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Abstract

Transmission congestion contracts are derivative products that electricity retailers can use

to change their future wholesale electricity price exposure to a different location. U.S. Congress

is concerned by financial trader profits in auctions for these derivatives because the payouts

are funded by ratepayers, not willing counterparties. I study firm-level positions in the New

York Wholesale Electricity Market to investigate the causes of this concern. I find a small set

of financial traders earn large, systematic profits on products that electricity retailers tend to

avoid. However, trader participation can improve price signals on these and related products.

Policy implications are discussed.
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“Across the nation, investment funds and major banks are wagering billions on [trans-

mission congestion contracts], as they chase profits in an arcane arena that rarely at-

tracts attention... The utilities and power companies suggest they cannot win against

trading outfits that employ math specialists, often called ‘quants,’ to spot lucrative

opportunities. With transmission contracts, there are tens of thousands of tradable

combinations.”

The New York Times, Creswell and Gebeloff (August 14, 2014)

Regulators have long wondered whether financial trader profits in commodity markets are purely

transfers from producers and consumers of the underlying product.1 Ideally, financial traders can

improve market liquidity, future price signals, and ultimately, overall market efficiency. The restruc-

turing of wholesale electricity markets has introduced opportunities for purely financial participants,

accompanied by concerns that their profits represent costly wealth transfers away from the physical

participants that buy and sell wholesale electricity. In this article, I study the sources of persistent

profits that traders have earned in New York’s transmission congestion contract market and discuss

how ratepayers might benefit from the actions of rent-seeking traders.

Transmission congestion contracts, or TCCs, are derivative contracts that pay or collect the

difference between wholesale electricity prices at two locations for a specified future time period.

Physical firms (electricity retailers and generators in this case) can benefit from the availability of

such contracts. An electricity retailer, which must buy electricity at a fixed location to serve its

customers, can buy a TCC to change its future spot price exposure to that of a different location.

For example, in the New York Independent System Operator (NYISO) wholesale market, there are

450 locations where electricity can be purchased. This means that 449 TCCs are available that

pay a price difference between a given location and that of the retailer. The retailer can search

among the 449 other locations for where it believes it can source its electricity most cheaply and

buy the corresponding TCC to effectively pay the electricity price at that location. Such behavior

can potentially lower the wholesale energy costs of a retailer. Like retailers, electricity generating

firms can derive benefits from TCCs by using them to effectively sell their output at a price of a

different location to their own. Finally, financial traders participate in the markets, with the motive

1See Chapter 10, Baer and Woodruff (1929) for an early list of concerns regarding trader behavior in commodity
exchanges.
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to acquire derivatives at prices less than their eventual payout. Competition among traders can

cause price signals for derivatives to converge on the expected payouts of the products, and these

improved price signals can aid physical firms when planning their long-term energy procurement

process.2

TCCs (or financial transmission rights)3 are auctioned in all formal electricity markets in the

United States. Electricity customers, not willing counterparties, effectively fund the payouts of the

issued derivatives. In New York, periodic, multi-product auctions offer every bilateral combination

of the 450 locations – over 100,000 products.4 As the opening New York Times quote highlights,

financial traders have consistently earned large trading profits in these notoriously complex auctions,

totaling $600m annually across four major US markets.5 Market monitors are concerned by these

large trading profits earned by participants in TCC auctions because TCC profits result in transfers

from ratepayers (CAISO Department of Market Monitoring, 2016). In November 2017, the U.S

House of Representatives Subcommittee on Energy convened with the aim to, “take a hard look

at whether [TCC] trading makes sense and answer this question: Does financial trading make the

electricity markets more efficient, and in turn, result in benefits to consumers?”6

We can learn where the required efficiency gains must occur by studying the auction positions

taken by the physical and financial participants in TCC auctions. The objectives of this article are

to examine the sources of trading profits in TCC auctions, the persistence of the trading profits, and

to understand whether financial trader participation is likely to improve market performance in this

setting. Understanding the sources of trading profits will identify why the auctions are resulting

in large transfers from ratepayers to TCC holders. Further, if potential barriers to eroding these

profits can be identified, their removal would ease concerns related to these wealth transfers.

2Introducing financial trader participation to day-ahead electricity markets has been shown to improve day-ahead
price convergence to realized real-time prices (Saravia, 2003; Jha and Wolak, 2015). See Jha and Wolak for a
demonstration of how financial traders have improved the production efficiency of the physical underlying market.

3Other markets in refer to these instruments as financial transmission rights, FTRs; or congestion revenue rights,
CRRs.

4450 locations allows for 450*449 = 202,050 directional location pairs or 101,025 unique location pairs.
5Sum of the yearly averages of the following: New York: Paid out $3,760m (to all firms) and received $2,905m

from 1999-2015 (author calculation). California: Payments of $970m to non-physical participants (banks and energy
traders) and auction payments of $450m from 2012-2015 (CAISO Department of Market Monitoring, 2016). Mid-
continent (MISO): Paid out $3,453m (to all firms) and received $3,037m from 2013-2015 (MISO, 2015, and various
issues). Pennsylvania and surrounds (PJM): Profits to non-physical participants (banks and energy traders) of $904m
from 2013-2015 (PJM, 2015, and various issues).

6Passage from the Opening Statement of the Honorable Fred Upton, United States House of Representatives
Subcommittee on Energy (November 29, 2017).
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To accomplish these objectives, I first present a stylized model of an electricity network and

compute electricity market prices and TCC auction outcomes. In standard exchange settings,

financial traders can improve the available quantity of a derivative product by offering counterpo-

sitions to bids and offers by physical firms. Under the TCC auction mechanism, equilibrium prices

and quantities for each product are interdependent and determined simultaneously. I show that

when traders buy products that are not typically purchased by physical firms they can improve the

available quantity and price signals on other products and facilitate matching buyers and sellers

for contracts in different locations throughout the network.

The results from the theoretical examples are then used to guide the empirical portion of the

article where I compile microdata on 16 years of derivative prices, payouts and firm-level trading

positions in the New York TCC market to examine the different types of products firms purchase

and the persistence of trading profits. To organize the analysis of the rich variety of products,

I classify each derivative into groups based on the two locations specified in the price difference

payout, and the time horizon of the payouts. In the time dimension, electricity markets are hourly

and TCCs are available covering payments for every hour over 1-, 6- or 12- months. In the location

dimension, products are either: 1) nodal products that pay the difference between two locations

where a power plant is located or 2) zone-indexed products that pay holders the difference between

regional price indexes, which are the prices that retailers face in the spot market and are ultimately

passed through to ratepayers.

I find that retailers, generators and traders purchase zone-indexed derivatives, but only genera-

tors and traders purchase nodal derivatives. Retailers usually bid on less than 1% of the products

that generators and traders bid on in each auction but account for 16% of total derivative purchases.

Retailers purchase their products in large quantities, for long terms, and at actuarially fair prices

that on average equal derivative payouts. Generator owners, who account for 33% of derivative ex-

penditures, earn trading profits on nodal products, but not zone-indexed products. A large portion

of their derivative purchases do not appear related to their physical operations. Financial traders

account for the remaining 51% of derivative expenditures, purchase a wide variety of products, and

receive most of the trading profits in this market. Like generators, traders only earn systematic

profits on nodal, but not zone-indexed products.

To investigate why competition between financial traders is not sufficient to erode trading profits,
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I study whether trading profits persist on the same products over time. Specifically, I measure

derivative price responses across the auctions that take place at regular intervals.

The main empirical finding is that 88% of the financial trader profits are earned from being the

first firm to purchase previously illiquid products. Following the public revelation of a purchase of a

derivative by a profitable firm, the price for that same product appreciates by approximately 10% in

the subsequent auction and the profitable opportunity is eroded. This quick adjustment of prices on

the same products across auctions suggests that payout premiums are not solely due to the presence

of a risk premium, an opportunity cost of capital or some other fixed cost to participation. Based on

these findings, I argue that profitable traders can improve price signals and liquidity, but also that

they are unable to persistently profit on the same derivative products. Traders must consistently

identify profitable opportunities from illiquid derivative products if they are to consistently earn

profits.7

A major barrier to eroding overall trading profits could be the cost for new entrants to develop

a technology that can identify successful trading strategies in TCC auctions. These multi-product

auctions are complex, where TCC payouts and the auction allocations are determined in part by

physical transmission constraints in the electricity network. Anecdotes describe successful firms

consistently updating their models and aggressively enforcing non-disclosure agreements with ex-

employees. Alternate explanations do not appear to explain the majority of trading profits, such

as profits being derived from exploiting market power in the energy market (theorized in Bushnell,

1999; Joskow and Tirole, 2000), or from manipulative actions by traders (demonstrated in a case

study for the MISO electricity market in Birge, Hortaçsu, Mercadal, and Pavlin, 2018).

For TCC auctions to benefit ratepayers, physical efficiency gains derived from the auction process

must exceed the systematic trading profits that are earned by TCC holders. Trader profits are

largely found on purchases of previously illiquid, nodal products that retailers tend to avoid. I use

these findings to highlight some of the tradeoffs that accompany proposals to eliminate or reduce

the set of derivative products offered at ratepayer-funded auctions. Greater product offerings allow

greater flexibility in the procurement strategies of physical firms and greater information revelation,

but given that most of these products are not utilized by electricity retailers, a broader product set

7These findings extend prior observations that TCCs are not priced actuarially fairly (Bartholomew, Siddiqui,
Marnay, and Oren, 2003; Hadsell and Shawky, 2009; Adamson, Noe, and Parker, 2010; Olmstead, 2018).
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also offers more opportunities for trader profits and associated transfers from ratepayers.

The article is organized as follows: The product, the auction mechanism and the role of financial

traders are described in section 1, followed by a description of the New York setting in section 2.

Data sources are described in section 3, followed by the empirical analysis. Section 4 describes the

positions taken by firms and the trading profits they earn across different product types. Section 5

investigates why trading profits have not eroded over time by describing the persistence of trading

profits. Section 6 then discusses the policy relevance of the findings.

1 TCC prices, TCC payouts and the role of financial traders

A theoretical platform for subsequent empirical analysis is presented in this section, describing how

electricity prices and transmission congestion contract (TCC) prices are derived in a network model.

Understanding the relationship between wholesale electricity prices and transmission constraints is

required to both understand the TCC auction mechanism, and how financial traders can earn profits

and improve market performance. The primary result is that financial traders that purchase the

TCCs that physical firms do not take up can improve both the quantity available of other TCC

products, and price signals from the auction.

A transmission congestion contract between location i and location j in hour h pays the holder:

LMPj,h − LMPi,h

where LMPi,h is the electricity price at location i in hour h. This payout is a price swap, where if

the value is negative the holder must pay money. Earning realized trading profits in TCC markets

requires a firm to buy (sell) the derivative for less (more) than its eventual payout.

Although in practice TCCs cover 1-, 6- or 12-months of hourly payouts and can be purchased

between any of the 450 locations in the New York market, this section will consider a one-period

setting with three locations to introduce the fundamental concepts behind TCC markets.
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1.1 Determining wholesale electricity prices

All formal wholesale electricity markets in the US set locational marginal prices (LMPs) at different

locations in the network each hour of the day. The prices that determine TCC payouts are LMPs

in the day ahead electricity market. The LMPs in the day-ahead market can be considered the

spot market in this study.8 Electricity market operators collect offers to supply electricity from

generator owners. They then set LMPs at every location (node) in the electricity grid to minimize

the system-wide as-offered cost of supplying electricity, subject to network constraints and supply

meeting demand. This can mean that a cheap offer of electricity at a generating location might not

be taken up if extra supply at that location will violate a line capacity constraint somewhere in the

network. In such cases, prices between regions affected by this congestion will diverge and a higher

cost source will be called upon in the congested regions.

To demonstrate how congestion influences prices in electricity markets, consider the network

configuration, supply offers and demand in the market specified in figure 1. This example builds

on Oren (2013) and will be used throughout the section. There are three locations in the example

electricity market, connected by a transmission loop. All locations have generators, but only location

k has consumers. The transmission line between i and j is able to accommodate flow up to a

maximum capacity of 100MW, and the line between i and k has a capacity of 400MW. For strictly

illustrative reasons, the remaining j to k line is unconstrained and there are no line losses from

transmission.9 1500MW of electricity is demanded inelastically at k, with the following offers to

supply electricity:

• Generators at i: 2000MW at $80/MWh

• Generators at j: 2000MW at $100/MWh

• Generators at k: 2000MW at $200/MWh

Solving for the optimal market supply is trivial in the absence of transmission constraints – gen-

erators at i produce all of the electricity because it is the cheapest source. However, the transmission

8Electricity markets have a day-ahead market and a real-time market. Day-ahead markets are run one day in ad-
vance to a given delivery hour. When production or demand varies from the day-ahead production allocations during
the delivery hour, the real-time market determines which power plants will increase or decrease their production to
balance supply and demand in the system.

9Resistance on each line is assumed equal and there are no transmission losses built into the solutions.
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Figure 1: A three-node electricity network and example equilibrium

(a) Supply offers, demand and transmission con-
straints

(b) Equilibrium

Figure (b) displays the solution to the program described in equation (1). To calculate flows on each line (the numbers
inside the transmission lines), Kirchhoff’s circuit laws are applied to this stylized network with no transmission losses.
The formula is described in text, with the implication being that 1

3
of supply at j flows via i to k, with the remaining

2
3

flowing from j to k. 1
3

of supply at i flows via j to k, with the remaining 2
3

flowing from i to k. The body of
section 1.1 describes how equilibrium prices (LMPs) are determined.

limits and the loop flow that occurs in electric circuits constrain the cost minimizing solution. The

market operator solves the optimization problem described in (1) to minimize system-wide as-offered

costs, with a description of the constraints to follow.

Objective: min
Q

80 ·Qi + 100 ·Qj + 200 ·Qk (1)

Supply = Demand: Qi +Qj +Qk = 1500

Transmission constraint i to k:
2

3
Qi +

1

3
Qj ≤ 400

Transmission constraint i to j: − 100 ≤ 1

3
(Qi −Qj) ≤ 100

Generator constraints: Qi ≤ 2000, Qj ≤ 2000, Qk ≤ 2000

Solution: Qi = 300, Qj = 600, Qk = 600

The first constraint is that supply equals demand in the network. The second constraint is the

transmission constraint on the i, k line, where flow can not exceed 400MW, with the 2
3 multiplier

on Qi and the 1
3 multiplier on Qj due to assumed equal line resistance and Kirchhoff’s circuit
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laws.10 The third constraint is the transmission constraint on the i, j line, where flow can not

exceed 100MW in either direction. Qi and Qj variables offset each other as counterflows in this

constraint due to Kirchhoff’s circuit laws, demonstrating that it is possible for more electricity being

injected at i if more electricity is injected at j.11 The final constraints are the capacities offered by

the generators at each location node. The solution is displayed in figure 1. Both transmission line

constraints are binding, limiting the generation that can occur at i and j.

