prior

to the shock, there are no substantial changes in fundamentals that should trigger a default

16Gee, for instance Aguiar and Amador (2013) and references therein.
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episode. If bond holdings are concentrated among a few international banks, then the Govern-
ment can commit to a plan and be disciplined with an immediate sudden stop as in Dovis et al.

(Forthcoming).

4.2 Default-adjusted valuations

We adapt the framework to allow for default. The main novelty is that the Government takes
into account how its decisions affect market prices and the future decisions to default. To ease
notation, we define V(t+s) = V[f (-, t +5s), X (t +5)].

Proposition 3. (Necessary conditions) If a solution {c(t), 1 (T, 1), f (T,£), (T, 1) }yepo 00y t0 (4.3) ex-
ists, it satisfies the same conditions of the perfect-foresight solution (Proposition 1) where valuations
prior to the shock are replaced by valuations that satisfy the following PDE,

NN A 00 90
T(t)U(T,t) = 5+§—$

+¢ (1155 {(@ (V(t)) +Q(t)) WU (T, t)} — (1, t)) , (4.4)
5(0,t) = 1.

where

Qt) =6 V() U (e(H) ..

A 2
/ / o S )= au P (1 8) | (Ti(’“*t_z'z)) dzdm.
max{t+m— TO} 21 Y (m +t— Z'Z)

Proposition 3 shows that the option to default alters valuations, but that the principle of a

simple issuance rule still holds. We can compare the expression for valuations with default,
(4.4), to the expression for market prices (4.2). Without the option to default, prices and val-
uations only differ in the discount and the adjustment for risk. Default introduces two new
features. The first feature is that default allows for a new form of insurance. This is captured
by the repayment probability, ®. Valuations after the shock are multiplied by the repayment
probability in equation (4.4), since debt is worthless after a default. The same repayment prob-
ability appears in the market price (4.2), but unlike valuations, market prices do not include the
change in marginal utilities. This captures an improvement in insurance. As we explained in
the previous section, the increase in marginal utility is driven by a self-insurance motive. The
option to default reduces this motive because the probability of repayment is low when a shock
triggers an increase in the marginal utility ratio—put it simply, © offsets the effects of %
in the valuations in particularly adverse states. This feature captures how default improves

insurance under incomplete markets (an idea found for example in Zame, 1993).

29



maturity

{m,t} — bonds

vintage {1, to}

impact on default at t:
6-U -o(t,t)

time

Figure 4.1: Illustration of the revenue echo effect (axes inverted).

The second feature reflects the role of incentives. Once the default option appears, the Gov-
ernment cannot commit to repay. The inability to honor debts in the future, impacts bonds
prices. Hence, to evaluate how much to issue of a (7, t)-bond, the Government should not only
consider the current revenue and future repayment costs of that bond, but also consider that
each marginal issuance depresses the issuance price of bonds of different maturity and issuance
dates. The reduction in revenues from each issuance is the marginal cost of reducing the incen-
tives to repay, and is captured by (). We refer to () as the revenue-echo effect for the reason we
explain next.

We unpack the terms inside () to uncover an interpretation. We aid the explanation with
Figure 4.1 whose axes represent time and maturity respectively. The revenue-echo () is the
product of the marginal probability of default, U’ times a double integral. To understand why,
consider a small issuance of a {1, fo}-bond—Ilocated at the gray dot in Figure 4.1. At each
instant, the bond matures and time progress in the direction {—1,1}, as depicted by the gray
ray that starts at the issuance point. By time ¢, the bond has a maturity 7. At ¢, the issuance has
a marg/inal impact on the repayment probability. If we multiply the term 68U’ inside Q) by the

U'(c(t))

term )0 in the valuation we, obtain marginal effect on the repayment probability:

O (VIf (1), XU (c (1) -0(Tb).

effect on repayment probability

Hence, the term U’ is present to reflect a marginal effect on the repayment probability at ¢.
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The double integral captures how a lower repayment probability at time t impacts the rev-
enues generated by issuances in all moments prior to t obtained from all issuances. Notice how
the range of integration covers all maturities m € [0, T] in the outer integral. The inner integral
covers the relevant times prior to ¢, z € max {t + m — T,0}. The marginal effect on repayment
of the {7,t}-bond affects the repayment probability of all bonds at t, which are indexed by a
maturity m—these are depicted in the vertical line at time t. Furthermore, the effect of default at
time ¢ impacts past prices in an "echo effect": Any bond price at a moment prior to ¢ that is still
alive at time ¢ includes the discounted value of a price at f, e~ L6 () (1, t) for a specific ma-
turity m. For example, the price of the bond {m, t}, affects the price of all bonds {m +t — z,z}
indexed by z € max{t+m — T,0}. Each ray that departs from the vertical line at ¢ depicts
one such family of bonds. Thus, if we multiply the change on the repayment probability at ¢ by
e~ 2" )y (1, 1), we then obtain the reduction in the price of the {m + t — z,z} bond. We can
do the same for all bonds in m € [0, T|, the outer integral, and past times z, the inner integral,
to obtain the marginal effect that the {7, t}-bond has on all past prices.

This marginal impact on past prices affects past revenues. Thus, fix a maturity m and a time
t. If we want to get the effect on revenues of a change in past prices, we must multiply the
change in price by (1 — (1/2) 1), the issuance amount net of the liquidity costs. If we use the

optimal issuance rule (2.12), revenues are proportional to:

1 o(m+t—2zz2)\>
21 [1_ (lﬁ(m+t—z,z)) ]

Thus, when this terms is inside the double integral it captures the impact on past revenues

that an increase in default probabilities has. Once we multiply these effects on past revenues
by el P yre bring past reductions in revenues into the current period t. The echo effect is
present at any instant prior to the maturity of the bond, which is why it appears as a flow in
equation (4.4). When the Government considers the marginal issuance of the {1, fo }-bond, its
valuation is the present value of all the echo effects () that last throughout the life of the bonds.
This reduction in revenues is part of the issuance consideration.

As in Section 3.2, the computation of the solution in proposition 3 involves solving for a
tixed point in a a family of time-varying debt distributions. In this case the problem is even
more complex, due to the interplay between debt management and bond prices that was absent
in previous sections. However, as with the case of version with risk, we can obtain a solution

in the risky steady state.

4.3 Default without liquidity costs

We return to the case without liquidity costs, A = 0, but allow for default. Without liquidity
costs, we have again that a solution neccesarily features equality between valuations and prices,
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v=19andd = 1/3 As a result, the condition that characterizes the solution without default, (3.5),

is modified to:

)= gY@ v () +0(0) S e = v 0 - g [0 (v () 5 )

As in the case without default, we can explain how condition (4.5) characterizes the solution

depending on the set of bonds and shocks.

On the impossibility of perfect hedging. The presence of default interrupts the ability to
share risk. Efficient risk sharing requires a continuous consumption path along non-default
states. To see how default interrupts risk-sharing, consider the case where interest-rate shocks
allow complete asset spanning. Assume that ¢ () = c (¢) holds in non-default states, as in the

version without default. In this case, condition (4.5) becomes

5 b (T b)] _

7 (t) — ¢E; {Q(t) @(T,t)} = 7" (t).
This equation cannot if two maturities feature a different price jump. However, full asset span-
ning requires a different price jump at two maturities. This contradiction implies that even
when the set of securities can provide insurance in non-default states, the Government’s so-
lution with commitment does not adopt a perfectly insuring scheme. The distortion follows
because the echo-effect acts differently than the risk premium, it distorts valuations but not
prices—we can see even under risk-neutrality.

Default allows some hedging. Consider the case of only income shocks. Without default,
we noted that there was no hedging role for maturity but now we show that with default, there
is a role. Default opens the possibility of a partial hedging because prior to the shock, different
maturities are priced differently. Post-shock prices are alway ¢ (7, t°) = 1. This means that once
a shock hits, the Government can exploit the change in the yield curve to obtain capital gains
in its porfolio. The change in the risk premium is akin to the spanning effect of an interest-rate
jump.

General case. The option to default interrupts insurance across non-default states, but al-
lows price variation even without interest-rate risk. As long as the cardinality of shocks is
discrete, the maturity profile is indeterminate—a formal proof is found in Appendix D.8. One
extreme case of indeterminacy is that of a shock which does not produce a jump in income nor
interests, but only grants a default option. Aguiar et al. (Forthcoming) studies that shock in a

discrete-time model similar to ours but without commitment.
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4.4 Quantitative analysis

We now continue with the quantitative analysis, but incorporate default. We calibrate the out-
put loss, x, to 1.5 per cent. This is a lower value than the 2 per cent used in, for example, Aguiar
and Gopinath (2006). We calibrate a lower output loss because the literature usually assumes
reinsertion to capital markets after some periods. Here autarky is absorbing. A lower x is meant
to produce a similar autarky value as if we allowed for reinsertion. The distribution of ¢; is a
logistic with coefficient g, as in common to discrete-choice models. We set ¢ to 100. This num-
ber produces a default in Spain in 32 per cent of the events when it is hit by an extreme shock.
Coupled with the intensity of the extreme event, ¢, the unconditional default probability is 0.6
percent per year, roughly a default every 157 years—according to Reinhart and Rogoff (2009)
Spain experienced one default in during the years 1877-1982.

To gather a sense of the quantitative impact of default, figure 4.2 considers an income shock,
reports the RSS and the post-shock transitions in the economy with default, in contrast to the
case with risk but without default, the version studied in Section 3.4. We use the labels "De-
fault", and "No default” correspondingly. Panel (e) and panel (f) show prices and valuations of
the version with default at the RSS, the DSS and on impact of the shock.

Default leads to a reduction in the level and maturity of debt. In panel (c), we observe
that default produces a reduction in total debt in the RSS, from 35 per cent to 30 per cent.
Several forces are at play: the default premium makes domestic discounts closer to market rates
and, thus, activates yield management which is a force towards less debt. Simultaneously, the
revenue-echo effect increases internal valuations particularly for long-term bonds. In addition,
default facilitates insurance because it reduces payments in high-marginal utility paths and
because it enables hedging. One advantage of the framework is that we can unpack these
effects, which we do next.

The reduction in the debt stock is dominated by incentives. We can see this by calculating
the analogue of figure 4.2, but comparing the solution with default with a myopic solution with
() = 0. This comparison is reported in figure 4.3. Once we shut off the echo effect, the RSS
debt stock increases from 30 to 40 per cent, a level even higher than without the default option.
This pattern reflects the trade off between insurance and incentives. If we shut down the echo
effect, default improves insurance. The incentives force is strong enough to reverse the pattern.
Figure FE.3 in Appendix F, compares the solution with default against the solution with default
but for a risk neutral Government. The solution with risk neutrality is almost identical: the debt
level, consumption, and the risk premium are the same. This occurs because the insurance and
incentives channel offset each other. From the above discussion, we know that default provides
insurance, so the echo-effect must be lower when ¢ = 0. This conclusion is intuitive because
the echo effect is linked to the elasticity of inter-temporal substitution through the comparison

of revenues across time.

