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Abstract

We consider a model in which each agent cares about her network-based (local)

ranking, i.e. the ranking of her allocation among her neighbors’ in a network. An

allocation is stable if it is not revoked under ↵-majority voting; that is, there exists

no alternative allocation, such that a fraction of at least ↵ of the population have

their rankings strictly improved under the alternative. We find a sufficient and nec-

essary condition for a network to permit any ↵-stable allocation: the network has an

independent set of size at least (1 � ↵) of the population. We then characterize the

size of the largest independent set for Erdős–Rényi random networks, which reflects

how permissive a network is. For large enough population, the level of permissibility

solely depends on the expected degree. We provide several comparative statics results:

more connected networks, more populated networks (with a fixed link probability), or

more homophilous networks are less permissive. We generalize our model to arbitrary

blocking coalitions and provide a sufficient and necessary condition for this case. Other

extensions of the model include: (1) directed networks and (2) comparisons made only

to non-neighbors.
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1 Introduction

Social comparisons define our subjective well-being. Compelling evidences show that our
perceptions of happiness depend on our income in relative rather than absolute terms (East-
erlin (1995); Tideman, Frijters and Shields (2008)). Recent empirical findings further show
that our comparisons are network-based: we rank ourselves among our neighbours in certain
network (Luttmer (2005)). That is, our social comparisons are local.

Our local comparisons in turn, determine what allocations are satisfying. Ancient philoso-
phers have long-recognized the link between social comparisons and societal instability. The
conditions under which an allocation is stable when we rank ourselves in a social network,
however, is under explored in the literature.

This paper studies the following question: when we care about our local ranking in a
social network, which network structures permit stable allocations? Specifically, we consider
a model in which agents’ payoffs depend solely on their wealth rankings among neighbors
in a given social network. A revolution brings about a reshuffling of social rankings by
changing allocations, and needs the support of at least ↵ fraction of the population. An
agent underwrites a revolution if it strictly betters his or her ranking. We say an allocation
is stable if no revolution is possible.

We find the only network feature that matters is the size of independent set1. Specifically,
a network permits stable allocations if and only if the network has an independent set of
size at least 1 � ↵ fraction of the population. For example, when we use simple majority
voting, i.e., ↵ = 1/2, bipartite networks, star networks, rings with even nodes, core-periphery
networks etc., all permit stable allocations. Whereas complete networks, rings with odd
nodes, etc., don’t permit stable allocations.

Independent set arises in the picture exactly because of network-based comparisons. Since
agents care about their ranking among their neighbors, stable allocation requires that there
are enough people that have high ranks, and it’s only feasible when these people are not
connected. The above characterises why the existence of a large enough independent set
is necessary. To see why the condition is sufficient, suppose there are n agents in total.
When a network has an independent set of size (1 � ↵)n, an allocation such that everyone
in this independent set ranks the highest among his neighbours is stable. Such an allocation
is possible, for example, when we equally divide all the resources in the society among
the agents in the independent set, and leave nothing to the rest. In this case, agents in
the independent set have no incentive to support any revolution since they have already
achieved their best ranking, and the rest do not have enough votes to overthrow the current

1An independent set in a network is a set of vertices such that no pair of vertices in the set are connected
to each other.
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allocation.
This simple sufficient and necessary condition allows us to analyze comparative statics

that examine which classes of networks are more permissive, in the sense of permitting stable
allocations for a larger set of ↵’s. To answer this question, we work with Erdős–Rényi (E-R)
random networks.2 For although finding the size of the largest independent set – the indepen-
dence number – is a classical N-P hard problem for a given network, from the mathematical
literature (e.g., Frieze (1990)), we know that one can pin down the independence number
almost surely when the network is large enough. The independence number normalized by
the population n captures the level of permissibility of a class of random networks. We say
the higher the level of permissibility, the more permissive a network is.

We have the following comparative statics results: First, given the linking probability
p, larger random networks are less permissive. This is because the size of an E-R random
network’s largest independent set increases at a much slower rate than the expected degree
of the network, which is proportional to size of the network n. Second, more connected
networks, i.e., networks with a higher p, are less permissive, given the population size n.
Intuitively, having more links reduces the size of independent sets by definition. And lastly,
the level of permissibility does not vary once the expected degree is fixed.

Above results have interesting implications. For example, the second comparative static
result sheds light on how the development of social media, the increase in the transparency
of information, etc., would affect the stability of allocations. Specifically, we can interpret
links in our model to be informational. That is, an agent can only observe the allocations
of her neighbors’, and then compare with them. In this case, the development of internet or
social media essentially makes the network more connected (i.e., a larger p), and hence less
likely to permit any stable allocations.

And the last comparative result mentioned above implies that whether a network is
segregated or integrated, won’t affect the level of permissibility, if the average degree is
the same for the two types of networks. Specifically, we compare an integrated type of
Erdős–Rényi random networks G(n, p), to a segregated type networks that are constituted
by k isolated subgroups G(n/k, kp), i.e., each of which is densely linked within group but
not across. In the above comparison, both networks have the same level of permissibility,
for their expected degree is the same d = np.