Locational marginal prices are equal to the increase in the optimized value of the objective

function in (1) from withdrawing an extra unit of electricity from the node. The prices for this

example are LMPi = $80/MWh, LMPj =$100/MWh and LMPk=$200/MWh.12

This three-node example highlights the interdependency of the network problem. Despite the

line between j and k not having a maximum flow rating, the constraints on the other lines lead to

the LMPj and the LMPk prices separating, in this case by $100/MWh.13

1.2 Relating network congestion to the policy problem, transmission

congestion contracts and ratepayer cash flows

Participants in electricity markets face the LMPs at the location where they generate (produce)

or withdraw (consume) electricity. Even though generators at i in figure 1 receive $80/MWh,

the retailer at k pays $200/MWh. Therefore, the cash flows from the market in figure 1 are the

following:

10Given equal resistance on each line and the implication from Kirchhoff’s laws that the sum of flows entering and
exiting any given node must equal zero, injection of electricity at j and withdrawal at k will have 1

3
flow via i and

the remaining 2
3

flow directly to k. This is because the i route encounters twice the number of lines, therefore twice

the resistance, so the 1
3

and 2
3

split equates marginal losses meaning that electricity flows take the path of least
resistance.

11This is because electricity injected at i and j and withdrawn at k each have 1
3

of the electricity flow via the i, j
line.

12See Bohn, Caramanis, and Schweppe (1984) for a detailed explanation of locational marginal pricing and how the
prices reflect Lagrange multipliers on the transmission constraints and shift factors. At node i, only 300MW of the
2000MW offered at $80 is generated in equilibrium, therefore the marginal cost of withdrawing a unit of electricity
at i is LMPi = 80. However, due to the transmission constraints being binding, it is infeasible to inject an extra
MW of electricity at i to be withdrawn at either j or k. Only 600MW of electricity offered at node j is utilized in the
solution, therefore the marginal cost of withdrawing a unit of electricity at i is LMPi = 100. Again, it is infeasible
to inject an extra unit of electricity at node j to be withdrawn at node k, therefore the marginal cost of withdrawing
a unit of electricity at k is LMPk = 200.

13Further, electricity does not necessarily flow from low-cost to high-cost nodes. Although cheap electricity flows
to k, the net flow on the i, j transmission line is in the j to i direction, from a higher to a lower cost location.

9



Entity Cash flow Realized cash flow (figure 1)

Retailer at k −LMPk · (Qi +Qj +Qk) −200 · 1500

Generators at i LMPi ·Qi 80 · 300

Generators at j LMPj ·Qj 100 · 600

Generators at k LMPk ·Qk 200 · 600

Market operator (LMPk − LMPi) ·Qi+ 120 · 300+

(LMPk − LMPj) ·Qj 100 · 600 = $96, 000

The revenue in the final line is the merchandising surplus. Market operators collect a mer-

chandising surplus because congestion in the system results in the retailer paying more for their

energy consumption than the generators are paid for their energy production. In this example, the

merchandising surplus is equal to the payouts of 300 TCCs between i and k and 600 TCCs between

j and k. A policy decision must be made for how to distribute this revenue. In formal electricity

markets throughout the United States, market operators securitize the merchandising surplus into

TCCs in advance of the short-term energy market (described in the next section).

For the retailer at k to source 1MWh at the location i price, they would need to purchase a

TCC between locations i and k that pays LMPk − LMPi. Combining the TCC payout and their

spot price LMPk means that they effectively pay LMPi, the spot price at i:

Retailer spot payment: − LMPk

TCC payout: LMPk − LMPi

Net cashflow from spot + TCC: − LMPi

Further, if the retailer at k were to have a forward contract with a generator at i, then the combina-

tion of the forward contract with a TCC removes all price uncertainty.14 Therefore, retailers with

a full set of forward price offers from suppliers at each location and the full set of TCC prices can

more efficiently source electricity by picking the supplier that offers the lowest price when combined

14Consider a retailer at node A entering a forward contract to source xMWh of power from node B. In the spot
market, the firm purchases xMWh at A to meet its consumption needs but owns xMWh at B from its forward
position, therefore its cash flows are now exposed to a basis of $(LMPB − LMPA)*x. Notice that an x unit
transmission congestion contract position exactly matches this basis differential, therefore an x unit forward contract
at B combined with an x unit TCC between A and B removes all price uncertainty for the firm sourcing xMWh of
electricity from node B.
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with the corresponding TCC. This is one potential mechanism for TCCs to improve competition

between suppliers, economic efficiency or lower the costs of procurement for retailers.15

To disentangle who loses when an entity profits from their TCC holdings, consider the sequence

of events and cash flows in TCC auctions and wholesale electricity markets:

1. TCC auction

• Contracts issued, auction revenues collected by market operator

2. Day-ahead electricity market

• LMPs determined

• Market operator collects merchandising surplus from transmission congestion

3. Cash flows

• TCC holders receive payout based on realized LMPs

• Merchandising surplus + (auction revenues - TCC holder payouts) distributed to lower

the transmission service charge paid by transmission ratepayers

– All else equal, ratepayers benefit from higher auction revenues. The zero sum nature

of TCC holder profits (the bracketed term) means that TCC holder profits are

effectively funded by ratepayers, and TCC holder losses benefit ratepayers

TCC holder profits are transfers from ratepayers because of the design of the transmission service

charge. Transmission forms a natural monopoly, with transmission owners regulated to earn a fixed

rate of return in exchange for open access to their transmission lines. Wholesale market consumers

collectively pay this fixed rate of return less the merchandising surplus and the difference between

auction revenues and TCC holder payouts, with individual payments determined by a cost-splitting

rule. This fee is a transmission service charge (TSC), where lower TCC holder profits means a

bigger reduction in this charge and ultimately, lower bills to customers.16

15Alsac, Bright, Brignone, Prais, Silva, Stott, and Vempati (2004) argue that TCCs provide hedging benefits to
firms. Formalizing hedging benefits is not the focus of this article. See Jha (2017) for a recent empirical investigation
into the risk aversion of electricity retailers.

16Transmission owners must meet further operational and reliability targets to earn its return. See section 14.1.2
of NYISO (2010) for a detailed breakdown of the transmission service charge.
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1.3 The transmission congestion contract auction and a role for financial

traders

The merchandising surplus collected by market operators is stochastic and depends on equilibrium

flows and prices in the network (see figure B1). TCC auctions have been designed to allocate a set

of TCCs, where the collective payout to TCC holders does not exceed the merchandising surplus.

Hogan (1992) proves that a given allocation of TCCs can be funded from the merchandising surplus

if the set of contracts are simultaneously feasible. Simultaneous feasibility means that if each i, j

TCC of size q resulted in qMW being injected at i and withdrawn at j in the physical electricity

network, no transmission constraint in the network would be violated.17 Consequently, the volume

of the TCCs that can be issued between any two locations is dependent on all other TCCs issued

in the network and the transmission capacities in the electricity network. This section outlines the

simultaneous feasibility constraint, the auction equilibrium and, through a series of examples, will

highlight a potential role for financial traders.

The market operator collects offers to buy and sell each possible combination of TCC. A bid to

buy the i, j TCC means the holder wishes to receive the future cash flow LMPj − LMPi from the

electricity market. An offer to sell the i, j derivative is equivalent to a bid to buy the j, i derivative,

with the holder of such a contract receiving LMPi−LMPj . I consider only three products existing,

the i, j, the j, k and the i, k, where selling a product is equivalent to buying a negative quantity.

The network configuration and constraints match the running example in figure 1. For this 3-node

network, the auction problem solves the following program for the vector q containing the quantity

of each TCC bid that is issued:

Objective: max
q
b · q (2)

Simultaneous feasibility i, k line:
2

3
qi,k +

1

3
qj,k +

1

3
qi,j ≤ 400 (3)

Simultaneous feasibility i, j line: − 100 ≤ 1

3
qi,k −

1

3
qj,k +

2

3
qi,j ≤ 100 (4)

Bid quantity constraints: q · 1(q ≤ 0) ≤ q ≤ q · 1(q ≥ 0) (5)

17For example, a 10 unit contract from i to j implies a 10MW injection of electricity at i and a 10MW withdrawal
of electricity at j. If the implied injections and withdrawals of all contracts is not feasible given the assumed
transmission capacities of the grid, then payouts to the set of TCC holders may exceed the merchandising surplus,
a funding shortfall. See Hogan (1992) or appendix A for more technical details.
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where b is the bid price vector for each bid in the q vector and qa,b is the sum of all allocated TCCs

issued between a and b.18 The auction equilibrium maximizes the as-bid valuations for the TCC

allocations, subject to the simultaneous feasibility constraint. Notice the tradeoffs between the

quantities of i, k, j, k or i, j contracts that can be issued. The simultaneous feasibility constraint

in (3) has each additional unit of a contract type reducing the amount of other types that can be

issued. However, the simultaneous feasibility constraint in (4) dictates that if more i, k or i, j TCCs

are issued, it allows extra j, k TCCs to be issued.19 Therefore, depending on which constraints are

binding, bidding on a particular product can increase or decrease the quantity available of another

product. Derivative prices, pi,k, pj,k, pi,j are set such that all bids above (and offers below) the price

are cleared and that they are transitive. Transitivity is imposed so that there is no within auction

arbitrage opportunities, so pi,k = pi,j + pj,k, given that the payouts for the i, k derivative is equal

to the sum of the payouts of the i, j and j, k derivatives.

To demonstrate how financial traders may profit and influence auction performance, equilibrium

outcomes will be described for five examples of bids, displayed in table 1. These cases are:

1. Ideal allocation: TCC prices and quantities match realized flows in the electricity market.

Merchandising surplus is fully securitized into TCCs.

2. Under allocation: Low demand for one TCC reduces the available quantity of another TCC.

Merchandising surplus is partially securitized into TCCs.

3. Trader liquidity and signaling 1: Traders buying a TCC with low demand can earn a profit

and improve the available quantity of other TCCs.

4. Trader liquidity and signaling 2: Traders buying a TCC that is never used in the procurement

strategies of physical firms can earn a profit and improve the available quantity of other TCCs.

5. Trader competition: Competition among traders on a TCC not used by physical firms can

restore price efficiency on all contracts in the network.

18Formally, NYISO lists quantity of contracts in megawatts (MW). To avoid a confusion regarding the stock or
flow nature of quantity, this article will not refer to the quantity in MW units, because one TCC pays the per MWh
price difference between two locations over the duration of the contract.

19The constraint includes 2
3

(qi,j) because a 1MW injection at i and a 1MW withdrawal at j means adding 1
3

MW

flow on the i, j line and removing 1
3

counterflow from the i, j line. See Deng, Oren, and Meliopoulos (2004) for the
generalized auction problem.
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Table 1: Example TCC auction bids, allocations, prices and cash flows

Example 1 Example 2 Example 3 Example 4 Example 5

Bids
i, k TCC: 2000 @ $120 30 @ $120 30 @ $120 30 @ $120 30 @ $120

2000 @ $110
j, k TCC: 600 @ $100 600 @ $100 600 @ $100 600 @ $100 600 @ $100
i, j TCC: No bids No bids No bids 2000 @ $10 2000 @ $10

2000 @ $20
Equilibrium

i, k TCC: qi,k = 300 qi,k = 30 qi,k = 300 qi,k = 30 qi,k = 30
pi,k = $120 pi,k = $120 pi,k = $110 pi,k = $110 pi,k = $120

j, k TCC: qj,k = 600 qj,k = 330 qj,k = 600 qj,k = 600 qj,k = 600
pj,k = $100 pj,k = $100 pj,k =$100 pj,k =$100 pj,k = $100

i, j TCC: qi,j = 0 qi,j = 0 qi,j = 0 qi,j = 435 qi,j = 435
pi,j = $20 pi,j = $20 pi,j = $10 pi,j = $10 pi,j = $20

Cash flows
Auction $96,000 $36,600 $93,000 $67,650 $72,300
revenuesa

Merchandising $96,000 $96,000 $96,000 $96,000 $96,000
surplusb

TCC holder $96,000 $36,600 $96,000 $72,300 $72,300
payoutsc

TSC rebated $96,000 $96,000 $93,000 $91,350 $96,000
a+ b− c

Simultaneous feasibility (Implied transmission flows)e

i, k line 400 130 400 365 365
i, j line -100 -100 -100 100 100

(a): The sum of the quantities of each TCC type issued multiplied by the price. (b): From the example day-ahead
market in figure 1, the difference between the prices retailers pay and generators get paid in that market. (c): From
the equilibrium auction quantities of each TCC type in the auction and the realized prices the example day-ahead
market in figure 1, with LMPi = 80, LMPj = 200 and LMPk = 200. (d): As explained in the cash flow
description, the transmission service charge (TSC) reduction is the amount that transmission ratepayers effectively
gain under the given auction and day-ahead market scenario. (e): The simultaneous feasibility constraints are
shown in equations (3) and (4).

Example 1 - an “ideal” solution

Example 1 displays the TCC auction solution for the program described in equations (2)-(5) with

bids for 2000 i, k derivatives at $120 per unit, 600 j, k derivatives at $100 per unit, and no bids

on the i, j product.20 These bids could reflect the physical suppliers of energy at nodes i and j

20The objective function is max
q

120 · qi,k + 100 · qj,k, where qi,k is the allocation to the i, k bidder and qi,j is the

allocation to the i, k bidder.
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wanting to use TCCs to sell at node k prices. The solution to the auction problem has 300 i, k

TCCs and 600 j, k TCCs being issued. Assuming that the subsequent electricity market outcomes

are as described in figure 1, the TCC quantities are equal to the quantities of generation at i and j.

The equilibrium TCC prices are pi,k = $120, pi,j = $20, pj,k = $100, exactly equal to the realized

LMP price differences between these locations.21

Example 1 implications: In situations where there are many bids on TCCs between generation

and consumption locations, the duality between the TCC auction and the physical market simul-

taneous feasibility constraints results in equilibrium quantities of contracts that match the realized

net flows in the market. This includes a zero quantity being issued on the i, j product, with the i, j

price pinned down by the bids on the other products. When the issued contracts match the realized

net flows in the market, the merchandising surplus is fully securitized. Finally, when TCC prices

equal realized TCC payouts, transmission ratepayers are not transferring wealth to TCC holders.

Example 2 - an “under allocation” solution

Example 2 replicates Example 1 with an adjustment that only 30 i, k TCCs are demanded in the

auction. TCC prices do not change, however, the simultaneous feasibility constraint in equation

(4) would be violated if 600 i, k TCCs were to be issued, resulting in equilibrium quantities of the

j, k TCC falling to qj,k = 330, with qi,k = 30 and qi,j = 0.