33



(a) Debt distribution, f(7) (b) Consumption, c(t)
0.03 : : : 1 , : : :
No default
ST Tl N e Default 0.99 ¢
0.02 r “~~_~ maman@®
.N.
\~~~\ 0.98 1 mimimmimmims mmmnm s s
001 L ~\~\~ | f
N\ 0971
0 : : : 0.96 : : : : : :
0 5 10 15 20 10 0 10 20 30 40 50 60
Maturity, 7 Time, ¢ (years)
(c) Total debt, b(t) (d) Average duration
60 : : , : 6.6 : : : :
199]
—~
g
>
: : : : : : 5.8 : : : : : :
0 0 10 20 30 40 50 60 210 0 10 20 30 40 50 60
Time, ¢ (years) Time, ¢ (years)
(e) Bond prices, ¥(T,t) (f) Domestic valuations, v(,t)
1 - - 1 g —— : :
N DSS T ———
" e Ny e, ———— ——
0.98 f S 098F N e ————
D RSS D e
0.96 | St Y(7,0) 0.96 | Tl
N.N .\h
.\. -,
0.94 | ST, 0941  mmmem DSS el
B B RSS TS
0921 092F o(r,0) ]
0.9 : : : 0.9 : : :
0 5 10 15 20 0 5 10 15 20
Maturity, 7 Maturity, 7

Figure 4.2: Response to a shock to income when the option to default is available. Panels (e) and
(f) refer to the case with default.

The shortening of maturities can also be read off from figure 4.2. Earlier, we discussed
that an increase in the risk premium has the effect of equalizing rates and that this activates
yield management, a force towards shorter maturity. The increases in insurance offsets this
effect because long-term debt is less expensive. Back in figure 4.3, we see that without the echo
effect, maturity falls even further. At first, this result seems surprising because the echo effect
penalizes longer bonds. However, the echo effect reduces the debt outstanding which lowers
the default probability. Hence, the echo effect reduces the risk premium, which mitigates the
yield management force that pushes towards shorter maturity.

We finalize the quantitative analysis with figure E5 in Appendix F which we use to discuss
the effect to a an interest-rate shock. In this case the RSS distribution is the same as the one
without the option to default There is only a difference in the RSS consumption because prices

34



(a) Debt distribution, f(7)

0.04
Default
(O e —— Default Q =0 ]
0.02
0.01f
o' ' ' '
0 5 10 15 20
Maturity, 7
(c) Total debt, b(t)
60 , ' T T
'¢-—--.-...-.-.
50 - ,'l —-—.___-_._.-;
20 : : ‘ ‘ ‘
10 0 10 20 30 40 50 60
Time, ¢ (years)
(e) Bond prices, ¥(T,t)
1 — _— —
Q\.
So || e DSS
N RSS
0.95 e
\~\.\ """""" ’Lp(T,O)
~\.
N
\.\.
0.9 [ S
—
0.85 ‘ ‘
0 5 10 15 20
Maturity, 7

Figure 4.3: Response to a shock to income with (2 = 0 when the option to default is available.

Panels (e) and (f) refer to the case with (2 = 0.

are lower with default. If we contrast the effect again with the case of risk-neutrality (figure
F.4) we obtain only differences during the transition. Again, the yield management effect that
is coupled with incentives counterbalances the improvement in insurance. Broner et al. (2013)
or Arellano and Ramanarayanan (2012) present evidence that the debt maturity shrinks with
default premia. The literature has emphasized the role of debt dilution where there is no com-
mitment to a debt program. Here, we uncover that incentives is a force that shortens maturity

in presence of income or interest-rate risk, even if debt dilution plays no role. Incentives is

(b) Consumption, c(t)
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strong enough to overturn the the lengthening of maturity produced by self insurance.
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5 Applications

The ultimate goal of the framework is to answer questions that are hard to answer with other
approaches. Since the advantage of the framework is that we can work with a large number of
bonds of arbitrary coupon structure, the most natural applications relate to questions about the
number and type of bonds that a country should issue.

Application 1: exponential maturity vs. standard debt. As mentioned earlier, most quan-
titative applications employ bonds of exponential maturity (consols) whereas most governe-
ments issue bonds similar to the ones described in this paper. Without liquidity frictions
and complete markets, the coupon structure does not matter. However, when we consider
incomplete-markets, the option to default, or liquidity costs, the distinction matters because
the valuations of consols and standard bonds differ. We can easily adapt the environment to
compare the steady state and transitions; we use the "c¢” superscript to refer to the consols. The
market price of a consol, ¢, satisfies:

()Y (T,t) = (i +0) — ilp" (T,t) + w.
T T ot
with limz_,o 9°(%,¢t) = 1. The Government’s problem is the same as before, but the budget

constraint is modified to

cw=v+ [ [rEnocn-(1+o) s wn]ar

where is again q° = (1 - %7\1) ¢, and the law of motion of debt is:

ofc (T, ¢t 1
PAND _ (e - Lp(e .
We can show that with consols, the issuance rule (2.12) remains the same, but internal valua-

tions are:

1 1 0v°

r( (5 = (z+0)— 20 (B0 + 5, if T€ (0],

where limz_,0v(7,t) = 1. At a steady state with positive consumption, assuming that § = r
we obtain that prices and valuations that satisfy ¢5(7) = 1 and v5,(7) = (7’:5 + %) / (p + %)
The steady-state debt profile is:
. T(p—r%)
fo (1) = ==
aEn
Opposite to the case with standard debt, the debt profile with consols increases with maturity
dfs (T) /0T > 0. This flipping of the maturity structure shows that liquidity costs make the
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choice between consols and standard debt not innocuous. For example, it can modify the ability
to insure, or alter the decision to default. How much do consols bias results in default models
merits further investigation. The framework can be used to delve deeper into that question.

Application 2: how many bonds should a country issue? In practice, countries issue at a
discrete set of maturities. Next, we show how the model is adaptable to allow for issuances at
a discrete set of points. One of the advantage of this extensions is that we can start to ask ques-
tions regarding the optimal number of bonds that a country should issue. We set the liquidity
coefficient to be finite only for a discrete number of maturities {11, 1, ..., TN}.17

The rest of the solution is exactly as before, but the optimal issuance rule is:

T € [T, T, ..., TN]

0/ T é [Tlr T2y eeny TN]

We obtain the following figure plots the solution for this case. We apply the discrete-issuance
economy to study the effects of of the introduction an additional bond. We continue with the
calibration but now allow for issuances of 5 bonds of 1, 6, 12, 60, and 240 months of maturity.
To make comparisons, we adjust A proportionally to the cardinality of bonds—we set A (N) =
12 - A#N where #N is the number of bond markets. We compare the welfare at the RSS with and
without the additional bond, for four scenarios: allowing and not allowing default, and with
and without risk aversion. We then compare the welfare increase in Spain of adding a 10 year
bond.

The welfare gains are presented in Figure . To transform welfare into a meaningful number
within scenarios we do the following. Each scenario has its own RSS associated with the interest
risk. For each RSS value functional, we obtain the constant annuity consumption that yields
the same value for the Government. They y-axis reports how much of steady-state output the
country would have to forego to obtain the certainty equivalent annuity.

Across scenarios, the annuity cost increases when we add the 10 year bond. This is because
the level of debt increases in all scenarios, once we add the bond. An additional bond allows
to spread out liquidity costs, even though the liquidity coefficient increases with the additional
bond. It is also interesting output cost is higher with the option to default than without it even
though, as we saw earlier, debt levels are lower at the RSS. This is because default is priced in by
international investors, so the country is paying an insurance premium and a cost for not having
the ability to commit. Adding an additional bond reduces the effect of default in all scenarios,
because it provides an additional form of insurance. The overall order of magnitude of the
effect is 0.1% of GDP which reflects the low cost of consumption fluctuations in macroeconomic

7Technically, issuances have to be modeled with Dirac delta functions at the issuance points, obtained as a limit
where we shrink intervals. In terms of computations, this technical detail does not matter because the maturity
space is discretized.
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Figure 5.1: Benefits of Introducting a 10yr bond in Spain (consumption equivalent/GDP).

models.

Potential extensions to the current framework. A natural extension is to allow for multiple
classes of bonds: for example, we could allow the Government to issue in multiple currencies
as in Ottonello and Perez (Forthcoming) to study different ways of hedging. We can also endow
the Government with an asset that can be used as collateral: this could allow certain types of
debt to be secured. This is a way to introduce seniority and (as in Chatterjee and Eyigungor,
2015).

Another extension is to introduce liquidity costs that depend on the overall stock of debt
rather than the issued amount, as in Vayanos and Vila (2009). In that case, valuations would be
adjusted by a term similar to the revenue-echo effect, even without default. This is because the
supply of bonds at a given maturity will affect future prices the market for each maturity, and
this effect would be anticipated current market prices, just as the case with default.

We also imposed symmetry between liquidity costs for positive and negative issuances.
A natural extension is to allow for a more general function of A, one that changes with with
the sign of issuances and maturity. This extension can be used to understand the role of safe
assets, as in (Bianchi et al., Forthcoming). Finally, we can investigate shocks to A which can
be interpreted as roll-over risk and even let this risk be a function of f, is with the case with
default.
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6 Conclusions

The paper develops techniques to study a consumption-savings problem where the state vari-
able is a distribution over a set of assets. A central feature of the problem is the presence of
liquidity costs that inhibit the ability to adjust the portfolio. A general principle emerges: to
determine issuances a simple rule should compare domestic valuations with market prices. In
presence of risk, valuations are adapted to capture jumps in marginal utility which encode an
insurance force. When default is possible, valuations are modified to capture how default al-
lows for risk-sharing and to introduce an echo-effect that internalizes the decline in revenues
caused by the lack of commitment to repay.

The previous section discusses how the framework can be adapted to study various ap-
plications and it is not hard to see how the framework can be adapted to corporate or public
finance settings. The framework faces two limitations. We believe that these cannot be tackled
analytically, making the use of numerical methods necessary. First, when we study default, we
analyze the problem with commitment to the issuance path. The solution without commitment
requires the computation of how a current action today disciplines the future self. That term
does not appear in our valuations because the planner has commitment. Second, our frame-
work can characterize solutions when an unexpected shocks arrives only once. This already
captures, up to a first order, expected impulse responses. However, an extension that admits
recurrent shocks faces a challenge similar to the case in models with heterogeneous-agent mod-
els and aggregate shocks. Our hope is that the insights and techniques in this paper can serve
as a stepping stone for that agenda.
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A Equivalence between PDE and integral formulations

Valuations and prices are a continuous-time net present value formula. Their PDE representation is the analogue
of the recursive representation in discrete time and the integral formulation is the equivalent of the sequence sum-
mations. The solutions to each PDE can be recovered easily via the method of characteristics or as an immediate
application of the Feynman-Kac formula. All of the PDEs in this paper have an exact solution contained in table
A.
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B Micro Model of Liquidity Costs

B.1 Environment

Here we describe the micro model of the liquidity costs in more detail. The model is a wholesale retail model of the
secondary market of sovereign bonds.!® Without loss of generality we focus on the bond issuance of ((t, t) bonds
at time ¢ with maturity t. We define s as the amount of time passed since the auction. The outstanding amount of
bonds in hands of an atomistic banker, after a period of time s has passed after the issuance of the bond is:

I(s;u(7,t)) = max(i(T,t) — pyss - 5,0).
This implies that the bond inventory is exhausted by time:

(T, t)
WYss

g:

We consider that individual orders arrive randomly according to a Poisson distribution. The intensity at which
bonds are sold per unit of time is given by:

(t,7) _ HYss
1) = g (10T, 1))

% for s € [0,min{T,5}).

