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1 Introduction

In the US equity market, price discovery is driven by the trading activity of active investors

— for every $1 in trades based on a passive index strategy, active stock selectors trade

approximately $22.1 Active asset management involves making decisions not only about

portfolio allocation, but also about information acquisition. While it is difficult to observe

investors’ information choices, a large literature provides insight regarding the impact of these

choices on investor performance by analyzing observable outcomes such as portfolio holdings

and investment returns.2 These outcomes are functions of an investor’s ability and decision

to acquire and use information. In contrast, less is known about the impact of information

choices on outcomes for the underlying assets.

In this paper, I investigate the collective role of investors’ learning decisions in determining

the cross section of expected risk and return. Rather than attempt to directly measure what

investors know, I rely on a theory that predicts which assets a rational investor would choose

to learn about. Van Nieuwerburgh and Veldkamp (2010) present a rational expectations

general equilibrium model in which investors are able to reduce uncertainty about the future

payoffs of certain risky assets before making investment decisions. The model generates

predictions regarding the relationships between aggregate learning, uncertainty, and expected

returns. First, learning about an asset results in lower uncertainty or risk — an increase in

information corresponds to more precise conditional expectations of future payoffs. Second,

learning about an asset results in a lower expected return — given an average information

signal, risk-averse investors prefer to hold assets that they know more about. Finally, the

model delivers a prediction about information choices through a measure called the learning

index (LI). The learning index represents the expected benefits of learning about a given

asset, and is increasing in prior expected returns, expected holdings of the asset, and expected

pricing errors. In equilibrium, higher values of the learning index correspond to a greater

degree of learning.

1“Viewpoint: Index investing supports vibrant capital markets,” BlackRock, October 2017.
2For example, see Grinblatt and Titman (1989), Wermers (2000), Kosowski, Timmermann, Wermers, and

White (2007), Kacperczyk, Sialm, and Zheng (2008), and Cremers and Petajisto (2009).
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The objective of this paper is to test these predictions by empirically estimating the

learning index. The conclusions from these tests have direct implications for empirical asset

pricing. Most pricing models used by academics and practitioners do not account for the

ability of investors to reduce the risk of particular assets by learning. This omission leads to

patterns in pricing errors that can be predicted by the learning index. The use of the learning

index to measure information choices has a number of additional advantages. Estimating the

learning index only requires historical return data. As such, this methodology can be applied

to any market or set of assets for which return history is available and for which information

acquisition is an important component of price determination. Furthermore, the fact that the

learning index is derived from theory facilitates interpretation of the measure — the empirical

learning index reveals which assets are most valuable to learn about. In addition, unlike other

theories that rely on untestable assumptions about investors’ unobservable information sets,

the theory of Van Nieuwerburgh and Veldkamp (2010) can be tested with observable variables

— the learning index is estimated based on past returns and is used to predict cross-sectional

patterns in realized returns and risk.3

I implement a novel methodology to estimate the learning index for individual stocks at the

end of each month from 1964 to 2016. Using this measure, I first test the predicted relationship

between learning and expected returns. Univariate portfolio analyses indicate a negative

cross-sectional relationship between LI and stock returns over the following month. For

value-weighted portfolios, the average return spread between the highest and lowest quintile

portfolios sorted on LI is −0.44% per month or −5.4% per year. After adjusting portfolio

returns for exposure to the market, size, value, profitability, investment, and momentum

factors of Fama and French (2018), the difference in risk-adjusted return between the extreme

quintiles is −0.45% per month or −5.5% per year. As an alternative approach, I use Fama

and MacBeth (1973) cross-sectional regressions to examine the explanatory power of LI while

controlling for several stock characteristics that are recognized in the literature as important

predictors of future stock returns. Coefficient estimates from the multivariate regressions

3Van Nieuwerburgh and Veldkamp (2009) and Veldkamp (2011) propose this as an advantage of the theoretical
analysis of information choice.
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indicate that the difference between the stock with the highest and lowest learning index in

an average cross section is approximately −0.4% per month or −5.0% per year (all else equal).

These results support the model’s prediction that an increase in information about an asset

corresponds to a lower expected return.

Next, I evaluate the relationship between information choices and risk. Using value-

weighted quintile portfolios sorted on LI, I find that the average change in return volatility

in the following month is 3.87% lower for high LI stocks compared to low LI stocks (the

unconditional sample average change in return volatility is 1.31%). I decompose changes

in return volatility into systematic and idiosyncratic components, and find that information

choices predict cross-sectional differences in both components of risk. This result suggests

that learning about an asset reduces not only firm-specific uncertainty, but also return co-

movement with systematic risk factors. I arrive at similar conclusions using multivariate

cross-sectional regressions of next month systematic, idiosyncratic, or total volatility on LI

and a set of control variables. Taken together, these results suggest that the observed negative

cross-sectional relationship between LI and expected return derives from investors’ decisions

to reduce risk through learning.

After demonstrating the explanatory power of LI for the cross section of stock returns

and volatilities, I perform three sets of analyses to better understand the information content

of LI. First, I form value-weighted quintile portfolios based on LI and track the differences

in expected returns and changes in risk between the extreme quintiles over a long-term

horizon. If investors learn fundamental information and trade based on that information,

prices should move towards their intrinsic values and not revert in the future. The difference

in risk-adjusted monthly return between extreme LI quintiles is negative and significant for

up to five months following portfolio formation. These differences are not reversed during the

subsequent two years, suggesting that the return predictive power of LI is due to investor

learning rather than temporary price pressure or mispricing. LI also predicts differences in

volatility changes for several months after portfolio formation. The impact of learning is more

persistent for the idiosyncratic component of volatility than for the systematic component,
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consistent with the idea that LI reflects learning about firm-specific information.

Second, to test the notion that the learning index is representative of learning choices, I

investigate the contemporaneous relationship between LI and a number of variables reflecting

investor attention or information demand. Using a bivariate portfolio sorting approach to

control for the effects of firm size, I find that higher values of LI are positively associated with

abnormal trading activity, analyst coverage, forecast revisions, forecast accuracy, SEC EDGAR

filing downloads, and news reading activity on Bloomberg terminals. These relationships

provide support for the use of LI as a proxy for the learning decisions of investors.

Third, I examine the relation between LI and the information environment surrounding

quarterly earnings announcements. Learning about a firm prior to an earnings announcement

should reduce the amount of new information revealed in the announcement. After controlling

for size, I find that stocks with a higher learning index tend to have smaller market reactions

to earnings announcements and a smaller post-earnings announcement drift. High LI stocks

also experience a higher degree of abnormal trading activity in the month prior to an earnings

announcement and in the three-day window surrounding the announcement. These findings

are consistent with more information being acquired for high LI stocks and incorporated

into prices prior to earnings announcements. In sum, the results reinforce the idea that the

learning index is representative of the information choices of investors.

This paper contributes to a line of research featuring empirical applications of noisy

rational expectations equilibrium models focused on the information content of prices.4 The

theoretical models underlying these papers typically assume that information asymmetry is

exogenously determined (e.g., all investors receive a private information signal, or a certain

fraction of investors are assumed to be informed). In contrast, my empirical analysis is based

upon a model that treats information choice as endogenous and that generates predictions

4Biais, Bossaerts, and Spatt (2010) argue that prices contain information that is value-relevant to an un-
informed investor and document that a price-contingent portfolio based on ex-ante information outperforms a
passive index. Banerjee (2011) presents a model that nests the rational expectations and differences of opinion
approaches, each of which delivers contrasting predictions regarding how investors use prices. The author finds
empirical evidence indicating that investors exhibit rational expectations and condition their beliefs on prices.
Burlacu, Fontaine, Jiminez-Garcés, and Seasholes (2012) develop a measure of information precision and supply
uncertainty based on Admati (1985) and investigate its relationship with expected returns.
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regarding the effects of this choice. Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016)

construct and test a closely related model of mutual fund managers’ attention allocation and

portfolio choices. While there are a number of common themes between that model and the

model underlying my paper, these authors concentrate on identifying patterns in mutual fund

investment and performance that vary with the business cycle, whereas I focus on directly

estimating the learning index at the asset level and using it in cross-sectional analyses.

In addition, my paper adds to a literature investigating the empirical relationship between

information, expected returns, and risk. For example, Botosan (1997) finds that greater

voluntary disclosure by firms is associated with a lower cost of equity capital. Using firm

age as a proxy for uncertainty about future profitability, Pastor and Veronesi (2003) show

that firms with lower uncertainty have lower market-to-book ratios and lower volatilities.

Pan, Wang, and Weisbach (2015) find that volatility is decreasing in CEO tenure, arguing

that uncertainty is reduced over time as investors learn about CEO ability. Using SEC

Form 8-K filing frequency as a measure of information intensity, Zhao (2017) demonstrates

that information intensity reduces expected uncertainty and expected return. Each of these

studies focus on information flows that are exogenous from the investor’s perspective. I

provide complementary evidence to this literature by demonstrating a cross-sectional link

between information, returns, and risk using a theoretically-motivated prediction of investors’

endogenous learning decisions.

Before proceeding, a note of clarification is in order regarding the perspective of my

empirical analysis. This study focuses on information choices at the aggregate level, not at the

individual investor level. The empirical learning index serves as a prediction about variation

in a firm’s information environment resulting from the information acquisition decisions of

all investors. While assets with higher values of the learning index are predicted to have

lower equilibrium expected returns, an individual investor who learns about these assets

makes more informed investment choices and has a higher expected portfolio return. Because

the empirical learning index does not directly provide insight into information choices at the

individual investor level, I focus only on testing the relationships between learning, risk, and
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return at the aggregate level.

The remainder of this paper is organized as follows. Section 2 discusses the model of

Van Nieuwerburgh and Veldkamp (2010), describes the learning index, and outlines the

model’s relevant predictions. Section 3 describes the procedure to empirically estimate the

learning index for individual assets. Section 4 summarizes the data. Section 5 presents

empirical results on the cross-sectional relationships between the learning index and expected

returns and volatilities. Section 6 examines the long-term predictability of the learning index

as well as its relationship to measures of information demand and market activity surrounding

earnings announcements. Section 7 provides robustness checks. Section 8 concludes.

2 Hypothesis Development

My empirical analysis is based on the rational expectations general equilibrium model

of information choice and investment choice developed by Van Nieuwerburgh and Veldkamp

(2010). These authors explore the impact of different assumptions regarding learning tech-

nologies and investor preferences on the optimal information acquisition strategy. I focus on

the version of the model with mean-variance preferences and entropy-based learning.5

The model contains multiple risky assets and multiple investors with mean-variance

preferences. Prior to investing, investors have the ability to acquire information about

unknown asset payoffs f , which are assumed to be normally distributed with mean µ and

variance Σ. The learning decision involves choosing which assets to learn about and how much

to learn about them, subject to a learning capacity constraint. The model assumes independent

asset payoffs and independent information signals about these payoffs. If assets are correlated,

5Van Nieuwerburgh and Veldkamp (2010) argue that the entropy-based learning technology is preferable to
an additive technology for two reasons. First, it is scale neutral, which means that learning costs are unaffected
by the definition of one share of an asset. Second, it leads to a prediction of specialized learning (learning about
one asset or risk factor) rather than generalized learning (learning about multiple assets). Specialized learning is
more consistent with the empirical observation that concentrated portfolios outperform diversified ones, implying
that investors with informational advantages choose to specialize in their information and portfolio choices (e.g.,
Kacperczyk, Sialm, and Zheng (2005) or Ivković, Sialm, and Weisbenner (2008)). When combined with the entropy
technology, the assumption that investors exhibit constant absolute risk aversion (CARA) preferences leads to
indifference between any allocation of learning capacity. On the other hand, an investor with mean-variance
preferences chooses specialization in learning.
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an eigen decomposition can be used to form independent linear combinations of the correlated

assets. These synthetic assets can be interpreted as principal components (PC), risk factors, or

Arrow-Debreu securities. Specifically, a non-diagonal covariance matrix Σ can be decomposed

into an eigenvector matrix Γ and a diagonal eigenvalue matrix Λ: Σ=ΓΛΓ′. The eigenvalue

matrix contains the variances of the principal components, while the eigenvector matrix

contains the loadings of the correlated assets on the principal components. With these

assumptions, the investor’s information choice is equivalent to choosing the posterior variance

of each principal component.

The model takes place over three periods: information choices are made in period 1,

investment choices are made in period 2, and payoffs and utility are realized in period 3.

The model is solved using backward induction. The optimal investment choice in period

2 is a diversified portfolio that conditions on an investor’s prior beliefs, information signal

realizations, and prices: q∗ = 1
ρ
Σ̂−1(µ̂− pr), where ρ is the coefficient of risk aversion, p is

a vector of prices, r is the risk-free rate, and µ̂ and Σ̂ are the posterior mean and variance

of payoffs. Similar to Admati (1985), equilibrium prices are a linear function of payoffs and

supply shocks x: pr = A+Bf +Cx. The coefficient matrices A, B, and C are functions of the

posterior beliefs of the average investor, the level of risk aversion, and the asset supply.6

In period 1, the optimal information choice is to allocate all learning capacity towards the

principal component with the highest value of the learning index. The learning index for PC i

is

LI i =
(
Γ′i(µ− pr)

)2
Λ−1

i + (1−ΛBi)2 +Λ−1
i Λ2

Ciσ
2
x. (1)

The first term of (1) is the prior squared Sharpe ratio of PC i. Alternatively, this term can

be viewed as the product of two terms. Γ′i(µ− pr) is the prior expected return of PC i, while

Γ′i(µ− pr)Λ−1
i is equivalent to ρ times the expected investment in PC i for an investor who has

zero learning capacity: ρΓ′iE[q]. These two terms indicate that the value of learning about

a PC is increasing in expected excess return and in expected holdings within the investor’s

6The average investor can be viewed as a representative investor whose posterior mean µ̂a is the average of
all investors’ posterior means, and whose posterior variance Σ̂a is the harmonic average of all investors’ posterior
variances.
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portfolio. Consequently, there are increasing returns to learning — expecting to hold more of

an asset makes it more valuable to learn about that asset, while learning more about an asset

makes the asset less risky and more attractive to hold.

The second term reflects expected pricing errors related to the informativeness of prices

about payoffs. ΛBi is the ith eigenvalue of B and captures the relationship between payoffs

and prices. When ΛBi is lower, prices covary less with payoffs, making information about

payoffs more valuable to learn. The third term reflects expected pricing errors related to the

sensitivity of prices to supply shocks. Λi andΛCi are the ith eigenvalues of the prior covariance

matrix Σ and C, respectively. σ2
x is the variance of supply shocks, which is assumed to be

the same for all PCs. Holding prior uncertainty constant, higher values of ΛCi indicate that

supply shocks have a greater impact on prices, creating pricing errors that can be exploited

by an informed investor. Thus, the value of learning about a given asset is increasing in the

asset’s prior expected excess return, expected holdings, and expected noise in its price.

In general equilibrium, ex-ante identical investors continue to specialize in learning about

a single factor, but will choose to learn about different factors due to strategic substitutability

— investors prefer to learn information that other investors do not know. As more investors

learn about a given asset, the expected return on that asset is reduced, which reduces the

value of learning about that asset. The model has a unique equilibrium in which the aggregate

learning capacity of all investors determines the number of risk factors that the economy

learns about. However, each individual will employ a mixed strategy and randomize over

which of these factors to learn about.