Example 2 implications: Reduced demand on a given TCC product can reduce the quantity

available for other TCC products, due to the simultaneous feasibility constraints imposed by the

auction mechanism. The implied transmission flows from the quantities of issued contracts uses

less transmission than in the first example, and would be suboptimal if realized in the subsequent

physical market.22 Therefore, contracts are under-allocated and the merchandising surplus is not

fully distributed to TCC holders. However, given that TCC prices match the realized LMP differ-

ences, transmission ratepayers still have their transmission service fee reduced by the same amount

as in Example 1.23

21The price solution is not unique in this case, where pi,k = $120, pi,j = $20 + x, pj,k = $100 − x would also be
feasible. The solution in the stylized examples in this section chooses prices among the feasible price sets to also
maximize auction revenues.

22If these flows were actually the realized quantities in the day-ahead electricity market depicted in figure 1,
production would be inefficient because it would require substitution away from cheaper sources of generation to
more expensive sources.

23This is under the solution rule that chooses prices among the feasible price sets to also maximize auction revenues.
Under the pricing formula outlined in Hogan (2002), pi,k = −100, pj,k = 100, pi,j = −200, but the allocation is
unchanged. The price rule was chosen for expositional reasons, with the purpose of the example to demonstrate the
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Example 3 - trader profits from increasing available quantity and signaling optimal

power flows

Example 3 replicates Example 2, but adds a financial trader that is willing to buy 2000 i, k products

at a price of $110 (italicized in table 1). The equilibrium allocation returns to that in example 1,

with 300 i, k TCCs and 600 j, k TCCs being issued, so the trader participation on the i, k product

increased the available quantity of the j, k product.24 However, prices change to pi,k = $110, pi,j =

$10, pj,k = $100. Assuming the realized payouts are derived from the electricity market in figure 1,

the i, k derivative holders are buying the products for $10 less than the realized contract payout.

Therefore, TCC holders earn trading profits of $10 · 300, and consequently, transmission ratepayers

receive $10 · 300 less than what they received in Example 1.

Example 3 implications: When demand by physical firms is low for a given product, traders

that submit low priced bids for this product can profit and increase the available quantity of

other products by doing so. Traders in this example have expanded the transmission capacity

of the contract network. This equilibrium signals the optimal power flow configuration that can

occur in the physical market and could provide benefits to physical firms by signaling the likely

production levels throughout the network which could lead to more efficient forward contracting or

production decisions. Formally modeling the benefits from traders increasing the available quantity

of TCCs to physical efficiency gains is difficult without imposing further theoretical structure on the

model.25 Empirically, Jha and Wolak (2015) demonstrate the plausibility that trader participation

in electricity markets can lead to better production efficiency in the context of virtual bidding.26

Example 4 - trader profits from increasing available quantity by purchasing a dif-

ferent product

Example 4 modifies Example 3 by moving the trader bid on the i, k product to the i, j product,

bidding $10 for 2000 units (italicized in table 1). The i, j product pays differences between genera-

tor nodes in this example, so it is unlikely to form a role in any physical firm’s energy procurement

strategy. The auction solution allocates 435 of the i, j TCCs to the financial trader and fully al-

quantity impact of low demand for one product, with price impacts demonstrated in later examples.
24The objective function changes to max

q
120 · q1i,k + 110 · q2i,k + 100 · qj,k, where q1i,k is the allocation to the 30

unit bidder, and q2i,k is the allocation to the financial trader.
25As a non-rigorous illustration, strategic generators at j may be more competitive in their supply if they expect

more competitive generation at i, which could be signaled by this new trader-assisted TCC auction equilibrium.
26The removal of barriers for financial traders to submit virtual bids to day ahead electricity markets is shown in

Jha and Wolak (2015) to have lowered total generation costs in the Californian market.
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locates the 600 j, k TCCs demanded.27 The TCC composition of this solution differs to that in

Example 3, but traders still profit at the expense of ratepayers.

Example 4 implications: Financial trader participation on products that do not match the in-

jections and withdrawals of electricity in the physical electricity market can still improve contract

allocations to physical firms and expand the set of contracts that can be issued. This is because of

the simultaneous feasibility constraint (equation 4), where implied flows on one transmission line

can free up congestion and allow more flows on different transmission lines, improving the quantity

of TCCs available in the market and signaling the potential for 600MW of energy to be transmitted

between j and k. Traders can profit in such a scenario, resulting in a smaller reduction in the

transmission service charge.

Example 5 - trader competition increases available quantity and erodes trading

profits

Example 5 adds extra competition to example 4. Suppose competition amongst traders to purchase

the potentially mispriced i, j product induces an extra bid for 2000 i, j products at a price of

$20.28 Now, the total allocations for each product are equal to those in example 4, but the extra

competition from the trader bid on the i, j product has resulted in TCC prices adjusting back to

be equal to the realized LMP price differences in the electricity market, leaving the collection of

TCC holders with zero trading profits.

Example 5 implications: Trader competition on TCCs that are not used by physical firms as

part of their procurement strategy can both improve the quantity of TCCs available in the contract

market and restore all TCC prices in the network to actuarially fair prices. Therefore, trader

competition can reduce trading profits and the consequent transfers from transmission ratepayers

to TCC holders.

1.4 Summary of TCC auction examples

TCC auctions provide physical firms (retailers and generators) the opportunity to purchase a deriva-

tive that can change their price exposure to that of a different location. Financial traders can also

27The objective function changes to max
q

120 · qi,k + 100 · qj,k + 10 · qi,j .

28The objective function changes to max
q

120 · qi,k + 100 · qj,k + 10 · q1i,j + 20 · q2i,j , where q1i,j and q2i,j are the

allocations to the financial traders.
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participate, and with the numerous products available, there may be opportunities to profit. Even

when financial firms purchase products that are not counterpositions to physical firms, under this

auction mechanism they can still increase the available quantity of TCCs that physical firms pur-

chase, and signal the optimal configuration of the network that may allow firms to more efficiently

enter forward contracts with each other. A further feature of this mechanism is that price transi-

tivity holds throughout the network. Therefore, all products will be priced even if the equilibrium

quantity is zero. The empirical portion of the article will study the sources of profits in TCC

auctions, their persistence, and their relationship to the liquidity of the product (whether it had a

zero equilibrium quantity) in prior auctions.

2 Setting: The New York TCC market

2.1 Defining a derivative and a contract

The average monthly payouts of the derivatives studied in this article take the following form:

ri,j,T1,T2 =
1

m(T1, T2)

T2∑
h=T1

(LMPj,h − LMPi,h)︸ ︷︷ ︸
Price swap

(6)

where r is the average monthly revenue (or payout) to the derivative holder, i and j index nodes,

T1 and T2 denote the first and last hour of payments the derivative covers and LMPx,h denotes

the electricity price per MWh at location x in hour h.29 m(T1, T2) is the duration of the derivative

payouts in months, either being 1-, 6- or 12- months and all derivatives start and end on the first

and last hour of a calendar month. In finance terminology, LMPj,h − LMPi,h is a locational price

swap; in electricity market terminology, LMPj,h−LMPi,h is the congestion price difference between

a point of injection (POI) i and a point of withdrawal (POW) j, with the price being that of the

day-ahead market. The price for this derivative is also standardized to a monthly average, denoted

pi,j,T1,T2,t, where t indexes the auction it was sold in.

Throughout, a derivative will refer to the (i, j, T1, T2) financial product with payouts defined by

29LMPx,h consists of three components, the price at a reference node plus a component that captures line losses
and a congestion component. Line losses tend to be small and transmission congestion contracts pay the difference
in the congestion component of the prices, where LMPi,h − LMPj,h ≈ CPi,h − CPj,h where CP is the congestion
component of the price.
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equation (6). A contract will refer to a q unit position purchased on the (i, j, T1, T2) derivative by a

firm f . The payout of the contract is qi,j,T1,T2,f ·m(T2, T1) · ri,j,T1,T2
. An example contract follows:

• Transmission congestion contract from Linden Cogen (POI) to N.Y.C. (POW) for each hour

between May 1 2008 - April 30 2009, for 3 units

– Nodes/locations: i = Linden Cogen, j = N.Y.C.

– Start and end hour: T1 = 12am May 1 2008, T2 = 11pm April 30 2009

– Length: m(T2, T1) = 12 months

– Quantity: qi,j,T1,T2,f = 3

• Purchased at auction for $90,110.07 by J. P. Morgan Ventures Energy Corporation

– Total contract expenditure: qi,j,T1,T2,f ·m(T2, T1) · pi,j,T1,T2
= $90,110.07

– Derivative average monthly price: pi,j,T1,T2
= $ 90,110.07

3∗12 = $2,503.06

– Firm: f = J. P. Morgan Ventures Energy Corporation

• Locational price differences (LMPPOW − LMPPOI) accrue hourly

– Total contract payout: qi,j,T1,T2,f ·m(T2, T1) · ri,j,T1,T2
= $132,045.15

– Derivative average monthly payout: ri,j,T1,T2 = $ 132,045.15
3∗12 = $3,667.92

– Derivative average monthly realized profit: ri,j,T1,T2 − pi,j,T1,T2 = $1,164.86

– Total contract realized profit: qi,j,T1,T2,f ·m(T2, T1) · (ri,j,T1,T2
− pi,j,T1,T2

) = $132,045.15

- $90,110.07 = $41,935.08

The remainder of this section outlines the product specifications available for purchase, the firm

types that participate in this market and the timing of the auctions and the public release of auction

outcomes.

2.2 Derivative specifications available for purchase

A wide variety of transmission congestion contract specifications can be purchased at auction. In

the T1, T2 time horizon dimension, all products studied are of 1-, 6- or 12- months duration. 6- and
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12- month contracts attract the greatest expenditure by firms (figure 2 (a)). Collectively, holders

of all derivative durations earned revenues greater than expenditures from their contract positions

in the NYISO TCC auctions from 1999-2015.

Figure 2: Contract expenditures and payouts by contract specification
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Figures (a) and (b) display the sum of qi,j,T1,T2,f ·m(T2, T1) · pi,j,T1,T2
and qi,j,T1,T2,f ·m(T2, T1) · ri,j,T1,T2

.
Sample sizes (number of contracts entered between 1999 and 2015 for each contract grouping) equal to 38,822 for
1- month contracts, 24,412, for 6- month contracts, 14,238 for 12- month contracts, 68,125 for nodal contracts and
9,347 for zone-indexed contracts.

In the location dimension, there are 450 price nodes in the New York grid, resulting in approx-

imately 100,000 i, j derivative specifications available.30 A map of the transmission network and

these nodes is shown in figure 3.

In addition to the price nodes, figure 3 displays 11 price zones. Nodal derivatives pay the

difference in the electricity prices at the two nodes. Zone-indexed derivatives pay the difference

between two zonal prices (z1, z2), which are a quantity weighted average of the nodal prices where

30450 locations allows for 450*449 = 202,050 directional location pairs. Given that ri,j = −rj,i and all other
variables share this transitive property, this number is halved to give 101,025 observations. The number of locations
is not constant across all auctions, with some nodes being added and removed over the sample window.
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electricity is withdrawn in a given zone, with payouts equal to:

rz1,z2,T1,T2
=

T2∑
h=T1

(LMPz2,h − LMPz1,h)

=

T2∑
h=T1

(
∑
j∈z2

wj,hLMPj,h −
∑
i∈z1

wi,hLMPi,h) (7)

Mixed derivatives that pay the price difference between a node and a zone-index are classified

as nodal.

The distinction between nodal and zonal products is important because in the NYISO market,

producers of electricity receive nodal prices whereas consumers of electricity pay the zonal prices,

described in equation (7). Therefore, different firms may demand different products depending on

their operations in the wholesale market (See Tangeras and Wolak, 2017, for more detail on the

competitive impacts of nodal versus zonal prices on demand).

Zonal contracts attract the greatest expenditure (figure 2 (b)), despite having far fewer poten-

tial specifications available and many less overall contracts issued. Collectively, holders of both

derivative types earn revenues greater than expenditures from their contract positions, however,

nodal contract holders receive proportionally larger revenues than their expenditures compared to

holders of zonal contracts.

2.3 Participants in the derivative market

133 firms were awarded a TCC in the New York market between 1999-2015, 117 of which purchased

a TCC at auction.31 This subsection describes the three firm types (retailers, generators and

traders)32 that participate in this market and the motives for their participation. Descriptive

statistics on the expenditures and payouts of the positions entered in the TCC market for each

group are in figure 4, and a full list firms and their firm type classifications is in appendix A.3.

31Some firms were directly awarded TCCs under a grandfathering arrangement. These contracts are not studied
in this article - only derivatives that were bought or sold for a price set at auction are considered.

32Toole (2014) also classifies firms into three firm types that he labels as hedgers, speculators and unknown.
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Figure 3: Map of the NYISO network

(a) Locations of selected nodes (b) Location of zones

Figure (a) displays major transmission lines and ownership regions, with a selection of nodes. Figure (b) displays
the zones which use the contained nodes to form a weighted price index. External electricity markets that have
import/export price nodes are ISO-NE (East), Hydro Quebec (North), Ontario Hydro (North West) and PJM
(South).

Figure 4: Contract expenditures and payouts of participants
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Figure (a) displays the sum of qi,j,T1,T2,f ·m(T2, T1) · pi,j,T1,T2
and qi,j,T1,T2,f ·m(T2, T1) · ri,j,T1,T2

.
Figure (b) displays the average of qi,j,T1,T2,f ·m(T2, T1) · pi,j,T1,T2 and qi,j,T1,T2,f ·m(T2, T1) · ri,j,T1,T2 .
Sample sizes (number of contracts entered between 1999 and 2015 for each firm type) are 3,295 for the retailers,
59,425 for the generators and 76,905 for the traders.
Average expenditures and payouts are constructed only using contracts purchased for a positive price due to com-
positional differences in the amount of long and short positions entered by each firm group.

22



2.3.1 Retailers

Firms that purchase electricity from the New York wholesale electricity market to meet the con-

sumption demands of their customers are classified as retailers. Retailers that are the sole provider

for a geographic region are regulated in the prices they can charge their retail customers. In New

York, retailers face spatially aggregated zonal prices for the electricity they withdraw from a given

node.

Overall, retailers pay slightly more for their TCCs than the TCCs pay out, and retailers are the

smallest participant group in terms of total derivative expenditure (figure 4a). However, retailers

spend approximately 10 times more per contract than other firm groups (figure 4b), meaning that

retailers buy contracts with larger quantities and durations than other firms.

2.3.2 Generators

Firms that own electricity generating plants in New York that are not retailers are classified as

generators. These firms supply electricity and may have local market power at the price nodes

where their generating units are located. Any market power diminishes at other price nodes.33

Generator participation in the TCC market has been theoretically scrutinized in Bushnell (1999)

and Joskow and Tirole (2000) because generators have the ability to influence electricity spot

prices (and therefore TCC payouts) via their production decisions. If a generator can influence the

payout of a particular derivative, the derivative is worth more in their hands than anyone else –

generators may exercise market power to increase their TCC payout. Such a situation would not

be economically efficient if the TCC holder is a low cost generator and its production is replaced

by a higher cost source. As summarized by Bushnell, auctions of TCCs could result in contracts

“flowing to those that can abuse them the most.” An implication from the theory will be examined

in section 4.2.2.