This intensity ¢(#) (s) is defined only between [0, min{t,35}), because after the bond matures or after the stock is
exhausted there is no further selling.

B.2 Valuations

Investor’s valuation. At time t 4 s, after a period of time s passed since the auction, the time to maturity is
7' = T — 5. The valuation of the bond by investors is:

l/)(t’T)(T/,S) =(T—s,t+s).

They are risk neutral and discount future payoffs and the international risk free rate. Hence, the price equation
satisfies the PDE (2.4):
) ™)

i — + d /

oT ot

r(t+s)ptD (), s) = 6 —

with the terminal condition of (7 (0,s5) = 1.
Banker’s valuation. Now consider the valuation of the cash-flows of the bond from the perspective of the
banker g(t7)(7/,s). Bankers are risk neutral but have a higher cost of capital. At each moment ¢ + s bankers meet

18See Foucault et al. (2013) for a textbook treatment of liquidity costs and Stoll (2003), Madhavan (2000) and
Vayanos and Wang (2013a) for reviews. The three main economic forces explored by this literature are: (i) in-
ventory management of financial intermediaries, (ii) adverse selection and, (iii) order processing costs. Seminal
inventory problem papers are Ho and Stoll (1983), Huang and Stoll (1997) and Weill (2007). In the case of adverse
selection, see Glosten and Milgrom (1985), Kyle (1985) or Easley and O’hara (1987). A general reference of the
implications of order processing costs is Foucault et al. (2013). A large empirical literature has documented the
presence of price impact. For example, see Madhavan and Smidt (1991), Madhavan and Sofianos (1998), Hender-
shott and Seasholes (2007) or Naik and Yadav (2003a,b).



investors and sell at a price ¥(7) (7', 5). The valuation of the bankers, q(7) (7/, 5) satisfies:

dg(tT) g (tT)
(7 (t49) 4+ g0 (,8) = 6 = T+ om0 () (00 (W) - U(). BY

This expression takes this form because the banker extracts surplus when it matches. Before a match, bankers
earn the flow utility, but upon a match, it’s value jumps to ¢(t™) — ¢(t™), This jump arrives with endogenous
intensity 7y (s). The complication with this PDE is its terminal condition. If § < 7, its terminal condition is given by
gt (7,5) = (O (,5). If 5 > 1, the corresponding terminal condition is () (0,s) = 1, since by the expiration
date, it is paid the principal equal to 1.

Competitive Auction Price. The date of the auction s = 0, T/ = 7, the banker pays its expected valuation and
hence the bond price demand faced by the Government is:

9, T, t) = 7 (,0).

This is because, there is free entry by investment banks into the auction. In equation (2.3) we expressed q(, T, t) as
q(t, T, t) = (7, t) — A1, T,t). Thus,
A, T, t) =9(t,t) —q(1,T,t),

is the object we are trying to find.

B.3 Solution

We now provide a first order linear approximation for the price at the auction, q(i, 7, t), for small issuances. The
result is given by the following proposition:

Proposition 4. A first-order Taylor expansion around 1 = 0 yields a linear auction price:

9000 ~ () — o () (B2)
Thus, the approximate liquidity cost function is A (T,t,1) ~ sAp(T,t)i(T, t) where price impact is given by A=~ T
Proof. Step 1. Exact solutions. The solution to q(1, T, t) falls in one of two cases. Case 1. If 5§ < 7, then:

g t) = Jy e o Ut tmdu (55 S— 0) 9t vt +0))dv 53)
Case 2. If 5 > T, then:
9T 1) = / T o R (5(5 SR (ELAE v>> B
0
o e E = T) (B.4)

5

We solve the PDE for g depending on the corresponding terminal conditions; respectively, gt (7,5) = ptI (T, 5)
and q(#7)(0,s) = 1.
Case 1. Consider the first case. The general solution to the PDE equation for g(t7) (7, s) is,

/ e~ o (Tt (5 4 o (s 4 v)yy(T— 0, t+0))do + (B.5)
0

- f(; c t+u)+17+’y(u))dulp(,r/ _ (S—_ S),t+ (5 _ S))

5



This can be checked by taking partial derivatives with respect to time and maturity and applying Leibniz’s
rule.!” Consider the exponentials that appear in both terms of equation (B.5). These can be decomposed into
e~ Jo I (tru)tyldup— [y v(u)du_Then, by definition of  we have:

e Jo v(wdn _ o= f§ Fadu

= M (B.6)

2]

Thus, using (B.6) in (B.5) we can re-express it as:

S—S
gt (T,s) :/ e Jo t*”)“)d”(si)((5+'y(s+v)1p(’r—v,t+v))dv
0
— ST (r* (tu) +y)du 8 I (= =
+e~ Jo S_I/J(T (§—5),t+3).

1

When we evaluate this expression at s = 0, T/ = 7, and we replace y(v) = =5, We arrive to:

q(1,7,t) = 9 (7,0)
:/ o= 0 (b)) <(§;v)5+ WT_?HU))”IU‘
0

Case 2. The proof in the second case runs parallel. The general solution to the PDE equation in this case is:

!

T
gt (t,s) = / e~ b Tttt v () (5 4 (s 4 0)p(T — v, t +0)) do
0

te fo r*(t+u)+n+y(u))du

When we evaluate this expressionats =0, 7/ = 7

(LT, t) = /Oe Sy () yau (5 — ) <5+lp(r—v,t+v)>dv

+e NG *(ttu)4)du \3 ( _ T) ]

S

Step. 2. Limit Behavior of q(1, T, t). Price with Zero Issuances. Consider the limit ((7,t) — 0 for any T > 0, which
implies that 3 — 0. For both Case 1 and Case 2, equations (B.3) and (B.4),%" it holds that:

lim q(y,7,t) = hrn Joe” I (e (He+mdu (5(5 — s) + (T — 5, +5)) ds

1(t,t)—0 —0 S

Now, both the numerator and the denominator, converge to zero as we take the limits. Hence, by L'Hopital’s rule,
the limit of the price is the limit of the ratio of derivatives. The derivative of the numerator is obtained via Leibniz’s

19Notice that we have directly replaced the value p(7) (1/,s) = ¢(T —s,t +5).
20For for every T < 3, i.e. in case 2, it will be analogous since we are taking the limit when 5 converges to zero.



rule and thus,

[ Jo (r* (t+u) +17)du( (5—s) +¢(T—s,t+s))} ls=s

(r,ltl)m—mq([ wh) = §h—rr>10 1
= lim e~ o0 (Hnmduy 54y g
5—0
= ¢P(t,t).

Step. 3. Linear approximation of q(1,T,t). The first order approximation of the function ¢(i, T,t), the price at the

auction, around ¢ = 0 is given by

99(1, T, t
gL, T, t) ~q(, 7, t) |1=0 —i—% li=o t(T, 1).
We computed the first term in step 2. It is given by ¢(7,t). Thus, our objective will be to obtain 8q(1871t =0
Observe that by definition of 5, it holds that:
9q(, T, t) _ 959q(L, T, )
R T
_ 1 oq(ytt)
Myss 05
where we used that 5 = l]a;s ? . For further reference note that
q(1, 7, 1) o= hmM 1 ' (B7)
d 50 ds5 UYss

99(,T,t)
dJ3

Step 3.1. Derivative . Consider the price function corresponding to Case 1. The derivative of the price

function with respect to § is given by:

(T, t) Jy e bt mdn (55 —s) 4 (v —s,t +5))ds
03 B as 5
e f5 o (tu +17)du¢( — 5t § + fO Se~ Jo (r(t4u )+m)du g
B 5
[Se B whi i (55— s) 4 p(x —s,t+5))ds
32
e~ J5 (r (t+u) +11)du4,( —5,t+3) +f0 Se— Jo (r* (tHu)+n)du gy q(, T, t)

_ : . (B.8)

Note that in the last line we used the definition of (s, 7, t) for Case 1.

Step 3.2. Re-writing the limit of 214Z) ’” . To obtain w =0 we compute lims g w using equation (B.8).

In equation (B.8) both the numerator and denominator converge to zero as § —+ 0.2! Thus we employ L'Hopital’s

21This because the limit of the three terms of the numerator of equation (B.8) are respectively:

lim e NG t+u)+7])duds
5—0Jo
lim e~ Jo (0 tmduy, (o _ 5 4 5)) = y(t, t)

5—0

lim g(s, T,t) = (T, 1).
5—0



rule to obtain the derivative of interest. The derivative of the denominator is 1. Thus, the limit of (B.8), is now

given by:
o 0q(1, T, t) o S0 (b)) s = S SO (b +y)du
lim —2—"~+ = lim % 0 WY(T —35,t4+5)+ [ de o Mods —q(1,T,t)| . (B.9)
5—0 95 5—0 0

Step 3.3. Consider the first two terms of (B.9). Applying Leibniz’s rule:
lim fiw(r —5,t+35)+ 31p(1r — 5 t4E) — (F(E+5) ) P(T— 5 t+35) ) e S (0 Fdn
5—0 oT ’ ot ’ ’

+oe fo (t+u +17)du}

The previous limit is given by:

29 0) 4 ) — (1) + )l )+

Using the valuation of the international investors, we can rewrite the previous equation as:

2P0+ ) — () + P8 6 = (P 0) — (7 () + ()
= —nyY(T,t). (B.10)

(’ H (’Tt) : last term. The

This the first two terms of the limit of 2247 are equal to —ny(7, t). Computing the limit of 9zt

last term of (B.9) is given by

ooq(uTt) 9q(1, T, t) o1
§h—n>10 5 §h—r>n0 o 05
2g9(t,T,t
= 0Ty, B.11)

where we used (B.7). Thus, from (B.10) and (B.11), the derivative (B.8) is given by:

(Tt gyt
lim 27070 _ Q(laf Doy — (e, ). (B.12)

5—0 05

Plugging (B.12) in (B.7) we obtain that:

9q(L, T, 1), 9q(t, T,t),
%u:o = <_l4]/ssq(a[_)'z=0 - WP(TI t))

Rearranging terms, we conclude that:

Hyss

(1,7, t), (T, t) (B.13)

o T T 2uye

Step 4. Taylor Expansion. A first-order Taylor expansion around zero emissions yields:

(1, T, t)

90,7,8) = gl 1) im0 + 2150 | i(n ),
(T 1)
=yY(T,t) — T, t).
pe =T )
where we used (B.13). We can define price impact as A = . j . This concludes the proof. O







C Calibration Notes

In this Appendix, we describe the sources of the data and the calibration procedure for the parameters values and
shocks used in the numerical exercises in subsection 2.4, subsection 3.4, and subsection 4.4.