The model generates predictions for the relationships between information choices, risk,

and expected returns: an increase in information about an asset leads to a reduction in

uncertainty and a lower expected return. The model also provides predictions about the impact

of learning on systematic risk exposure and prediction errors from a typical asset pricing model

such as the CAPM. Similar to Biais et al. (2010) and Banerjee (2011), Van Nieuwerburgh

and Veldkamp (2010) derive a conditional CAPM relation in which risk and expected return
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are measured conditional on information that the average investor knows.7 In contrast, the

unconditional CAPM beta is measured based only on past return information. Predictions

of expected returns from the unconditional CAPM do not account for investors’ ability to

reduce risk through learning. Learning more information about an individual asset reduces

the asset’s total risk without changing the asset’s correlation with the market risk factor. If

investors learn more about an asset, the conditional CAPM beta (i.e., the beta conditional

on the information learned by investors) will be lower than the unconditional CAPM beta,

and the conditional expected return will be lower than the unconditional expected return.

Therefore, the model predicts that learning reduces co-movement with systematic risk factors.

This discrepancy between the empirically estimated unconditional risk exposure and the

unobserved conditional risk exposure leads to factor model pricing errors.

I apply these predictions to the cross section of domestic equities by estimating the

learning index for individual stocks and conducting the following analyses. First, I test the

hypothesized relationship between learning and expected returns by analyzing the cross-

sectional explanatory power of LI for future stock returns and risk-adjusted returns. Second,

I test the hypothesized relationship between learning and risk by investigating the predictive

power of LI for the cross section of return volatility, systematic volatility, and idiosyncratic

volatility. Third, I test the notion that LI captures information choices by examining the

long-term predictive power of LI as well as its relationship with a number of variables or

outcomes that are likely associated with investor learning. Finally, I provide a number

of robustness checks using alternative asset pricing models, alternative measures of risk,

subperiod analyses, and an alternative set of test assets.

3 Estimating the learning index

My objective is to measure the learning index at the end of each month for each stock in the

sample. The estimation procedure generally follows the approach described in Van Nieuwer-

burgh and Veldkamp (2009) and Veldkamp (2011). I use a two-year rolling window of weekly

7See Section A.5 of the technical appendix to Van Nieuwerburgh and Veldkamp (2010) for proof.
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returns to construct prices, payoffs, and an estimate of the payoff covariance matrix. I use

weekly returns instead of monthly or daily returns in order to increase the number of obser-

vations within the window while avoiding the effects of non-synchronous trading. Following

convention in the literature, weekly returns are measured from Wednesday close to the next

Wednesday close. The following steps are performed at each month-end.

Step 1: Construct price (p) and payoff ( f ) time series for each stock. The price of each

stock is set equal to one in the first week. Stock prices then evolve according to the respective

weekly return series. Because prices are assumed to be log-normally distributed, I use log

prices to be consistent with the model’s assumptions. The stock price in the following week is

used as a proxy for the stock’s payoff, and returns are calculated as f −pr. To avoid look-ahead

bias in the empirical tests, estimation is only based on information available at the end of the

current month. Therefore, the final payoff observation in each window is the price at the end

of the last full week in the current month.

Step 2: Convert the cross section of correlated stocks to a set of uncorrelated assets. Esti-

mate the prior variance-covariance matrix Σ of standardized payoffs from Step 1.8 Decompose

Σ into a diagonal eigenvalue matrix Λ and an eigenvector matrix Γ: Σ = ΓΛΓ′. Construct

principal component prices (Γ′p), payoffs (Γ′ f ), and returns (Γ′( f − pr)).

Step 3: Estimate the learning index for principal components. The first term of the

learning index is estimated by dividing squared average return by the variance of payoffs. The

second and third term require estimation of the equilibrium price equation at the principal

component level: Γ′pr =Γ′A+Γ′Bf +Γ′Cx. Since principal components are uncorrelated, this

is equivalent to estimating separate regressions for each principal component of its price on a

constant and its payoff.9 The payoff coefficient ΛB and the regression R2 are used to compute

8To account for heteroskedasticity across individual assets, payoffs are standardized to have zero mean and
unit variance prior to computing the covariance matrix and performing the eigen decomposition. This approach is
equivalent to the maximum explanatory component analysis of Xu (2007) and avoids overweighting stocks with
high idiosyncratic volatility when extracting the principal components.

9This step involves a time series regression of two non-stationary variables. The underlying theory suggests
that in equilibrium, there exists a linear combination of these variables that is stationary. As such, these variables
are said to be cointegrated, and the cointegrating vector can be consistently estimated using OLS. In untabulated
analysis, I verify the stationarity of the residuals from this regression.
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the second and third term.10

Step 4: Estimate the learning index for stocks. Pre-multiply the principal component

learning index vector by the eigenvector matrix: Γ
(
LIPC)

. The learning index for a given stock

is a weighted sum of PC learning indexes where the weights are based on the contribution of

the stock to each PC.11 The stock learning index is rank-transformed to [0,1] to facilitate inter-

pretation and comparability across cross sections, although the main results are qualitatively

similar without this transformation.

4 Data

I obtain daily and monthly data on US common stocks listed on the NYSE, AMEX, and

NASDAQ from the Center for Research in Security Prices (CRSP) during the period from July

1962 to December 2016. Stock returns are adjusted for delisting following Beaver, McNichols,

and Price (2007). To reduce the impact of microstructure issues, stocks are required to have a

price greater than $5 and market capitalization above the 20th NYSE percentile in order to be

included in the sample. Data for market, size, value, profitability, investment, and momentum

risk factors are obtained from Kenneth French’s website.12 Additional data sources include

Compustat, Thomson Reuters Institutional Holdings, Institutional Brokers’ Estimate System

(I/B/E/S), SEC Electronic Data Gathering, Analysis, and Retrieval (EDGAR) Log Files, and

Bloomberg. The learning index is estimated over the period July 1964 to December 2016, but

10Estimating (1−ΛBi)2: If prices follow the pricing equation pr = A+Bf +Cx, then OLS can be used to directly
estimate B. The OLS estimate is Σ−1ΣB = B. Since assets are assumed to be independent, B is a diagonal
variance-covariance matrix and the eigenvalues of B are the diagonal elements of the matrix. For PC i, the OLS
coefficient is a direct estimate of ΛBi .

Estimating Λ−1
i Λ2

Ciσ
2
x: First, compute the unconditional variance of prices: V ar(p) = V ar(A +Bf +Cx) =

BΣB′+CC′σ2
x. This expression gives us the total sum of squares of prices. Because the asset supply shocks are

assumed to be the regression residual, CC′σ2
x is the unexplained sum of squares and BΣB′ is the explained sum of

squares. Then 1−R2

R2 corresponds to
(
BΣB′)−1CC′σ2

x. That is, for asset i, Λ−1
i Λ2

Ciσ
2
x = 1−R2

R2 Λ2
Bi .

11A well-known practical issue involved in eigen decomposition is that the sign of an eigenvector is arbitrary.
While this does not make a difference theoretically, it poses an empirical problem. To resolve this issue, I use the
square of the normalized eigenvector elements as weights in calculating the stock learning index. This excludes
the possibility of a stock having a negative learning index, which has no theoretical interpretation. Because the
eigenvectors are standardized to unit length (i.e., the sum of squares for every eigenvector is one), an eigenvector
element squared can be interpreted as the contribution of the stock to the corresponding principal component.
Therefore, a stock’s learning index can be interpreted as a weighted sum of principal component learning indexes,
where the weights are proportional to the stock’s contribution to each principal component.

12mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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certain analyses are limited to a subset of this period based on data availability.

For each stock-month, I construct the following characteristics which have been identi-

fied in prior studies as important cross-sectional return predictors. Market beta (βMKT ) is

calculated from a regression of excess stock returns on excess market returns using daily data

from the past year. To account for biases due to infrequent trading, I follow Dimson (1979) by

including lagged and lead market returns in this regression. The market beta is the sum of

the coefficient estimates of the lagged, current, and lead market return. SIZE is the natural

logarithm of market value of equity. Book-to-market ratio (BM) is the book value of equity in

the latest fiscal year ending in the prior calendar year divided by the market value of equity

at the end of December of the prior calendar year. Profitability (PROF) is annual revenues

minus cost of goods sold, interest expense, and selling, general, and administrative expenses

divided by book equity for the latest fiscal year ending in the prior calendar year. Investment

(INV ) is the annual percentage change in total assets. Momentum (MOM) is the cumulative

return from month t−11 to month t−1.

Illiquidity (ILLIQ) is the absolute monthly stock return divided by the respective monthly

trading volume in dollars scaled by 105. Short-term reversal (STR) is the monthly return

of the stock over the past month. Long-term reversal (LTR) is the cumulative return from

month t−59 to month t−12. Idiosyncratic volatility (IVOL) is the standard deviation of daily

residuals within a month estimated from a regression of excess stock returns on the Fama and

French (2018) six-factor model, which includes market, size, value, profitability, investment,

and momentum risk factors.13 I also compute total return volatility (RVOL) as the standard

deviation of daily excess returns within a month, and the systematic component of volatility

(SVOL) as the square root of the difference between RVOL2 and IVOL2, although these two

variables are not used as cross-sectional return predictors.

In addition to these variables, I construct the following characteristics which have been

identified in prior studies as important predictors for the cross section of stock volatility.

Return on equity (ROE) is earnings before extraordinary items as of the most recent fiscal

13Results are robust to the use of alternative factor models to estimate systematic and idiosyncratic volatility.
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quarter end divided by common shareholders’ equity as of the end of the previous quarter

and multiplied by 100. Volatility of return on equity (ROEVOL) is the standard deviation of

return on equity over the prior 12 fiscal quarters. Firm age (AGE) is the number of years the

firm has existed on CRSP. DIV D is a dividend dummy equal to 1 if the firm paid dividends

during the most recent fiscal quarter, and 0 otherwise. Leverage (LEV ) is total liabilities

scaled by the market value of equity as of the most recent fiscal quarter end. INV PRC is the

inverse of the stock price, scaled by 100. R is the monthly stock return in percent. All variable

definitions are listed in Table A1.

Table 1 presents time series averages of monthly cross-sectional summary statistics for

the aforementioned stock characteristics. In the average month, the average stock in the

sample has a market beta of 1.06, market capitalization of $3.64 billion (untabulated), and

book-to-market ratio of 0.71. The last row in the table reports time series summary statistics

for the number of stocks in the sample per month. The average (median) number of stocks in

the sample in a given month is 1,615 (1,649).

Table 2 presents average cross-sectional correlations between key variables. I include only

the characteristics used as return predictors for brevity. On average, stocks with high LI have

a lower market beta, lower firm size, higher book-to-market ratio, lower profitability, lower

investment, higher illiquidity, lower past returns over short, intermediate, and long horizons,

and higher idiosyncratic volatility. These correlations are generally small, indicating that a

substantial component of cross-sectional variation in LI is orthogonal to these characteristics.

Table 3 reports transition probabilities for LI-sorted quintile portfolios over 1-month,

6-month, 12-month, and 24-month periods. The extreme LI quintiles exhibit a relatively

high level of persistence from one month to the next. About 73.2% (71.8%) of the stocks in

the lowest (highest) LI quintile remain in the same quintile in the next quarter. This result

is likely mechanical given the high degree of overlap in the data used to calculate LI t and

LI t+1. As the length of time between the initial month and the final month increases (and

the degree of overlap decreases), the level of persistence in LI declines. Panel D of Table 3

contains transition probabilities based on values of LI that are computed using consecutive
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non-overlapping two year windows. In this setting, the probabilities of transitioning among

quintiles are all close to 20%, indicating that the learning index is not a persistent stock

characteristic over the long run. This result is consistent with the predictions of the theoretical

model in that the expected benefits of learning about a particular stock tend to decline as

more investors learn about the stock.

5 Empirical results

5.1 Explaining the cross section of expected returns

In this section, I investigate the ability of the learning index to predict future stock returns

using portfolio sorting analyses and Fama and MacBeth (1973) cross-sectional regressions.

5.1.1 Portfolios of stocks sorted by LI

At the end of each month, stocks are sorted into quintiles based on LI. For each quintile-

month, I calculate value-weighted and equal-weighted average portfolio returns in excess

of the risk-free rate (Rp,t −R f ,t) in the following month as well as the difference in average

returns between the extreme quintiles (5−1). Next, I calculate the time series average return

for each of the portfolios. I also measure risk-adjusted excess returns for each portfolio as the

alpha (α) from a time series regression of portfolio excess returns on nested versions of the six-

factor model proposed by Fama and French (2018). The six-factor model includes the market

(RM,t −R f ,t), size (SMB), and value (HML) factors of Fama and French (1993), profitability

(RMW) and investment (CMA) factors of Fama and French (2015), and a momentum (UMD)

factor. Specifically, I estimate time series regressions for each portfolio p using the six-factor

model as well as the nested three-factor and five-factor specifications:

Rp,t −R f ,t =αp +β1,p(RM,t −R f ,t)+β2,pSMBt +β3,pHML t

+β4,pRMWt +β5,pCMAt +β6,pUMDt +εp,t.
(2)

Table 4 presents average excess returns and risk-adjusted excess returns for value-
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weighted (Panel A) and equal-weighted (Panel B) portfolios. I also report Newey and West

(1987) t-statistics with a maximum lag order of 12 months to account for potential autocor-

relation and heteroskedasticity. In Panel A, the highest LI quintile has an average excess

return of 0.685% in the month following portfolio formation, while the lowest LI quintile has

an average excess monthly return of 1.126%. The difference in excess returns between these

quintiles is −0.441% per month (−5.4% per year) and is significant at the 1% level. These

results indicate that expected returns are lower on average for high LI stocks compared to

low LI stocks.

The next four columns report risk-adjusted returns estimated using various factor models.

After controlling for exposure to market, size, and value risk factors, the value-weighted

average excess risk-adjusted return of each quintile is reduced by almost 1%. However, the

risk-adjusted return of the 5−1 portfolio remains economically and statistically significant: the

monthly three-factor alpha spread is −0.441% with a t-statistic of −3.78. I find qualitatively

similar results after adding the profitability, investment, and momentum factors. The five-

factor (six-factor) alpha difference between the extreme LI quintiles is −0.623% (−0.451%)

per month or −7.7% (−5.5%) per year. Each of these estimates is significant at the 1% level.

Table 4, Panel B reports results using the returns of equal-weighted portfolios. Quintile

5 has an average excess return of 0.840% and quintile 1 has an average excess return of

1.372% per month. The average monthly return of the 5−1 portfolio is −0.532%. The average

differences in three-factor, five-factor, and six-factor alphas between the extreme quintiles are

−0.479%, −0.609%, and −0.541% per month (−5.9%, −7.6%, and −6.7% per year), respectively.

Overall, the results of portfolio sorting indicate that high LI stocks tend to have lower

future returns relative to low LI stocks. These results support the prediction that learning is

associated with a reduction in expected return and risk-adjusted return. The 5−1 spreads

in equal-weighted and value-weighted returns are economically and statistically significant,

even after controlling for exposure to several sources of systematic risk. The return differences

are not driven solely by stocks in any particular quintile. Rather, average returns and alphas

tend to decrease monotonically as LI increases across quintiles. Throughout the remainder of
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the paper, I use the Fama and French (2018) six-factor model for risk adjustment and volatility

decomposition, although my conclusions based on alternative factor model specifications are

qualitatively similar.