Overall, generating firms received net payouts on their derivative positions of $1,367m, exceeding

their net expenditure by $340m from 1999-2015 (figure 4a).

33Market power is related to competitor locations and the capacities of the transmission grid. If transmission
capacity was infinite, the ability of a generator to influence prices would be the same across all nodes (and there
would be a uniform price).
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2.3.3 Traders

All remaining firms with no physical interests in the New York electricity market are classified

as financial traders. These firms are largely investment banks or energy traders. These firms are

motivated to make a profit in this market, by purchasing underpriced products and selling overpriced

products. TCC profits solely determine the success of a trading firm or the TCC division of the

firm, whereas TCC profits are only a small portion of total revenues for retailing and generating

firms. Section 1.3 showed how trader activity in TCC auctions can benefit the physical players in

the market.

Overall, trading firms received net payouts on their derivative positions of $1,859m, exceeding

their net expenditure by $598m from 1999-2015 (figure 4a).

2.4 Information release and the sequence auctions in New York

A single auction (indexed by t) allocates a set of TCCs that have a common time horizon, defined

by T1 and T2 in equation (6). Firms (f) can bid to buy, or offer to sell, any of the ≈100,000 possible

i, j location pairs with this time horizon. The auction process is extended from that described in

section 1.3 to match the network configuration of New York (more detail in Appendix A). The size

of the position awarded to a firm on a derivative product is denoted qi,j,t,f . Auction prices are

transitive in the location nodes (pi,k,T1,T2,t = pi,j,T1,T2,t + pj,k,T1,T2,t) and the issued contracts (the

collection of qi,j,t,f ) are simultaneously feasible.34

There are two crucial features of the allocation process that will be utilized in the analysis.

First, prices are observed for every derivative. Even if a firm is not allocated a contract on a given

derivative, a price is set and represents the price at which the market operator would have sold or

bought a derivative had bids above or offers below that price been placed. For example, in a three

node system, the i, k derivative and the j, k derivative might have had bids placed on them, and

given the constraints on the auctioneers problem, this is enough to set a price for the i, j derivative

that did not receive a bid.

Second, the auctions are sequential, with restrictions on information flows to participants. Figure

5 displays a representation of the auction structure, with the duration of the derivative specified in

34The simultaneous feasibility constraint is discussed in further detail in Appendix A, where the rules to account
for overlapping time horizons of different products sold at different auctions are explained.
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Figure 5: Order of auction vintages and their payout windows

Derivatives of 1 month duration are red, 6 month duration are green and 12 month are blue. The length of the
arrow covers the payout period for a derivative. The auctions for each vintage occur in order from the top of the
diagram to the bottom.

the horizontal dimension and the order in which auctions occur in the vertical dimension. The 6-

and 12- month derivatives either begin in May or November, with each vintage auctioned in three

to five tranches, one week apart. The 1- month derivatives are available for each month of the year,

sold in a single auction.35 Entering an auction, firms have access to public information on prior

auction prices for every possible TCC and the payout of the TCC if the payout period has been

realized. Further, all issued contracts are reported, containing complete information on the TCC

specification, the size of the contract and the firm that purchased it. However, the bids in TCC

auctions are released 3 months after the fact and with anonymized identifiers placed on the location

nodes and the firm identities.

35There are occasional auctions for TCCs that cover 24 months of payments, but only 1-, 6- and 12- month auctions
have occurred on a consistent schedule each year.
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3 Data sources

Data on derivatives and contracts are available to the public at the NYISO TCC website,36 with

mechanical details of the data construction found in Appendix A.

3.1 Contract data

Contract observations are defined by i, j, T1, T2, f , the locations (i, j) and time horizon (T1, T2)

specified in the derivative contract purchased, and the firm (f) that purchased the contract. The

key variables are the prices, payouts and quantities of the contract.37 Data for all contracts are

available since the market began in 1999. There are 139,625 contracts in the contract dataset.

3.2 Derivative data

Derivative observations are defined by i, j, T1, T2, t, the locations and time horizon specified in the

derivative, and the auction t that it was sold in. Each auction t has attached a common duration

window T1, T2 for all i, j derivatives (T1, T2 will be dropped in later notation). Derivative data are

available for 235 auctions from November 2006 to December 2015. There are approximately 450

nodes available to be used in a derivative specification each auction38, giving approximately 100,000

i, j location pair observations per auction t. This gives approximately 23,500,000 i, j, t observations.

The number of derivative observations greatly exceeds the number of contract observations.

The auction mechanism sets prices for each derivative in every auction regardless of whether a firm

purchased any given derivative (refer to section 1.3 and 1.4). The derivatives studied are restricted

to types purchased by firms over the sample window. There are 304,039 unique (i, j,m(T1, T2))

derivative types, where m(T1, T2) is the number of months the derivative spans. The sample is

restricted to the 14,969 of 304,039 unique (i, j,m(T1, T2)) types where a contract was ever issued,

leaving 1,151,374 i, j, t derivative observations. Attached to each observation are price and payout

per month duration variables pi,j,t and ri,j,t. Both directions of a derivative are not included in the

data because it is a duplication with pi,j,t = −pj,i,t and ri,j,t = −rj,i,t.39

36http://www.nyiso.com/public/markets_operations/market_data/tcc/index.jsp
37In the raw data, i, j, T1, T2, f does not uniquely identify each observation. This is because a firm that bids a step

function will get an issued contract for each step that clears at auction. Given that the price per unit is the same, I
aggregate these into one observation and add the size of each contract into the single, unique observation.

38The number of nodes increased over the sample window.
39The empirical analysis does not tend to be sensitive to the direction of the derivative when listed either in
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3.3 Auction bid data

Bidding data is released three months after each auction and lists anonymized identifiers rather than

the names of the POI and POW locations and the identity of the firm. With these anonymized

identities, the auction data contain all bids as defined by the firm, the product and the auction,

with information on the quantity of units demanded and the bid price. I have compiled bid data

from 2006-2015. I describe an algorithm for decoding a subset of these identifiers in Appendix A.

When comparing the decoded subset of auction dataset to the contract dataset, only 10% of the

expenditures and profits are earned on locations that were not decoded or by firms that were not

decoded.40 The auction dataset is used in some descriptions of firm bidding behavior, with the

sample outlined at a case-by-case basis in the analysis.

4 Firm participation and trading profits in TCC auctions

Section 4.1 describes firms’ participation and purchases. Section 4.2 investigates which firms earn

systematic trading profits on which products. Profit sources are also investigated for generators

that purchase TCCs at locations where they own generating units.

4.1 Participation of firms in TCC auctions

Figure 6a displays the number of unique TCC products bid on by retailers, generator owners and

financial traders in every 12-month auction since 2006. Retailers bid on a tiny portion (less than

1%) of the products that generators and traders bid on. On average, all retailers collectively bid on

7 different TCC specifications for each vintage of 12 month auctions, whereas generators and traders

bid on 581 and 1,069 different products. Figure 6b displays the number of firms that place a bid

on each TCC that received at least one bid at auction. Very few of the ≈100,000 permutations of

location-pair derivative specifications are bid on in each auction, with even less products receiving

the direction that faces a positive price or if assigned arbitrarily in the direction from the location with the larger
identification number to the lower identification number.

40See appendix A. For the decoded locations, market clearing prices can be applied to allocate clearing quantities
to participants, and realized revenues can be applied to recover ex-post contract profits. The total profits when split
across classes and firms in the auction data are proportional to the total profits from the corresponding period in
the awards data. Enough identities are recovered to cover 90% of the contract expenditures and profits from the
contract data but only 45% of total contracts. The decoded data is more likely to contain locations that are more
frequently specified in issued contracts.
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Figure 6: Unique TCC bids in 12-month auctions, 2006-2015

(a) Unique TCCs bid on by firm type (b) Unique TCCs bid on by number of firms

Figures display the number of unique TCC products (defined by two locations) bid on for each vintage of 12 month
TCC products. Vintages are either November to November or May to May. The firm type counts in figure (a)
include the firms that were decoded from the auction data, described in appendix A. Otherwise, all firms and all
TCC locations are included, regardless of whether the true location was decoded.

bids from multiple firms.

Despite the small set of products retailers bid on, they are not insignificant in their participation.

Retailers account for 16% of derivative expenditures, with 84% of retailer expenditures on zone-

indexed contracts and 96% on 6 or 12 month duration contracts. Generator owners account for

33% of derivative expenditures, and financial traders account for the remaining 51%.41 Retailers on

average enter much larger and longer positions (figure 4), consistent with their larger exposure to

the spot market and potentially a hedging motive. Individually, the majority of contracts held by

generators and traders are for small positions that are tiny relative to the aggregate price exposure

faced by major retailers in the procurement of electricity or relative to the sale of electricity by

generators.42

Overall, retailers restrict their participation to large purchases of zonal products, whereas gen-

erators and traders buy a mix of both zonal and nodal products, often in small quantities. The

radically different purchase behavior of retailers to generators and traders could be explained by

41TCC expenditures are displayed in table B1 in the data appendix.
42The median contract size of 6- and 12-month TCCs is 5 units for generators and 3 for traders. In 2015 Orange

and Rockland Utilities, Inc. purchased an average of 655MWh of electricity from wholesale markets each hour and
received approximately $75,000 each hour from its customers. In 2015, Consolidated Edison’s New York City retailer
averaged approximately 10 times those figures (Consolidated Edison Inc. (2015), pages 20 and 24.).
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regulatory incentives. Retailers face zonal prices in the wholesale market and the prices retailers can

charge their retail customers are determined via public utility commission rate-setting processes.

There may be some risk to retailers that losses from trading activity not linked to the procurement

of energy will be disallowed and profits from such activities could be used to lower retail prices.

With generator owners and traders able to keep any trading profits they earn, we see that they are

much more likely to bid on and purchase a wide range of products, even in small quantities.

4.2 Systematic trading profits across firm and product types

Prior work on TCC auctions identified that contract prices were not equal to expected contract

payouts (Bartholomew, Siddiqui, Marnay, and Oren, 2003; Hadsell and Shawky, 2009; Adamson,

Noe, and Parker, 2010; Olmstead, 2018). I extend this work in two dimensions. First, instead

of studying issued contracts, I study derivatives in order to use the information contained from

products that had a zero equilibrium quantity in the auction.43 Second, I explore the link between

derivative product design, the types of firms that profit on each product and whether profits might

be linked to downstream payout manipulation.

A derivative’s price should equal the expected payout of the derivative under free entry of risk

neutral firms and no private information. That is, if each derivative auctioned has some expected

payout E(r) = µ, then its price p should equal E(r). Consider a single derivative that is auctioned,

and denote I = 1 when it is purchased by firm I and I = 0 otherwise. Then,

E(r|I, p)︸ ︷︷ ︸
Deriv. payout

= p︸︷︷︸
E(r|I=0)

+E(µ− β(tI)|I = 1) · I︸ ︷︷ ︸
Rent to firm I

(8)

In equation (8), β(tI) is the bid firm I places when it receives some signal tI . Under the

assumptions of free entry of risk neutral firms and complete information, conditional on firm I

being awarded the object, β(tI) = µ. However, if the assumptions of risk neutrality or complete

information are violated then it could be that β(tI) 6= µ when firm I is awarded the object. If firm

I values the derivative at more than its expected value, or it persistently overestimates the payout,

then β(tI) > µ when I = 1. If firm I has the ability to purchase derivatives for less than its expected

43A similar analysis to these previous papers that uses the contract data is found in section A.4 of Leslie (2018),
which highlights that tests for prices being equal to expected payouts can not be rejected for zonal products, but is
rejected for nodal products.
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payout, or that all firms value the derivative at less than its expected value, then β(tI) < µ when

I = 1.

Define Iqi,j,t,f as an indicator set to 1 if firm type f was issued an i, j TCC in this auction, set

to -1 if firm type f was issued an j, i TCC in this auction (sold the i, j derivative) and set to 0

otherwise. The model to be estimated is a statistical analogue to equation (8) and has the following

specification:

ri,j,t − pi,j,t = α+
∑
f∈F

δfI
q
i,j,t,f + εi,j,t (9)

pi,j,t, ri,j,t are the average monthly prices and payouts. Derivative payouts exclude any discount

factor.44 The direction of the i, j derivative is chosen such that pi,j,t > 0, with the j, i derivative

excluded to avoid double counting.45 Under this organization of the data, if α is non-zero then

there is a different risk premium attached to buying versus selling the derivative. Therefore, α

is equal to the expected payout premium for derivatives not purchased but with a positive price,

which should be zero with free entry of risk neutral firms. If α = 0, δf is equal to the expected

difference between the payout of the derivative and the market clearing bid when firm f is awarded

the derivative. δf = 0 implies that when the firm purchases the object, it on average receives a

payout equal to the price it paid for the object. If δf > 0 the firm on average enters profitable

contracts, either receiving a payout greater that the price it pays for the derivative or that it pays a

payout less than the price it was paid. If δf < 0 the firm on average enters unprofitable contracts.

To emphasize the nature of the derivative data, whereby prices and payouts exist for each

derivative regardless of whether a firm was actually issued a contract on that derivative, note that a

retailing firm is issued a contract in 0.1% of observations (|Iqi,j,t,RET | = 0.001), with generators and

traders each issued contracts for 3% of the derivative observations (|Iqi,j,t,GEN |= 0.031, |Iqi,j,t,TRA|=

0.034).

44The small payout lengths and monthly payouts mean that applying a discount rate correction has a negligible
impact on the results.

45The results are not sensitive to arbitrarily listing the derivatives in the i, j direction based on their identifying
code.
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4.2.1 Estimates of derivative prices and payouts

Columns I-III of table 2 report the estimates of the parameters in equation (9) for all derivatives

and for partitioned samples of the nodal and zone-indexed derivatives. The majority of products

available in this market are nodal, but we earlier saw that zonal contracts attract greater total

expenditure. The unit of observation is a location pair derivative available in auction t. Estimates

are obtained using ordinary least squares and the standard errors are clustered at a vintage T1, T2

level given the transitivity property of prices and payouts.

Table 2: Estimates of average monthly derivative payouts

I II III IV
All Zonal Nodal Nodal

pi,j,t = 1686 pi,j,t = 3821 pi,j,t = 1667 pi,j,t = 1667

α [Constant] 32.99 206.50 31.49
(91.84) (255.21) (90.78)

δRET [IqRET,t] -40.67 -105.53 90.26 76.14

(125.80) (130.76) (174.16) (196.43)
δGEN [IqGEN,t] 93.58 14.41 95.58 58.29

(43.74) (115.25) (44.85) (46.02)
δTRA [IqTRA,t] 162.25 -84.46 174.53 112.30

(38.50) (126.01) (37.71) (39.22)

i, j pair fixed effect N N N Y
N 1,151,374 10,506 1,140,868 1,140,868

NA 235 235 235 235

Each column reports estimates of equation (9) for the denoted sample using ordinary least squares. Standard errors
clustered at a vintage level T1, T2 reported in parentheses. All contract prices and payouts are divided by the
number of months a contract covers. Summary statistics for the variables used in estimation are found in table B2.
The direction of the price swap derivative is chosen such that pi,j > 0. The estimated coefficients do not
substantially differ when the direction is chosen arbitrarily.