Income Process: p,

We obtain the series for the Spanish Gross Domestic Product for the period Q1 1995 to Q2 2018 from FRED eco-
nomic data https://fred.stlouisfed.org/series/CLVMNACSCABIGQES. We estimate an AR(1) process for the
de-trended seasonally adjusted output. The de-trending uses a Hodrick-Prescott filter with a parameter of 1600.
The estimated model is logy: = pylogy; 1 + Uyef_l. The estimated persistence of quarterly income (py) is 0.95
with a standard deviation (cy) of 0.375. This corresponds to a value of a, = (1 —py)/ (3 x At) = 0.2, where we fix
At = 1/12 for all our numerical exercises. The details of the numerical procedure to solve the model are described
in Appendix E.

Interest Rates Process: p,

We obtain from the Bundesbank monthly data for the 1 month Euribor nominal rate. The period is Q11999
to Q22018. The source of the data is: https://www.bundesbank.de/action/en/744770/bbkstatisticsearch?
query=euribor. We then obtain the annualized average (geometric mean) quarterly rate, if, as [I13 _; (1 +i}")] 5 =
(1+ z?) Using the quarterly inflation rate for the Eurozone (overall index not seasonally adjusted), obtained from
the ECB Statistical Data Warehouse, the source of the data is http://sdw.ecb.europa.eu/, we compute the an-

i

nualized real rate at a quarterly frequency as 11:7217 = 1+ r]. We then fit an AR(1) process for the level of the
t

real interest rate ; = i, + p,71_1 + 0y€]_;. The estimated persistence of the quarterly real rate (p,) is 0.95, which
translates into a, = (1 — pr)/ (3 x At) = 0.2, where At = 1/12. The standard deviation (c;) is equal to 0.410.

Dealers Cost of Capital: 1

We approximate the cost of capital of dealers, #, as follows. For each one of the five largest US banks by Assets
(as of August 2018), we obtain the current (as of August 2018) credit rating from Fitch, Standard and Poor’s and
Moody’s. At the same time we obtain AA, A, BBB daily option-adjusted spreads (OAS) for US corporate bonds
from FRED Economic Data for the period January 1st of 1997 to August 27th of 2018. The source of the data is:
https://fred.stlouisfed.org/search?st=ICE+BofAML+US+Corporate+AA+Option-Adjusted+Spread. Options
adjusted spreads measure the spread of a family of US Corporate issuers of the same credit rating adjusting for

any embedded option.??

We denote OAS;(Rating) as a function that maps a rating and a moment in time to
the option-adjusted spread. For each bank i we fix the current credit rating, Rating; ;, for the entire sample of
daily observations at the final value, Rating; 7. Then, we obtain a time series for the spread of each bank as
it = OAS;(Rating; ) for t = 1...T. We weight the spreads of each bank by their relative assets (as of 2018).

T 5
Yim1 i Wi T
T

Finally, we obtain an estimated value of the spread of intermediaries in our model as 7§ = , equal to

149 basis points.

22Bank of America Merrill Lynch computes the index. More precisely, the option-adjusted spread for bonds is “the number of basis points
that the fair value government spot curve is shifted to match the present value of discounted cash flows to the bond’s price. For securities
with embedded options, such as call, sink or put features, a log-normal short interest rate model is used to evaluate the present value of the
securities potential cash flows.” Thus, the index fits a term structure model for different securities, to separate the value of the security from
any embedded option by subtracting or adding the value of the option.

10


https://fred.stlouisfed.org/series/CLVMNACSCAB1GQES
https://www.bundesbank.de/action/en/744770/bbkstatisticsearch?query=euribor
https://www.bundesbank.de/action/en/744770/bbkstatisticsearch?query=euribor
http://sdw.ecb.europa.eu/
https://fred.stlouisfed.org/search?st=ICE+BofAML+US+Corporate+AA+Option-Adjusted+Spread

Parameter Description Value

0% Sovereign’s risk aversion 2

) Coupon rate 0.01
Py Persistence of output 0.952
Or Persistence of short rate 0.949
oy Standard deviation of output (pct/quarter) 0.375
oy Standard deviation of short rate (pct/quarter) 0.410
7 Cost of Capital for Intermediaries (pct/py) 1.49
¢ Poisson Int. of a Large Shock (pct/py) 2.00
Ay Drop in output (pct) 5.00
Ar Increase in rates (pct) 1.00
G Logistic p.d.f. scale parameter 100

Table 2: Summary Baseline Calibration

Spanish Debt Profile: Figure 2.1

For the maturity debt profile of Spain featured in Figure 2.1, we use data from the Spanish Treasury. The data can
be accessed at www.tesoro.es/en/deuda-publica/estadisticas-mensuales and corresponds to the debt profile
as of July the 31st of 2018. We use the total debt.

Large Shock Intensity: ¢

We calibrate the intensity of the shock based on the data from Barro and Ursua (2010). This data-set is ob-
tained from https://scholar.harvard.edu/barro/publications/barro-ursua-macroeconomic-data. Out of
1600 year-country observations for OECD countries, 34 of them correspond to an output drop of more than 5 per-
cent. This amounts to an estimated frequency equal to 2.13 percent per year; one large shock every 50 years. We
calibrate the arrival of shocks in the risky steady state, ¢, to a value equal to 0.02 (2.00 percent per year).

Large Shock Size: Ay(0), Ar(0)

We will fix 5 percent as the size of the shock to output, and we denote it as Ay(0). For interest rates, the shock
to the short rate is the one that implies the same drop in consumption than with the shock to output, given the
persistence of rates (as well as the other parameters). This is an increase in rates from 4 to 5 percent, and we denote
itas Ar(0).

Scale Logistic Distribution: ¢

To calibrate ¢ we match the unconditional default probability of Spain during the period 1877-1982. We proceed
as follows. According to Barro and Ursua (2010), for the period 1945 to 2009 the most significant year to year
drop in income for Spain was 4.8 percent. Thus, we will fix the size of the shock output to 5.0 percent and the
intensity to ¢ = 0.02, as in Section 3. The preference shocks are distributed according to a logistic distribution with
a probability density function given by:

ge <
(1+es)*

We set the scale parameter, ¢, equal to 100. As we mentioned in the main text, for our calibration, this value of the

fle)=

parameter produces a default in 32 percent of the events when an extreme shock hits Spain’s output. Given the
intensity of the extreme shock, ¢ = 0.02, this implies an unconditional default probability equal to 0.6 percent per
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year, roughly a default every 157 years. This is in line with the findings of Reinhart and Rogoff (2009) in which
Spain experienced one default during the period 1877-1982.

D Proofs

D.1 Proof of Proposition 1

2
Proof. First we construct a Lagrangian on the space of functions g such that are Lebesgue integrable, He’/’ t2¢ (1,1 H <
co. The Lagrangian, after replacing c(t) from the budget constraint, is:

0o T
L, f] = /0 e PtU (y(t) —f(0,¢) —l—/o (T, t,0)e(T,t) —(5f(T,t)]dT> dt

o /OTePff (1) (=5 + (e + 5 ) e

where j (7,t) is the Lagrange multiplier associated to the law of motion of debt.

We consider a perturbation & (t,t), e #'h € L2 ([0, T] x [0,0)), around the optimal solution. Since the initial
distribution fj is given, any feasible perturbation must satisfy / (7,0) = 0. In addition, we know that f (T,f) =0
because f (T",t) = 0 (by construction) and issuances are infinitesimal. Thus, any admissible variation must
also feature h (T,t) = 0. At an optimal solution f, the Lagrangian must satisfyL [;, f| > L[, f + ah] for any
perturbation (7, t).

Taking the derivative with respect to a —i.e., computing the Gateaux derivative, for any suitable & (,t) we

L /weth’(())[ h(0,t) / Sh ( rt)dT]d
/ / e pt—] T, t) drdt
+/0 /Oe_ptgj(‘r,t)drdt.

obtain:

L, f+ ah]

9
o«

We employ integration by parts to show that:

//eptajrtdrdt //e"’t i (T,t)dtdt

_ / (lim e (1,5)j (v,5)] = (7,0) j(,0) ) dv

// _pt(a]”) Pf(Trf))h(T,t)dtdr,

and

© o [Toh, < . . T 0j
e —j(t,t)ydtdt = e P \h(T,t)j(T,t)—h(0,t)j(0,t)— | h(t,t)==dt|dt.
0 0 0T 0 0 aT
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Replacing these calculations in the Lagrangian, and equating it to zero, yields:
) T
0 — /Qeﬂ%r@u» —hmj)—/mdhﬁjﬁh dt
0 0

+/0°° ATePt (_p]— aa][ + g]> I’l(T t)det
+/Oooeﬂf (h(T,t)j(T,t) —h(0,t)j(0,¢t))dt

—/ lim e #h (1,5) j (7,5) dt + h (1,0) ] (,0).
0

S—00

We rearrange terms to obtain:
0 = = [T ) -jon] RO

/ / e Pt( pj —U' (c)é— ]+ai>h(r,t)drdt (D.1)
- [Cermmnimma

— / sli_)rn e Ph(t,s)j(t,s)dt+h(7,0)j(7,0).
0 o

Since h (T,t) = h(t,0) = 01is a condition for any admissible variation, then, both the third line in equation (D.1)

and the second term in the fourth line are equal to zero. Furthermore, because (D.1) needs to hold for any feasible

variation h(7,t), all the terms that multiply h(7,t) should equal zero. The latter, yields a system of necessary

conditions for the Lagrange multipliers:

pi(rt) = —oU(c(t)+ 2 - ifre (], D2)
j(0,8) = —U'(c(t), ifT=0,
lim e *'j(t,t) = 0,ift € (0,T).

t—00

Next, we perturb the control. We proceed in a similar fashion:

%E [H—th,,f]’a = /Ooo e P (c(t)) [/OT (?;Zl(l’,t) +4q(7, t,z)) h(t,t) dr] dt

=0
o T
+/ / e Ph(t,t)j (7, t) drdt.
0o Jo

Collecting terms and setting the Lagrangian to zero, we obtain:

/Ooo /OT e Pt []' (T,8) + U (c(t)) (371 (t,t)+q (T, t,l)>:| h(t,t)dtdt = 0.

Thus, setting the term in parenthesis to zero, amounts to setting:

u' (c(t)) <?;ZL(T,t) +q(T,t,1)) =—j(1,1). (D.3)
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Next, we define the Lagrange multiplier in terms of goods:
o(t,t)=—j(t,t) /U (c(t)). (D.4)

Taking the derivative of v (T, t) with respect to t and T we can express the necessary conditions, (D.2) in terms of
v. In particular, we transform the PDE in (D.2) into the summary equations in the Proposition. That is:

(p u//(c(t))c(t) é(t))v(T,t) _ §+a£,a£, ifte (O,T],

U (c(t)) c(t) ot 9t
v(0,t) = 1, ifT=0,
lim e P'o (1,t) = 0,ift€(0,T);

t—o0

and the first-order condition, (D.3), is now given by:

Jq

EACORICADELICE)

as we intended to show. O

D.2 Duality

Given a path of resources y(t), the primal problem, the one solved in Section 2, is given by:

VIf(,0)] = max /00 e Py (c(s))ds s.t.
[f (-,0)] et oo J (c(s))

T
c(t) =y ) - f(01) +/O [9 (T, t,0) (T, t) = 6f (T, 0)] dT

% =T, t)+ %;f(T,O) = fo().