Another ubiquitous pattern in social networks is homophily – the phenomena that people
link with similar others. It’s then natural to ask how would homophily affect the level of
permissibility of a social network. A natural way to model homophliy is using the regular ring
lattice. We find that homophilous networks are less permissive than Erdős–Rényi random

2Erdős–Rényi random networks G(n, p) are such networks that each has n agents, and any pair of agents
is linked independently with probability p.
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networks that are of the same expected degree.
We also generalize our models in the following directions. The first concerns the blocking

coalitions. In our baseline model, they must be of size at least ↵ fraction of the population.
We extend our results to arbitrary blocking coalitions and provide a similar necessary and
sufficient condition there: the existence of an independent set whose intersection with any
blocking coalition must be non-empty. Secondly, we consider what happens if networks are
directed, which cover important applications such as Twitter. We obtain a parallel necessary
and sufficient condition in this case: a directed network permits stable allocation if and only
if it has a subgroup of size at lease (1�↵)n that is acyclic. The third extension concerns an
alternative problem in which agents’ preferences are only based on comparing to strangers
instead of to neighbors. In that case, the size of largest clique,3 rather than independent
set, determines whether networks permit stable allocations. Our last extension studies cases
in which agents are insensitive to small differences in allocations, such that an agent feels
ranked lower than another only if the difference in their allocations exceeds certain threshold.

The rest of the paper is organized as follows. Section 2 discusses related literature. Section
3 presents the model. Section 4 presents the main results: 4.1 characterizes a necessary
and sufficient condition for permissive networks, then 4.2 investigates several comparative
statics based on random networks. Section 5 generalizes the framework to allow for arbitrary
blocking coalitions (defined as “group stability” in Demange (2004)). Section 6 discusses two
extensions. Section 7 concludes.

2 Related Literature

Economists have long-recognized the importance of social comparison. Classical discussion
goes back to Veblen (1899)’s critique on conspicuous consumption. More recently, Tideman,
Frijters and Shields (2008) use relative income concerns to explain the Easterlin puzzle: the
observation that average happiness has remained constant over time despite sharp rises in
GNP per head. Postlewaite (1998) discusses the socio-economico and evolutionary basis for
why people care about relative ranking. Rayo and Becker (2007) show that utility function
in relative terms is favored by evolution under certain physical constraints.

There are further evidences imply that people’s comparisons are usually local. That is, we
compare with a certain reference group: our friends, neighbors, colleagues, ect., rather than
comparing with the whole population. See, for instance Festinger (1954); Frank (1985a,b);
Van de Stadt, Kapteyn and Van de Geer (1985); Luttmer (2005); Kuhn et al. (2011). Mo-
tivated by such findings, there are a few theoretical papers that study the impact of local
comparisons. Ghiglino and Goyal (2010), for example, examine what happens to equilibrium

3A subset of agents M ⇢ N consists of a clique of network g, if gij = 1, 8i, j 2 M .
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price, allocation and welfare when individuals’ utility depends negatively on consumption of
their neighbors. They find that centrality matters for equilibrium prices and consumption.
Immorlica et al. (2017) also study local comparisons, with a focus on “upward looking” com-
parisons, i.e., individuals are only negatively affected by neighbors whose consumption is
higher than theirs. They study how does “upward-looking” comparison affect agents’ costly
action decision. Bloch and Olckers (2018) studies mechanisms that rank agents based on
peer rankings. Although above papers and ours all study ranking and (local) comparisons
based on social network settings, our focus is completely different. They are interested in
either market equilibrium or strategic decisions, whereas we focus on stable allocations.

Our paper is closely related to the literature that studies stable allocations in social
networks. Demange (2004) and Kets et al. (2011) are most related among these papers. We
provide a new perspective to this the literature in terms of the meaning of network: in those
papers, network captures the structure of communication and/or coordination, whereas in
ours the network shapes preferences via defining agents’ reference groups.

The seminal papers Erdos and Rényi (1959, 1960) laid the foundation for random graphs.
There is a mathematical literature exploring the clique number and chromatic number on
random networks (see Grimmett and McDiarmid (1975); Bollobás and Erdös (1976); Bollobás
(1988); and surveys by Bomze et al. (1999); Pardalos and Xue (1994)). This literature
provides useful tools for our analysis on random networks.

Finally, our “↵-stability” is different from the stability concept introduced in the network
formation literature (see Jackson (2005); Demange and Wooders (2005); Jackson (2008);
Goyal (2007); Mauleon and Vannetelbosch (2015) for useful surveys). Rather, it is related
with the core concept in cooperative game theory (e.g., Aumann and Dreze (1974) and
Myerson (1977)). The key differences of our paper and the previous are in how we define
blocking coalitions and that we study comparison-based preferences.

3 Model

Agents N = {1, . . . , n} are located on a network g 2 G(N). The network is undirected and
unweighted: gij = gji = 1 if agents i and j are neighbors, otherwise gij = gji = 0. We set
gii = 0. We also use g to denote the collection of its links, i.e., g = {ij | i, j 2 N, gij = 1}.
Let Ni(g) = {j | gij = 1} be the set of i’s neighbors.