First, examine the estimates in column I that pools all derivatives. Products offered but not

sold are priced on average $32.99 less than their payout (α), but this coefficient is not detected to

be statistically different from zero at a size 5% hypothesis test. Failing to reject α = 0 is consistent

with free entry of risk neutral firms. Retailers are predicted to receive an average payout of δ̂RET =

$40.67 less per month of contract payments than the price they pay. Generators and traders are

predicted to receive an extra δ̂GEN = $93.58 and δ̂TRA = $162.25. However, only for generators

and traders are these estimates detected to be statistically different from zero.

Systematic profits are not detected for any firm type on zone-indexed derivatives (column II).

31



However, systematic profits are detected for generators and traders on nodal derivatives (column

III). The average price faced by generators for their nodal derivatives is $804.53, and using the

estimated value of δGEN implies an average payout premium to generators of 95.58
804.53 · 100 = 11.9c

per dollar value of the position. The equivalent calculation for financial trading firms estimates an

average payout premium of 174.53
1113.09 · 100 = 15.7c per dollar.

To summarize, the results add statistical robustness to the observations in figures 2 and 4, that

systematic profits are only earned by generators and traders on nodal products. Retailers are not

detected to earn trading profits and were earlier shown to largely confine their participation to the

zonal products (that are priced actuarially fair).

Column IV reports estimates for equation (9) when replacing α with fixed effects for each i, j

pair. This allows for each location-pair to have a systematic premium or discount, meaning that

the δf coefficients measure whether different firm types earn systematic profits in excess of any

location-pair premium. For this specification, only traders are detected to earn a non-zero payout

premium, equal to $112.30 beyond the average payout for the i, j location products they purchase,

suggesting that financial traders are adept at buying (selling) the products that are underpriced

(overpriced) relative to their usual premium.

4.2.2 Extension: Are generator profits tied to generator operations?

Existing theories for why TCC auctions may result in systematic trading profits to some firms

have predicted that generating firms can earn systematic profits from TCC positions tied to their

generator operations due to their ability to influence downstream electricity prices (Bushnell, 1999;

Joskow and Tirole, 2000). If generators can influence the payout of a TCC by exercising market

power, the TCC is worth more in their hands than in the hands a firm that does not have this ability.

The results in table 2 emphasize trader profits, however, generating firms also earn systematic profits

in this market. This extension examines the possibility that generators might be profiting in the

TCC market due to their downstream physical market power.

Monthly average profit (ri,j,f,t − pi,j,f,t) for all contracts ever purchased by generators are re-

gressed on indicator variables SZ - denoting the firm owns a power plant in the same zone as one

of the i, j locations specified in the derivative, and SN - denoting the firm owns a power plant at

the exact node as one of the i, j locations specified in the derivative. The data for power plant
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locations is described in appendix A. Only 1,219 of the 23,951 generator held contracts included in

the estimates have a location specified in the payout where the holder owns a power plant. 3,832

contracts have a location specified in the payout which is in the same zone as a power plant owned

by the holder. The estimates are:

̂ri,j,f,t − pi,j,f,t = 187.2 - 22.6 SZi,j,f,t + 37.2 SNi,j,f,t

(56.7) (82.5) (182.0)

The estimates show that for the 23,951 derivatives purchased at a positive price by generating

firms at generating nodes, there is no average profit differential associated with a firm’s power plant

ownership at a node specified in the derivative contract.46

An implication from the theories in Bushnell (1999) and Joskow and Tirole (2000) is that

derivative payouts are increasing in the size of the position held by a generator. If a firm can

exercise market power and influence LMPs at certain locations, then their incentive to do so is

increasing in their exposure to contracts that are linked to that location. Further, if a firm had

some other mechanism available to manipulate the payouts of TCCs at the margin (as demonstrated

in a case study of a financial trader in Birge, Hortaçsu, Mercadal, and Pavlin (2018)), we might

expect derivative payouts to be increasing in the size of their open position.47

Equation (9) is extended to investigate whether derivative payouts are related to the size of firm

derivative positions:

ri,j,t − pi,j,t = α+
∑
f∈F

δfI
q
i,j,t,f +

∑
f∈F

ρfQ
POST
i,j,t,f + εi,j,t (10)

where QPOST
i,j,t,f is the number of contracts firm type f holds on the i, j derivative.48 The estimates

46The sample is the 23,951 contracts issued to generating firms at generating nodes for a positive price, with prices
and payouts standardized by the length of the contract. Standard errors are clustered at a vintage level (all contracts
with the same T1 and T2).

47Birge et al. (2018) study the positions of a firm that was investigated by the Federal Energy Regulatory
Commission. The manipulation under investigation was in a virtual market, where financial traders can offer supply
in the day ahead market and close out their position in the real-time market and influence FTR (TCC) payouts. The
virtual market trades in question totaled $390,000, compared to $1b of positions taken annually in the MISO market
for financial transmission rights. Birge et al. examine whether similar behavior is widespread but are impeded by
the anonymity of firm identities.

48Given the overlapping auction structure shown in figure 5, this value totals all contracts on the i, j derivative
with overlapping payouts to the product sold in auction t. QPOST

i,j,t,f is negative if the firm type has a positive j, i
position.
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of this model are displayed in table B3, with ρf not detected to be different from zero for any firm

type on nodal contracts and the δ̂f estimates similar to those in table 2. Regardless, the point

estimate ρ̂GEN = −0.01 is small and negative.

To summarize, I find no evidence that generator trading profits systematically differ with either

the product being tied to locations related to their power plant operation or with the size of

their open positions. It is plausible that generators are deterred from exploiting their downstream

physical market power in TCC auctions due to regulatory rules that allow market operators to

withhold TCC payouts if they determine that a firm exploited their contract position via market

power.49 Alternatively, this estimation technique might not be statistically powerful enough to

detect such actions.50

5 Price updating and the persistence of trading profits in

TCC auctions

Systematic profits should erode over time in the absence of entry costs as other firms mimic the

successful firms. However, profits have not eroded over time (figure 7). For each of the 16 years

of auctions, profits from nodal contracts have been positive, whereas zonal contract profits are

centered around zero. This is despite a steady year-to-year increase in the number of firms that

were observed to purchase at least one contract over the sample window.

If traders are managing to earn systematic profits by purchasing a distinct set of products to

the physical firms, there may be a barrier preventing other traders from competing for these oppor-

tunities. The unique information revelation structure across sequential auctions can be exploited

to examine how trading profits are being earned and whether price discovery occurs following pur-

chases by profitable firms. If firms have constant profit margins over the same products across

auctions, this could indicate the presence of a risk premium, an opportunity cost of capital or some

49Regulations exist to deter such activity, with the Federal Energy Regulatory Commission having jurisdiction to
investigate and potentially withhold payments to TCC or virtual traders if they were found to have altered their
downstream strategies because of their TCC positions (Alderete, 2013).

50An ideal test for firms possessing the ability or incentive to perform downstream actions to influence asset payouts
would be to estimate the impact TCC positions have on their electricity bidding strategies. Given that such data
is not available for this market, the indirect test that ρf = 0 could only identify marginal changes in derivative
payouts with contract holdings, whereas a structural model of electricity bidding strategies may be able to identify
inframarginal changes in derivative payouts to firm holdings.
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other cost to participation. However, if a firm earns a profit on a particular product and the next

time that same product is auctioned the profitable opportunity is removed, some other barrier may

exist. This could represent well informed firms earning payouts greater than the prices paid (see

Wilson, 1967)51 in the first round of an auction, with their information advantage diminished in

subsequent rounds after it has been revealed to the market. Such information diffusion could benefit

physical participants.

Figure 7: TCC holder profits and participants, 1999-2015
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Figure (a) aggregates profits from all TCCs with a start hour in the calendar year. Figure (b) counts the number
of firms that were observed to buy at least one TCC in the calendar year.

5.1 Price updating across auction rounds of the same products

The TCC auctions are sequential for contracts of 6- and 12- months duration (figure 5). Each

derivative d is defined by (i, j, T1, T2), and denote a given subset of these derivatives as D. For each

auction round (ar), the following statistic can be constructed:

1

|D|
∑
d∈D

100 · pi,j,T1,T2,ar − pi,j,T1,T2,ar=1

pi,j,T1,T2,ar=1
(11)

51Examples of studies of private information advantages with similar empirical consequences are found in oil
drainage tract auctions (Hendricks and Porter, 1988) and insurance (Chiappori and Salanie, 2000).
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The statistic is the mean of the percentage derivative price change in auction round ar relative

to the round one derivative price for products in the set D. The information structure for the

sequential auctions (held one week apart) is as follows: Immediately after each auction, the prices

for every derivative and the contract awards (including the identity of the firm) are made public.

Bids by each firm are not made available to the public in time for the next auction.

The empirical strategy is to estimate the price response of derivatives in subsequent auction

rounds following the revelation that a firm was awarded that derivative in the first round of the

auction. A comparison group is formed with derivatives that were bid on but not awarded a

contract. This comparison group is relevant because both sets of products were in demand, but

this information is only released for the set that were purchased. Therefore, if there is information

content attached to the award of a derivative, the price of a derivative should rise after it is

revealed that a well-informed firm is awarded that derivative, whereas we may not expect to see

such a response after a bid that was below the market clearing price. This is because, for 6- and

12- month derivative auctions, the same set of products with the exact same payout specifications

are offered across each round. For comparison reasons, the sample used in this section is restricted

to the products observed in the auction dataset, described in Appendix A.

Figure 8 plots the average price process for bids and offers as specified in equation (11). Deriva-

tive prices appreciate an average 7 to 11% following a purchase in round one award, consistent with

some form of information revelation. Prices only appreciate 2% for contracts receiving a bid but

without an award (and therefore no revelation that a bid was placed). Equal but opposite responses

are not seen for offers to sell. Derivatives with an offer that does not result in an issued contract

look similar to bids with no trade, but when a contract is sold, prices do not fall. A potential

explanation for the bid/offer asymmetry is that bids to buy TCCs might clear without a willing

counterparty. For a sell offer to clear a non-zero quantity, other firms must buy a combination

of contracts that form a counterposition. Therefore, we might expect these products to be priced

fairly if firms are willing to take opposite positions on related contracts in round 1 of the auction.

Figure 9 splits the price dynamics by the type of firm awarded a contract in round 1. In the first

chart, the sets of derivatives included are all derivatives that were purchased at a positive price,

split by the firm type that purchased that derivative. We see that prices do not respond to retailer

awards but do respond to generator and trader awards. The second chart is analogous to the first
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Figure 8: Price updating following purchases, bids, sales and offers
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(b) Sales of derivatives

All series plot equation (11). The purchases chart compares two sets D of derivatives, those that were purchased
by any firm at a positive price in round one to those that were not awarded to any firm but receive a round one
bid. The sales chart is analogous to the purchases chart but for negatively priced products. Sample restricted to
derivatives with pi,j,T1,T2,ar=1 >$1,000 and where price changes are within a threefold increase or decrease. Means
and pointwise 95% confidence intervals plotted.
Sample sizes: (a) 2,980 and 9,850. (b) 1,009 and 4,059.

Figure 9: Price updating following purchases and sales, by firm type
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(b) Sales of derivatives

All series plot equation (11). The purchases chart compares three sets D of derivatives, those that were purchased
by any firm at a positive price across the three firm groupings, retailers, generators and traders. The sales chart is
analogous to the purchases chart but for negatively priced products, with retailers excluded for sample size reasons.
Sample restricted to derivatives with pi,j,T1,T2,ar=1 >$1,000 and where price changes are within a threefold increase
or decrease. Means and pointwise 95% confidence intervals plotted.
Sample sizes: (a) 61, 1,151 and 1,211. (b) 296 and 465.
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chart but for derivative sales.52 Similar patterns are seen to figure 9 when splitting the sample into

profitable and unprofitable firms in figure B2.

Figure 10: Price updating following purchases of zone-indexed and nodal contracts, by firm type
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(b) Financial trading firms

All series plot equation (11). Both charts compare two sets D of derivatives, sets of round 1, positive price purchases
split by nodal and zonal derivatives. The first chart plots these sets for generating firm purchases, the second chart
plots the sets for trading firm purchases. Sample restricted to derivatives with pi,j,T1,T2,ar=1 >$1,000 and where
price changes are within a threefold increase or decrease. Means and pointwise 95% confidence intervals plotted.
Sample sizes: (a) 193 and 958. (b) 173 and 1,038.

Finally, I compare the price responses to generator and trader bids on zone-indexed and nodal

contract specifications in figure 10. The market responds more to a nodal contract award than a

zonal contract award for both generating and trading firms.

To summarize, the market updates derivative prices following the revelation of purchases by

generating and trading firms, particularly for nodal products. Given the auctions studied in this

section sell the same sets of products one week apart, it is difficult to attribute the systematic

trading profits earned in these auctions solely to risk premiums, the opportunity cost of capital or

a fixed, per auction participation cost. Firms that purchase a derivative could be revealing some

private information to other participants about the value of the derivative. In the context of the

examples in section 1.3, it may be that some of the first round purchases are improving the supply

of other TCCs to the market and earning a trading profit, where trader competition in subsequent

auctions on related products removes this opportunity.

52The responses to retailer offers are omitted for sample size reasons. The 95% confidence interval covers -40% to
20% for the second round.
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5.2 Price updating across auctions with different vintages

We have seen that generating firms and trading firms earn systematic trading profits, and that after

they buy a derivative its price appreciates, diminishing the potential to earn profits on that exact

same product in the next auction. This poses a puzzle – how have firms been able to systematically

earn profits year after year? This section describes the persistence of trading profits on products

with the same (i, j) location-pairs over different vintages. The motivation is to identify whether

profitable firms have some persistent forecasting advantage tied to a single location in the network.

To examine the persistence of profits, each awarded contract is classified into a quartile based

off of the profitability of the underlying (i, j) derivative to the contract for the previous (T1, T2)

vintage.53 Within this vintage of contract, each contract location-pair is then classified as being in

one of the following five categories:

• 1-4: Quartiles 1-4 in derivative profit in previous auction of the (i, j) derivatives that were

purchased

• N/A: Zero quantity of the (i, j) location-pair derivative was purchased by any firm in the

previous auction

The N/A category is substantial. We observed in the three node auction example in section

1.3 that not every i, j derivative has non-zero TCC allocations at auction. Unsurprisingly, given

the 100,000s of potential specifications available, many of them are not purchased each auction.