Here we show that this problem has a dual formulation. This dual formulation, minimizes the resources needed
to sustain a given path of consumption c(t):

D[f(-,0)] = min /oo e~ fo rS)dsy (£)dt s.t.

{e(tt) }e[0,00),cefo,1] /O

T
c(t) =y ) - f(01) +/0 [9(z,t, )it t) = of (T, )] dT

% =T, t) + %;f(T,O) = fo(7)

W) e
W=y ey

Proposition 5. Consider the solution {c*(t),1*(t,t), f*(T, t)}?oe[o,oo),re(O,T] to the Primal Problem given fo. Then, given
the path of consumption c*(t), {y*(t), " (T, t), f* (T, ) }1c[0,00) e (0,7] S0lves the Dual Problem where:

T
y () =c*(t)+ 7 (0,t) +/ [q(T,t, )" (T, t) = 6f* (7, 1)) dT.
0
Proof. Step 1. We start following the steps of Proposition 1. We construct the Lagrangian for the Dual Problem in

14



2
the space He_Pt/ 2g (1, t) H < oo. After replacing the resources y(t) needed to support a path of consumption c(t)
the budget constraint, is:

o " T
Llf] = /0 ¢~ Jo rityas <c(t)+ F(0,8) — /0 [q(T,t,t)t(T,t)—(5f(T,t)]dT> dt

o T ot af af
Jor(t)ds 27
+/O /O e o ZJ(T,t)< 5 T(Th)+ aT) drdt,

where v (7, ) is the Lagrange multiplier associated to the law of motion of debt. We again consider a perturbation
h(t,t), e Ph € L2 ([0, T] x [0,00)), around the optimal solution. Recall that because fy is given, and f (T,t) = 0,
any feasible perturbation needs to meet: 1 (7,0) = 0 and /1 (T,t) = 0. At an optimal solution f, it must be the case
that £ [, f] > L [i, f + ah] for any feasible perturbation (7, t). This implies that

:/efo ds[hOt /5hTt)dT]d
a=0

/ / e~ Jor (’L’ ) dtdt
—f r(t)dsi
+/o /0 e o aTv(T,t)det.

We again employ integration by parts to show that:

/ /e Jor( (T t) dtdt //e Jo r®)ds, Tt)—dtdr

= / (lnne jor(”dsh( s)v (T, s)]—h(r,O)v(r,O)) s
v (1,

d
%E [l,f + DC]’l}

S—00

e (7

= /0 (hme frt dsh(TS)Z)(TS)—h(T,O)U(T,O))dT—

S—r00

oo T
/ o Ji / (E’”(a?t)_r(t)v(r,g) h(z, t)dedt,
0 0

H_ r(t)v (T,t)) h(t,t)dtdt

and

® ¢ Tah b t T v
/ e—fo“f)dS/ —o(t,t)drdt = / e~ Jor(t)ds h(T,t)v(T,t)—h(O,t)v(O,t)—/ h(t,t)=—dt| dt.
0 0 oT 0 0 oT

Replacing these calculations in the Lagrangian, and equating it to zero, yields:
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0 = / e Jor WS[ (0,1) /(5h Tt)d‘r]dtt
/ / e~ Jor(t)ds (—() —(.aaz]—i-gz;)h(r,t)drdt

+/ e O (1 (T, £y o (T, 8) — 1 (0, £) 0 (0, £)) dt
0

_/oo lim e~ Jo Wdup (1,5) v (1,5) dT.
0

S—»00

Again, the previous equation needs to hold for any feasible variation /(7,t), all the terms that multiply h(7,t)
should be equal to zero. The latter, yields a system of necessary conditions for the Lagrange multipliers, and
substituting for the value of r(t):

(p _Wle®)e(®) &) ) v(t,t) = 6+ % _ a—v, ift € (0,T], (D.5)

u'(c(t)) c(t) ot 0T
v(0,t) = 1, ift=0,
lim e P'v (1,t) = 0, ift € (0,T].

t—o0

By proceeding in a similar fashion with the control we arrive to:

(?;Zl (t,t)+q(7, t,l)) =—v(T,t). (D.6)

Note that system of equation (D.5) to (D.6) plus the budget constraint, the law of motion of debt, and initial debt
fo, are precisely the conditions that characterize the solution of the primal problem. O

D.3 Asymptotic Behavior

Here we formally prove the limit conditions that we discussed after Proposition 1. In particular, the provide a
complete asymptotic characterization. The following Proposition provides a summary.

Proposition 6. Assume that p > r%,, there exists a steady state if and only if A > A, for some A,. If instead, A < A,, there
is no steady state but consumption converges asymptotically to zero. In particular, the asymptotic behavior is:

Case 1 (High Liquidity Costs). For liquidity costs above the threshold value A > A,, variables converge to a steady
state characterized by the following system:

S g

Css

rss =0 (D.7)
tss(T) = 1/,55(;3)55—(?)5 =, (D.8)
Uss(T) = 2(1 —e ) +e " (D.9)
fss(T) = / ' lss(s)ds (D.10)

- -
Css = Yss _fss (0) +/0 {lpss( )lss( ) MP%(T)[SS(T)z — 5fss(’l') . (D.11)
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Case 2 (Low Liquidity Costs). For liquidity costs below the threshold value 0 < A < A,, variables converge asymp-

totically to:
i c(s) _ oot
1M 500 C(t) =€
(5,1 (0) = gy (1= e o) el
p Pss(T) — Voo (T, 70 (A))
o] 7 Moo /\ = =
oo (T, Teo(A)) T (1)

where 1o (A) satisfies 1k, < reo(A) < p and solves:

o = 0

. i
s = fol0 1 (1) + | {lw(r,rw(x))lp(r)—Wlw(r,rm(x))z—(sfoo(r,rw(x)) ar.

Threshold. The threshold A, solves |css|5_3 = 0in (D.11) and limy_,5 re(A) = p.

Proof. Step 1. First observe that as A — oo, the optimal issuance policy (2.12) approaches (7, t) = 0. Thus, for that
limit, c5s =y > 0 and fss5(7) = 0.

Step 2. Next, consider the system in Case 1 of Proposition 6 as a guess of a solution. Note that equations (D.8)
to (D.11) meet the necessary conditions of Proposition 1 as long as r(t) = p. This because: 155(7) meets the first
order condition with respect to the control; vs(7) solves the PDE for valuations; given s (7) and vss(7) the stock
of debt solves the KFE, thus, is given by [ TT 1ss(s)ds; and consumption is pinned down by the budget constraint.
In addition, by construction, consumption determined in (D.11) does not depend on time; i.e. ¢(t) = 0 and this
implies that

rss = r(t) = p.

Thus, the only thing we need to check is that there exists some A finite such that consumption is positive.

Step 3. The system in equations (D.8) to (D.11) is continuous in A. Therefore, because css = y > 0 for A — oo,
there exists a value of A such that the implied consumption by equations (D.8) to (D.11) is positive.

Step 4. We now prove that there is an interval where this solution holds. In particular, we will show that css
decreases as A increases. Observe that, steady state internal valuations vss(7) in (D.9) and bond prices (1) are
independent of A. Steady-state debt issuance’s 155 (7) in (D.8) are a monotonously decreasing function of A, because

dlss (T) 1

a}\ - 75[55 (T) < 0,

and therefore the total amount of debt at each maturity fss(7) in (D.10) is also decreasing with A, because

afSS_(T)
oA

1
= _Kfss (1) <O.
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If we take derivatives with respect to A in the budget constraint (D.11) we obtain:

oA oA

st = P (0 = A (1)1 ()

T
9Css B afss (0) +/ [1/755(7) Jlss (T) . Pss (T) Y EY

Atss (T) _58fss (T)] it

T
= %fss (0) - % /0 [lles(T)lss (1) + }\l/Jssz(T) 155 ()% = Apss (7) 155 (1)% = 3 fis (T)} dt

1
= _Kcss < 0
Observe that 55 (T) can be made arbitrarily small by increasing A. Thus, there exist a value of A > 0 such that
¢ss = 0 in the system above. We denote this value by Ay.

Step 5. For A < A,, if a steady state exists, it would imply css < 0, outside of the range of admissible values.
Therefore, there is no steady state in this case. Assume that the economy grows asymptotically at rate goo (A) =
lim; e ﬁ %. If goo (A) > 0 then consumption would grow to infinity, which violates the budget constraint. Thus,
if there exists an asymptotic the growth rate, it is negative: goo (A) < 0. If we define 7o (1) as

oo (1) = (p+ 08 (1)) <,

the growth rate of the economy can be expressed as

g (1) = 22
When this is the case, the asymptotic valuation is
5 (1-er=() i
3 — _ Teo (A)T
Voo (T, o0 (A)) o O +e

To obtain the discount factor bounds, observe that if Ve, (T, 70 (1)) < 55 (T) the optimal issuance is non-negative.
Otherwise issuances would be negative at all maturities and the country would be an asymptotic net asset holder.
This cannot an optimal solution as this implies that consumption can be increased just by reducing the amount of
foreign assets. Therefore, ro (A) > r*. Finally, by definition 7. (1) < p. O

D.4 No liquidity costs: A =0

Proposition 7. (Optimal Policy with Liquid Debt) Assume that A (t,t,1) = 0. If a solution exists, then consumption
satisfies equation (2.11) with r*(t) = r(t) and the initial condition B(0) = [;"exp (— [o r*(u)du) (c(s) —y(s))ds.
Given the optimal path of consumption, any solution 1(T,t) consistent with (2.1), (2.16) and

B(t) = r*(t)B(t) +c(t) — y(t), fort >0, (D.12)
is an optimal solution.

Proof. Step 1. The first part of the proof is just a direct consequence of the first-order condition v (7,t) = ¢ (7, )
for bond issuance. Bond prices are given by (2.4) while the Government valuations are given by (2.10). Since both
equations must be equal in a bounded solution, we conclude that

. B u” (c(t)) de
)= () = p - LD
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must describe the dynamics of consumption.
Step 2. The second part of the proof derives the law of motion of B(t). First we take the derivative with respect
to time at both sides of definition (2.16), that we repeat for completion:

T
B(f) = / (e 0)f (1,1) dr.
0
Recall that, from the law of motion of debt, equation (2.1), it holds that:

dof  df

(T, t) = —5 T ap

_|_

To express the budget constraint in terms of f, we substitute ¢ (T, t) into the budget constraint:

() =y () —F(0,)+ /OT [lp(’l’,t) (aa{ - gf;) _5f (r,t)] . (D.13)

We would like to rewrite equation (D.13). Therefore, first, we apply integration by parts to the following expres-

sion:

T T
| wengtar—pmos@n-ponson- [ e

As long as the solution is smooth, it holds that f (T, t) = 0. Further, recall that by construction (0, t) = 1. Hence:

/OTlp(T,t)gJ;dT— £ (0,) —/OT g—lﬁf (1,1) d. (D.14)
Second, from the pricing equation of international investors, we now that
Wy rer
Then, we obtain:
T of T
/0 p(r,02ar =~ (0,0) - /O 5+ (T, 1) — r((T, D) f (1, 1) d. (D.15)

We substitute (D.14) and (D.15) this expression into (D.13), and thus:

T
« =yt~ £ 0.0+ [ [p(en% ~of (r.0)] dr..