It is useful to distinguish between the 5−1 portfolio formed based on values of LI in

Table 4 and the hypothetical portfolio of the investor that chooses to learn information. The

objective of the analysis in Table 4 is to identify whether there is a difference in expected

returns between high LI and low LI stocks, not to evaluate the expected portfolio returns of a

learning investor. Suppose that an investor learns the most about high LI stocks and the least

about low LI stocks. This information choice does not imply that she will take a long position

in high LI stocks and a short position in LI stocks. Rather, her investment choice for each

asset will depend on whether she receives a good or bad signal about that asset’s future payoff.

The investor uses her information to buy the assets that she expects to have high payoffs and

sell the assets that she expects to have low payoffs. Since learning more about an asset makes

these expectations more accurate, the investor’s expected portfolio return is increasing in her

learning capacity. Therefore, while high LI assets have lower equilibrium expected returns

compared to low LI assets, an individual investor who learns about these assets has higher

expected portfolio returns compared to an uninformed investor.

5.1.2 Fama-MacBeth cross-sectional regressions

In this section, I use two-stage Fama and MacBeth (1973) regressions to examine the

cross-sectional relation between the learning index and expected returns while controlling

for other determinants of returns. In the first stage, I estimate monthly cross-sectional

regressions of excess stock returns in month t+1 on values of LI and a set of ten control

variables measured in month t. Of the ten stock characteristics used as controls, the first six

are associated with exposure to one of the factors used for risk adjustment in the portfolio

sorting analysis. Following the prior literature, I also control for the effects of illiquidity, short-

term and long-term return reversals, and idiosyncratic volatility.14 The full cross-sectional

14In untabulated analyses, I find that the results are robust to the inclusion of additional cross-sectional return
predictors as controls, including return volatility, skewness, co-skewness, kurtosis, maximum daily return in the
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model estimated at the end of each month is

Ri,t+1 −R f ,t+1 =λ0,t +λ1,tLI i,t +λ2,tβ
MKT
i,t +λ3,tSIZE i,t +λ4,tBMi,t

+λ5,tPROFi,t +λ6,tINVi,t +λ7,tMOMi,t +λ8,tILLIQ i,t

+λ9,tSTRi,t +λ10,tLTRi,t +λ11,tIVOL i,t +εi,t+1.

(3)

In the second stage, I calculate the time series averages of the cross-sectional regression

coefficients. As an alternative to deal with potential errors-in-variables bias, I also compute

precision-weighted time series averages as in Litzenberger and Ramaswamy (1979), where

the weights are inversely proportional to the standard error of the estimates from the first

stage.

Table 5 reports equal-weighted average (Panel A) and precision-weighted average (Panel

B) slope coefficients, Newey and West (1987) t-statistics in parentheses, and the average

adjusted R2 for each specification. I begin with a univariate regression of excess return on LI

in Column 1. The average slope coefficient is −0.655 with a t-statistic of −4.14. Since values of

LI range from 0 to 1, the reported coefficient estimate for LI can be interpreted as the average

return difference between the stock with the highest and lowest value of LI in an average

month, holding all other variables constant. As a benchmark, I then estimate a regression of

excess return on only the control variables in Column 2. Column 3 presents results from the

full regression specification. After controlling for several stock characteristics, the magnitude

of the coefficient on LI is slightly reduced (−0.416) relative to the univariate specification, but

remains economically and statistically significant.

Panel B presents results based on a similar set of three regressions but reports precision-

weighted average slope coefficients. In this setting, I continue to find a negative and significant

relationship between LI and subsequent returns. In the univariate regression, the precision-

weighted average coefficient on LI is −0.593 and is significant at the 1% level. Using the full

multivariate specification in Column 6, the coefficient of interest is −0.401 with a t-statistic of

−5.10. These results reinforce the conclusion that learning is associated with a decrease in

past month, share turnover, institutional ownership, number of institutional owners, number of analysts, the
call-put option implied volatility spread, and the Stambaugh, Yu, and Yuan (2015) mispricing measure.
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expected return, even after controlling for other return predictors and assigning more weight

to more precise cross-sectional coefficient estimates.

With respect to the control variables, the signs of the coefficient estimates are generally in

accordance with the findings of past studies. The significant precision-weighted average coeffi-

cient estimates in Panel B indicate that stocks with lower size, higher book-to-market ratios,

higher profitability, lower investment, higher momentum, lower past short-term and long-term

returns, and lower idiosyncratic volatility are all associated with higher expected returns. The

coefficient estimates for market beta are insignificant in both panels. The precision-weighted

average coefficient indicates a negative and significant relationship between illiquidity and

expected returns. While theory suggests a positive relationship between these two variables,

Bali, Engle, and Murray (2016) show that the empirical relationship between illiquidity and

future stock returns becomes negative within stock samples that exclude extremely small or

illiquid stocks.

Coefficient estimates reported in Table 5 can be combined with the summary statistics in

Table 1 to get a sense of the relative economic importance of the explanatory variables. Based

on the precision-weighted average coefficient estimates, current monthly returns (STR) carry

the strongest explanatory power for next month returns. An increase of one cross-sectional

standard deviation in STR results in a decrease in next month return of 9.98×0.037≈ 0.37%

on average, all else equal. The explanatory power of the learning index for next month returns

is comparable to that of idiosyncratic volatility, firm size, and investment. Increases of one

standard deviation in IVOL, SIZE, INV , and LI are associated with average changes in

expected monthly return of −0.14%, −0.14%, −0.14%, and −0.12% respectively, holding all

other variables constant.

5.2 Explaining the cross section of return volatility

In the context of the model by Van Nieuwerburgh and Veldkamp (2010), learning about

an asset leads to a reduction in the posterior variance of the asset’s payoff. In this section, I

investigate the cross-sectional relationship between the learning index and return volatility.
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5.2.1 Portfolios of stocks sorted by LI

I first conduct a univariate portfolio sorting analysis using quintiles sorted on LI. Be-

cause return volatility is serially correlated, I use the percentage change in volatility as the

dependent variable in the sorting analysis. This measure can be viewed as an estimate of a

stock’s posterior variance relative to its prior variance. My objective is to determine whether

there is a difference in the average volatility change between the extreme LI quintiles. The

expectation is that volatility changes of high LI stocks should be lower on average compared

to volatility changes of low LI stocks.15

I measure the change in return volatility (∆RVOL) as the difference between next month

return volatility and average return volatility in the prior 12 months, scaled by average

return volatility in the prior 12 months and multiplied by 100. As the model predicts that

learning also reduces the systematic component of risk, I also measure percentage changes

in systematic volatility and idiosyncratic volatility. ∆SVOL is monthly systematic volatility

divided by average monthly systematic volatility over the previous 12 months, minus one and

multiplied by 100. Similarly, ∆IVOL is monthly idiosyncratic volatility divided by average

monthly idiosyncratic volatility over the previous 12 months, minus one and multiplied by

100.

I sort stocks based on LI into quintiles each month and examine the pattern in time series

means of portfolio average volatility changes across quintiles. Table 6 presents value-weighted

(Panel A) and equal-weighted (Panel B) portfolio average changes in volatility. In Panel A,

the change in return volatility is 3.866% lower on average for high LI stocks relative to

low LI stocks. This difference is significant at the 1% level. The results in the next two

columns suggest that the information choices of investors predict cross-sectional variation in

15As is typically the case in portfolio analyses, I am not directly interested in the level of the dependent variable
(average volatility change) for any particular quintile over the sample period. The decision to learn about certain
stocks does not imply that I should empirically observe decreases in volatility on average for these stocks. In the
theoretical model, where there is only one period and uncertainty only changes due to information acquisition, I
would indeed expect assets which are learned about to experience a decrease in volatility. In reality, stock volatility
may change over time for reasons unrelated to learning. Thus, the theory does not directly provide a time series
prediction about whether volatility is increasing or decreasing on average for any given quintile. It only leads to a
cross-sectional prediction regarding the comparison of the average volatility change for stocks subject to a high
degree of learning relative to that of stocks subject to a lower degree of learning.
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both systematic and idiosyncratic volatility changes. On average, the change in systematic

(idiosyncratic) volatility in the month following portfolio formation is 4.386% (2.851%) lower for

high LI stocks compared to low LI stocks, with a t-statistic of -5.56 (-5.38). I arrive at similar

conclusions if volatility changes are weighted equally within each portfolio. On average, the

differences in ∆RVOL, ∆SVOL, and ∆IVOL between extreme equal-weighted portfolios is

−3.268%, −3.746%, and −2.767%, respectively. Each of these estimates is significant at the

1% level.

Altogether, the results from these sorting analyses indicate that learning is associated with

a reduction in both the firm-specific and systematic components of risk. These findings do not

necessary imply that the choice to learn about a stock involves the discovery of market-wide or

macroeconomic information. Rather, my findings provide support for the notion that learning

news about a firm can lower firm-specific uncertainty as well as uncertainty arising from

co-movement with the market or other common risk factors.16

5.2.2 Fama-MacBeth cross-sectional regressions

Next, I use Fama and MacBeth (1973) regressions to examine the cross-sectional rela-

tionships between the learning index and total return volatility, systematic volatility, and

idiosyncratic volatility in a multivariate setting. In the first stage, I estimate monthly cross-

sectional regressions of a measure of volatility in month t+1 on values of LI and a set of control

variables. In the second stage, I calculate the time series averages and Litzenberger and

Ramaswamy (1979) precision-weighted time series averages of the cross-sectional regression

16For robustness, I consider defining volatility changes as the next month volatility relative to current month
volatility, or relative to average volatility over the prior 3 or 6 months. In addition, I consider using the standard
deviation of monthly volatility as the denominator, as well as calculating absolute differences (instead of relative
differences) in volatility compared to the prior 1, 3, 6, or 12 months. I also measure systematic and idiosyncratic
volatility relative to alternative factor model specifications. Finally, instead of examining future volatility changes,
I use a bivariate portfolio sorting approach to examine the relationship between LI and the future volatility level,
conditional on the past 12-month average historical volatility level. The conclusions are qualitatively similar
under each of these robustness checks.
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coefficients. The full cross-sectional model estimated at the end of each month is

VOL i,t+1 =λ0,t +λ1,tLI i,t +λ2,tROE i,t +λ3,tROEVOL i,t +λ4,t AGE i,t

+λ5,tDIV D i,t +λ6,tLEVi,t +λ7,tINV PRCi,t +λ8,tSIZE i,t

+λ9,tBMi,t +λ10,tMOMi,t +λ11,tSTRi,t +λ12,tRi,t+1

+
11∑
j=0

γ j,tVOL i,t− j +εi,t+1

(4)

where the dependent variable VOL is one of total return volatility (RVOL), systematic

volatility (SVOL), or idiosyncratic volatility (IVOL). Pastor and Veronesi (2003) find that

stock return volatility is higher for less profitable firms, firms with more volatile profitability,

younger firms, and firms that do not pay dividends. Based on this, I include return on equity

(ROE), the volatility of return on equity (ROEVOL), firm age (AGE), and a dividend dummy

(DIV D) as controls. Prior studies also show that stock return volatility increases after stock

prices fall due to a leverage effect (Christie (1982); Cheung and Ng (1992)), while Duffee (1995)

documents a contemporaneous relationship between return and volatility. As such, I include

financial leverage (LEV ), the inverse of stock price (INV PRC), and the stock return in the

next month (R) as control variables. I also include SIZE, BM, MOM, and STR to account

for the impact of well-known sources of risk. Finally, I control for 12 lagged monthly values of

the respective volatility measure in all specifications since volatility is highly persistent over

time. The coefficient estimates on lagged volatilities and the intercept term are not reported

in the tables for brevity. Based on the availability of data for the explanatory variables, the

sample period for this analysis is December 1974 to December 2016.

Table 7 reports the regression results for total return volatility. Equal-weighted coefficient

averages are presented in Panel A. In the first column, I regress return volatility in the next

month on LI while controlling for lagged monthly volatilities over the past year. With this

specification, I find a negative relationship between LI and volatility. The coefficient on LI is

−1.333 and is significant at the 1% level. This finding supports the prediction that learning

leads to a reduction in uncertainty. In Column 2, I estimate a regression of next month return
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volatility on only the control variables (including lagged volatility) as a benchmark. Consistent

with Pastor and Veronesi (2003), firms with lower return on equity, firms with higher volatility

of return on equity, younger firms, and non-dividend-paying firms are all associated with

higher stock return volatility. In addition, I find a positive and significant contemporaneous

relationship between return and volatility as well as between the inverse price level and

volatility.

Column 3 of Table 7 presents results from the full regression specification. After controlling

for a number of characteristics known to have cross-sectional explanatory power for volatility,

I continue to find a negative and significant relationship between the learning index and

volatility. The coefficient on LI in the full specification is −1.331 with a t-statistic of −7.22.

This result suggests that, in the average month, the next month return volatility of the stock

with the highest value of LI is 1.331 percentage points lower on average than the stock with

the lowest value of LI, holding all other variables constant. Panel B of Table 7 presents

precision-weighted averages of the cross-sectional coefficient estimates from three similar

specifications. The coefficient estimates for LI in Panel B are comparable in magnitude and

significance to those in Panel A. In Column 6, the coefficient on LI is −1.160 and is significant

at the 1% level. To obtain an approximation of the relative impact of learning on return

volatility, I compare these coefficient estimates to the sample average return volatility as

reported in Table 1. For the average stock in an average cross-section, an increase in the

value of LI from 0 to 1 (all else being equal) is associated with a change in return volatility

of −1.331
34.21 ≈ −3.89% based on the equal-weighted average LI coefficient, or −1.160

34.21 ≈ −3.39%

based on the precision-weighted average LI coefficient. These changes are comparable to the

predicted changes in return volatility from Table 6.

Based on precision-weighted average coefficient estimates in Column 6, variation in the

current month return, next month return, and stock price have the largest impact on return

volatility in the following month. All else equal, increases of one cross-sectional standard

deviation in STR, R, and INV PRC are associated with average changes of −0.86, 0.85, and

0.68 percentage points in next month return volatility. The explanatory power of the learning
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index for future monthly return volatility is comparable to that of the book-to-market ratio,

dividend dummy, and return on equity. Increases of one standard deviation in LI, BM, DIV D,

and ROE correspond to decreases in return volatility in the following month of 0.34, 0.34,

0.30, and 0.22 percentage points on average, holding all other variables constant.

In the next two tables, I focus on explaining the systematic and idiosyncratic components

of return volatility using a similar cross-sectional multivariate analysis. Table 8 presents

equal-weighted averages (Panel A) and precision-weighted averages (Panel B) of coefficient

estimates from the systematic volatility regressions. In the first column, I regress SVOL in

the next month on LI while controlling for lagged monthly values of SVOL over the past year.

The results indicate a negative and significant cross-sectional relationship between learning

and systematic risk in the following month. The coefficient on LI is −1.038 and is significant

at the 1% level. Column 2 reports estimates from a benchmark specification that includes

lagged values of SVOL and all explanatory variables besides LI. The coefficient estimates

in these columns are consistent with those in Table 7 with respect to sign and significance,

with a few exceptions. Firm size and momentum are not significantly related to total return

volatility, but are positively related to the systematic component of volatility.