Figure 11 displays the contract costs and payouts by firm type for contracts in each of the five

categories as defined by the outcome for the contract in the previous vintage. A large portion of

TCC purchases by generating and trading firms were for (i, j) derivatives that were not purchased

by any firm in the previous vintage. These previously untraded, or low liquidity, contracts make

up 88% of financial trader profits.

Statistical support for the figures is found in table B4, where tests for prices being equal to

expected payouts is rejected for lagged quartile 1 and the not previously traded contract groups.

Therefore, if a firm takes a profitable position on a derivative between locations i and j, the

53For example, all contracts covering November 1 2008 to April 30 2009 have their derivative profits from November
1 2007 to April 30 2008 calculated (ri,j,t−1 − pi,j,t−1). For six and twelve month derivatives, the t− 1 values are for
the same i, j pair for the derivative beginning 12 months earlier. For one month auctions, this is for the derivative
beginning one month earlier.
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Figure 11: Contract costs and payouts by past derivative performance

(a) Retailing firms (b) Generating firms

(c) Financial trading firms

Figures plot the total contract costs and contract payouts for derivatives purchased by the specified firm group.
Sample is restricted to derivatives traded since 2007, where derivative prices is available. Quartile groupings are
determined by the quartile ranking of issued contracts with a common time horizon, for the per unit of derivative
profits in the previous vintage, as defined in the paper body.

opportunity to profit on the i, j product in the next auction disappears. Similarly, figure B3 shows

that after payouts are revealed, derivatives that are poor performing attract less bidders and lower

prices in the subsequent auction for that derivative, whereas better performing derivatives attract

more bidders and higher prices.54

54The mechanism behind these patterns is not definitive, it may be that when an asset performs poorly it is
because of more bidders or higher prices. Olmstead (2018) observes in Ontario that financial transmission rights
are underpriced when less bidders participate and more likely to be actuarially fairly priced when there are many
bidders.
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To summarize, financial traders are compensated for being the first firm to purchase a contract

on a derivative that was not purchased in previous auctions. After a contract has been purchased

and revealed to be profitable, the market learns the given product was underpriced and accurately

adjusts their payout expectations in the subsequent period. The market is able to close the profit

margins on products that firms recently purchased, but profit margins exist when a firm is the first

to buy a product that was not purchased in the previous auction.

To identify profitable opportunities, firms may need to possess a forecasting technology for

illiquid derivatives that did not have a contract issued in the prior period. Therefore, a regulator’s

objective of designing the auction to facilitate price discovery might be working, where markets

respond to some form of information revealed by some firms purchasing a contract. However, a

transfer cost of these profits is imposed on ratepayers, narrowing the policy questions to whether

the benefits are worth it for ratepayers, or whether improved competition could achieve a similar

outcome but with a lower transfer.

5.3 What barriers prevent competition from eroding systematic trading

profits?

Traders must consistently identify a new set of mispriced derivative products each auction if they

are to systematically profit. Although this article does not uncover how these mispriced derivatives

are identified, this section relates the empirical findings to anecdotes regarding financial trader

operations.

Arce (2013) describes the existence of both sunk and ongoing resources being devoted to ac-

tive trading in TCCs. The mechanism to set electricity prices and TCC auctions are nonlinear,

constrained optimization problems. Therefore, a microfounded forecasting strategy requires an un-

derstanding of the physics behind electricity networks. Some traders build proprietary electricity

network models that can generate prices from different inputs of demand, supply and transmission

capacities. The forecast inputs are consistently updated as private information is acquired or public

data is released from past electricity markets and TCC markets, along with planned transmission

and generator outages. Price forecasts are then used to form a bidding strategy. Arce claims that

TCC traders must be competent in each of physics, computing and economics, and also require a
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high tolerance for tedium. Given the difficulties to find, train and retain traders, it usually takes

between 12 and 24 months for an FTR desk to successfully consolidate.

Given the costs involved in developing and maintaining a proprietary black box to trade in

TCCs, trading firms must earn some trading profits to continue participating. These costs could

be representing a barrier to TCC profits eroding. Furthermore, Creswell and Gebeloff (August 14,

2014) describe an additional difficulty of being able to enter the market, with the most profitable

trading firm in New York, DC Energy, requiring non-disclosure and non-compete agreements with

their employees. DC Energy has demonstrated their preparedness to enforce these agreements.55

Figure B5 reports estimates of systematic trading profits at a firm level. Given that the number

of issued contracts is more sparse at a firm level, the estimates have low power but 4 major firms are

detected as earning systematic trading profits in this market. The firms are financial traders Boston

Energy Trading and Marketing, DC Energy, DC Energy New York and DC Energy New England,

along with two generator owners, Hydro Quebec and EDF Trading North America. Together, these

firms account for 17% of contract expenditures and 50% of contract profits (figure B4). Given

117 firms have ever participated in the market, this concentration of profits suggests these are

firms more adept to identifying profitable opportunities. Further investigation into these firms

reveals that Hydro Quebec almost exclusively purchased contracts with a point of injection at the

import/export node between Quebec and New York, whereas EDF56 and the profitable trading

firms buy products across all price nodes in the network, consistent with the predictions and the

earlier findings that traders profit from buying the products physical firms do not purchase.57

Taking the empirical results and the trader anecdotes together, it appears that profitable finan-

cial traders must have some technology to identify profitable trading opportunities among products

55Refer to Creswell and Gebeloff (August 14, 2014) for a description of a lawsuit filed by DC Energy against an
ex-employee that moved to a company that began to trade in TCCs soon after.

56EDF is classified as a generator owner, even though their trading subsidiary is listed as the TCC trader. They
earn substantially less profits than DC Energy and Boston Energy Trading and Marketing, but bid on products that
are not tied to their power plant ownership, therefore they might be better considered a financial trader.

57Hydro Quebec provides an interesting case study as the only firm with systematic profits in the TCC markets
that limits their participation to a single local node. In DC Energy, LLC v. HQ Energy Services, DC Energy (DC)
took a counterposition to Hydro Quebec (HQ). DC unsuccessfully accused HQ of manipulating prices at the Quebec
export node, where the day-ahead electricity price frequently dropped below long term averages to $0/MWh for
periods when HQ held TCCs with payouts decreasing in the Quebec price (Cramton, 2007). An observer might
speculate that the otherwise information-rich DC Energy and their subsidiaries (accounting for $212m of the $860m
TCC profits observed in this dataset) took a position based on a model of TCC payout forecasts, where it might not
have taken the position if it had known that HQ, endowed with an operational information advantage, would take
the opposite position.
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that were not purchased in previous auctions. Once they act on these opportunities, there are

enough participants in the market who update their expectations for the payout of that derivative

to erode any further profits that can be made on that product. Therefore, to continue to earn

trading profits these firms must update their models of future electricity prices to uncover new

opportunities for trading profits without other firms replicating their trading strategy.

6 Policy discussion: Who benefits from ratepayer-funded

auctions for transmission congestion contracts?

Three firm groups participate in TCC auctions, with electricity ratepayers the fourth, non-participating

stakeholder group. Retailers were shown to have purchased predominantly zonal products in large

quantities and due to regulatory incentives might prefer to abstain from taking speculative posi-

tions on contracts that are not linked to their procurement strategies. On average, retailers pay

actuarially fair prices for their derivatives.

Generators were shown to mostly purchase derivatives unrelated to their physical operations.

Unlike retailers, generators purchase both zonal and nodal contracts that are offered at auction.

On average they earn systematic profits from their trading positions. Therefore, generators may

benefit from some of the derivatives that allow them to sell electricity to different locational prices

to their own, but they also receive benefits simply by profiting from their positions.

Financial traders have no physical interests that can be enhanced by holding a TCC. Like

generators, traders purchase both zonal and nodal contracts that are offered at auction and do not

always purchase large quantities. Traders have no reason to participate in these markets if they are

unable to earn trading profits, which I have shown they are able to do systematically. Under the

TCC auction mechanism, trader purchases on products with low demand can increase the quantity

of other TCC products available for others to buy and potentially improve price signals.

Although the physical and financial firms appear to benefit from the existence of TCC auctions,

transmission ratepayers effectively fund the trading profits earned by generating and trading firms.

TCC auctions allocate the merchandising surplus market operators receive from transmission con-

gestion in the spot market to TCC holders, with the auction proceeds used to lower ratepayer bills.

Concerns from U.S. Congress and market monitors have focused on the distributional aspect of the
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auctions that appear to be transferring wealth away from ratepayers to TCC holders. Therefore,

these policymakers would want to see a more efficient electricity market and consumer benefits

attached to the systematic profits being earned.

It is difficult to claim that transmission ratepayers benefit or lose out from trader participation

in the TCC auctions without a formal welfare analysis (which is not able to be performed without

generator production and cost data). However, we have developed a picture of where any benefits to

ratepayers from the current auction regime must come from. Ratepayers would need to have their

expenses fall by approximately $50m per year to prefer funding TCC auctions that deliver systematic

profits to traders. The results present a case that traders buy many of the products that physical

firms do not purchase, and improve price signals on previously illiquid products. These trader

actions must result in procurement cost savings (be it from more efficient generation/transmission

planning, or retailer contract positions) for ratepayers to benefit from the auction framework. When

evaluating the auction regime from a broader welfare perspective, planners might also consider

the resources financial traders use when obtaining their forecasts and trading strategies, and the

administrative costs of running the auctions.

The magnitude of the regulator’s problem is substantial, with clear distributional consequences.

TCC profits earned by financial trading firms totaled $855m from 1999-2015 in New York, $420m in

California from 2012-2015 and $904m in the PJM market from 2013-2015.58 This study has shown

that in New York, TCC profits are systematic and have not diminished over time. It is unclear

that future entry of traders will occur to increase the auction revenues and consequently lower

electricity customer bills. To this end, policy modifications have been suggested or implemented,

each of which would likely reduce trading profits but may also restrict the benefits physical firms

derive from TCC markets.

First, there is the option for market operators to disband the auctions and distribute the mer-

chandising surplus it collects from transmission congestion in the short-term energy markets in

another manner. Eliminating the auctions would of course eliminate derivative trading profits, the

consequent transfers of wealth and any costly investment in information traders incur via their

participation. However, as shown by the participation of retailers in New York’s TCC market, the

58New York, author calculation, California, see CAISO Department of Market Monitoring (2016) and PJM see
PJM (2015) and various issues.
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benefits to physical firms from having products available to source or sell electricity to different

locations would be lost by disbanding the auctions, along with any benefits tied to the power flow

and price guidance provided by the auctions.

Second, this proposal is extended by Bushnell and Wolak (2005) who propose directly allocating

the merchandising surplus to retailers as a collection of derivatives.59 If retailers hold a collection

of TCCs, it may facilitate greater competition among suppliers – retailers that hold a TCC between

their location and that of the supplier and enter a forward contract with a supplier have certainty

regarding their procurement costs and pick from the cheapest option. The revenues they collect

from their remaining TCC holdings could be used to lower the revenues they can recover from

their retail customers. CAISO Department of Market Monitoring (2016, 2017) propose that market

operators could still facilitate derivative markets for locational price swaps, but have them set up

such that contracts are formed only when willing counterparties take opposite positions.60

A third policy modification has been implemented in New Zealand. There, following a stake-

holder process, a single TCC between two locations was made available, with the remaining mer-

chandising surplus distributed via direct allocation (see Energy Market Services, 2012). Although

this necessarily reduces the ability for firms to source or sell their electricity to different locations

via these particular auctions, it could increase liquidity at these locations by concentrating partic-

ipation into a smaller set of products and also remove the complexity of the auction.61 In New

York, the set of 11 zone prices (55 TCC combinations) received greater expenditure on TCCs than

the 100,000 TCC combinations available between price nodes, with retailers restricting their partic-

ipation to zonal products. Further, zonal products were consistently purchased, priced actuarially

fairly and were not subject to large TCC holder profits. It is left for further work to evaluate a

proposal that restricts the set of products offered in New York to zonal products. Considerations

include the lower participation costs from a simpler auction, the loss of product choice for firms

59This position is also suggested in CAISO Department of Market Monitoring (2016). The article contends that
transmission ratepayers effectively take counterpositions on TCCs so the auction should be updated such that con-
tracts are only entered by willing counterparties.

60Whether such derivative markets would be liquid and provide valuable price signals is uncertain. Black (1986)
summarizes a large literature discussing why markets for some derivative products fail to exist, whereas markets for
other derivative products are liquid. One feature of liquid derivative markets is that both physical and financial firms
participate, with financial traders needing to collect some rents in order to participate.

61The potential benefits of reducing choice sets in a variety of settings are explored in Levin and Milgrom (2010).
Black (1986) gives a summary regarding derivative product design and qualitative predictors for the success or failure
of derivatives to be liquid. Derivative payout structures that are at centralized locations or at an index level tend to
be more liquid.
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to manage locational price differentials and the impact removing some profitable opportunities for

financial traders will have on their participation.

7 Conclusion

To fund their participation in derivative markets, financial traders must earn trading profits. In

markets for transmission congestion contracts, trader profits have attracted regulatory attention

because TCCs are auctioned and TCC holder profits are effectively funded by transmission ratepay-

ers. I have described, using simple models of TCC auctions, the potential for financial traders to

improve auction outcomes by purchasing the derivative products retailers and generators do not

purchase. I showed that retailers bid on a tiny proportion of products relative to financial traders.

88% of trader profits are earned by firms that are the first to purchase a previously illiquid product,

but profitable opportunities are quickly competed away in subsequent auctions. This pattern has

persisted for 16 years in the New York market, suggesting that there is a barrier to more trading

firms being able to spot the initial profitable opportunity and in turn erode the trading profits

earned in this market.

Regulators need to decide how to distribute the merchandising surplus collected by operators of

formal wholesale electricity markets. These revenues accrue when transmission lines get congested,

where consumers of electricity in importing regions pay more than the payments suppliers of elec-

tricity in exporting regions receive. Every formal electricity market in the United States distributes

these revenues as transmission congestion contracts that are sold at auction. These contracts pay

the holder future locational price differences in electricity prices and the auction revenues are used

to lower transmission ratepayer bills. The merchandising surplus could be used for other purposes

than to fund TCC holder payouts. The results of this article highlight the tradeoffs that regulators

need to weigh up when considering the modifications to the distribution rule. The current rule of

securitizing the merchandising surplus into TCCs via a network auction has resulted in financial

traders earning large trading profits, but they earn them from performing actions policy makers

often want to see from financial participants – buying a large variety of previously illiquid products

(and providing price discovery). It is an open question as to how these actions benefits electricity

retailers in this market, given that they bid on less than 1% of the products that financial traders
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bid on.