T
- {—f(O,t) —/O [0+ ye(T ) —r()p(T,H)] f (T 1) dT}
T

T
v+ [ WO 0+ pEns @oldr= [ rouEns .

0

Rearranging terms and employing the definitions above, we obtain:

B(t) =c(t) —y(t) +r"()B(t),

as desired. O
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D.5 Limiting Distribution: A — 0
Proposition 8. (Limiting distribution) In the limit as liquidity costs vanish, A — 0, the asymptotic optimal issuance is

given by

A—0 T _ 1+ [_1 + (7*/5 — 1) r;ksT] e_rs*ST lPss (T)
oo (T) = Bimmieo(T) = T [C1+ (7 /6 — 1) i T] e 7T s (1) (D-16)

where constant x > 0 is such that yss — f37°(0) + [ {téﬁo (T) ss(T) — 5f;’}ﬁ0(r)} dt = 0,and f170(7) = [T 170 (s) ds.

Proof. Consider the following limit:

A1) = lim teo(T, 7o (A))
A—0
= lim lPSS(T) j Z)00<Tr Teo ()\)>
A—0 Apss (T)
5(1—ent)  §(1—e sl _
= lim = 1 ( ) _ ( _ )_~_e*7;ks'r e reo(A)T
=0 AP (T) T Foo(A)

This is a limit of the form % as limy_,( 7o (A) = 7*.2> We do not have an expression for 7« (A), so we cannot apply
L’Hopital’s rule directly. Instead, we compute the following limit:

6(1—e" ) §(1—e T X _
. loo(T, Teo(A)) _ ( < ) — ( ‘ ) 4o T — e (M g (T)
lim =22V "7/ —  lim r_ r ,
10 Loo(T, Teo(A))  re(R)r+ 6(1=e " T) (1= 7= VT) e T — e ra(T ¥ (1)

r* r
which also has a limit of the form 8. Now we can apply L'H6pital’s. We obtain:

—SrTe " TS (l—e”*f)

lim (T (A) P tTe Ty (T)
=0 teo(T,1e0(A)) - 0 T Te0(1=eT) | o (T)
r*

14+ [-1+ (/6 =1)r*t]e " " (T)
14+ [-14 (/=1 rTle"T (1)’

If we define
K = lim 1eo(T, 700 (A))
A—0

then [ Je "
. L[S (/0= 1) rit]e Ty (T)
/_1\11)1})100(7,700(/\)) A+ [-14+ (/5= 1)rTle T ¢ (1)

The value of k¥ then must be consistent with zero consumption:

K.

_ T - _ _
_ fA—=0 l/\ao s _ o)gﬁo —0,
Yes — FA0(0) + /0 [0 (1) () — 6f20(x) | = 0

for fA70(1) = fTT 1270 (5) ds. O

Z3We drop the sub-index ss to ease the notation.
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D.6 Proof of Proposition 2

We need first the following lemma:

Lemma 1. Given a fix t, the Gateaux derivative of the post-shock value functional V [f (-, t)], defined by equation (2.6), with
respect to the debt distribution f (-,t) is the valuation j(t,t) = —U’ (c (t)) v(7, t) satisfying equation (2.8):

/]Tt (T, t)dT.

Proof. To simplify notation assume, without loss of generality, that t = 0. To avoid confusions, we denote by
(1*, f*) the optimal issuance policy and debt distributions. First, note that

%V[f(r t) +ah (7, t)]

This follows from the fact that
0 T
VIf(-,0)] :/O e Pt (y(t) — f*(0,1) +/0 [q (T, t,0") " (T, t) = 6f" (T,t)]dr) dt

_ /oo e Pt (y(t) N +/T 9T, 8,0°) 1* (T, 8) — 6 (T, 8)] dr) dt
0 0

+/OOO/OTe—Pf]‘*(T,t)< f*+z( )+ a;)drdt,
= L[ f]

where the first line is the definition of V' [f (-,0)], the second line is the fact that

of | of _
—S () S =

for for every 7, t and the last line is the definition of the Lagrangian. Next we compute z%ﬁ [, f* 4+ ah(7,0)] o
n=

The derivative with respect to a general variation h(7, t) is given by:

L1, f + ah] = /we—Pfu’(())[ h(0,t) /(Sh Tt)dT]d (D.17)

/ / e Pt—] T,t) ddt
7pt7‘
+/0 /0 e o] (t,t)ddt.

9
o 20

We employ integration by parts to show that:

/Ooo /OT efpf%j (t,t)dtdt = /T <1im e Plh(t,s)j(t,s) —h(T, O)j(r,O)) at

S—r00

/ / e (a]”) Pj(Tft))h(T,t)dtdr

and

/ e Pt/ (T, t)dtdt = /Ooe*f” [h(T,t)j(T,t)—h(o,t)j(o,t)—/Th(r,t)gidr] dt.
0 0
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Note that we have not yet used optimality. Using the particular case of interest, i.e.:

h(t,0) = h(t, (1),

where 6(f) is the Dirac delta, and plugging it in equation (D.17):

:u((o[ (0,0) /5hr0 1
/hTO ,0)dt

# [ (250 i) w0y

—1(0,0)](0,0) /h a]d'rdt

a * *
@ﬁ [+ och(-,O)]

Because (1%, f*) is an optimum, we know that for all T € (0, T|] the following holds

9 (x,0)
ot

9j (t,0)

—pj(,0) -5 s =0

and for T = 0 it also holds that U’ (¢*(0)) = —j (0,0) . This implies that

T
%z 1, F* + au(-,0)] “_O:/O I (7,0 (,0) dr.
Thus,
P L[5, f*+ah(., /hTO (t,0)dt
— VU0 + an,0)]

Proof. Proposition 2. Then we can proceed with the proof of Proposition 2. The Lagrangian is:
tO
clif] =E / e (e(s)) ds + e P ES {V [F(,10), X ()] )
0

o of of
—psz 2 47 -
+/0 /o e ](T,S)< as+l(r,s)+aT dtds

where E* denotes the expectation with respect to the random time t°. In this case 7 (7, s) is the Lagrange multiplier

associated to the law of motion of debt, before the shock.
Step 1. Re-writing the Lagrangian. Proceeding as in the proof of the risk-less case, as an intermediate step we
integrate by parts the terms that involve time or maturity derivatives of f. The Lagrangian £ [2, f } can thus be
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expressed as:

/Qmuu»@+eW{ﬂw%Xwﬂ
0

_/Tepf“f(T )7 (1, 1° dT—l—/ f(7,0)j(7,0)dt
/to/ e Pf(T,s <—p]('r s))drds

+A P?Uﬁ(T@%—A e £ (0,5)7(0,5)ds

_/to /Tepsf(r,s) 9 grds

tO
//eps T,8)1(T,s) dtds.

If we group terms, substitute the terminal conditions f (T,s) = 0 and compute the expected value with respect to

t°, we can express the Lagrangian £ {Z, f} as:

+ [ f(0)](r,0)dr
+ OO/OTe (o) f ( Ts)<aj 07 ( ))d’rds
ooe (P+¢)5£(0,5)7(0,5) ds

/t”/ ~(0+9)55 (1,5) 1 (1, 5) dds.

Step 2: Gateaux Derivatives. Next, we compute the Gateaux derivatives with respect to each of the two arguments
of the Lagrangian at a time. Step 2.1: Gateaux derivative with respect to issuances. We consider a perturbation around

optimal issuances. Equalizing the Gateaux derivative with respect to issuances to zero, i.e. % L [i +ah, f } ‘ =

0, the result is identical to the riskless case:
! (A 3q A
uwem) | 5wt +a(nti) ) =-j(zt).

Step 2.2: Gateaux derivative of V with respect to the debt density. The Gateaux derivative of the continuation value
with respect to the debt density is
T
_ X / i(ts)h(T,s)dr b
a=0 0
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where we have applied Lemma 1. Step 2.3: Gateaux derivative of the Lagrangian with respect to the debt density.
Since the distribution at the beginning f (7,0) is given, any feasible perturbation must feature h(t,0) = 0 for any
7 € (0,T]. In addition, we know that (T, t) = 0, because f(T,t) = 0. The Gateaux derivative of the Lagrangian
with respect to the debt density is:

%C[f,f—l—txh}

T
Y e PO (2 (s)) [—h (0,5) + /0 (=) (1,s) drl ds

Il
< c\
8 3

T
/ e~ TS YIEX [j (1,5) h (1,5)] dTds
0

oo oT
— / / e~ t0)50n (1,5) 7 (t,5) dds
o Jo

The value of the Gateaux derivative of the Lagrangian for any perturbation must be zero. Thus, again a necessary
condition is to have all terms that multiply any entry of / (7,s) add up to zero. We summarize the necessary
conditions into:

R s (n 9 9] X R
o} (1,5) = —0U' (2(s)) + 5 — 52 +¢ [EXj (r,8) =] (x,5)], (D18)
7(0,5) = —U' (¢(s)). (D.19)
Step 3: From Lagrange multipliers to valuations. We now employ the definitions of 9 (7,s) = —j (7,s) /U’ (¢ (s)) and
v(t,s) = —j(1,s) /U (c(s)). Thus, we can express equations (D.18)-(D.19) as:
A B 00 00 xU (c(s)) R
7(s)o(t,s) =6+ F + ¢ |E; 0 (é(s»v('r,s) —9(1,9)
5(0,5) =1
Therefore valuations can be expressed as:
o(t,t) = el
t+T 1
— JF (Pw)+9)du x [Wlelt+s))
+(9/t e i (5+]Es {U’(é(tJrs))U(T s,t+s)| | ds,
as we wanted to show. O
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D.7 Proof of Proposition 3

Proof. Step 1. Setting the Lagrangian. Let V { f(,10),x (t")} denote the expected value of the Government, at the
instant t° where the option to default is available, but prior to the decision of default. This value equals:

EXT(VFCe)],x0) +0 (V[FCe),x0]) VIf ), xw0)]],

Default No default

where the first term in the expectation is the expected utility conditional on default given by I' (x) = [ zd®(z).

The second term is the probability of no default time the perfect-foresight value. The Lagrangian is:

0

clofd) = E / U (E(s)) ds + eV [7(, 1), X ()]

0
o of of
—ps3 L 47 -
+/0 /0 e 7 (t,s) ( 3s +1(t,s)+ BT> dtds

~

“ T ey ()0 op o
+/O /0 e P°h(1,s) <—r (s)lp(r,s)—l—é—i-as—a’[)des].