An allocation w 2 Rn assigns each agent i a wealth wi. Each agent i only cares about his
or her local ranking, i.e., how wi is ranked among the wealth of i’s neighbors wNi . Formally:

Definition 1 (Local ranking) Given a network g and an allocation w, i’s local ranking
is

ri(w) ⌘ #{j 2 Ni(g)|wj � wi}+ 1
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Definition 2 (Preference) Given a network g, a preference vector �⌘ (�1, . . . ,�n) is
defined as:

w
0 �i w iff ri(w

0) < ri(w)

Therefore, an agent i strictly prefers an allocation w
0 to w if i has a strictly better local

ranking under w
0 than under w.4

Definition 3 (↵-Stable allocations) An allocation w is stable on network g w.r.t. ↵-
majority voting, or ↵-stable for short, if there exists no alternative w

0, such that w0 �i w for
strictly more than ↵ · n agents.

We note several things here. First, one can easily imagine there are certain costs involved
in voting or rising up for a revolution. This provides justifications for why we say an agent
is for a revolution only if his social ranking is strictly improved under alternative allocation.
Secondly, we don’t have to interpret our setting literally as voting on wealth redistribution.
In reality, we vote on intermediate policies such as provision of public goods, location of a
school, etc., which in the end have payoff consequences.

Example 1 Consider ↵ = 1
2 , i.e., simple majority voting is employed to revoke a default

allocation. Figure 1 presents an allocation w that is not stable on the given network. The
three agents colored purple strictly improves their social rankings under the alternative, and
hence strictly prefer w

0 to w. As a result, w is not stable on g.

(a) Default allocation w (b) Alternative allocation w0

Figure 1: An example of a network and a default allocation that are not 1
2 -stable. The two

panels present default (left) and alternative (right) allocations respectively, with local social
rankings, r0is, in brackets.

4A tie with others in the x-th position is viewed strictly worse than being in the x-th position by oneself.
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We note that an alternative need not affect everyone’s allocation. Instead, it may change
only a few agents’ allocations, while still have a large impact on relative rankings. In Figure
1, compared to the default allocation w, the alternative w0 only change the allocations for the
bottom two agents (by swapping their allocations); however, it changes the relative rankings
for almost everyone (except the top agent).

Definition 4 (↵-Permissive networks) A network g permits ↵-stable allocation, or is
↵-permissive for short, if there exists any ↵-stable allocation on g.

We can interpret the networks in our model in various ways. For example:

• Acquaintance networks: in such networks agents compare only with their acquain-
tances, such as friends, colleagues, neighbors, etc. It could be driven by our preferences,
like we only care about those people.

• Cohort networks: agents in these networks compare with people in the same cohort,
classified by income, age, education, etc. Sometimes we consider people from the same
cohort comparable.

• Information networks: since our information regarding others’ income is limited, it
also makes sense to compare only with those whose income information is available.
In such networks, each agent only observes the allocation(s) of a subset of others, and
she only compares to those who she can observe.

• Tournament networks: in these networks, linked agents compete for resources.Allocations
may be interpreted as current endowments that are essential for the competition, and
the network captures the subset Ni that i competes against.

Some of the above situations can be better captured in the extensions of this paper. For
instance, Section 6.1 analyzes directed networks, which may be a better fit to the information
based interpretation. Section 6.2 explores the case in which agents do not care about the
rankings among neighbors, and only compare to non-friends.

4 Main Results

This section presents main results. We first provide a sufficient and necessary condition that
characterizes permissive networks. Armed with such a clean condition, we will then turn to
the questions like “how permissive a network is”, and “which network structures tend to be
more permissive”.
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4.1 A Sufficient and Necessary Condition for Permissive Networks

Now we characterize permissive networks. We first present the following key definition:

Definition 5 (Independent Set) A subset of agents M ⇢ N consists of an independent
set of network g, if gij = 0, 8i, j 2 M .

An equivalent definition is that g|M is an empty network, where g|M ⌘ {ij 2 g | i, j 2 M}
is the network induced by M .

We observe that having a large enough independent set suffies to deliver a permissive network.
This is persented in the following lemma.

Lemma 1 (↵-Permissive Networks) A network g is ↵-permissive if g has an independent
set of size at least (1� ↵)n.

Proof of Lemma 1: Suppose M is an independent set of g and |M | � (1 � ↵)n. The
allocation w

⇤ s.t. w
⇤
i = 1{i 2 M} is stable on g w.r.t. ↵-majority voting. This is because

any agent i 2 M is ranked the 1-st among his/her neighbors, hence none of the agents in
M strictly prefer any alternative w

0 to w
⇤. As a result, the number of agents that may vote

against w
⇤ is at most ↵n. By Definition 8, w⇤ is ↵-stable on g and hence g is ↵-permissive.

The lemma follows a simple intuition: a large enough independent set implies that there
are a large group of people who do not compare with each other. As a result, any allocation
that concentrates resources to those people would be stable, as these people would all be
happy enough such that they would never vote for any alternative.