The third column of Table 8 reports results from the regression of next month SVOL on the

full set of explanatory variables. After controlling for various stock characteristics associated

with volatility, I find that the learning index continues to have negative and significant

explanatory power for cross-sectional variation in systematic volatility during the following

month. In Column 3, the average coefficient estimate on LI is −0.791 (t-statistic=−5.58). To

evaluate the impact of LI on a relative basis, I compare the LI coefficient estimates from the

full specifications to the sample average value of SVOL reported in Table 1. For the average

stock in an average cross-section, an increase in the value of LI from 0 to 1 holding all other

variables constant is associated with a change in SVOL of −0.791
22.75 ≈−3.47%. I arrive at similar

conclusions based on the precision-weighted coefficient averages reported in Panel B.

In Table 9, I repeat the cross-sectional regression analyses using idiosyncratic volatility as

the dependent variable and lagged values of idiosyncratic volatility as controls. In Column 1,
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I regress IVOL in the following month on LI in the current month and 12 lagged monthly

values of IVOL. The equal-weighted average coefficient estimate on LI is −0.686 (t-statistic=
−3.77). Column 2 reports equal-weighted average coefficient estimates from the benchmark

specification. Consistent with the findings in the previous two tables, the control variables

exhibit significant explanatory power for cross-sectional variation in next month idiosyncratic

volatility. I find that firm size and momentum are negatively related to IVOL. Thus, it

appears that combining the negative effects of these variables on IVOL with their positive

effects on SVOL results in the insignificant relationships with total volatility reported in

Table 7.

After controlling for a number of other stock characteristics, I find that the explanatory

power of LI for cross-sectional variation in IVOL becomes stronger. The coefficient estimate

from Column 3 indicates that, in the average month, the next month idiosyncratic volatility

of the stock with the highest value of LI is 0.929 percentage points lower on average than

the stock with the lowest value of LI, all else equal. For the average stock in an average

cross-section, this change corresponds to a decrease of 0.929
24.45 ≈ 3.80% in relative terms. The

results based on precision-weighted coefficient averages in Panel B are qualitatively similar.

In total, the analyses in this section support the hypothesis that investor learning leads to

a reduction in return volatility. When combined with the findings in Section 5.1, the results

suggest that this reduction in risk corresponds to a reduction in risk premium or expected

return.17

17In untabulated analyses, I investigate the predictive power of the three individual components of the general
equilibrium learning index. While the model suggests that investors choose to learn about the asset with the
highest sum of the three terms in LI, each individual term is expected to be positively associated with the expected
benefits of learning. Using portfolio sorting, I find negative and significant relationships between the individual
component of the learning index and the various measures of risk and return. Because of high multicollinearity
between the three LI components, it is difficult to assess the independent effects of each component on expected
returns and risk in a multivariate setting. Nevertheless, the results from portfolio sorting indicate that the
explanatory power of each individual component is comparable to that of the sum of the components.
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6 Supplementary analyses

6.1 Long-term predictability

In this section, I examine the cross-sectional explanatory power of the learning index

for subsequent months up to three years. To the extent that LI reflects investors learning

fundamental information and incorporating this information into prices, I expect that prices

move towards fundamental value and do not reverse in the long run. Alternatively, if the

explanatory power of LI derives from temporary price movements away from intrinsic value,

I expect this mispricing to be eventually corrected over time.

At the end of each month t, I sort stocks into quintiles based on LI and track the difference

in value-weighted average returns between the highest LI quintile and the lowest LI quintile

(5−1) in each of the 36 months after portfolio formation. Figure 1 presents average monthly

returns and Fama and French (2018) six-factor risk-adjusted returns (alpha). The average

return of the 5−1 portfolio is most negative in the month immediately following portfolio

formation and subsequently moves towards zero. By month t+5, the negative average return

spread is no longer significant at the 10% level. On a risk-adjusted basis, the return spread

between the highest and lowest LI quintiles is negative and significant until month t+6.

Beyond this point, all risk-adjusted returns are not statistically different from zero. The

results indicate that the explanatory power of LI continues in a declining manner over a

period of several months. After adjusting for co-movement with systematic risk factors, I find

that the monthly return differences between extreme LI quintiles are not reversed over the

subsequent three years. This finding supports the notion that the cross-sectional explanatory

power of LI for returns reflects the effects of investors learning and trading on fundamental

information.

Next, I repeat the portfolio sorting analysis and track the difference in value-weighted

average volatility changes between the extreme LI quintiles over the subsequent 36 months.

In Figure 2, the average spread in ∆RVOL is negative and significant for seven months after

portfolio formation. Beyond this point, all values of ∆RVOL are not statistically different
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from zero. This result suggests that the cross-sectional relationship between learning and risk

is not attributable to temporary decreases in volatility. When I decompose volatility changes

into systematic and idiosyncratic components, I find that the changes in each type of volatility

exhibit different patterns over the long run. For the 5−1 portfolio, average values of ∆IVOL

are negative and significant until month t+12, and are not statistically different from zero for

the next 24 months. This finding suggests that learning results in a permanent reduction in

idiosyncratic risk. On the other hand, the changes in systematic volatility predicted by LI

tend to reverse over the long run. The spread in average ∆SVOL is negative and significant

until month t+5 and then turns positive and significant beginning in month t+12.

Thus, while learning appears to reduce return co-movement with systematic risk factors

over the short run, this effect is not as permanent as the effect of learning on the idiosyncratic

component of risk. Combined with the results on long-term return predictability, the patterns

in long-term volatility predictability suggest that the observed reversal in raw returns in

Figure 1 is associated with a reversal in systematic risk. There is no evidence of reversal

in idiosyncratic volatility and risk-adjusted returns. In untabulated analyses, I arrive at

similar conclusions using alternative factor model specifications for risk adjustment and

equal-weighted rather than value-weighted portfolio averages. In aggregate, the results in

this section demonstrate that the effects of learning on idiosyncratic risk and risk-adjusted

returns are generally long-lasting.

6.2 Relationship with measures of investor attention or information de-

mand

To reinforce the notion that the learning index represents collective information choices,

I examine the contemporaneous cross-sectional relationship between LI and a number of

proxies for investor attention or information demand. I consider measures related to trading

activity, analyst coverage, forecast revision and accuracy, EDGAR filing download activity, and

Bloomberg news reading activity. In practice, information choices are likely to be constrained

by the fact that smaller firms may be less visible to investors, less informationally transparent,
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or may have less information available for acquisition. As such, for this analysis I use a

bivariate dependent portfolio sorting approach based on size and LI. This approach allows me

to investigate the outcomes of differences in information choices across firms while controlling

for the impact of firm visibility, informational transparency, or the amount of acquirable

information as measured by firm size. Stocks are sorted at the end of each month into

quintiles based on size. Then, within each size quintile, stocks are sorted based on LI. Each

LI subquintile is combined across size quintiles into a single quintile. This procedure creates

portfolios of stocks with differences in LI but similar distributions of size.18

Table 10 reports portfolio average values of six different proxies for investor attention

as well as the respective sample period over which each analysis is performed. The first

proxy is abnormal trading activity. According to Barber and Odean (2007), trading activity is

likely to increase as investors learn new information about a firm. I measure trading activity

as share turnover, or the total number of shares traded within a month divided by shares

outstanding. I then estimate the change in monthly share turnover (∆TURN) as turnover

during the current month divided by average monthly turnover over the previous 12 months,

minus one and multiplied by 100. Data for this variable is available from CRSP for the full

sample period (July 1964 to December 2016). On average, high (low) LI stocks experience

a 9.29% (3.71%) increase in monthly share turnover relative to average monthly turnover

during the past year. The difference in abnormal turnover between the extreme quintiles is

5.59% with a t-statistic of 6.68. This difference suggests an increased level of trading activity

among stocks subject to a greater degree of investor learning.

The next three proxies relate to analyst coverage, forecast revisions, and forecast accuracy.

Greater analyst coverage can lead to an increase in the information available about a firm.

Consistent with this idea, Hong, Lim, and Stein (2000) use analyst coverage as a measure of

the rate of information flow. The arrival of new information about a firm should also correspond

to a revision of analysts’ expectations and more accurate forecasts. Harford, Jiang, Wang,

18In untabulated analyses, I use a similar bivariate sorting approach to examine patterns in returns and
volatility changes across LI quintiles. The results from these analyses are qualitatively similar to those in Table 4
and 6.
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and Xie (2018) show that greater effort by analysts in acquiring information is associated

with more frequent forecast revisions and more accurate forecasts. Beginning in July 1984, I

measure analyst coverage (nAN ALY ST) each month as the number of analyst forecasts of

earnings per share (EPS) recorded by I/B/E/S for the nearest fiscal quarter. I also measure the

number of analyst forecast revisions since the last month (nREV ). In addition, I construct a

measure of change in forecast accuracy. First, I measure the error in the mean forecast for

the nearest fiscal quarter as the average EPS forecast divided by the actual EPS, minus one.

Then, I compute the monthly percentage change in the absolute value of the forecast error

(∆AFE) as the current month absolute error in mean forecast divided by the prior month

absolute error in mean forecast, minus one and multiplied by 100. This measure is computed

by firm within a given forecast period so that forecast errors are not compared across different

fiscal quarters.

The evidence indicates a positive association between the expected benefits of gathering

information (as measured by the learning index) and analysts’ decisions to follow firms and

update forecasts. After controlling for the effects of size, stocks with the highest (lowest)

values of LI are covered by an average of 8.60 (7.52) analysts. The difference in coverage is

approximately one analyst with a t-statistic of 6.52. On average, 2.52 (2.12) analysts covering

a high (low) LI stock revise their forecasts from the prior month. The average difference

in the number of forecast revisions is 0.40 and is significant at the 1% level. I also find a

significant relationship between changes in forecast precision and the learning index. For

all quintiles, the average monthly percentage change in forecast precision is negative. This

pattern implies that on average, analysts’ estimates become more precise (relative to the

actual realized value) as the fiscal quarter end approaches. Stocks in the highest (lowest) LI

quintile have an average reduction in absolute error of the mean forecast of 12.46% (10.90%).

The difference between the extreme LI quintiles is −1.56% on average (t-statistic =−4.96).

Therefore, while the EPS forecasts for all stocks in the sample become closer on average over

time to the actual realized EPS, the increase in precision is greater for those stocks subject to
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a greater degree of learning.19

The fifth proxy is based on download activity from the SEC EDGAR system. The SEC

provides data beginning in January 2003 containing a record of downloads of filings from

EDGAR. Using this data, Crane, Crotty, and Umar (2018) provide evidence on the value of

this information by showing that hedge funds’ use of publicly-available SEC filings predicts

fund performance. Using the methodology of Ryans (2017) to screen out algorithmic download

activity, I measure EDGAR as the number of human downloads of a company’s SEC filings

during the month.20 After controlling for the size of the firm, I find that the filings of firms

with the highest (lowest) values of LI are downloaded 830.89 (715.92) times within a month

on average. The difference in average EDGAR downloads between these quintiles is 114.97

with a t-statistic of 3.58. This result supports the notion that investors are more likely to

gather information for stocks with higher values of the learning index.

The sixth proxy is based on a measure of Bloomberg news reading activity proposed by

Ben-Rephael, Da, and Israelsen (2017). Bloomberg provides a variable called “News Heat -

Daily Max Readership” that measures readership interest in a company relative to the past

30 days. The variable ranges from 0 to 4, with 0 indicating relatively low interest and 4

indicating unusually high interest. This variable is available beginning in February 2010.

Following Ben-Rephael et al. (2017), I measure abnormal attention at the daily frequency

using a dummy variable that is equal to 1 if the Bloomberg daily maximum is a 3 or 4, and 0

otherwise. I then aggregate this measure to the monthly frequency by computing the total

number of days with abnormal attention within a month (BBG). After controlling for size,

high (low) LI stocks receive abnormal investor attention during 3.04 (2.77) days within a

month on average. The difference in abnormal attention days between high and low LI stocks

is 0.27 with a t-statistic of 4.35. Overall, the patterns documented in this section serve as

additional evidence of a positive relationship between the learning index and information

demand.
19In untabulated analysis, I find qualitatively similar results when I compute forecast errors using the median

forecast rather than the mean forecast.
20I obtain summarized EDGAR log file data from James Ryans’ website: http://www.jamesryans.com/.
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6.3 Information environment surrounding earnings announcements

In this section, I examine the relationship between the learning index and the informa-

tion environment surrounding quarterly earnings announcements. If investors learn about

a firm prior to an earnings announcement, then the information acquired may be incorpo-

rated into prices beforehand. If this is true, then the average market reactions to earnings

announcements of high LI stocks should be smaller in magnitude than those of low LI stocks.

I measure the market reaction to earnings announcements using the magnitude of cu-

mulative abnormal returns. Absolute returns can also be interpreted as a simple measure

of volatility. Daily abnormal returns are calculated as the difference between the daily stock

return and the daily return on a portfolio of firms matched on size (as of June) and book-

to-market ratio (as of the prior December). I measure the absolute value of the cumulative

abnormal return on the day of the announcement (ACARd), during a three-day window

around the announcement (ACARd−1,d+1), and during the period from two days after the

announcement through one day after the following quarterly announcement (ACARNextQtr).

I also examine abnormal trading activity using two measures. The first measure ∆TURN

is share turnover during the month prior to the earnings announcement divided by average

monthly turnover over the prior 12 months, minus one and multiplied by 100. Similar to

Lerman, Livnat, and Mendenhall (2008), the second measure ∆TURNd−1,d+1 is average daily

turnover during the three-day period around the announcement date d divided by average

daily turnover from days d−63 through d−8, minus one and multiplied by 100.

As in the previous section, I use the bivariate dependent sorting approach to control for

the effects of firm size. At the end of each month, all stocks with a quarterly earnings an-

nouncement during the month are sorted into quintiles based on lagged market capitalization,

and then based on lagged values of LI within each size quintile. Each LI subquintile is then

combined across the size quintiles. Since I am interested in examining the contemporaneous

relationship between LI and abnormal trading activity, the sorting procedure is performed

using contemporaneous values of size and LI when analyzing ∆TURNd−1,d+1. Due to data

availability, the sample period for this analysis is October 1971 to December 2016.
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Table 11 reports average values and associated t-statistics of the abnormal return and

trading activity measures for each portfolio. After controlling for firm size, stocks with high

values of LI tend to have smaller market reactions to quarterly earnings announcements.

On average, the ACAR on the event date is 0.141% smaller for high LI stocks compared to

low LI stocks. Over a three-day window, the difference between the extreme LI quintiles is

−0.215%. These estimates are significant at the 1% and 5% level, respectively. The results

also suggest that the absolute magnitude of the drift in abnormal returns over the quarter

following the earnings announcement tends to be smaller for high LI stocks. The average

spread in ACARNextQtr between the high and low LI quintiles is −0.494% with a t-statistic

of −2.40.

The last two columns in Table 11 indicate a higher degree of abnormal trading activity

prior to and surrounding earnings announcements for high LI stocks relative to low LI stocks.