In the Lagrangian, E* denotes the conditional expectation with respect to the random time °. Here (,s) and

fi (t,s) are the Lagrange multipliers. The first set of multipliers, j(7,s), are associated with the law of motion
of debt and appears also in previous sections. The second set of multipliers, #i (7,s), are associated with the law
of motion of bond prices. This terms appears because the Government acknowledges that its influence on the
maturity profile influences the incentives to default, and hence affects bond prices. This happens through the

terminal condition:

b(rt) = EX{o(V[f(0)]) v},
$(0,t) = 1
The terminal condition reflects that at date t°, the bond price is zero if default occurs or the perfect-foresight price,
P(7,t°), if default does not occur.

Step 1.2. Re-writing the Lagrangian. Proceeding as in the proof of the riskless case, as an intermediate step we
integrate by parts the terms that involve time or maturity derivatives of f and $. The Lagrangian £ [i, 1, 1/3} can
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thus be expressed as:

o0

t T
/ U (&(s)) ds + e 'V [f(.,tO),X(tO)]—/ e F (1,197 (7, 1) d

0 0

T 0 T R aj
+/ f(1,0)7(7,0) dT+/ / e Pf(t,9) ( - pj(T,s)) dsdt
0 o Jo 0s
t(?
e P f(T,s)7(T,s)ds — / e P £(0,5)7(0,5)ds
0
t0 T R aj 0 T
—/ / e P f(1,s) —des+/ / e Pj(t,s)i(t,s)dtds
0o Jo ot 0 Jo

© T
+/0 / e P (t,s) (=7 (s)P(t,s) + ) duds,

S—
=B

+

Step 1.3. Computing expectations. If we group terms, substitute the terminal conditions f (T,s) = 0 and
P(t,1°) = © (V { f, t")D P(7,1°) and compute the expected value with respect to t°, we can express the La-
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grangian £ [i, 1, lﬁ} as

[e0)

e U ((5)) ds

S~

/Ooe (p+¢)5£(0,5)7(0,5) ds

0

/ooe (pt9)s (A (T,s) P (T,s) —u(0,s)P(0,s)] ds
0

P
/OO/OTE (P+0)s £ (7,5) (gz—pj( ))deT

/oo /Te +9)s £ (1, 5) a]Ad‘z.'ds
T

0

oo T
/ / e~ 0955 (7,5) 1 (1, 5) dds
0

/W/Te W05 p (1,5) (—" (s) P(7,5) +6) drds

0

/oo /OTe P+ (7, 5) (6;2 pﬁ(r,s)) dtds

)
() T N
+/ e () )3}4de5
0 oT

+
(=)

(=)

+
o

_|_
o

o

(=)

+/Tf( TOdT—/‘uTOlp(T,O)dT

0

+/°°e P 0gy £ (,5)] ds

0

_/0 /o e 000 f (1,5)] (1,5) duds
+/O°°/OT6—<p+¢)s¢ﬁ () EX {8 (V[ (9)]) pir9) } a.

Next, we compute the Gateaux derivatives with respect to each of the three arguments of the value function at a
time.

Step 2. Computing the derivatives. Step 2.1. Gdteaux derivative with respect to the issuances. If we consider a
perturbation around issuances and equalize it to zero, % L {Z+ wh, f, 1,27} ’a*O = 0, the result is identical to the
risk-less case:

u' (e(t)) (%Zz(r,t) —i—q(t,r,f)) = —7(T,1).

Step 2.2. Giateaux derivative with respect to the debt density. Since the distribution at the beginning f (7,0) is
given, any feasible perturbation must feature h(7,0) = 0 for any T € (0, T]. In addition, we know that 1(T,t) =0,
because f(T,t) = 0. The Gateaux derivative of the continuation value with respect to the debt density is:

_=Ef {@ (v [f(.,s),X(s)]) /OT]'(T,s)h(T,s)dT},

where we have taken into account the fact that d% (T'(x)+0©(x)x) = O(x) and —from the perfect foresight

T
-0 :/0 j(t,s)h(T,s)dr.

LV [fs) +ah(s),X(s)]

problem— :

% v[f(-,s)+ah(-,s)
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Similarly, the Gateaux derivative of the terminal bond price with respect to the debt density is

% EX{0 (V[ (5) +ah(.s)]) p(r9)

a=0

EX {e(v [f(.,s),X(s)Dlp(r,s)/OTj(T/,s)h(T/,s) drl},

where 0(x) = 4 @ (x) is the probability density. The Gateaux derivative of the Lagrangian with respect to the debt
den51ty, L { f+ah, 1/;} ‘ o , is thus:

Nd

) T
/ e~ (ot+d)s (¢ (s)) [—h(O,s) +/0 (=8)h(t,s) dr] ds
~F0)(0,5) 7 (0,5) ds

o
// ~(0+9)sp (1, 5) —j—pj( ))dsdr
-,

oo T ]
/ e~ F0h (1,5) Ldtds
0 0 oT

+/Th( 7,0)dt
+/0°°/0Te (o+9) SPEX {@ (V {f(-,s),X(s)Dj(r,s)}h(T,s)deS
/ / e~ P pn (1,5) 7 (1,5) dTds

/ / o~ (pt+e)s Pu ms)]EX{ (V[A( ),X(S)D1,b(m,s)/()Tj(r,s)h(r,s)dr}dm.

The value of the Gateaux derivative of the Lagrangian for any perturbation, must be zero, i.e. a T L [ L f+ah, 1/3} ‘

o

0. Thus, a necessary condition that all terms that multiply any entry of 1 (7,s) add up to zero. We summarize the

necessary conditions into:

i) = (OuEE)+ - D20
+ 4>IE§{ o(v [f(-,s),X(S)D+9(V[A(vS)/X(S)D/OTﬁ(m/S)t/J(mIS)dmlj(TIS)—f(r,s(D}zl)
j05) = —U'(e(s)).

Step 2.3. Giiteaux derivative with respect to the bond price. In the case of the Gateaux derivatives with respect to the
evolution of the price 1/3, % L [Z, f, lﬁ + och] |a¢:0 , we need to work first with the Lagragian before expectations have
been computed. The reason is the following: only bonds that mature after default can be affected by the Governe-
ment’s policies and hence the variations have to be zero for those bonds that mature before default, fz(T, t) =0, if
T+t < t°. To incorporate this, we assume that admissible perturbations are of the form i(t,t) = h(t,t)1 {(T+t219)/
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where h(7, t) is unrestricted. The Gateaux derivative is then

10 . T aq
| eru e ([ ims) St ar ) as

t° rT
—|—/ / e P50 (T,5) (—ff* (s) 1{T+Szta}h(T,S)) dtds,
0 0

T
- /0 ﬁ (T/ O) 1{1—2150}}1 (T, 0) dt

t rT aﬁ
7/0 /0 e Pl s>y h(T,8) (85 pﬁ(r,s)) dtds

t(?
_:A e [Lrranmh (T,8) § (T,5) = € P20y (0,5) 1 (0,5) | ds

t rT e a‘ﬁ
+/0 /0 e Pl oo h (T,5) gdrds .

Note that the perturbation is only around ¢ (,s) and not ¢ (T, s), the terminal price after default, which is given.
Since at maturity, bonds have a value of 1, 1 (0,s) = 0, because no perturbation can affect that price. If we compute
the expectation with respect to the random arrival time t°, we get:

EY

/oo —(p+¢)s (1—e T U’ (£(5)) [/Ti(r,s) sg)h (1,9) dT‘| ds
0
/ / e~ (PH0)s (1 —e=97) i (1,5) (—7" (s) h(T,s)) dtds
—A (1— ¢ 97) 1 (1,0) 1t (7,0) d
o pT ~
—/0 /0 e~ (PH0)s (1 — ¢=97) i(z,5) (BV py(T,s)) drds
- /oo e~ (pte)s (1 - e*‘PT) u(T,s)h(T,s)ds
0
o T N
+/0 /0 e~ (o+e)s (1—e )P (1,5) g—zd‘tds,

where we use
E" |:1{T+S>t0>5}:| =e ¥ (1 - e_¢T) :

Again, as the Gateaux derivative should be zero for any suitable /(7,s), the optimality condition is

5 . . . oq OJfi Ofi
* o — ! 1 _ -
6~ = Ui -5
a(T,s) = 0,
a(t,0) = 0
The solution to this PDE is
~ ° NG o)duyy! (A N aq
a(t,s) = e ) U (é(z))i(t+s—zz)—=(t1+s—1zz)dz.
max{s+7—T,0} 81,1]
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If we integrate the discount factor of the Government with respect to time, we obtain the following identity:

/Zsf(u)du:/zspdu—/: IZIJI:((S((Z))))CA(u)Z:EZ;du

Therefore, we have that:

Therefore, we have the following identity:
els pdu ef; #(u)du u'(é(s))
u(é(z))
Thus, the PDE for fI (7, s) can be written as:
s S (% Py a
1(t,s) = U (6(s)) / e~ KO =)dup (g 7 7y 2T
max{s+7—T,0} ai,b

Thus, the bond also satisfies the PDE
Also note that

where the second line uses the optimal issuance rule. Hence, we can write the price multiplier as:

S - N ~ B 2
f(rs)=U (e (s))/ e 0 <u>fr<u)>du% (1 _ (TJ(HSZZ)) )dz'

max{s+7—T,0} l/A? (T+s—2z72)

We employ this solution in the main text.
Step 3: From Lagrange multipliers to valuations. We now employ the definitions of 9 (7,s) = —f (7,s) /U’ (¢(s))
and v (1,5) = —j (1,5) /U’ (c(s)), we can express equations (D.20)-(D.21) as

X A 00 00
?(s)o(t,s) = 5+£_£
T ! c(s
—0—4>]E§{ @(V(s))—I—G(V(s))/O f(m,s)p(m,s)dm U/ECAES;%U(T,S)—Zﬁ(T,S)},

09(0,s) = 1,

where we use the notation ® (V (s)) = ®@ (V [f (,5), X (s)]) and 6 (V (s)) = 6 (V [f (-,5), X (s)]) . Therefore valu-
ations can be expressed as

o(T,t) = e I TEE)+0s

t+7 S/ U’( +s
S () +p)du X T
+¢/t e (HIES [(®(V(t+s))+0(t+5)) 0 (@ (t+s

(oM e}
~—|
~ ~
=
=
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where

D.8 The case with default without liquidity costs: A = 0

We show here that the maturity structure is indetermined in the case without liquidity costs and a finite support of
G. In proposition 9 below we show how, if distribution f* is a solutions of Problem (4.3), then another distribution
f' is also a solution provided that

/OT (9 (1,6, X(£)) — $ (T,1)) (f*(T,t) ~fi(z, t)) dt =0, (D.22)
/OT (nzxt [@ (v [f* () ,X(t)D (T, t,X(t))} — (T,t)) (f*(r,t) - f’(r,t)) dt = 0. (D.23)

Consider first the case of an income shock. Here X(t) does not jump after the shock arrives. If the Government
decides to default then the maturity profile at the moment of defaut is irrelevant. If the government decides
instead to repay, the post-shock yield curve will be ¢ (t, t°), which differs from ¢ (T, t°) as the post-shock default
premium is zero. The maturity structure is indeterminate because conditions (D.22) and (D.23) are two integral
equation with a continuum of unknowns, f (T, °).