If regulators wish to revise their policy to reduce large wealth transfers from electricity ratepayers

to derivative holders, they could consider a direct allocation policy for the merchandising surplus

from transmission congestion, or a restriction on the products offered at auction. The Californian

Department of Market Monitoring has proposed that the merchandising surplus not be used to

securitize TCCs and for a centralized price swap clearing pool be established (CAISO Department

of Market Monitoring, 2017). Here, price swap contracts with the same payout structures of TCCs

will only be created when willing counterparties take opposite positions. Under this proposal it is

still possible for traders to profit and provide price discovery, but only by taking counterpositions

to combinations of contracts that another firm (or collection of firms) willingly enters. It is left as

further work to investigate whether modifications to the derivative product set offered at auction

will improve economic outcomes. There may be opportunities to compare policies if ongoing reviews

of these auctions result in policy changes. A pre-post study that can measure the realized physical

costs from electricity generation may build upon the description of profit sources in this article to

provide further insight into the physical efficiency impacts from the policy changes.
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Appendix A: The NYISO transmission congestion contract

auction and data sources

A.1 Additional auction details

NYISO administers transactions in the New York wholesale electricity market. This appendix

extends the description of electricity market payments and the TCC auction provided in section 1

with some additional auction nuances and references. Information on the operation of the New York

wholesale electricity market and transmission congestion contract market is available in the market

rules (NYISO, 2015). A less technical, yet succinct overview can also be found in Toole (2014).

For general explanations not specific to NYISO, Alsac, Bright, Brignone, Prais, Silva, Stott, and

Vempati (2004) contains a terrific high level summary and Hogan (1992, 2002) a more complete

explanation. For the specific New York auction, refer to NYISO (2010).

NYISO pays the generators their nodal price for what they inject and NYISO receives from

loads (firms that buy wholesale electricity) the zonal price where they withdraw. This is the source

of NYISO’s merchandising surplus. Hogan (1992) shows that a set of financial transmission rights

(FTRs) that is simultaneously feasible in the electric grid satisfies revenue adequacy. This means,

that if the set of injections and withdrawals implied by a set of FTRs could feasibly occur given the

transmission constraints of the electric grid, the merchandising surplus the market operator collects

will be greater than or equal to the payouts the holders of the FTRs will collectively receive.

Each market has idiosyncratic auction rules for FTRs, with NYISO choosing to perform a

simultaneous auction for every combination of price swaps in the network. NYISO collects price

and quantity bids for locational price difference derivatives from auction participants. Then, it

solves a non-linear optimization problem that:

• Sets auction shadow prices at each node to maximize the as-bid value of allocated TCCs.

– Denote node shadow prices as PAuction,i for node i. Therefore, the equilibrium price of

the i, j derivative in the notation of the article is pi,j = PAuction,j − PAuction,i. This is

the practical mechanism that enforces the transitivity of derivative prices.

– Firms bid on a POI/POW pair. Bids to buy clear if it is greater than the difference in

the node shadow prices.
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• Constraint is that all implied injections and withdrawals from the derivatives are feasible in

the physical transmission grid, with assumed transmission capacities for the problem released

to participants prior to the auction. Further, for zonal bids, fixed injections and withdrawals

at specific nodes are assumed, as described in section 19.9.7 of NYISO (2010).

– A bid for a derivative that pays 20*$(LMPj − LMPi) implies that 20 MW is injected

at A and is withdrawn at B.

– If all injections and withdrawals from a set of contracts that would be issued at a given

set of auction shadow prices are not feasible given the assumed transmission capacities

throughout the electric grid (derived from Kirchhoff’s Law) then the prices and allocation

are not a solution to the auctioneer’s problem.

• All bids that are above the auction shadow prices are allocated the contract. So a bid for

a derivative that pays 20*$(LMPj − LMPi) will be awarded a contract if the bid price is

greater than pi,j = PAuction,j − PAuction,i.

– Supplying this contract is the equivalent of bidding on the contract that has the opposite

payment, $(LMPi−LMPj). Therefore, this auction is not simply a sale of goods, it can

indirectly match other buyers and sellers.

The feasibility constraint of the TCC auction is modified to allow for contract periods to overlap.

Before each auction which may cover 1, 6 or 12 months of derivative payments, the existing contracts

and the proportion of the NYISO grid to be auctioned are known. Therefore, existing contracts

are factored in to the implied injections and withdrawals from the contracts and the available

transmission capacity is scaled to reflect the amount of transmission capacity being released. If 12

month contracts are auctioned off in 4 tranches, these scale factors will be 25%, 50%, 75% and then

100%.

Other practical matters include that transmission capacities are stochastic, they can vary with

weather and can have unexpected outages. Therefore, when allocating FTRs, market operators must

decide how much capacity to release - release too much and they might have a revenue shortfall, too

little and they will maintain a surplus. Over a period of time, NYISO on average is revenue adequate

(see Patton, LeeVanSchaick, and Chen, 2016, for a recent annual report covering the wholesale and
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TCC markets, demonstrating the revenue adequacy of the TCC contract positions for the NYISO),

with rules that transmission owners make up or receive any differences from merchandising surplus

and FTR/TCC payouts.

The revenues from the TCC auctions are split amongst transmission owners. Transmission

owners are regulated to earn a fixed rate of return, given that they form natural monopolies and it

is inefficient to have them participate in markets as strategic players. The total revenues they are

entitled to receive under the regulated return is calculated, then the TCC auction payments are

taken away from that figure, with the remainder paid by transmission ratepayers via a cost-sharing

formula outlined in NYISO (2005) and NYISO (2010). Therefore, in effect, the higher the TCC

auction payments, the less ratepayers ultimately have to pay transmission owners.

A.2 Auction bids and results data

All data are available to the public at the NYISO TCC website, http://www.nyiso.com/public/

markets_operations/market_data/tcc/index.jsp. This section details the construction of the

derivative, contract datasets, which are closely related and have common information merged on to

each other. Then the decoding of the anonymized auction data is described and compared to the

derivative and contract data.

The main data used in this analysis is at a derivative level. The auction prices for these

derivatives were collected from the “View nodal prices” link on the NYISO webpage, that lists the

shadow prices generated from every auction. These files are appended, with a unit of observation

constructed as being a derivative start date (T1), end date (T2), auction round (ar), POI (i), POW

(j).

The derivative payouts are sourced from the “DAM marginal losses and congestion” link. The

unit of observation is constructed as being month-of-sample, POI, POW and the relevant variable

is the payout to an i, j derivative for the sample month. For each observation in the auction prices

data, the payouts for the T1, T2 window are calculated and merged onto the dataset. Although data

for derivative payouts is available since the introduction of the auctions in 1999, the auction prices

are only available from late 2006, therefore the derivative dataset is restricted to derivatives issued

at auction between 2006-2015.

A separate but related dataset, containing all contracts issued from 1999 is found at the “Sum-
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mary Of Transmission Contracts” tab. Each observation contains start date (T1), end date (T2),

POI (i), POW (j), firm (f), purchase price per MW (p) and quantity in MW (q). Again, payouts

are merged on to each observation to give r.

The quantity variables on the contract dataset are transformed and merged onto the derivative

dataset. These variables are derived from the derivative holdings of each firm in the data entering

and following each auction. To generate the qi,j,t,f , QPOST
i,j,t,f and Iqi,j,t,f variables in the derivative

dataset, each variable is created for each firm, giving each derivative 3*117 extra variables. The

values for these variables are described in the body of the text.

For both the contract and derivative datasets, power plant ownership information from NYISO

(2016) is attached to each node. For the contract dataset, an observation is marked if the contract

holder holds a power plant at a node specified in the contract or in the same zone as a node in the

contract.

To summarize, the derivative dataset contains prices and payouts for every derivative available

at auction with a unit of observation being derivative start date (T1), end date (T2), auction round

(ar), POI (i), POW (j). Information attached to each observation includes the price and payout

of each derivative (scaled by the length of time the derivative payout covers), the 3*117 variables

relating to the holdings entering and leaving each auction for each firm, and indicator variables

that list the type of nodes the contract contains (generating/non-generating). The contract dataset

only contains issued contracts, with a unit of observation defined as the start date (T1), end date

(T2), POI (i), POW (j) and firm f . The information contained in the contract dataset include the

prices, payouts and quantities of derivatives issued, along with the type of nodes in the contract.

Each firm is also classified as a retailer, generator or trader. These classifications are listed in

the appendix A.3.

Decoding the anonymized identities of locations and firms in NYISO’s Transmission

Congestion Contract auction data

NYISO publicly releases all bids and offers entered into TCC auctions at http://mis.nyiso.

com/public/P-27list.htm. Each auction is for a given start date and end date, with each bid

a price/quantity pair. Unlike the contract dataset, each bid/offer has an anonymized identifier in

place of the firm that places the bid/offer and anonymized identifiers in place of the POI and POW.

These anonymized identifiers are stable across auctions.
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To analyze auction behavior, a large set of the anonymized identifiers have been decoded by

combining the information across the publicly available auction and contract datasets. The un-

derlying principle behind the algorithm is to utilize the equilibrium contracts data that contains

a market clearing price and quantities sold to each firm for a given location-pair to find bids and

offers in the auction data that could generate the same quantity allocations for the given market

clearing price.

1. For a given start date, end date and location-pair that has a non-zero equilibrium contract

quantity, calculate the number of firms that bought this contract, sold this contract and store

the sizes of these contracts and the clearing price p

2. In the auction data for that given start date and end date, take a given location-pair (these

are anonymized identifiers)

(a) Calculate the clearing parcels and quantities that are implied by a clearing price of p

(b) Mark the pair as a potential match if the clearing parcels and quantities implied by this

price match the equilibrium data

(c) If one of the bids/offers is equal to the market clearing price, it is a potential marginal

bid. Allow the parcel quantity for that bid/offer to be less than the size of the bid/offer

when determining if the location-pair is a potential match.

(d) Iterate to the next location pair in the auction data and continue until all location pairs

have been marked as a potential match or otherwise.

(e) If there is only one potential match, assign the POI and POW listed in the equilibrium

contract data to the anonymized identifiers.

3. Iterate to the next location pair in the equilibrium contract data and stop after all observed

contract location pairs have had this procedure performed.

The algorithm is restricted to marginal bids. The algorithm matches 94 of the anonymized

location identifiers to actual locations. Although less than half of the locations are decoded, they

cover almost all of contract expenditures.

The next step of the algorithm recovers firm identities in the auction data.
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1. For a given start date, end date and location-pair that both have matches to the anonymized

location identifiers, calculate the number of firms that bought this contract, sold this contract

and store the sizes of these contracts and the clearing price p

2. In the auction data, match the parcel sizes bid/offered that clear at p to clearing quantities

observed.

3. If there the parcels are uniquely matched, assign the firm name to the anonymized firm

identifier.

The algorithm matches 49 of the anonymized firm identifiers to the 117 firms that ever won

a contract. Although less than half of the firms are decoded, they cover almost all of contract

expenditures and profits made.

Table 3 compares the auction data to the awards data to examine the selection of the auction

data. When defining a bid as a step function between a unique pair of locations (with a positive

price a bid to buy between a POW and POI, a negative price an offer to sell between that POW

and POI), the top panel of table 3 shows there are 489,409 bids in the data, 136,798 of which both

the POW and POI location identifiers are decoded. Only on the decoded locations can the auction

clearing prices and realized revenue information be mapped to each bid. Using this information,

the value of the contracts generated between the decoded locations is $2.7 billion, just less than

the $3.1 billion total observed in the awarded contract data covering the same period in the second

panel of table 3. Comparing the top to the bottom panel gives insight into the selection of the

auction data. The auction data only covers 43% (38,370/89,124) of the awarded contracts, but 90%

of the expenditure and profit values.

The top panel of table 3 shows that the proportion of bids and offers on locations that were

decoded that were successful in winning a contract was 28% (38,370/136,768). Given there were

489,409 bids in total and 89,124 contracts generated, this means that the remaining locations had

a 14% (89,124-38,370)/(489,409-136,798)*100 of bids and offers that won a contract. Overall, the

data selection for the auction data appears to cover higher value contracts with higher clearing

rates. Given the algorithm to decode the auction data relies on matching award data to the auction

data, it is vacuously true that locations that do not have awarded contracts can not be decoded

and will result in the auction data covering the more liquid locations.
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Coverage of the zone-indexed contracts is better than the nodal contracts, with a greater propor-

tion of the retailer awards also seen in the auction data than the generators and retailers. Overall,

the returns by contract class are similar in both datasets, but the returns by firm type differ in

that retailer returns are higher using the auction data and generator returns are lower. The un-

known firm types in the auction data are firms who’s identities were not decoded. To reconcile the

retailer and generator return differences, the collective return for the unknown firms of 2% could

be explained by having the unknown category contain some of the losing retailers and winning

generators.

The patterns in the awards data are broadly seen in the shorter sample of restricted locations

observed in the auction data, summarized in table 3. The value of zone-indexed and nodal contracts

are roughly equal, but the quantity of nodal contracts are much greater. Shorter duration contracts

are more profitable, with traders realizing the greatest profits, followed by generators and then

retailers. Retailers have far fewer bids (defined as a step function on a node pair) at 945, than the

55,000+ of the generators and traders, but have a higher conversion rate of bids to contracts of

50% compared with approximately 27%. For the purposes of the analysis in section 5.1 and the

change in the number of bidders in section 5 across auctions, the derivatives included are less likely

to contain illiquid, low price products.

A.3: Classification of participating firms into firm types

Each firm that participates in these auctions has been classified into three distinct categories based

on their core business. Footnotes describe discretionary categorization decisions. First, any firm

that purchases wholesale electricity in New York is classified as a retailer. Second, any firm that

operates an electric generating facility that is not a retailer is classified as a generator. These

two firm types are physical players in the electricity market and may have a hedging motive to

participate in auctions for transmission congestion contracts. Third, all remaining firms that have

no physical interests in the New York electricity market are classified as traders, who are assumed

to speculate with the motive to make profits from trading. The motives of the participants are not

definitive, physical players can speculate, and non-physical players may have positions to hedge.