On average, high (low) LI stocks experience a 2.581% (−0.432%) change in share turnover

during the month prior to a quarterly earnings announcement relative to all months in the

past year. The difference in abnormal monthly turnover between the extreme quintiles is

3.014% with a t-statistic of 3.18. During the three-day window around the announcement, high

(low) LI stocks experience a 67.817% (53.477%) increase in average daily turnover relative to

average daily turnover during the preceding non-event period. The difference between extreme

quintiles is 14.340% with a t-statistic of 8.88. In sum, the results in this section suggest

that stocks with higher values of LI are subject to a greater level of trading activity around

quarterly earnings announcements, and tend to have smaller abnormal market reactions to

these events. These findings reinforce the interpretation of the LI as a proxy for investors’

information choices.
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7 Robustness checks

7.1 Alternative asset pricing models

In this section, I investigate the robustness of the relationship between the learning index

and expected returns by repeating the portfolio sorting analyses from Section 5.1.1 using four

alternative factor model specifications for risk adjustment.21 I first augment the Fama and

French (2018) six-factor model by adding the Pastor and Stambaugh (2003) liquidity factor.

I consider a further extension of the previous model by adding a short-term reversal factor

and a long-term reversal factor. In addition to these two specifications, I also consider the

Stambaugh and Yuan (2017) factor model, which contains market, size, and two mispricing

factors, and the Hou et al. (2015) q-factor model, which contains market, size, profitability,

and investment factors.

Table 12 reports risk-adjusted excess returns for value-weighted (Panel A) and equal-

weighted (Panel B) quintile portfolios sorted by LI. Using value-weighted portfolio returns, the

difference in alpha between extreme LI quintiles ranges from −0.444% per month (−5.5% per

year) based on the Stambaugh and Yuan (2017) factor model to −0.543% per month (−6.7% per

year) based on the Hou et al. (2015) factor model. Results based on equal-weighted portfolio

returns are qualitatively similar. Across all alternative factor model specifications considered,

I find that the negative cross-sectional relationship between the LI and risk-adjusted returns

is robust.

7.2 Explaining the cross section of implied volatility

In this section, I re-examine the relationship between the learning index and risk using

option-implied volatility as a proxy for posterior variance. Implied volatility can be viewed as

a measure of the market’s expectation of an asset’s volatility over the remaining life of the

21Liquidity factor data are obtained from Lubos Pastor’s website: faculty.chicagobooth.edu/lubos.pastor/research.
Short-term and long-term reversal factor data are obtained from Kenneth French’s website: mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.html. Data for the Stambaugh and Yuan (2017) mispricing factors are
obtained from Robert Stambaugh’s website: finance.wharton.upenn.edu/~stambaug. Data for the Hou, Xue, and
Zhang (2015) q-factor model are provided by Kewei Hou.
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option. I obtain data beginning in 1996 from the OptionMetrics volatility surface for month-

end implied volatilities of at-the-money calls and puts (deltas of 0.5 and -0.5, respectively)

with 30 days to maturity. Given that implied volatility is a forward-looking measure, I use

portfolio sorting to investigate the contemporaneous relationship between the learning index

and changes in the implied volatilities of calls (CVOL) and puts (PVOL). ∆CVOL is the

difference between current month CVOL and average CVOL in the prior 12 months, scaled

by average CVOL in the prior 12 months and multiplied by 100. I measure changes in

put-implied volatility (∆PVOL) in a similar manner.

Table 13 reports value-weighted (Panel A) and equal-weighted (Panel B) average percent-

age change in CVOL and PVOL for LI-sorted portfolios. I find a negative cross-sectional

relationship between the learning index and the market’s expectation of next month volatility.

Higher values of LI are associated with lower value-weighted average and equal-weighted

averages of ∆CVOL and ∆PVOL. For robustness, I perform two additional untabulated anal-

yses of the relationship between the learning index and implied volatility. First, I investigate

the explanatory power of LI for next month (instead of current month) changes in implied

volatility. Second, I use a bivariate portfolio sorting approach to examine the explanatory

power of LI for the current (or next month) level of implied volatility while controlling for

the past 12-month average level of implied volatility. The conclusions from these tests are

qualitatively similar. In total, my findings suggest that the learning index carries explanatory

power not only for future realized volatility, but also for the market’s expectation of future

volatility.

7.3 Learning and CAPM beta

According to Van Nieuwerburgh and Veldkamp (2010), assets which investors learn more

about should have returns that are lower than what is predicted by a standard asset pricing

model such as the CAPM. My conclusions based on analyses of risk-adjusted returns in Tables

4 and 12 support this idea. The model predicts that learning results in a reduction in the

conditional covariance of assets with the market. In this section, I investigate this prediction
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by examining the cross-sectional relationship between the learning index and CAPM beta.

Using portfolios sorted on LI, I first estimate βMKT
p at the portfolio level from a regression

of quintile average next month excess returns on the next month excess return of the market.

Similar to the prior portfolio sorting analyses of volatility, I also examine monthly percentage

changes in individual stock betas. βMKT
m is market beta measured at the stock level using a

regression of excess daily returns on lagged, current, and lead excess daily market returns

within a month. ∆βMKT
m is the percentage change in βMKT

m in the month following portfolio

formation relative to average βMKT
m in the prior 12 months.

Table 14 reports the next month value-weighted (Panel A) and equal-weighted (Panel B)

quintile market beta and average percentage change in beta. Consistent with the theoretical

prediction that learning reduces co-movement with the market, I find that the high LI quintile

has a lower market beta compared to that of the low LI quintile. The difference in portfolio

beta between extreme LI quintiles is −0.226% and is significant at the 1% level. I also find

that higher values of LI are associated with lower changes in CAPM beta. On average, the

percentage change in beta in the month following portfolio formation is −3.408% lower for

high LI stocks compared to low LI stocks, with a t-statistic of −2.80. Results based on equally-

weighted quintile portfolio betas and average percentage changes in beta are qualitatively

similar.

To further investigate this relationship, I estimate multivariate cross-sectional regressions

similar to those used in Section 5.2. Instead of volatility, I use next month beta (βMKT
m ) as the

dependent variable and lagged values of beta as controls. Table 15 presents the results. After

controlling for various determinants of risk, I continue to find a negative and significant cross-

sectional relationship between LI and CAPM beta. Taken together, these findings suggest

that learning about an asset results in a lower conditional covariance with the market. This

relationship corresponds to the dispersion in systematic volatility and factor model pricing

errors documented in the prior analyses.
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7.4 Subperiod analysis

To examine how the results vary over time, I repeat the portfolio sorting analyses over

the subperiods July 1964 to December 1989 and January 1990 to December 2016. Table 16

presents value-weighted (Panel A) and equal-weighted (Panel B) averages of next month excess

return, Fama and French (2018) six-factor risk-adjusted excess return, and percentage change

in total, systematic, and idiosyncratic return volatility. While there is slight variation in the

magnitude and significance of the estimates of interest over time, the negative cross-sectional

relationships between LI and the measures of risk and return are evident in both subperiods.

In the earlier part of the sample period, LI strongly predicts cross-sectional variation in

raw returns. A portion of this explanatory power appears to be attributable to exposure to

systematic risk factors; the predictive ability of LI for risk-adjusted returns and idiosyncratic

volatility changes is weaker during this time. Cross-sectional differences in volatility changes

between extreme LI portfolios tend to be larger in the later part of the sample.

In Table 17, I estimate Fama-MacBeth cross-sectional regressions of excess return and

volatility over two subperiods. For these analyses, I use the full set of control variables from

equations 3 and 4, but report only the average LI coefficient estimate for brevity. The first row

of the table presents the equal-weighted (Panel A) and precision-weighted (Panel B) average

LI coefficient during the first period of July 1996 to December 1989 and the second period of

January 1990 to December 2016. In Panel A, the average coefficient in the first (second) period

is −0.421 (−0.408). In Panel B, the average coefficient in the first (second) period is −0.411

(−0.396). Each of these four estimates is significant at the 1% level. Thus, in a multivariate

setting, the predictive power of LI for next month excess returns is consistent throughout the

sample.

The next three rows of Table 17 report equal-weighted and precision-weighted average

LI coefficients from cross-sectional regressions of systematic, idiosyncratic, and total return

volatility. Due to data availability, these regressions begin in December 1974. As such, I

define the first period as December 1974 to December 1995 and January 1996 to December
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2016.22 For each measure of volatility, both the equal-weighted average LI coefficient and

precision-weighted average LI coefficient are larger in absolute value and more significant

in the second period than in the first period. This is in accordance with the conclusions from

portfolio sorting in Table 16. The equal-weighted and precision-weighted average coefficient on

LI is negative and significant for each volatility measure and subperiod. Combined with the

results from portfolio sorting, these findings indicate that the observed relationships between

learning, risk, and expected return are not entirely driven by a particular time period within

the sample.

7.5 Alternative test assets: Industry portfolios

In this section, I apply the learning index estimation procedure as described in Section

3 to the 49 Fama-French industry portfolios, which are formed based on four-digit Standard

Industrial Classification (SIC) codes. Data for value-weighted industry portfolios are obtained

from Kenneth French’s website. I adjust the returns of industry portfolios for risk using the

Fama and French (2018) six-factor model, and focus on the same sample period as the primary

analyses (July 1964 to December 2016).

For these analyses, I sort assets (industry portfolios) based on LI into terciles rather

than quintiles due to the low number of assets within each cross section. Table 18 reports

value-weighted (Panel A) and equal-weighted (Panel B) averages of next month excess return,

risk-adjusted return, and percentage change in total return volatility. The average difference

in excess returns (alphas) between the extreme LI terciles is −0.265% (−0.387%) on a value-

weighted basis. These estimates are significant at the 5% and 1% level, respectively. I also

find a negative and significant relationship between LI and changes in volatility. On average,

industries in the high LI tercile experience a change in monthly volatility that is 1.227% lower

than that of the industries within the lowest LI tercile. The results based on equal-weighted

portfolio averages are qualitatively similar. These findings are supportive of my conclusions

based on individual stocks, and are consistent with the idea that the choice to learn more

22Conclusions are similar if I split the sample at December 1989, although a lower number of observations
prior to this date reduces statistical power.

36



about particular industries leads to a reduction in expected risk and return.

8 Conclusion

This study examines the importance of information choice in determining the cross sec-

tion of expected risk and return. Much of the asset pricing literature treats an investor’s

information set as fixed or exogenously determined. In reality, investors have the choice

to learn about assets prior to investing. The model of Van Nieuwerburgh and Veldkamp

(2010) accounts for this choice, generating predictions for optimal learning decisions and the

resulting impact on risk and risk premiums. To test these predictions, I estimate the learning

index from the model. I find that the learning index is negatively related to both future

returns and future volatilities. The reductions in risk-adjusted returns and idiosyncratic risk

are persistent and do not reverse in the long run. In addition, I find that the learning index

is cross-sectionally related to measures of investor attention, information demand, and the

amount of information in prices. Taken together, the evidence suggests that the learning index

is representative of collective information choices by investors, and that these choices are

important in the determination of investors’ expectations about risk and return. My findings

support the theoretical predictions of Van Nieuwerburgh and Veldkamp (2010) and illustrate

a new approach that can be used to empirically measure information choices.
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Table 1: Cross-sectional summary statistics

Percentiles

Mean SD 25th 50th 75th

LI 0.50 0.29 0.25 0.50 0.75
βMKT 1.06 0.57 0.66 0.99 1.39
SIZE 6.51 1.25 5.51 6.26 7.28
BM 0.71 0.48 0.38 0.63 0.92
PROF 0.82 0.85 0.39 0.67 1.06
INV 0.17 0.30 0.03 0.10 0.20
MOM 20.62 46.86 −4.29 12.78 34.39
ILLIQ 0.20 0.84 0.02 0.06 0.18
STR 1.76 9.98 −3.85 1.08 6.46
LTR 1.11 2.06 0.17 0.64 1.36
RVOL 34.21 17.94 22.43 30.49 41.89
IVOL 24.45 14.08 15.34 21.37 30.00
SVOL 22.75 12.68 14.18 20.18 28.44
ROE 3.36 5.20 1.86 3.35 4.96
ROEVOL 4.34 14.11 0.90 1.65 3.26
AGE 23.66 17.84 10.22 17.92 33.02
DIV D 0.71 0.42 0.41 1.00 1.00
LEV 2.19 4.04 0.32 0.75 1.67
INV PRC 4.13 2.53 2.44 3.49 5.08
R 1.09 9.57 −4.26 0.72 5.97

# of stocks 1,615 352 1,572 1,649 1,754

This table reports time series averages of monthly cross-sectional means, standard deviations,
and quartiles of key variables in the paper. The sample includes all NYSE, AMEX, and
NASDAQ domestic common stocks with stock price greater than $5 and market capitalization
greater than the 20th percentile of NYSE stocks at the end of each month. The table
summarizes the following characteristics: Learning index (LI), market beta (βMKT ), firm size
(SIZE), book-to-market ratio (BM), profitability (PROF), investment (INV ), momentum
(MOM), illiquidity (ILLIQ), short-term reversal (STR), long-term reversal (LTR), return
volatility (RVOL), idiosyncratic volatility (IVOL), systematic volatility (SVOL), return on
equity (ROE), volatility of return on equity (ROEVOL), firm age (AGE), dividend dummy
(DIV D), leverage (LEV ), inverse stock price (INV PRC), and monthly return (R). See Table
A1 for complete variable definitions. The last row in the table reports time series summary
statistics for the number of stocks in the sample per month. The sample period is July 1964
through December 2016.
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Table 2: Cross-sectional correlations

LI βMKT SIZE BM PROF INV MOM ILLIQ STR LTR IVOL

LI 1.00
βMKT −0.13 1.00
SIZE −0.10 −0.02 1.00
BM 0.07 −0.13 −0.13 1.00
PROF −0.07 0.11 −0.01 −0.29 1.00
INV −0.06 0.19 −0.05 −0.20 0.17 1.00
MOM −0.27 0.08 −0.02 −0.10 0.05 0.01 1.00
ILLIQ 0.03 −0.08 −0.20 0.03 −0.01 −0.01 −0.02 1.00
STR −0.02 0.01 −0.01 0.02 0.01 −0.01 0.03 0.29 1.00
LTR −0.11 0.16 0.02 −0.28 0.16 0.32 −0.01 −0.04 −0.02 1.00
IVOL 0.06 0.35 −0.28 −0.07 0.07 0.15 0.05 0.10 0.18 0.09 1.00

This table reports time series averages of monthly cross-sectional correlations between variables used as return
predictors: Learning index (LI), market beta (βMKT ), firm size (SIZE), book-to-market ratio (BM), profitability
(PROF), investment (INV ), momentum (MOM), illiquidity (ILLIQ), short-term reversal (STR), long-term reversal
(LTR), and idiosyncratic volatility (IVOL). See Table A1 for complete variable definitions. The sample period is
July 1964 through December 2016.
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Table 3: Transition probabilities for LI-sorted portfolios

Panel A: 1-month transition matrix
LI1t+1 LI2t+1 LI3t+1 LI4t+1 LI5t+1

LI1t 73.2 22.5 3.8 0.5 0.0
LI2t 22.7 47.7 24.1 5.0 0.5
LI3t 3.7 24.3 43.9 24.0 4.1
LI4t 0.4 5.0 24.0 47.1 23.5
LI5t 0.0 0.5 4.2 23.5 71.8