While the above condition may seem straightforward, we next show that it is not only
sufficient, but necessary.

Theorem 1 (↵-Permissive Networks) A network g is ↵-permissive if and only if g has
an independent set of size at least (1� ↵)n.

Proof of Theorem 1:
“If ” was presented as Lemma 1.
“Only if ”: Suppose g is ↵-permissive so that there exists some allocation w that is ↵-stable
on g. Now we label the nodes as follows:

0. Let li = null for all i.

1. Pick i 2 argmaxj s.t. lj=null wj, let li = 1.

2. Let li = 0 if li = null and i is a neighbor of some j with lj = 1.
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3. Repeat steps 1 and 2 until all agents are labeled with 0 or 1.

Denote Mk = {j 2 N | lj = k}, k = 0, 1, we have M1

S
M0 = N and M1

T
M0 = ;.

Consider an alternative allocation w
0 s.t. w

0
i = wi if i 2 M0 and w

0
i = w if i 2 M1, for some

w < mini2Nwi. By construction, all agents in M0 strictly prefers w
0 to w: under w, every

i 2 M0 has a neighbor j 2 M1 such that wi  wj; whereas under w’, the relative ranking
among agents in M0 remain the same, and everyone in M0 has a strictly higher allocation
than everyone in M1.

Therefore, the fact that w is ↵-stable on g implies |M0|  ↵n, and hence |M1| � (1�↵)n.
Finally notice that M1 is an independent set of g: by construction, any i 2 M1, all i’s
neighbors are labeled with 0. Hence any pair of agents in M1 are not neighbors to each
other.

We have constructed M1, an independent set of g and its size is at least (1� ↵)n.

The above necessary and sufficient condition provides a clean characterization of permis-
sive networks. Armed with this clean condition, we next explore “how permissive a network
is”, i.e., the level of permissibility, and compare across networks to see which network is more
permissive than another.

Definition 6 (Level of Permissibility) The level of permissibility s(g) for a network
g 2 G(N) is defined as following:

s(g) ⌘ S(g)

n

To see why the above is a proper definition for the level of permissibility, it follows from
Theorem 1 that a network is ↵-permissive for any ↵ � 1� s(g), and therefore a larger s(g)

implies that the network is ↵-permissive for a larger set of ↵’s.
The following corollary then follows immediately from Theorem 1:

Corollary 1 (Monotonicity) Consider g, g
0 2 G(N) s.t. g

0 ⇢ g, then s(g0) � s(g).
Moreover, 8↵ 2 (0, 1):

• If g is ↵-permissive, then g
0 is ↵-permissive;

• If g0 is not ↵-permissive, then g is not ↵-permissive.

Example 2 Consider ↵ = 1
2 , i.e., simple majority voting is employed to revoke a default

allocation. We present several stylized networks that are permissive, and that are not per-
missive, respectively.

• The following networks are 1
2-permissive: bipartite networks, stars, rings with even

nodes, networks that are included by any of the above.
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• The following networks are not 1
2-permissive: complete networks, rings with odd popu-

lation n, and networks that includes any of the above.

Up to now, we have shown that the only network feature that matters for stable allo-
cations is the size of independent set. This implies that to explore the question of whether
a network permits stable allocations, it suffices to study the size of its largest independent
set(s), i.e., the independence number. However, one challenge we face is that for an arbitrary
network, finding its independence number is a classical NP-hard problem.5 Fortunately, for
random networks, we can pin down their independence numbers almost surely.

4.2 Comparative statics: which networks are more permissive?

In this part, we are interested in the following questions: are larger networks more permis-
sive than smaller networks? How about connected networks compared to sparse networks?
How would segregated networks compare with integrated networks? And lastly, are more
homophilous networks more permissive? We provide answers to these questions for a basic
set of networks: Erdős–Rényi random networks.

Erdős–Rényi random networks.
Consider a class of random networks, G(n, p), such that there are n agents and any link

ij appears with a probability of p, i.i.d. across links. We aim to explore which classes of
random networks are more permissive than another. We first provide an approximation for
the size of the largest independent set of random graphs G(n, p). This result is proved by
Frieze (1990), and for convenience, we state the result below as Lemma 2.

Let S(n, p) denote the independence number of a random graph G(n, p), we have the
following:

Lemma 2 (Frieze (1990)) Let d = np and " > 0 be fixed. Suppose d✏  d = o(n) for some
sufficiently large d✏. Then

����S(n, p)�
2n

d
(ln d� ln ln d� ln 2 + 1)

���� 
"n

d

with probability going to 1 as n ! 1.

Therefore, we can define the level of permissibility of E-R random graphs based on the
above approximation and Definition 6. Specifically, it is the ratio between the independence
number of G(n, p) and the size of the graph.

5See, for instance, Bomze et al. (1999) and papers cited therein.
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Definition 7 The level of permissibility of E-R random graphs G(n, p) is

s̃(n, p) ⌘ 2

d
(ln d� ln ln d� ln 2 + 1),

in which d = np.

We are now ready to answer the questions posted at the beginning of this part. In
particular, we will provide a series of comparative statics based on the above approximation
and definition.