Consider next the case of an interest rate shock, in which X(#) jumps with the option to default. Condition
(D.22) is a system of integral equations, indexed by X (t°), where f (-, t°) is the unknown. Provided that X (t°) may
take N possible values, then we have at most N equations that need to be satisfied by the debt distribution. In
addition we have equation (D.23) and the condition that the market debt should coincide. Notice that the number
can be less than N + 2 as in some states the Government may default and then condition D.22 is trivially satisfied
for any debt profile that replicates the total debt at market prices before the shock arrival. In any case, the maturity
structure is indeterminate.

The indeterminacy of the debt distribution in our model complements previous results in the literature. In
particular, Aguiar et al. (Forthcoming) study a model of sovereign default similar to the one presented with the
key difference that in their model the Government cannot commit to future debt issuances whereas in our paper
it ca, conditional on repayment. Aguiar et al. (Forthcoming) find how in that case the Government only operates
in the short end of the curve, making payments and retiring long-term bonds as they mature but never actively
issuing or buying back such bonds. This is because short term bonds cannot be diluted. The authors also conjecture
that the maturity structure would be indeterminate if the Government had full commitment over its issuance path.

This is precisely the case we study here, confirming their conjecture.

Proposition 9. Let {f*(T,t),f*(r,t),é*(t)}te[orto] and {*(t,t), f*(T,1),¢*(t) }1e(10,00) be the solution of Problem (4.3)
when A (1,7,t) = 0. Let {7/ (7, t),f’(r,t),é’(t)}te[ortn] and {1*(t,t), f*(T,1),¢*(t) }e(t0,00) be such that, for every t < t°
and every value of Xy,

B*(t) = B'(t) (D.24)
/OT (9 (1,6, Xe) — P (T, 1)) (f*(T, t) —f’(T,t)) dt =0, (D.25)
[ (B fo (v [Fen.x]) e@ex] -6 @n) (7@n - 7wn)ac=o (0.26)



and B*(t) = B/(t) for every t > t°. Then, ¢'(t) = ¢*(t) and ¢'(t) = ¢*(t). Thus, {Z/(T,f),f’(’[,t),él(t)}te[olto] and
(T, 1), f5 (T, 1), () e (1o ,00) 18 also optimal.

Proof. Step 0. Default values. The value functional of a policy given an initial debt f (-,0) is given by:

VIf(.0)]=Eg

/tO eI (E (1)) dt + Eyo,y, [ VO [VD(tO),f(.,tO)m
0

where the post-default value VO [VP (1), f (-,#°), Xp| = max {VP(t°), V[f (-,t°),Xp]} and V [f (-, 1°), Xp] is
the value of the perfect foresight solution. Note that from the solution of the problem with perfect foresight
VIf(-,t°),Xw] =V (B(t°, Xw), Xo) where B(t°, Xy ) is defined as

T
B(t°, X0) E/ P (t,1° Xpo) f(T,8°)dT.
0
Therefore the post-default value
VO [VE(E), £ (), Xin| = VO (VP (), B(E, X0 ), X ),

only depends on B(#°, Xy). Because B'(t°, Xp) = B*(t°, Xp) for every realization of X0 the default decision
depends only on the market value of debt when the country receives the opportunity to default and not on the
debt-maturity profile. Thus, continuation values are equal and it is enough to show that ¢* (t) = ¢ (¢) for t < t° to
prove that the two policies yield the same utility. Step 1. Pre-shock prices are equal. Pre-shock prices solve

) STy, .
(1) d(, ) :5+a—1’f—£+cp]1€f< ©(VIf (), X)) ¥ (1,6, X)) — (z,0)], if t < £°

H(t,1°) = EX {@) (V [f(-,t“),xtoD nes to)}
$(0,t) = 1.
It holds that
O (VIf* (-19), X]) = © (V (B (1, Xp0), X)) = © (V (B (£, Xpo), Xe)) = © (V [f (1), Xp]) .
This is a consequence of the fact that
V (B* (12, Xp), Xp) = V (B' (12, Xpo), Xpe) .

Thus, pre-shock prices are equal for both policies. Step 2. Law of of motion of debt before the shock arrival. By definition
B(t) = fOT $(t,t)f (7, t)dt. The dynamics of B(t) for t < t° are:

T
dB(t) = (/0 (z/}t(r,t)f(r,t) n z/?(r,t)ﬁ(r,t)) dr) dt,

which, with similar derivations as in 7, yields to

dB(t) = <a<t> —y()+ P OB0) +9 [ " (Bx, [0V (B(t,X0), X)) $ (5,4, %) — B(1,1)) f(m)dr) dt
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Step 3. The expected jump. Note that (D.26) for all X; implies that:

T
o [ (Ex [0V (B (X0, X0) 4 (v, X0 = § (x,0) (Fr0) = F' (1)) dr =0, (D.27)

Combining this equation with the law of motion of debt we get that before the shock arrival, t < °,

A

dB*(t) = dB'(t). (D.28)
Step 4. The actual jump. Condition (D.25) guarantees that the jump is the same for any X; if the country does
not default. If it defaults, condition (D.25) is trivially satisfied as B*(t) = B'(t) and the jump is also the same
as market debt is then zero. Hence B*(t°) = B'(#°) . Finally, taking all these results together we conclude that:

¢*(t) = ¢'(t) for all t < t°. As the policy {7 (7,t), f'(1, 1), €' (1) }rejoe) and {*(T, 1), F*(T,),¢* (t) }e(10,00) achieves
the same consumption path as the optimal, it is thus optimal. O
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E Computational Method

We describe the numerical algorithm used to jointly solve for the equilibrium value function, v (7, ), bond price,
q (t,7,1), consumption c(t), issuance ¢ (7,t) and density f (7, t). The initial distribution is f (7,0) = fy (7). The

algorithm proceeds in 3 steps. We describe each step in turn.

Step 1: Solution to the domestic value The steady state equation (2.10) is solved using an upwind finite
difference scheme similar to Achdou et al. (2017). We approximate the value function v (T) on a finite grid with
step AT : 7 € {1y,..., 77}, where ; = 7,1 + AT = 7y + (i —1) At for 2 < i < I. The bounds are 77 = AT and
17 = T, such that AT = T/I. We use the notation v; := v4(7;), and similarly for the policy function t; . Notice first
that the HJB equation involves first derivatives of the value function. At each point of the grid, the first derivative
can be approximated with a forward or a backward approximation. In an upwind scheme, the choice of forward
or backward derivative depends on the sign of the drift function for the state variable. As in our case, the drift is
always negative, we employ a backward approximation in state:
d0(T) _ vi—vi

57 = Ar (E.1)

The equation is approximated by the following upwind scheme,

Vi-1 Ui
AT AT

pv; =6+

with terminal condition vy = v(0) = 1. This can be written in matrix notation as

oV =1u-+ Ay,
where i ) ] ] ] _
-1 0 0 0 - 0 o 5—1/Mt
1 —1 0 0 0 (%)) 5
1 0 1 -1 0 --- 0 v3 5
A_E : T K v = : ,u= : . (E.2)
0 0 I -10 U1-1 6
L 0 0 0 1 -1 | L o1 | L P ]
The solution is given by
vV = (pI — A)_l u. (E3)

Most computer software packages, such as Matlab, include efficient routines to handle sparse matrices such as A.
To analyze the transitional dynamics, define #™®* as the time interval considered, which should be large
enough to ensure a converge to the stationary distribution and time is discretized as t, = t,_1 + Af, in intervals of

length

tmax
At = N1’
where N is a constant. We use now the notation v} := v(Tj, ty). The value function at #™* is the stationary solution
computed in (E.3) that we denote as vV. We choose a forward approximation in time. The dynamic value equation

(2.10) can thus be expressed
(Vn-i-l _ Vn)

Vll’l: Al’l ,
r'v u-+ Av: + Af
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where 1" := 7 (t,). By defining B" = (ﬁ + r”) I-Aandd" =u+ %, we have
v = (B")"1d"t, (E4)

which can be solved backwards fromn = N — 1 until n = 1.
The optimal issuance is given by
M= 1 (lrbln — ZJ?)
v

1

>l

where ¥}’ is computed in an analogous form to v;'.

Step 2: Solution to the Kolmogorov Forward equation Analogously, the KFE equation (2.1) can be
approximated as

-1
=1 — i11_finl
At ! AT

where we have employed the notation f!" := f(t;,t,). This can be written in matrix notation as:

! _ fn—l
— = i" 4+ AT (E.5)
where AT is the transpose of A and

S ot

5 o

' = : = :

fia 1
L T L4

Given £, the discretized approximation to the initial distribution fy(7), we can solve the KF equation forward as
L
£, — (I—AtA ) (i"At+f,_1), n=1,.N. (E.6)

Step 3: Computation of consumption The discretized budget constraint (2.2) can be expressed as

I
1-
=7 -+ Y Kln - 2A1?> Myt —5f,-”] At, n=1,.,N.
i=1
Compute
" oot —en
=p+———n=1.,N-1
rm=pt o ——py n=L.N

Complete algorithm The algorithm proceeds as follows. First guess an initial path for consumption, for
example ¢" =y, forn =1,..,N.Setk =1;

Step 1: Issuances. Given ci_1 solve step 1 and obtain .
Step 2: KF. Given  solve the KF equation with initial distribution fy and obtain the distribution f.

Step 3: Consumption. Given ; and f compute consumption c. If |c — cx_¢| = LN,

" — c,’z_l‘ < ¢ then stop.
Otherwise compute
g=wc+ (1—w)cr_1, A€(0,1),

set k := k + 1 and return to step 1.
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(a) Discount, r(t), and rates, 7(t)
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Figure F.1: Response to an unexpected shock to interest rates with ¢ = 0.

F Additional Figures

In this section we introduce the figures corresponding to the different exercises performed in the case or a risk-
neutral Government, turning of the revenue-echo effect ((2 = 0) or discrete issuances.
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(a) Debt distribution, f(7)

(b) Consumption, c(t)
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Figure F.2: Response to a shock to interest rates with ¢ = 0. RSS stands for the model starting at
the "risky steady state" and DSS for "deterministic steady state".
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(a) Debt distribution, f(7)
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Figure F.3: Response to a shock to income with ¢ = 0 when the option to default is available.
Panels (e) and (f) refer to the case with o = 0.
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(a) Debt distribution, f(7)
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Figure F.4: Response to a shock to interest rates with ¢ = 0 when the option to default is
available. Panels (e) and (f) refer to the case with o = 0.
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(a) Debt distribution, f(7)

(b) Consumption, c(t)
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Figure F.5: Response to a shock to interest rates when the option to default is available. Panels
(e) and (f) refer to the case with default.
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