Panel B: 6-month transition matrix
LI1t+6 LI2t+6 LI3t+6 LI4t+6 LI5t+6

LI1t 51.0 25.7 13.5 6.9 2.9
LI2t 25.3 27.8 22.4 15.7 8.8
LI3t 13.0 22.1 24.6 23.2 17.1
LI4t 6.6 14.9 22.4 27.8 28.3
LI5t 3.1 8.8 16.9 27.1 44.1

Panel C: 12-month transition matrix
LI1t+12 LI2t+12 LI3t+12 LI4t+12 LI5t+12

LI1t 33.3 23.1 18.0 14.6 10.9
LI2t 23.3 22.2 20.2 18.3 16.1
LI3t 17.6 20.2 21.0 21.1 20.1
LI4t 13.3 18.3 21.0 23.2 24.3
LI5t 9.0 15.0 20.0 24.6 31.4

Panel D: 24-month transition matrix
LI1t+24 LI2t+24 LI3t+24 LI4t+24 LI5t+24

LI1t 21.5 20.6 20.0 19.7 18.2
LI2t 19.5 19.8 20.2 20.3 20.2
LI3t 17.8 19.3 20.4 21.1 21.4
LI4t 17.2 19.2 20.3 21.3 22.0
LI5t 16.0 18.5 20.3 21.9 23.3

At the end of each month, stocks are sorted into quintiles based on values of the learning
index (LI). For each LI quintile in month t, the table reports the time series average of the
percentage of stocks that fall in each LI quintile in month t+1 (Panel A), t+6 (Panel B),
t+12 (Panel C), and t+24 (Panel D). Percentages are calculated using only the stocks that
exist in both the initial month and the final month.
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Table 4: Explaining the cross section of expected returns:
Portfolios of stocks sorted by learning index (LI)

Panel A: Value-weighted portfolio returns

Quintile Excess return FF3 α FF5 α FF6 α

1 (Low LI) 1.126 0.248 0.330 0.241
2 0.966 0.059 0.022 0.040
3 0.804 −0.103 −0.162 −0.098
4 0.727 −0.179 −0.258 −0.154
5 (High LI) 0.685 −0.193 −0.293 −0.210

5−1 −0.441∗∗∗ −0.441∗∗∗ −0.623∗∗∗ −0.451∗∗∗

t-stat (−3.14) (−3.78) (−5.47) (−3.12)

Panel B: Equal-weighted portfolio returns

Quintile Excess return FF3 α FF5 α FF6 α

1 (Low LI) 1.372 0.277 0.318 0.295
2 1.248 0.147 0.124 0.158
3 1.041 −0.044 −0.079 −0.023
4 0.943 −0.131 −0.188 −0.112
5 (High LI) 0.840 −0.202 −0.291 −0.246

5−1 −0.532∗∗∗ −0.479∗∗∗ −0.609∗∗∗ −0.541∗∗∗

t-stat (−4.31) (−4.71) (−6.18) (−4.29)

At the end of each month, stocks are sorted into quintiles based on values of the learning index (LI).
The table reports the next month value-weighted (Panel A) and equal-weighted (Panel B) quintile
average monthly excess return and risk-adjusted excess return (alpha or α). FF3 α is computed with
respect to the Fama and French (1993) three-factor model which includes market, size, and value
factors. FF5 α is computed with respect to the Fama and French (2015) five-factor model which adds
profitability and investment factors to the three aforementioned factors. FF6 α is computed with
respect to the Fama and French (2018) six-factor model which adds a momentum factor to the five
aforementioned factors. The row labeled “5−1” presents the difference in monthly return and alpha
between the highest and lowest quintile portfolios. Newey and West (1987) t-statistics and 10%(∗),
5%(∗∗), and 1%(∗∗∗) significance levels for two-sided tests are given for the 5−1 portfolio. The sample
period is July 1964 to December 2016.
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Table 5: Explaining the cross section of expected returns:
Fama-MacBeth cross-sectional regressions

Panel A: Equal-weighted
coefficient average

Panel B: Precision-weighted
coefficient average

(1) (2) (3) (4) (5) (6)

LI −0.655∗∗∗ −0.416∗∗∗ −0.593∗∗∗ −0.401∗∗∗

(−4.14) (−4.90) (−4.41) (−5.10)
βMKT 0.052 0.028 −0.069 −0.087

(0.37) (0.21) (−0.55) (−0.70)
SIZE −0.120∗∗∗ −0.129∗∗∗ −0.098∗∗∗ −0.108∗∗∗

(−3.38) (−3.68) (−2.96) (−3.29)
BM 0.071 0.075 0.153∗∗ 0.155∗∗

(0.75) (0.79) (2.04) (2.06)
PROF 0.100∗∗ 0.098∗∗ 0.096∗∗∗ 0.096∗∗∗

(1.98) (1.98) (2.72) (2.73)
INV −0.498∗∗∗ −0.496∗∗∗ −0.464∗∗∗ −0.466∗∗∗

(−5.38) (−5.47) (−5.83) (−5.92)
MOM 0.005∗∗ 0.004∗∗ 0.004∗∗∗ 0.004∗∗∗

(2.53) (2.30) (3.28) (2.81)
ILLIQ 0.539 0.521 −0.092∗∗∗ −0.094∗∗∗

(0.56) (0.55) (−2.78) (−2.86)
STR −0.040∗∗∗ −0.040∗∗∗ −0.037∗∗∗ −0.037∗∗∗

(−7.78) (−7.70) (−7.89) (−7.82)
LTR −0.051∗∗∗ −0.057∗∗∗ −0.034∗∗∗ −0.041∗∗∗

(−2.70) (−3.12) (−2.78) (−3.36)
IVOL −0.011∗∗∗ −0.010∗∗∗ −0.011∗∗∗ −0.010∗∗∗

(−4.42) (−3.83) (−4.51) (−3.96)

Adj R2 0.009 0.090 0.092 0.009 0.090 0.092

This table presents results from Fama and MacBeth (1973) cross-sectional regressions. At
the end of each month, I estimate a cross-sectional regression of the next month excess
stock return on a set of explanatory variables. Panel A reports equal-weighted average slope
coefficients, and Panel B reports Litzenberger and Ramaswamy (1979) precision-weighted
average slope coefficients. Each column presents results for a different regression specification.
Explanatory variables include an intercept term, the learning index (LI), firm size (SIZE),
book-to-market ratio (BM), profitability (PROF), investment (INV ), momentum (MOM),
illiquidity (ILLIQ), short-term reversal (STR), long-term reversal (LTR), and idiosyncratic
volatility (IVOL). See Table A1 for complete variable definitions. The average adjusted R2

is reported in the last row. The intercept term is not reported for brevity. Newey and West
(1987) t-statistics are given in parentheses. 10%(∗), 5%(∗∗), and 1%(∗∗∗) significance levels
for two-sided tests are denoted. This regression analysis is based on 807,566 stock-month
observations from July 1966 to December 2016 with no missing values for all variables.
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Table 6: Explaining the cross section of return volatility:
Portfolios of stocks sorted by learning index (LI)

Panel A: Value-weighted average Panel B: Equal-weighted average

Quintile ∆RVOL ∆SVOL ∆IVOL ∆RVOL ∆SVOL ∆IVOL

1 (Low LI) 3.353 4.749 2.244 2.965 4.473 2.179
2 1.689 2.880 1.012 1.723 3.149 1.038
3 1.356 2.628 0.700 1.201 2.454 0.656
4 0.767 1.676 0.506 0.686 1.821 0.283
5 (High LI) −0.513 0.363 −0.607 −0.303 0.726 −0.588

5−1 −3.866∗∗∗ −4.386∗∗∗ −2.851∗∗∗ −3.268∗∗∗ −3.746∗∗∗ −2.767∗∗∗

t-stat (−5.94) (−5.56) (−5.38) (−5.42) (−5.46) (−5.17)

At the end of each month, stocks are sorted into quintiles based on values of the learning index (LI).
The table reports the next month value-weighted (Panel A) and equal-weighted (Panel B) quintile
average percentage change in return volatility (∆RVOL), systematic volatility (∆SVOL), and
idiosyncratic volatility (∆IVOL) relative to the respective average volatility in the prior 12 months.
See Table A1 for complete variable definitions. The row labeled “5−1” presents the difference in
monthly change in volatility between the highest and lowest quintile portfolios. Newey and West
(1987) t-statistics and 10%(∗), 5%(∗∗), and 1%(∗∗∗) significance levels for two-sided tests are given
for the 5−1 portfolio. The sample period is July 1964 to December 2016.

47



Table 7: Explaining the cross section of return volatility:
Fama-MacBeth cross-sectional regressions

Panel A: Equal-weighted
coefficient average

Panel B: Precision-weighted
coefficient average

(1) (2) (3) (4) (5) (6)

LI −1.333∗∗∗ −1.331∗∗∗ −1.075∗∗∗ −1.160∗∗∗

(−5.05) (−7.22) (−5.78) (−7.64)
ROE −0.043∗∗∗ −0.047∗∗∗ −0.040∗∗∗ −0.042∗∗∗

(−7.08) (−7.27) (−8.08) (−8.53)
ROEVOL 0.043∗∗∗ 0.043∗∗∗ 0.005∗∗∗ 0.005∗∗

(3.21) (3.18) (2.60) (2.50)
AGE −0.009∗∗∗ −0.009∗∗∗ −0.008∗∗∗ −0.008∗∗∗

(−5.62) (−5.77) (−6.07) (−6.23)
DIV D −0.784∗∗∗ −0.777∗∗∗ −0.716∗∗∗ −0.713∗∗∗

(−7.96) (−8.13) (−8.47) (−8.71)
LEV 0.011 0.000 −0.010 −0.016

(0.31) (−0.01) (−0.60) (−0.97)
INV PRC 0.283∗∗∗ 0.286∗∗∗ 0.270∗∗∗ 0.273∗∗∗

(10.05) (10.20) (10.17) (10.42)
R 0.087∗∗∗ 0.088∗∗∗ 0.094∗∗∗ 0.094∗∗∗

(3.97) (3.97) (4.25) (4.25)
SIZE −0.001 −0.033 −0.045 −0.072

(−0.02) (−0.63) (−0.87) (−1.42)
BM −0.881∗∗∗ −0.854∗∗∗ −0.790∗∗∗ −0.765∗∗∗

(−7.03) (−6.94) (−7.21) (−7.10)
MOM 0.000 −0.003 0.004 0.001

(0.12) (−0.90) (1.63) (0.39)
STR −0.106∗∗∗ −0.102∗∗∗ −0.099∗∗∗ −0.096∗∗∗

(−10.61) (−10.45) (−11.41) (−11.27)

Lagged Volatilities X X X X X X
Adj R2 0.493 0.532 0.533 0.493 0.532 0.533

This table presents results from Fama and MacBeth (1973) cross-sectional regressions. At the end of
each month, I estimate a cross-sectional regression of next month return volatility (RVOL) on a set of
explanatory variables. Panel A reports equal-weighted average slope coefficients, and Panel B reports
Litzenberger and Ramaswamy (1979) precision-weighted average slope coefficients. Each column presents
results for a different regression specification. Explanatory variables include an intercept term, the
learning index (LI), return on equity (ROE), volatility of return on equity (ROEVOL), firm age (AGE),
a dividend dummy (DIV D), leverage (LEV ), inverse of stock price (INV PRC), firm size (SIZE), book-
to-market ratio (BM), momentum (MOM), short-term reversal (STR), next month return (R), and 12
lagged values of volatility. See Table A1 for complete variable definitions. The average adjusted R2

is reported in the last row. The intercept term and coefficient estimates for lagged volatilities are not
reported for brevity. Newey and West (1987) t-statistics are given in parentheses. 10%(∗), 5%(∗∗), and
1%(∗∗∗) significance levels for two-sided tests are denoted. This regression analysis is based on 680,543
stock-month observations from December 1974 to December 2016 with no missing values for all variables.
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Table 8: Explaining the cross section of systematic volatility:
Fama-MacBeth cross-sectional regressions

Panel A: Equal-weighted
coefficient average

Panel B: Precision-weighted
coefficient average

(1) (2) (3) (4) (5) (6)

LI −1.038∗∗∗ −0.791∗∗∗ −0.793∗∗∗ −0.647∗∗∗

(−5.05) (−5.58) (−5.77) (−5.74)
ROE −0.030∗∗∗ −0.032∗∗∗ −0.028∗∗∗ −0.030∗∗∗

(−6.99) (−7.09) (−7.72) (−8.09)
ROEVOL 0.033∗∗∗ 0.034∗∗∗ 0.003∗∗ 0.003∗∗

(3.07) (3.05) (2.10) (2.05)
AGE −0.006∗∗∗ −0.006∗∗∗ −0.005∗∗∗ −0.006∗∗∗

(−4.28) (−4.48) (−5.06) (−5.26)
DIV D −0.603∗∗∗ −0.604∗∗∗ −0.535∗∗∗ −0.537∗∗∗

(−7.40) (−7.54) (−7.59) (−7.82)
LEV 0.032 0.025 0.006 0.002

(1.20) (0.94) (0.46) (0.16)
INV PRC 0.202∗∗∗ 0.204∗∗∗ 0.190∗∗∗ 0.192∗∗∗

(9.76) (9.80) (10.20) (10.35)
R 0.054∗∗∗ 0.054∗∗∗ 0.059∗∗∗ 0.059∗∗∗

(3.86) (3.86) (4.38) (4.38)
SIZE 0.128∗∗ 0.108∗∗ 0.079 0.063

(2.32) (1.97) (1.49) (1.19)
BM −0.634∗∗∗ −0.626∗∗∗ −0.557∗∗∗ −0.550∗∗∗

(−6.37) (−6.40) (−6.66) (−6.64)
MOM 0.005∗ 0.003 0.008∗∗∗ 0.006∗∗∗

(1.72) (1.14) (3.67) (2.85)
STR −0.061∗∗∗ −0.059∗∗∗ −0.054∗∗∗ −0.053∗∗∗

(−7.60) (−7.53) (−8.26) (−8.20)

Lagged Volatilities X X X X X X
Adj R2 0.439 0.478 0.479 0.439 0.478 0.479

This table presents results from Fama and MacBeth (1973) cross-sectional regressions. At the end of
each month, I estimate a cross-sectional regression of next month systematic volatility (SVOL) on a
set of explanatory variables. Panel A reports equal-weighted average slope coefficients, and Panel B
reports Litzenberger and Ramaswamy (1979) precision-weighted average slope coefficients. Each column
presents results for a different regression specification. Explanatory variables include an intercept term,
the learning index (LI), return on equity (ROE), volatility of return on equity (ROEVOL), firm age
(AGE), a dividend dummy (DIV D), leverage (LEV ), inverse of stock price (INV PRC), firm size (SIZE),
book-to-market ratio (BM), momentum (MOM), short-term reversal (STR), next month return (R), and
12 lagged values of SVOL. See Table A1 for complete variable definitions. The average adjusted R2

is reported in the last row. The intercept term and coefficient estimates for lagged volatilities are not
reported for brevity. Newey and West (1987) t-statistics are given in parentheses. 10%(∗), 5%(∗∗), and
1%(∗∗∗) significance levels for two-sided tests are denoted. This regression analysis is based on 680,543
stock-month observations from December 1974 to December 2016 with no missing values for all variables.
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Table 9: Explaining the cross section of idiosyncratic volatility:
Fama-MacBeth cross-sectional regressions