Proposition 1 (Comparative Statics) For E-R random networks G(n, p), the level of
permissibility s̃(n, p):

1. decreases in n, given any p 2 (0, 1);

2. decreases in p, given any n;

3. is constant in n or p, given the expected degree d = np.

The above results come directly from Definition 7 and we omit the proof here. The first
point implies that for given p, the larger the network is, the less likely that it will permit stable
allocations. This is because the size of an E-R random network’s largest independent set
increases at a much slower rate than the expected degree of the network, which is proportional
to size of population n. Also, from the second point, the more connected a network is, the less
permissive it becomes. Intuitively, as p increases, the network becomes more connected, and
the size of the largest independent set would decrease. This can be viewed as a counterpart
to Corollary 1 for random graphs. Lastly, when the expected degree d is fixed, the size or
the connectedness of a network does not affect its level of permissibility s̃(n, p), because in
this case, s̃(n, p) will only depend on the expected degree.

Segregation and permissibility We have seen how would the size and connectedness
of a network affect its level of permissibility. The next natural question is whether more
segregated networks are more permissive or not. To answer this question, consider the
following two types of random networks, both of which have a total size n and expected
degree d = np:

G1: Integrated networks, with one group of size n: G1 = G(n, d/n).

G2: Segregated networks, with K isolated groups, whose sizes are n1, . . . , nK such that
n1 + . . . + nK = n. Only within group pairs will be linked, with i.i.d. probability
pk = d/nk among members in group k. That is, G2 consists of the union of K random
networks {G(nk, d/nk)}k=1,...,K . Assume all nk’s are big enough.
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In other words, we consider an extreme pattern of segregation such that a network consists
of several isolated subgroups, each of which is more connected within. We always compare
networks that have the same expected degree. However, once we have the expected degree
fixed, we can see immediately from point 3 of Proposition 1 that the segregation pattern
won’t affect how permissive a network is.

Proposition 2 (Irrelevance of Segregation) Let the expected degree d be fixed. For
large enough n = n1 + . . . + nK, the integrated networks and the segregated networks have
the same level of permissibility.

That is, if the integrated and segregated networks have the same expected degree, then
the level of permissibility will not be affected by the number of segregated groups or the way
those groups are divided, as long as each group has large enough population.

However, if one would think that the segregation patterns would also affect the expected
degree, then how permissive a network is would not be immune to integration/segregation.
For example, if segregated networks also have a higher expected degree, then we would have
the result that the more segregated networks are less permissive than integrated networks
are.

Homophily and permissibility Homophily is the pattern that individuals tend to inter-
act more with others that are similar to themselves. It is an epidemic in social networks and
is of great social and economic importance (see McPherson, Smith-Lovin and Cook (2001)
for an overview). We explore the following question in this part: are homophilous networks
more permissive than say random networks? In an attempt to answer this question, we
consider the following example.

Example 3 (Regular Ring Lattices (Watts and Strogatz (1998))) n individuals are
placed on a ring, in the order of 1, 2, . . . , n. Suppose d is even and each individual is linked
to the d closest others: d/2 on each side. The size of the largest independent set(s) is
approximately n/(0.5d+ 1) and therefore:

s
regular-ring-lattice(d) ⇡ 1/(0.5d+ 1)

12



Figure 2: A regular ring lattice with d = 4. Solid green dots consist of one (largest)
independent set.

Proposition 3 (Homophilous Networks are Less Permissive) As n approaches in-
finity, for large enough even d, a regular ring lattice with degree d is less permissive than
Erdős–Rényi random networks G(n, p) with d = np.

Proof of Proposition 3 We aim to show that 2
d(ln d � ln ln d � ln 2 + 1) > 1/(0.5d + 1).

LHS�RHS = 2
d(f(d)+

2
d+2) >

2
df(d), in which f(d) ⌘ ln d� ln ln d� ln 2 is always positive

for d > 2 because f increases in d and f(2) = � ln ln 2 ⇡ 0.36 > 0

5 Group Stability: General Sets of Blocking Coalitions

In our baseline model, each agent has one vote, and any coalition that has at least ↵n votes
could overthrow current allocation. In reality, agents might have heterogenous (political)
power. Moreover, the restriction on blocking coalition might be more general than its size.
For example, suppose only connected agents are able to coordinate their votes/revolt. To
capture above situations, we need a more general definition of blocking coalition.

Specifically, we call a subset of agents C ⇢ N a potential blocking coalition if the agents
are powerful enough to propose any alternatives to replace the default allocations. Let
C ⇢ 2N be the collection of all potential blocking coalitions. We define the stability notion
accordingly:6

Definition 8 (C-Stable allocations) An allocation w is C-stable on network g, if there
exists no potential blocking coalition C 2 C and alternative allocation w

0, such that

w
0 �i w, 8i 2 C

6This concept was introduced as “group-stability” in Demange (2004), who focuses on super-additive
games. Our setting can be viewed as non-transferable-utility (NTU) games without super-additivity. We
thank Gabrielle Demange for pointing out this linkage.
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Definition 9 (C-Permissive networks) A network g permits C-stable allocation, or is
C-permissive for short, if there exists any C-stable allocation on g.