All classifications were decided by the author, based on web searches of the firm, FERC listings

of retailers and NYISO lists of generating plants and their ownership. In many cases, the listed
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Table 3: Comparing implied awards from auction data with the award data: Costs and returns by
contract class, 2006-2015

Sample N bids N decoded N contracts Expenditures Profits ROI

Auction Data
All 489409 136798 38370 $ 2692.2 m $ 454.7 m 16.9 %
Zone-indexed 202957 21825 5955 $ 1291.8 m $ 139.5 m 10.8 %
Nodal 286452 114973 32415 $ 1400.4 m $ 315.1 m 22.5 %
1 month 269531 71441 21428 $ 346.3 m $ 75.3 m 21.7 %
6 month 117091 35896 9939 $ 1113.1 m $ 241.9 m 21.7 %
12 month 102786 29461 7003 $ 1232.9 m $ 137.4 m 11.1 %
Retailers 1254 945 471 $ 325.3 m $ 16 m 4.9 %
Generators 193880 56491 16309 $ 859.9 m $ 162.9 m 18.9 %
Traders 218139 59951 15569 $ 1030.3 m $ 266 m 25.8 %
Unknown 76136 19411 6021 $ 476.7 m $ 9.8 m 2 %

Awarded contracts data
All . . 89124 $ 3056.8 m $ 502.5 m 16.4 %
Zone-indexed . . 8959 $ 1712.5 m $ 142.5 m 8.3 %
Nodal . . 80165 $ 1344.3 m $ 360 m 26.8 %
1 month . . 51781 $ 380.1 m $ 102 m 26.8 %
6 month . . 21775 $ 1277.2 m $ 245.4 m 19.2 %
12 month . . 15568 $ 1399.5 m $ 155.1 m 11.1 %
Retailers . . 1088 $ 469.5 m $ -32.8 m -7 %
Generators . . 39267 $ 1077.7 m $ 207.9 m 19.3 %
Traders . . 48769 $ 1509.6 m $ 327.5 m 21.7 %

A bid is a step function between a unique point of injection (POI), point of withdrawal (POW), start date, end
date and firm (with a positive price a bid to buy between a POW and POI, a negative price an offer to sell between
that POW and POI). All contract data from the auction dataset (the top panel) is for the location identifiers that
were decoded and assume that bids less than or equal to the market clearing price are fully cleared. The bottom
panel contains the full set of awarded contracts over the period. Contract expenditures sum the absolute value from
the initial contract price across the class of contract defined by the row - buying and selling a $1m contract are
both listed as a $1m contract. Profits are the sum of the profits for all contract positions. ROI is a modified return
on investment for the asset class, equal to the total profits divided by the absolute value of contract expenditures,
listed in the preceding two columns.

owner of the generator is a subsidiary or parent of a firm listed as the trading entity in the TCC

data. In such cases, the classification rule applies to any and all businesses in the conglomerate,

so a conglomerate will not have some subsidiaries listed across the different classifications of firms,

they will all be contained in one classification.62

Retailers: Allegheny Energy Supply Company, LLC; CECONY-LSE; Central Hudson Enter-

62Toole (2014) classifies firms into “speculator”, “hedger” and “unknown” categories, analyzing the types of deriva-
tives these groups are more likely to purchase. The main difference between my list and that of Toole is that generating
firms tend to fall into the hedging category in Toole’s analysis.
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prises Corp.; Central Hudson Gas & Electric Corp.; Con Edison Solutions, Inc.; Consolidated Edi-
son Co. of New York, Inc.; Consolidated Edison Energy, Inc.; Constellation Energy Commodities
Group, Inc.; Constellation Energy Services of New York, Inc.; Constellation NewEnergy, Inc.; Di-
rect Energy Business Marketing, LLC; El Paso Merchant Energy, L.P.; Energy Services Providers,
Inc; Freeport Electric; Green Island Power Authority; Indeck-Corinth LP; Jamestown Board of
Public Utilities; Long Island Power Authority; Macquarie Energy LLC; New York Municipal Power
Agency; New York State Electric & Gas Corp.; Niagara Mohawk Power Corp.; Orange & Rockland
Utilities, Inc.; Pepco Energy Services; PPL Utilities; Public Power, LLC; Public Service Electric &
Gas Co.; Rochester Gas & Electric Corp.; Village of Rockville Centre.

Generators: AES Creative Resources, L.P.; American Electric Power Service Corp.; Bayonne
Energy Center, LLC; Brookfield Energy Marketing LP; Bruce Power Inc.; Castleton Commodities
Merchant Trading L.P.; Dynegy Marketing and Trade, LLC (DMT); Dynegy Power Marketing,
LLC; EDF Trading North America, LLC; EDP Renewables North America LLC; Exelon Generation
Company LLC; GDF Suez Energy Resources NA, Inc; GenOn Energy Management, LLC; Hess
Corporation; HQ Energy Services (US);63 Integrys Energy Services, Inc.; Mercuria Energy America,
Inc; Mirant Americas Energy Marketing LP; New York Power Authority;64 NextEra Energy Power
Marketing, LLC; Noble Americas Energy Solutions LLC; Noble Americas Gas & Power Corp; NRG
Power Marketing LLC; Ontario Power Generation Inc.; PSEG Energy Resource & Trade, LLC;
Select Energy New York, Inc.; Select Energy, Inc.; Selkirk Cogen Partners, L.P.; Shell Energy North
America (US), L.P.; Sithe Energy Marketing, L.P.; Talen Energy Marketing, LLC; TransCanada
Power Marketing, Ltd.

Traders: 330 Fund I LP; AC Energy, LLC; Amber Power, LLC; Appian Way Energy Partners
East, LLC; Aquila Energy Marketing Corp.; BJ Energy LLC; Black Oak Capital LLC; BNP Paribas
Energy Trading GP; Boston Energy Trading and Marketing LLC; BP Energy Company; Cargill
Power Markets, LLC; Centaurus Energy Master Fund, LP; Citadel Energy Products LLC; Citadel
Energy Strategies LLC; Citigroup Energy Inc.; Credit Suisse Energy LLC; DB Energy Trading
LLC; DC Energy LLC; DC Energy New England, LLC; DC Energy New York, LLC; DTE Energy
Trading Inc; E.ON Global Commodities North America LLC; Emera Energy Services, Inc; Enron
Power Marketing; ENTEGRA CAPITAL MANAGEMENT LP; Entergy-Koch Trading, LP; EPIC
Merchant Energy L.P.; EPIC Merchant Energy NY LP; Franklin Power LLC; Galt Power Inc.;
GRG Energy LLC; J Aron and Company; J. P. Morgan Ventures Energy Corporation; KFW
Energy Trading, LLC; Lighthouse Energy Trading Co., Inc.; MAG Energy Solutions Inc.; Merchant
Energy Group (MEGA); Merrill Lynch Capital Services, Inc.; Merrill Lynch Commodities, Inc.;
Midwest Energy Trading East LLC; Morgan Stanley Capital Group, Inc.; Nalcor Energy Marketing
Corporation; Northern States Power Company; Ocean Power LLC; Old Lane Commodities, LP;
OPD Energy LLC; Orthogonal Energy, LLC; Petra Technical Consultant Group, LLC; PG&E
Energy Trading; Powerex Corporation; Pythagoras Global Investors LP; Quark Power LLC; RAM
Energy Products LLC; RBC Energy Services LP; Royal Bank of Canada; Saracen Energy East LP;
Saracen Energy West LP; Saracen Energy, LP; Saracen Power LP; Sempra Energy Trading LLC;
SESCO Enterprises LLC; SIG Energy, LLLP; Silverhill Ltd., GP for Power Fund LPs.; Solios Power
LLC; Split Rock Energy LLC; TransAlta Energy Marketing (U.S.) Inc.; Twin Cities Power, LLC;

63Hydro Quebec is a peculiar case that has been classified as a generator for two reasons. First, it can purchase
electricity for consumption, with the retail operation outside the NYISO. Second, it is a major net exporter to the
NYISO.

64New York Power Authority (NYPA) is a publicly owned generator owner but does not have a standard profit
maximization objective function. For the analysis of auction positions in this paper, NYPA’s classification is irrelevant
as they never purchased a TCC at auction, with their only positions existing from grandfathered TCCs.
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TXU Energy Services; Viridian Energy NY, LLC; Vitol Inc.; Williams Power Company Inc.

Appendix B: Additional figures and tables

Table B1: Expenditures on TCC contract positions

Retailers
Zonal Nodal 1 month >1 month Round 1 Round > 1

Total ($m) 685 133 34 785 165 620
Generators

Zonal Nodal 1 month >1 month Round 1 Round > 1

Total ($m) 901 844 225 1,520 249 1,271
Traders

Zonal Nodal 1 month >1 month Round 1 Round > 1

Total ($m) 1,373 1,300 358 2,315 309 2,007

Contracts are classified into groups based on the zonal, nodal, 1- month or >1- month characteristics, and whether
for the >1- month products they were sold in the first round or a later round. Given positions can be short or long,
the absolute value of expenditures is the variable underlying the statistics in the table
(|qi,j,T1,T2,f ·m(T2, T1) · pi,j,T1,T2

|). Sample restricted to the purchases in 2006-2015 where auction round
information is available.

Figure B1: Derivative payouts, lagged payouts and prices

(a) Payouts and payouts in previous vintage (b) Payouts and prices

Figures plot average monthly payouts for a MW of each issued contract (ri,j,t) against the payout for that contract
in the prior vintage (ri,j,t−1) and the price (pi,j,t) for all contracts entered from 1999-2015. For six and twelve month
derivatives, the t− 1 values are for the same i, j pair for the derivative beginning 12 months earlier. For one month
auctions, this is for the derivative beginning one month earlier. The line in red plots the values where the y-axis is
equal to the x-axis.
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Table B2: Summary statistics of the location-pair-auction (i, j, t) derivatives studied

Variable name Description

pi,j,t ri,j,t Price and payout of
Mean 1686 1842 derivative
Std. dev. 3215 4004

qi,j,t,RET qi,j,t,GEN qi,j,t,TRA Number of derivative units
Mean 0.02 0.18 0.23 at auction
Std. dev. 1.29 3.16 3.62

Iqi,j,t,RET Iqi,j,t,GEN Iqi,j,t,TRA Indicator = 1 if allocated

Mean 0.001 0.031 0.034 contract at auction
Std. dev. 0.031 0.174 0.182

QPOST
i,j,t,RET QPOST

i,j,t,GEN QPOST
i,j,t,TRA Size of open position

Mean 0.85 2.06 2.03 after auction
Std. dev. 20.46 24.74 18.61

1,151,374 i, j, t observations in each cell. The absolute value of each variable is reported because the location
direction a derivative enters the model is arbitrary. p and r, the derivative price and payout, are divided by the
length of the contract. RET , GEN and TRA aggregate all allocations to retailing, generating and trading firms
into a single firm grouping. Open position refers to derivatives held on an i, j derivative that has a payout window
that covers T1.

Figure B2: Price updating following purchases or sales, by profitable and unprofitable firms
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(a) Purchases of derivatives
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(b) Sales of derivatives

All series plot equation (11). The purchases chart compares two sets D of derivatives, those that were purchased by
any firm at a positive price across, split by firms that earned positive and negative profits over the sample window.
The sales chart is analogous to the purchases chart but for negatively priced products. Means and pointwise 95%
confidence intervals plotted.
Sample sizes: (a) 2,638 and 342. (b) 984 and 85.
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Table B3: Estimates of average monthly derivative payouts - extended model

All Nodal Zonal
pi,j,t = 1686 pi,j,t = 1667 pi,j,t = 3821

δRET [IqRET,t] 7.00 126.72 -32.97

(118.61) (173.74) (146.65)
δGEN [IqGEN,t] 90.03 96.38 -26.62

(44.81) (45.68) (118.73)
δTRA [IqTRA,t] 162.02 176.66 -104.48

(41.80) (41.05) (139.72)
ρRET [QPOST

RET,t ] -0.30 -0.28 -0.55
(0.17) (0.15) (0.30)

ρGEN [QPOST
GEN,t] 0.19 -0.01 0.81

(0.16) (0.14) (0.44)
ρTRA [QPOST

TRA,t] -0.02 -0.08 0.17
(0.30) (0.39) (0.56)

α [Constant] 32.98 31.63 195.56
(91.87) (90.87) (261.93)

N 1,151,374 1,140,868 10,506
NA 235 235 235

Estimates of equation (9), using ordinary least squares. Standard errors clustered at a vintage level T1, T2 reported
in parentheses. All contract prices and payouts are divided by the number of months a contract covers. Summary
statistics for the variables used in estimation are found in table B2. The direction of the price swap derivative is
chosen such that pi,j > 0. The estimated coefficients do not substantially differ when the direction is chosen
arbitrarily. Comparing the estimates of table B3 to table 2, first note that the common δf coefficients estimated in
both specifications are not sensitive to relaxing the restrictions on the ρf , size of position parameters. For nodal
contracts, a test that ρf = 0 for any firm group with a test size of 5% fails to reject that the average marginal effect
of increasing a firm’s open position on derivative payouts is zero. There is no evidence to support claims that firms
are performing downstream actions to influence derivative payouts in this market (as shown in a case study in
Birge, Hortaçsu, Mercadal, and Pavlin (2018)).

Table B4: Coefficients for systematic trading profit tests, by previous auction performance

Prev. auction performance Q1 Q2 Q3 Q4 N/A

α [ qi,j,t,f .(T2 − T1).(ri,j,t − pi,j,t) ] 15,263 3,386 -859 5,008 9,023
(6,807) (2,614) (3,612) (16,035) (4,656)

qi,j,t,fpi,j,t 70,343 16,071 29,586 121,523 23,536
N 6002 6913 6422 7276 32016

Standard errors are clustered at a vintage level (all contracts with the same T1 and T2) in parentheses. The null
hypothesis for efficient markets is equivalent to α = 0. The unit of observation is a unique contract, defined by
location pair i, j, auction it was purchased in t (t defines the payout window T1 and T2), and the firm holder f .
The sample contains all 1, 6 and 12 month contracts issued from 1999 to 2015. Q1-Q4 refer to contracts on i, j
derivatives that were in the first to fourth quartiles of profits in the previous auction. N/A refers to contracts on
i, j derivatives that were not issued in the previous auction.
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Figure B3: Dynamics of prices, payouts and bidder numbers by past derivative performance

(a) Derivative prices (b) Number of bidders

Samples are restricted to derivatives issued at a positive price since 2007. Quartile groupings are determined by the
quartile ranking of issued contracts with a common time horizon, for the per unit of derivative profits in the previous
vintage, as defined in the paper body. “N/A” denotes a derivative with a contract issued, but no contracts were
issued for that POI/POW location pair in the previous vintage. Prices and payouts are scaled by the length of the
contract. The number of bidders sample is restricted to the derivatives that were decoded by the algorithm discussed
in Appendix A.2. Hypothesis tests with equality of means under the null are rejected at a 5% level of significance
for all variables and groups, with the exception of lagged quartile 3, number of bidders.

Figure B4: Total contract costs and profits by firm

Aggregate firm values for all 1, 6 and 12 month awarded contracts since 2006. Total contract costs is the sum of the
absolute value of each contract position taken by a firm.
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Figure B5: Estimates of payout premiums by firm

(a) All point estimates

(b) All point estimates with 95% confidence intervals not covering zero.

Top figure plots firm level estimates of δf (the coefficient on the firm contract indicator variable) and ρf (the
coefficient on the firm open position variable) as specified in equation (9) for the 117 firms ever observed to purchase
TCCs over the sample window. Second figure replaces δf = 0 or ρf = 0, if that hypothesis test at a 10% level of
significance is not rejected. All markers are weighted by the sum of the total costs a firm incurred when purchasing
TCCs over the sample window for the firms included on the chart. The six major firms observed to have statistically
detectable values of δf greater than zero, are EDF Trading North America, Boston Energy Trading and Marketing,
Hydro Quebec, DC Energy, DC Energy New York and DC Energy New England. These firms account for 17% of
contract expenditures and 50% of contract profits. The figures show that a handful of extra firms have also earned
positive aggregate profits, but the testing technique did not detect them as systematically earning trading profits.
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