Panel A: Equal-weighted
coefficient average

Panel B: Precision-weighted
coefficient average

(1) (2) (3) (4) (5) (6)

LI −0.686∗∗∗ −0.929∗∗∗ −0.563∗∗∗ −0.841∗∗∗

(−3.77) (−7.04) (−4.12) (−7.29)
ROE −0.040∗∗∗ −0.042∗∗∗ −0.034∗∗∗ −0.036∗∗∗

(−6.75) (−6.78) (−8.20) (−8.45)
ROEVOL 0.039∗∗∗ 0.038∗∗∗ 0.006∗∗∗ 0.005∗∗∗

(3.41) (3.36) (3.41) (3.29)
AGE −0.008∗∗∗ −0.009∗∗∗ −0.008∗∗∗ −0.008∗∗∗

(−7.14) (−7.21) (−7.25) (−7.35)
DIV D −0.744∗∗∗ −0.730∗∗∗ −0.700∗∗∗ −0.690∗∗∗

(−9.18) (−9.28) (−10.57) (−10.74)
LEV −0.031 −0.039∗ −0.029∗∗ −0.033∗∗∗

(−1.33) (−1.67) (−2.44) (−2.79)
INV PRC 0.255∗∗∗ 0.258∗∗∗ 0.243∗∗∗ 0.246∗∗∗

(11.20) (11.37) (10.82) (11.07)
R 0.070∗∗∗ 0.070∗∗∗ 0.072∗∗∗ 0.073∗∗∗

(4.08) (4.09) (4.21) (4.22)
SIZE −0.142∗∗∗ −0.164∗∗∗ −0.151∗∗∗ −0.170∗∗∗

(−5.21) (−6.05) (−5.83) (−6.58)
BM −0.777∗∗∗ −0.753∗∗∗ −0.701∗∗∗ −0.677∗∗∗

(−7.90) (−7.76) (−7.88) (−7.74)
MOM −0.003∗ −0.006∗∗∗ −0.001 −0.003∗

(−1.79) (−2.97) (−0.49) (−1.83)
STR −0.078∗∗∗ −0.075∗∗∗ −0.075∗∗∗ −0.073∗∗∗

(−11.22) (−11.05) (−11.72) (−11.56)

Lagged Volatilities X X X X X X
Adj R2 0.420 0.454 0.455 0.420 0.454 0.455

This table presents results from Fama and MacBeth (1973) cross-sectional regressions. At the end of
each month, I estimate a cross-sectional regression of next month idiosyncratic volatility (IVOL) on a
set of explanatory variables. Panel A reports equal-weighted average slope coefficients, and Panel B
reports Litzenberger and Ramaswamy (1979) precision-weighted average slope coefficients. Each column
presents results for a different regression specification. Explanatory variables include an intercept term,
the learning index (LI), return on equity (ROE), volatility of return on equity (ROEVOL), firm age
(AGE), a dividend dummy (DIV D), leverage (LEV ), inverse of stock price (INV PRC), firm size (SIZE),
book-to-market ratio (BM), momentum (MOM), short-term reversal (STR), next month return (R), and
12 lagged values of IVOL. See Table A1 for complete variable definitions. The average adjusted R2

is reported in the last row. The intercept term and coefficient estimates for lagged volatilities are not
reported for brevity. Newey and West (1987) t-statistics are given in parentheses. 10%(∗), 5%(∗∗), and
1%(∗∗∗) significance levels for two-sided tests are denoted. This regression analysis is based on 680,543
stock-month observations from December 1974 to December 2016 with no missing values for all variables.
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Table 10: Relationship with measures of investor attention:
Portfolios of stocks sorted by learning index (LI) controlling for size

Sample Begins: Jul 1964 Jul 1984 Jul 1984 Jul 1984 Jan 2003 Feb 2010

Quintile ∆TURN nAN ALY ST nREV ∆AFE EDGAR BBG

1 (Low LI) 3.71 7.52 2.12 −10.90 715.92 2.77
2 6.34 7.82 2.23 −11.44 733.64 2.85
3 7.94 8.11 2.35 −11.86 770.09 2.93
4 8.87 8.38 2.45 −12.51 788.43 2.97
5 (High LI) 9.29 8.60 2.52 −12.46 830.89 3.04

5−1 5.59∗∗∗ 1.07∗∗∗ 0.40∗∗∗ −1.56∗∗∗ 114.97∗∗∗ 0.27∗∗∗

t-stat (6.68) (6.52) (5.21) (−4.96) (3.59) (4.35)

At the end of each month, stocks are sorted into quintiles based on market capitalization. Within
each size quintile, stocks are sorted based on values of the learning index (LI). Each LI subquintile
is combined across size quintiles into a single quintile. This approach creates portfolios of stocks
with differences in LI but similar distributions of size. The table reports the time series means of
quintile averages for six proxies of investor attention or information demand: change in monthly
share turnover (∆TURN), number of analyst forecasts (nAN ALY ST), number of analyst forecast
revisions (nREV ), change in absolute forecast error (∆AFE), number of SEC filing downloads from
EDGAR (EDGAR), and number of days with abnormal news reading activity on Bloomberg (BBG).
See Table A1 for complete variable definitions. The row labeled “5−1” presents the difference in the
respective dependent variable between the highest and lowest quintile portfolios. Newey and West
(1987) t-statistics and 10%(∗), 5%(∗∗), and 1%(∗∗∗) significance levels for two-sided tests are given for
the 5−1 portfolio. The first row of the table header indicates the first month that data are available for
the respective dependent variable. All sample periods end in December 2016.
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Table 11: Information environment surrounding
quarterly earnings announcements:

Portfolios of stocks sorted by learning index (LI) controlling for size

Quintile ACARd ACARd−1,d+1 ACARNextQtr ∆TURN ∆TURNd−1,d+1

1 (Low LI) 2.547 4.433 12.169 −0.432 53.477
2 2.480 4.366 11.858 0.668 54.919
3 2.401 4.271 11.797 1.742 60.873
4 2.451 4.291 11.715 2.214 61.838
5 (High LI) 2.407 4.218 11.675 2.581 67.817

5−1 −0.141∗∗∗ −0.215∗∗ −0.494∗∗ 3.014∗∗∗ 14.340∗∗∗

t-stat (−2.63) (−2.56) (−2.40) (3.18) (8.88)

At the end of each month, all stocks with a quarterly earnings announcement during the month are
sorted into quintiles based on lagged market capitalization. Within each size quintile, stocks are
sorted based on lagged values of the learning index (LI). Each LI subquintile is combined across
size quintiles into a single quintile. This approach creates portfolios of stocks with differences in LI
but similar distributions of size. The table reports time series means of quintile averages for three
proxies of market reaction and two proxies of abnormal trading activity. Market reaction proxies
include the absolute value of the cumulative abnormal return on the earnings announcement
date d (ACARd), over the three-day period around the announcement date (ACARd−1,d+1), and
during the period from two days after the earnings announcement date through one day after
the firm’s next quarterly earnings announcement date (ACARNextQtr). Abnormal trading activity
proxies include change in monthly share turnover during the month prior to the announcement
(∆TURN), and change in daily turnover over the three-day period around the announcement
date (∆TURNd−1,d+1). See Table A1 for complete variable definitions. For ∆TURNd−1,d+1, the
sorting procedure is performed using contemporaneous values of size and LI. The row labeled
“5−1” presents the difference in the respective dependent variable between the highest and lowest
quintile portfolios. Newey and West (1987) t-statistics and 10%(∗), 5%(∗∗), and 1%(∗∗∗) significance
levels for two-sided tests are given for the 5−1 portfolio. The sample period is October 1971 to
December 2016.
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Table 12: Alternative asset pricing models:
Portfolios of stocks sorted by learning index (LI)

Panel A: Value-weighted portfolio returns

Quintile 7-factor α 9-factor α SY (2017) α HXZ (2015) α

1 (Low LI) 0.235 0.277 0.253 0.663
2 0.049 0.042 0.062 0.446
3 −0.093 −0.110 −0.067 0.265
4 −0.167 −0.197 −0.111 0.172
5 (High LI) −0.230 −0.261 −0.191 0.120

5−1 −0.465∗∗∗ −0.539∗∗∗ −0.444∗∗∗ −0.543∗∗∗

t-stat (−3.08) (−3.10) (−3.31) (−3.66)

Panel B: Equal-weighted portfolio returns

Quintile 7-factor α 9-factor α SY (2017) α HXZ (2015) α

1 (Low LI) 0.302 0.322 0.429 0.739
2 0.170 0.160 0.228 0.600
3 −0.025 −0.045 0.024 0.372
4 −0.113 −0.150 −0.075 0.271
5 (High LI) −0.255 −0.284 −0.232 0.129

5−1 −0.558∗∗∗ −0.606∗∗∗ −0.661∗∗∗ −0.610∗∗∗

t-stat (−4.25) (−3.91) (−5.06) (−4.79)

At the end of each month, stocks are sorted into quintiles based on values of the learning index (LI). The
table reports the next month value-weighted (Panel A) and equal-weighted (Panel B) risk-adjusted excess
return (alpha or α) for each quintile. 7-factor α is computed with respect to a seven factor model that
includes the market, size, value, profitability, investment, and momentum factors of Fama and French
(2018) as well as the liquidity factor of Pastor and Stambaugh (2003). 9-factor α is computed with respect
to a nine factor model that includes the seven aforementioned factors as well as a short-term reversal
factor and a long-term reversal factor. SY (2017) α is computed with respect to the Stambaugh and Yuan
(2017) factor model. HXZ (2015) α is computed with respect to the Hou et al. (2015) q-factor model. The
row labeled “5−1” presents the difference in alpha between the highest and lowest quintile portfolios.
Newey and West (1987) t-statistics and 10%(∗), 5%(∗∗), and 1%(∗∗∗) significance levels for two-sided tests
are given for the 5−1 portfolio. The sample period is July 1964 to December 2016.
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Table 13: Explaining the cross section of implied volatility:
Portfolios of stocks sorted by learning index (LI)

Panel A: Value-weighted average Panel B: Equal-weighted average

Quintile ∆CVOL ∆PVOL ∆CVOL ∆PVOL

1 (Low LI) 1.222 1.227 0.673 0.587
2 0.405 0.405 0.187 0.230
3 0.091 0.095 −0.187 −0.123
4 −0.149 −0.222 −0.582 −0.493
5 (High LI) −1.361 −1.331 −1.748 −1.650

5−1 −2.584∗∗∗ −2.558∗∗∗ −2.421∗∗∗ −2.237∗∗∗

t-stat (−3.55) (−3.59) (−3.44) (−3.23)

At the end of each month, stocks are sorted into quintiles based on values of the learning index
(LI). The table reports the next month value-weighted (Panel A) and equal-weighted (Panel B)
quintile average percentage change in call-implied volatility (∆CVOL) and put-implied volatility
(∆PVOL) in the current month relative to the average respective implied volatility in the prior
12 months. See Table A1 for complete variable definitions. The row labeled “5−1” presents
the difference in monthly change in implied volatility between the highest and lowest quintile
portfolios. Newey and West (1987) t-statistics and 10%(∗), 5%(∗∗), and 1%(∗∗∗) significance levels
for two-sided tests are given for the 5−1 portfolio. The sample period is January 1996 to December
2016.
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Table 14: Learning and CAPM beta:
Portfolios of stocks sorted by learning index (LI)

Panel A: Value-weighted average Panel B: Equal-weighted average

Quintile βMKT
p ∆βMKT

m βMKT
p ∆βMKT

m

1 (Low LI) 1.098 2.328 1.207 1.939
2 1.026 0.793 1.147 0.661
3 0.948 1.204 1.102 0.062
4 0.925 −0.120 1.076 −0.902
5 (High LI) 0.871 −1.080 0.998 −2.134

5−1 −0.226∗∗∗ −3.408∗∗∗ −0.209∗∗∗ −4.073∗∗∗

t-stat (−3.25) (−2.80) (−3.35) (−5.78)

At the end of each month, stocks are sorted into quintiles based on values of the learning index
(LI). The table reports the next month value-weighted (Panel A) and equal-weighted (Panel B)
quintile market beta and average percentage change in beta. βMKT

p is market beta measured at
the quintile portfolio level using a regression of quintile average next month excess returns on the
next month excess return of the market. βMKT

m is market beta measured at the stock level using a
regression of excess daily returns on lagged, current, and lead excess daily market returns within
a month. ∆βMKT

m is the percentage change in βMKT
m in the month following portfolio formation

relative to average βMKT
m in the prior 12 months. See Table A1 for complete variable definitions.

The row labeled “5−1” presents the difference in the respective dependent variable between the
highest and lowest quintile portfolios. Newey and West (1987) t-statistics and 10%(∗), 5%(∗∗), and
1%(∗∗∗) significance levels for two-sided tests are given for the 5−1 portfolio. The sample period is
July 1964 to December 2016.
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Table 15: Learning and CAPM beta:
Fama-MacBeth cross-sectional regressions

Panel A: Equal-weighted
coefficient average

Panel B: Precision-weighted
coefficient average

(1) (2) (3) (4) (5) (6)

LI −0.105∗∗∗ −0.040∗∗∗ −0.108∗∗∗ −0.046∗∗∗

(−6.87) (−4.00) (−7.16) (−4.80)
ROE 0.000 0.000 −0.001∗ −0.001∗

(0.56) (0.41) (−1.70) (−1.90)
ROEVOL 0.001 0.001 0.000 0.000

(1.42) (1.41) (1.62) (1.58)
AGE −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(−5.04) (−5.22) (−4.49) (−4.71)
DIV D −0.070∗∗∗ −0.070∗∗∗ −0.062∗∗∗ −0.063∗∗∗

(−6.46) (−6.48) (−6.80) (−6.88)
LEV 0.004∗∗ 0.004∗ 0.003∗ 0.002∗

(2.18) (1.96) (1.87) (1.70)
INV PRC 0.011∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(7.96) (8.14) (8.11) (7.99)
R 0.002 0.002 0.001 0.001

(1.59) (1.60) (1.29) (1.30)
SIZE 0.039∗∗∗ 0.038∗∗∗ 0.029∗∗∗ 0.028∗∗∗

(4.51) (4.38) (3.71) (3.55)
BM −0.058∗∗∗ −0.058∗∗∗ −0.049∗∗∗ −0.049∗∗∗

(−5.54) (−5.55) (−4.71) (−4.77)
MOM 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(3.56) (3.30) (4.59) (4.23)
STR −0.004∗∗∗ −0.004∗∗∗ −0.004∗∗∗ −0.003∗∗∗

(−6.28) (−6.18) (−6.94) (−6.86)

Lagged Betas X X X X X X
Adj R2 0.156 0.201 0.202 0.156 0.201 0.202

This table presents results from Fama and MacBeth (1973) cross-sectional regressions. At the end of
each month, I estimate a cross-sectional regression of next month market beta (βMKT

m ) on a set of
explanatory variables. Panel A reports equal-weighted average slope coefficients, and Panel B reports
Litzenberger and Ramaswamy (1979) precision-weighted average slope coefficients. Each column
presents results for a different regression specification. Explanatory variables include an intercept
term, the learning index (LI), return on equity (ROE), volatility of return on equity (ROEVOL),
firm age (AGE), a dividend dummy (DIV D), leverage (LEV ), inverse of stock price (INV PRC),
firm size (SIZE), book-to-market ratio (BM), momentum (MOM), short-term reversal (STR), next
month return (R), and 12 lagged values of βMKT

m . See Table A1 for complete variable definitions.
The average adjusted R2 is reported in the last row. The intercept term and coefficient estimates for
lagged betas are not reported for brevity. Newey and West (1987) t-statistics are given in parentheses.
10%(∗), 5%(∗∗), and 1%(∗∗∗) significance levels for two-sided tests are denoted. This regression
analysis is based on 680,543 stock-month observations from December 1974 to December 2016 with
no missing values for all variables.