The definitions of ↵-stability/permissibility in previous sections are special cases of the
above notions. To see this, let C↵ ⌘ {C | |C| � ↵n} be the collection of all coalitions that
each includes at least ↵n agents, then C↵-stability is equivalent to ↵-stability.

Theorem 2 (C-Permissive Networks) Given a collection of potential blocking coalitions
C ⇢ 2N , a network g is C-permissive if and only if there exists an independent set M(g) on
g, such that

M(g)
\

C 6= ;, 8C 2 C.

[See Appendix for proof.]
The above theorem shows that the key to C-permissivity is the existence of an expansive

enough independent set, so that it intersects every potential blocking coalition C 2 C. As
a special case, when C↵ ⌘ {C | |C| � ↵n}, the existence of a big enough independent set
is sufficient to permit stable allocations, because the number of supporters is the only thing
that matters in this case.7

6 Two Extensions

In this section, we consider two extensions of our previous model. The first extension gen-
eralizes our model to directed networks. The second extension concerns comparisons with
strangers instead of friends. We derive similar necessary and sufficient conditions for per-
missive networks for each of the two extensions.

6.1 Directed Networks

Up till now, we have studied undirected networks only. However, there are situations that
are better captured by directed networks. For instance, people need not follow their followers
in Twitter. Also, an agents’ wealth is not observable to all, and this relationship of observing
each other’s wealth needs not be reciprocal.

So in this part, we extend our model to directed network and characterize a similar
necessary and sufficient condition. Specifically, let gij = 1 if i compares to j’s wealth, and 0

otherwise. A network g is directed such that gij = 1 does not imply gji = 1. Each agent i

ranks herself among her (outgoing) “neighbors” N
out
i (g) ⌘ {j | gij = 1}, i.e., whose wealth i

7Notice that the independent set I(g) mentioned above need not be the largest independent set. In
addition, given the same network g, it could be different independent sets for different C.
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pays attention to. Whereas N
in
i (g) ⌘ {j | gji = 1} is the set of i’s incoming neighbors, who

compares to i. The stability and permissibility notions are defined similarly as before, with
the modified concept of social ranking (based on outgoing neighbors).

Definition 10 (Path) A (directed) path in a network g is a sequence of links i1i2, ..., iK�1iK

such that ikik+1 2 g for each k 2 {1, ..., K � 1}.

Definition 11 (Cycle) A (directed) cycle in a network g is a path i1i2, ..., iK�1iK such
that i1 = iK. A network is acyclic if it contains no cycles.

Theorem 3 (↵-Permissivity for Directed Networks) A network g is ↵-permissive (or
permissive w.r.t. ↵-majority voting) if and only if there exists M s.t. |M | � (1 � ↵)n and
g|M is acyclic.

6.2 Comparing to Non-Neighbors

We have assumed that agents only compare with their neighbors on the network. This part
explores the opposite case: what if agents only rank themselves against those to whom they
are not linked, i.e., strangers? For example, this could happen when one doesn’t care about
their ranking against their friends, for they have internalized friends’ payoff to some extent.

Our model can be readily applied to this setting. In particular, i’s local ranking is re-
defined as following:

eri(w) ⌘ #{j /2 Ni(g)|wj � wi}+ 1,

so that preference and ↵-permissibility are defined based on er.
The following theorem characterizes the sufficient and necessary condition for ↵-permissive

networks when agents compare with non-neighbors. Note that the only modification from
previous condition is that it’s the size of the largest clique8 that matters, rather than the set
of the largest independent set.

Theorem 4 When agents compare to non-neighbors, i.e., ranking is defined as er, network
g is ↵-permissive if and only if g has a clique of size at least (1� ↵)n.

To see this, we first note that the network in which agents compare to strangers is
exactly the complement (definition see below) of the network in which agents compare to
friends. Then finding an independent set in a network g is equivalent to finding a clique in
its complement network g

C . Formally, we define complement network below:

Definition 12 (Complement network) A network g’s complement network is g
C ⌘

{ij | ij /2 g, i, j 2 N}.
8A subset of agents M ⇢ N consists of a clique of network g, if gij = 1, 8i, j 2 M .
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Lemma 3 (Independent Set and Clique) M is an independent set of a network g 2
G(N), if and only if N \M is a clique of the complement network g

C.
For E-R random networks, the size of the largest independent set in a network g 2 G(n, p)

is equal to the size of the largest clique in its complement gC 2 G(n, 1� p).

This Lemma make Theorem 4 an immediate corollary to Theorem 1.

7 Conclusion

In this paper we discuss the following question: when people care about their wealth ranking
among neighbors, what networks allow for stable allocations? We say an allocation is ↵-stable
if there are not enough agents to overthrow it, i.e., there exists an alternative which makes
more than 1�↵ fraction of the population to strictly improve their local rankings. We provide
a sufficient and necessary condition for networks that permit any ↵-stable allocations: there
exists an independent set that involve at least 1� ↵ fraction of the population.

Our comparative statics results may help us understand some reality and policy debate.
For example, one result shows that denser networks are less likely to permit stable alloca-
tions. When we interpret the link in our model to be informational, i.e., we only compare
with a group of people because our knowledge regarding others’ wealth is limited. Then when
information becomes more transparent, e.g., with the development of social media, our pre-
diction is that our society may become less stable. In addition, we show that networks are
less likely to permit any stable allocation when they become more homophilous. Our result
also shows that once the expected degree of a random graph is given, then whether a network
is segregated or integrated would not affect whether the network permits stable allocations.

There are many interesting and important questions that are left to future work. For
example, one could use our framework to incorporate strategic decisions such as investment,
effort or consumption decisions. Moreover, one can endogenize the network formation. In
our current setting, one’s reference group is given, an interesting question is when people
care about local ranking, how would they choose their reference group.
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A Appendix: Omitted Proofs

A.1 Proofs of Theorem 2.

“If ”: Suppose M is an independent set of g and M
T

C 6= ;, 8C 2 C. Any allocation w
⇤

s.t. w
⇤
i = 1{i 2 M} is C-stable on g. This is because any agent i 2 M is ranked the 1-st

among his/her neighbors, and therefore would not (strictly) prefer any alternative allocation.
Formally, for any C 2 C, there is always some non-empty set, such that w

0 �i w does not
hold for any i 2 M

T
C and any w

0. By Definition 8, w⇤ is C-stable on g and hence g is
C-permissive.

“Only if ”: Suppose g is C-permissive so that there exists some allocation w that is C-stable
on g. Now we label the nodes as follows:

0. Let li = null for all i.

1. Pick i 2 argmaxj s.t. lj=null wj, let li = 1.

2. Let li = 0 if li = null and i is a neighbor of some j such that lj = 1.

3. Repeat steps 1 and 2 until all agents are labeled with 0 or 1.

Denote Mk = {j 2 N | lj = k}, k = 0, 1, we get a partition the population: M1

S
M0 = N

and M1

T
M0 = ;. Consider an alternative allocation w

0 s.t. w
0
i = wi if i 2 M0 and w

0
i = w

if i 2 M1, for some w < mini2Nwi. By construction, all agents in M0 strictly prefers w
0 to

w: under w, every i 2 M0 has a neighbor j 2 M1 such that wi  wj; whereas under w’, the
relative ranking among agents in M0 remain the same, and everyone in M0 has a strictly
higher allocation than everyone in M1.

Therefore, the fact that w is C-stable on g implies that for every C 2 C, C * M0, i.e.
C
T

M1 6= ; as M1 = N \ M0. Finally notice that M1 is an independent set of g: by
construction, any i 2 M1, all i’s neighbors are labeled with 0; hence any pair of agents in
M1 are not neighbors to each other.

We have constructed M1, an independent set of g and it intersects every C 2 C.

A.2 Proofs of Theorem 3.

“If ”: Suppose there exists M ⇢ N such that g|M is acyclic and |M | � (1� ↵)n. We aim to
find an allocation w

⇤ such that ri(w⇤) = 1, 8i 2 M .
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Recall N out
i (g) [N in

i (g)] consists of i’s direct outgoing [incoming] neighbors. Let eN out
i (g)

[ eN in
i (g)] be the sets of i’s indirect outgoing [incoming] neighbors. Formally,

eN out
i (g) ⌘ {j | there is a path from i to j on g}; and eN in

i (g) ⌘ {j | there is a path from j to i on g}.

The following observation is a key to the proof:

g is acyclic =) eN out
i (g)

\
eN in
i (g) = ;, 8i.

Otherwise, if j 2 eN out
i (g)

T eN in
i (g), there exists a path from i to j and a path from j to i,

and they combined together is a path from i to j then back to i, i.e., a cycle.
Now we are ready to assign values (allocations) to agents, first to agents in set M , then

for those outside.

1. For every i 2 M that is isolated on g|M , let w
⇤(i) = 0.5.

2. For every i 2 M s.t. eN out
i (g|M) = ; and w

⇤(i) 6= 0, let w
⇤(i) = 1.

3. For every i 2 M s.t. eN in
i (g|M) = ; and w

⇤(i) 6= 0, let w
⇤(i) = 2.

4. Pick any agent i 2 M that is not assigned a value yet. Let

B(i) ⌘ {j 2 M | w⇤(j) is defined before w
⇤(i)},

w
⇤(i) ⌘ 0.5

 
max

j2 eNout
i (g|M )

T
B(i)

w
⇤(j) + min

j2 eN in
i (g|M )

T
B(i)

w
⇤(j)

!
,

in which the max and min are calculated based on the j’s whose values are already
assigned.9

5. Repeat Step # 4 until all agents in M are assigned a value under w
⇤.

6. Finally, for every i /2 M , let w
⇤(i) = 0.

Now we aim to show a key property: for every i 2 M whose value is defined in above
step # 4 (or 5)

max
j2 eNout

i (g|M )
T

B(i)
w

⇤(j) < min
j2 eN in

i (g|M )
T

B(i)
w

⇤(j). (1)

9 Notice that the max and min are well defined given g|M is acyclic: there exist j1 2 eNout
i (g|M ) and

j2 2 eN in
i (g|M ), s.t. w⇤(j1) = 1 and w⇤(j2) = 2.