56



Table 16: Subperiod analysis:
Portfolios of stocks sorted by learning index (LI)

Panel A: Value-weighted average Panel B: Equal-weighted average

Quintile Return FF6 α ∆RVOL ∆SVOL ∆IVOL Return FF6 α ∆RVOL ∆SVOL ∆IVOL

Sample Period: July 1964 – December 1989
1 (Low LI) 1.220 0.184 3.118 4.862 1.844 1.416 0.240 2.572 4.073 1.942
2 0.929 −0.004 2.347 3.901 1.473 1.255 0.146 1.877 3.378 1.345
3 0.784 −0.006 2.044 3.637 1.282 1.052 0.079 1.715 2.974 1.403
4 0.731 −0.044 1.554 2.743 1.293 0.957 −0.005 1.443 2.632 1.215
5 (High LI) 0.717 −0.056 0.882 2.076 0.712 0.872 −0.083 0.896 1.917 0.861

5−1 −0.502∗∗∗ −0.240 −2.236∗∗∗ −2.786∗∗∗ −1.132∗ −0.544∗∗∗ −0.323∗ −1.676∗ −2.156∗∗ −1.081
t-stat (−3.04) (−1.19) (−2.85) (−3.00) (−1.85) (−3.72) (−1.94) (−1.92) (−2.12) (−1.46)

Sample Period: January 1990 – December 2016
1 (Low LI) 1.039 0.148 3.490 4.606 2.465 1.331 0.314 3.331 4.845 2.401
2 1.000 0.089 1.100 2.011 0.519 1.242 0.176 1.579 2.936 0.752
3 0.822 −0.087 0.754 1.802 0.085 1.031 −0.053 0.723 1.969 −0.040
4 0.724 −0.174 0.148 0.878 −0.205 0.931 −0.143 −0.020 1.065 −0.585
5 (High LI) 0.655 −0.247 −1.696 −1.047 −1.803 0.810 −0.299 −1.420 −0.384 −1.938

5−1 −0.384∗ −0.394∗∗ −5.187∗∗∗ −5.654∗∗∗ −4.268∗∗∗ −0.520∗∗∗ −0.613∗∗∗ −4.751∗∗∗ −5.228∗∗∗ −4.339∗∗∗

t-stat (−1.72) (−2.18) (−5.66) (−4.84) (−6.11) (−2.66) (−3.70) (−6.67) (−6.38) (−7.03)

At the end of each month, stocks are sorted into quintiles based on values of the learning index (LI). The table reports the next month value-weighted
(Panel A) and equal-weighted (Panel B) quintile average of the following variables: excess return, Fama and French (2018) six-factor risk-adjusted
excess return (alpha or α), and percentage change in return volatility (∆RVOL), systematic volatility (∆SVOL), and idiosyncratic volatility
(∆IVOL) relative to the average return volatility in the prior 12 months. See Table A1 for complete variable definitions. The row labeled “5−1”
presents the difference in the respective dependent variable between the highest and lowest quintile portfolios. Newey and West (1987) t-statistics
and 10%(∗), 5%(∗∗), and 1%(∗∗∗) significance levels for two-sided tests are given for the 5−1 portfolio. The first sample period is July 1964 to
December 1989 and the second sample period is January 1990 to December 2016.
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Table 17: Subperiod analysis:
Learning index (LI) coefficient from Fama-MacBeth cross-sectional regressions

Panel A: Equal-weighted average LI coefficient Panel B: Precision-weighted average LI coefficient

Dependent Variable Jul 1966 – Dec 1989 Jan 1990 – Dec 2016 Jul 1966 – Dec 1989 Jan 1990 – Dec 2016

Return −0.421∗∗∗ −0.408∗∗∗ −0.411∗∗∗ −0.396∗∗∗

(−3.30) (−3.36) (−3.63) (−3.84)

Dec 1974 – Dec 1995 Jan 1996 – Dec 2016 Dec 1974 – Dec 1995 Jan 1996 – Dec 2016

RVOL −0.877∗∗∗ −1.790∗∗∗ −0.770∗∗∗ −1.568∗∗∗

(−4.97) (−6.19) (−4.76) (−6.81)
SVOL −0.455∗∗∗ −1.131∗∗∗ −0.359∗∗∗ −0.938∗∗∗

(−3.22) (−5.12) (−2.91) (−5.55)
IVOL −0.569∗∗∗ −1.291∗∗∗ −0.525∗∗∗ −1.174∗∗∗

(−4.37) (−6.52) (−4.09) (−7.13)

This table presents results from Fama and MacBeth (1973) cross-sectional regressions. At the end of each month, I estimate cross-sectional
regressions for each of the dependent variables listed in the first column on the learning index (LI) and a set of control variables following
the respective full specification described in the text (equations 3 and 4). Specifically, in return regressions, I control for firm size (SIZE),
book-to-market ratio (BM), profitability (PROF), investment (INV ), momentum (MOM), illiquidity (ILLIQ), short-term reversal (STR),
long-term reversal (LTR), and idiosyncratic volatility (IVOL). In volatility regressions, I control for return on equity (ROE), volatility of
return on equity (ROEVOL), firm age (AGE), a dividend dummy (DIV D), leverage (LEV ), inverse of stock price (INV PRC), firm size (SIZE),
book-to-market ratio (BM), momentum (MOM), short-term reversal (STR), next month return (R), and 12 lagged values of volatility. See Table
A1 for complete variable definitions. All regressions include an intercept term. The table reports only the average coefficient estimate for LI;
coefficient estimates for control variables are not reported for brevity. Panel A reports the equal-weighted average coefficient on LI, and Panel B
reports the Litzenberger and Ramaswamy (1979) precision-weighted average coefficient on LI. Newey and West (1987) t-statistics are given in
parentheses. 10%(∗), 5%(∗∗), and 1%(∗∗∗) significance levels for two-sided tests are denoted. For the return regressions, the first sample period is
July 1966 to December 1989 and the second sample period is January 1990 to December 2016. For the volatility regressions, the first sample
period is December 1974 to December 1995 and the second sample period is January 1996 to December 2016.
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Table 18: Alternative test assets:
49 industry portfolios

Panel A: Value-weighted average Panel B: Equal-weighted average

Tercile Return FF6 α ∆RVOL Return FF6 α ∆RVOL

1 (Low LI) 1.098 0.071 3.002 1.144 0.024 2.937
2 1.001 0.017 2.343 1.005 −0.097 2.179
3 (High LI) 0.829 −0.188 1.774 0.863 −0.207 1.656

3−1 −0.268∗∗ −0.259∗∗ −1.227∗∗ −0.281∗∗∗ −0.231∗∗∗ −1.281∗∗∗

t-stat (−2.22) (−1.98) (−2.26) (−3.48) (−2.76) (−2.87)

This table presents portfolio sorting results using 49 value-weighted industry portfolios as test
assets. At the end of each month, industry portfolios are sorted into terciles based on values of
the learning index (LI). The table reports the next month value-weighted (Panel A) and equal-
weighted (Panel B) average of the following variables: excess return, risk-adjusted excess return
(alpha or α), and percentage change in next month return volatility (∆RVOL) relative to the
average return volatility in the prior 12 months. See Table A1 for complete variable definitions.
Industry portfolio returns are risk adjusted using the Fama and French (2018) six-factor model.
The row labeled “3-1” presents the difference in the respective dependent variable between the
highest and lowest tercile portfolios. Newey and West (1987) t-statistics and 10%(∗), 5%(∗∗), and
1%(∗∗∗) significance levels for two-sided tests are given for the 3-1 portfolio. The sample period is
July 1964 to December 2016.
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Figure 1: Long-term return predictability:
Monthly returns of LI5−LI1 portfolio over next 36 months

Return

FF6 α

At the end of each month, I sort stocks into quintiles based on values of the learning
index (LI) and track the difference in value-weighted average returns between the
highest LI quintile and the lowest LI quintile (5−1 portfolio) in each of the 36 months
after portfolio formation. The figure presents average monthly excess returns and
risk-adjusted excess returns (alpha or α) for the 5−1 portfolio. Black bars indicate
statistical significance at the 10% level. Returns are risk-adjusted using the Fama and
French (2018) six-factor model. The sample period is July 1964 to December 2016.
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Figure 2: Long-term volatility predictability:
Monthly volatility changes of LI5−LI1 portfolio over next 36 months

∆RVOL

∆SVOL ∆IVOL

At the end of each month, I sort stocks into quintiles based on values of the learning index (LI) and track the difference in value-
weighted average percentage changes in return volatility (∆RVOL), systematic volatility (∆SVOL), and idiosyncratic volatility
(∆IVOL) between the highest LI quintile and the lowest LI quintile (5−1 portfolio) in each of the 36 months after portfolio formation.
The figure presents average volatility changes for the 5−1 portfolio. Black bars indicate statistical significance at the 10% level.
Systematic and idiosyncratic components of volatility are measured using the Fama and French (2018) six-factor model. See Table A1
for complete variable definitions. The sample period is July 1964 to December 2016.
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Appendix

Table A1: Variable definitions

Variable Definition

LI Learning index, based on the rational expectations general equilibrium model of
information choice and investment choice developed by Van Nieuwerburgh and
Veldkamp (2010). The empirical learning index reflects the value of learning
about a given asset for the average investor. Higher values of the learning
index correspond to a greater expected degree of learning. See Section 3 in
the text for complete description of variable measurement.

βMKT Market beta, calculated from a regression of excess stock returns on lagged,
current, and lead excess market returns using daily data from the past year.

SIZE Natural logarithm of market value of equity in millions of dollars.
BM Book-to-market ratio, defined as book value of equity in the latest fiscal year

ending in the prior calendar year divided by the market value of equity at the
end of December of the prior calendar year.

PROF Profitability, defined as annual revenues minus cost of goods sold, interest expense,
and selling, general, and administrative expenses divided by book equity for
the latest fiscal year ending in the prior calendar year.

INV Investment, defined as the annual percentage change in total assets as a decimal.
MOM Momentum, defined as the cumulative return in percent from month t−11 to

month t−1.
ILLIQ Illiquidity, defined as the absolute monthly return divided by the respective

monthly trading volume in dollars scaled by 105.
STR Short-term reversal, defined as the monthly return in percent over the past month.
LTR Long-term reversal, defined as the cumulative return as a decimal from month

t−59 to month t−12.
RVOL Return volatility, defined as the standard deviation of daily excess returns within

a month.
IVOL Idiosyncratic component of volatility, defined as the standard deviation of daily

residuals within a month estimated from a regression of excess stock returns
on the six-factor model of Fama and French (2018).

SVOL Systematic component of volatility, defined as the square root of the difference
between return variance (RVOL2) and idiosyncratic variance (IVOL2).

α Risk-adjusted average excess return, defined as the intercept from a regression of
excess returns on a set of risk factors.

∆RVOL Change in return volatility, defined as next month RVOL divided by average
monthly RVOL over the previous 12 months, minus one and multiplied by
100.

∆IVOL Change in the idiosyncratic component of volatility, defined as next month IVOL
divided by average monthly IVOL over the previous 12 months, minus one
and multiplied by 100.

∆SVOL Change in the systematic component of volatility, defined as next month SVOL
divided by average monthly SVOL over the previous 12 months, minus one
and multiplied by 100.

Continued on next page
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Variable Definition

ROE Return on equity, defined as earnings before extraordinary items as of the most
recent fiscal quarter end divided by common shareholders’ equity as of the
end of the previous quarter and multiplied by 100.

ROEVOL Volatility of return on equity, defined as the standard deviation of return on equity
over the prior 12 fiscal quarters.

AGE Firm age, defined as the number of years the firm has existed on CRSP.
DIV D Dummy variable equal to 1 if the firm paid dividends during the most recent fiscal

quarter, and 0 otherwise.
LEV Leverage, defined as total liabilities scaled by the market value of equity as of the

most recent fiscal quarter end.
INV PRC Inverse of the stock price, scaled by 100.
R Monthly return in percent.
∆TURN Change in monthly share turnover, defined as monthly turnover (total number

of shares traded within a month divided by shares outstanding) divided by
average monthly turnover over the prior 12 months, minus one and multiplied
by 100. ∆TURNd−1,d+1 is change in daily share turnover, defined as average
daily turnover over the three-day period around earnings announcement date
d divided by average daily turnover over days d−63 through d−8, minus one
and multiplied by 100.

nAN ALY ST Number of analyst forecasts for the nearest fiscal quarter.
nRev Number of analyst forecast revisions since the last month.
∆AFE Change in absolute value of the error in the mean forecast. The error in the mean

forecast is measured for the nearest fiscal quarter as the average EPS forecast
divided by the actual EPS, minus one. Monthly percentage change in the
absolute value of the error in mean forecast is measured as the current month
absolute error in mean forecast divided by the prior month absolute error in
mean forecast, minus one and multiplied by 100. This measure is computed
by firm and forecast period.

EDGAR Number of human downloads (according to the methodology of Ryans (2017)) of a
company’s SEC filings from EDGAR during the month.

BBG Number of days within the month when Bloomberg’s “News Heat - Daily Maximum
Readership” variable is equal to 3 or 4 out of 4.

ACAR Absolute value of the cumulative abnormal return around a quarterly earnings
announcement in percent. Abnormal returns are computed relative to the
daily returns of a portfolio matched on size (as of June) and book-to-market
ratio (as of December). ACARd is computed on the earnings announcement
date d. ACARd−1,d+1 is computed over the three-day period around the
announcement date. ACARNextQtr is computed over the period starting two
days after the earnings announcement date through one day after the firm’s
next quarterly earnings announcement date.

CVOL Call-implied volatility, measured based on an at-the-money call option with 30
days to maturity.

PVOL Put-implied volatility, measured based on an at-the-money put option with 30 days
to maturity.

∆CVOL Change in call-implied volatility, defined as the difference between current month
CVOL and average CVOL in the prior 12 months, scaled by average CVOL
in the prior 12 months and multiplied by 100.

Continued on next page
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Variable Definition

∆PVOL Change in put-implied volatility, defined as the difference between current month
PVOL and average PVOL in the prior 12 months, scaled by average PVOL
in the prior 12 months and multiplied by 100.

βMKT
p Market beta measured at the quintile portfolio level using a regression of quintile

average next month excess returns on the next month excess return of the
market.

βMKT
m Market beta, calculated from a regression of excess stock returns on lagged,

current, and lead excess market returns using daily data within a month.
∆βMKT

m Change in market beta, defined as monthly βMKT
m divided by average monthly

βMKT
m over the previous 12 months, minus one and multiplied by 100.
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