To see this: i is not assigned a value yet implies that eNout
i (g|M ) 6= ; and eN in

i (g|M ) 6= ;. The non-
emptyness for indirect neighbors implies the same for direct neighbors, and therefore there exist i0 and i00

s.t. i0i, ii00 is a path on g|M . It follows from the acyclicity of g|M that extending the path i0i, ii00 forward
[backward] will eventually reach some agent j1 [j2] with eNout

j1 (g|M ) = ; [ eN in
j1 (g|M ) = ;]. By construction j1

and j2 are not isolated on g|M , so their values are 1 and 2 respectively.
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And as a result,

w
⇤(i) 2

 
max

j2 eNout
i (g|M )

T
B(i)

w
⇤(j), min

j2 eN in
i (g|M )

T
B(i)

w
⇤(j)

!
⇢ (1, 2) (1a)

We prove (1) using the mathematical induction, w.r.t. the order in which i is defined.
For the first i defined in step # 4, maxj2 eNout

i (g|M )
T

B(i) w
⇤(j) = 1 because all those w

⇤(j)’s
are defined in step #2, and maxj2 eNout

i (g|M )
T

B(i) w
⇤(j) = 2 because all those w

⇤(j)’s are
defined in step #3. Therefore, eq. (1) holds.

In addition, pick any i, suppose eq. (1) holds for all j’s whose values are defined before i.
We aim to show that (1) also holds for i. Suppose not, then there would exist j1, j2 2 B(i),
such that j1 2 eN out

i (g|M), j2 2 eN in
i (g|M), and w

⇤(j1) � w
⇤(j2). It follows the definitions of

eN out
i and eN in

i that there exist a path from j2 to i and a path from i to j1, which combined
together becomes a path from j2 to j1 (all on g|M). Hence j1 2 eN out

j2 (g|M) and j2 2 eN in
j1 (g|M),

and therefore w
⇤(j1) � w

⇤(j2) implies that (1) is violated for either j1 or j2 (the one whose
w

⇤ is defined earlier). A contradiction.
Thus we concluded the proof of eq. (1).

The last piece of proof of the “if” part is to show that for every i 2 M , ri(w⇤) = 1. Notice
that if i 2 M and j /2 M , then w

⇤(i) � 0.5 w
⇤(i) � 0.5 > 0 = w

⇤(j).
Therefore it suffices to show for all i, j 2 M s.t. j 2 eN out

i (g)

w
⇤(j) < w

⇤(i) (2)

If w
⇤(i) is defined in steps #1 or #2, then eN out

i (g|M) = ;, so that (2) automatically
holds.

If w⇤(i) is defined in step #3, then j 2 eN out
i (g) is defined in steps 4 or 5, and therefore

(2) is implied by (1a).
Finally, consider the case that w

⇤(i) is defined in step #4 (or 5). If j 2 B(i) i.e. w
⇤(j)

is defined before w
⇤(i), then it follows from eq. (1a) (for i) that

w
⇤(j)  max

j02 eNout
i (g|M )

T
B(i)

w
⇤(j0) < w

⇤(i)

Otherwise, w⇤(j) is defined after w
⇤(i), so also in step#4 (or 5). Then it follows from eq.

(1a) (for j) that
w

⇤(j) < min
j02 eN in

j (g|M )
T

B(j)
w

⇤(j0) < w
⇤(i)

This concludes the proof of the “if” part.

“Only if ”: Suppose g is ↵-permissive so that there exists some allocation w that is ↵-stable
on g. Now we label the nodes as follows:
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0. Let li = null for all i.

1. Pick i 2 argmaxj s.t. lj=null wj, let li = 1.

2. Let li = 0 if li = null and i 2 N
out
j for some lj = 1.

3. Repeat steps 1 and 2 until all agents are labeled with 0 or 1.

Denote Mk = {j 2 N | lj = k}, k = 0, 1, we have M1

S
M0 = N and M1

T
M0 = ;.

Consider an alternative allocation w
0 s.t. w

0
i = wi if i 2 M0 and w

0
i = w if i 2 M1, for some

w < mini2Nwi. By construction, all agents in M0 strictly prefers w
0 to w: under w, every

i 2 M0 has a neighbor j 2 M1 such that wi  wj; whereas under w’, the relative ranking
among agents in M0 remain the same, and everyone in M0 has a strictly higher allocation
than everyone in M1.

Therefore, the fact that w is ↵-stable on g implies |M0|  ↵n, and hence |M1| � (1�↵)n.
Finally notice that g|M1 is acyclic: by construction, 8i1, i2 2 M1 such that i1 is labeled before
i2, we have i2 /2 N

out
i1 . That is to say, 8i, j 2 M1,gij = 1 implies that j is labeled before i,

and hence gji = 0.
We have constructed a set M1, whose size is at least (1� ↵)n, and g|M1 is acyclic.
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