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Abstract

We argue theoretically and document empirically that aging leads to greater (industrial)

automation, and in particular, to more intensive use and development of robots. Using US

data, we document that robots substitute for middle-aged workers (those between the ages of 21

and 55). We then show that demographic change—corresponding to an increasing ratio of older

to middle-aged workers—is associated with greater adoption of robots and other automation

technologies across countries and with more robotics-related activities across US commuting

zones. We also provide evidence of more rapid development of automation technologies in

countries undergoing greater demographic change. Our directed technological change model

predicts that the induced adoption of automation technology should be more pronounced in

industries that rely more on middle-aged workers and those that present greater opportunities

for automation. Both of these predictions receive support from country-industry variation in

the adoption of robots. Our model also implies that the productivity implications of aging are

ambiguous when technology responds to demographic change, but we should expect productivity

to increase and the labor share to decline relatively in industries that are more amenable to

automation, and this is indeed the pattern we find in the data.
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1 Introduction

Automation and robotics technologies are poised to transform many aspects of the production

process (e.g., Brynjolfsson and McAfee, 2012, Ford, 2016), and have already made important inroads

in modern manufacturing (e.g., Graetz and Michaels, 2018, Acemoglu and Restrepo, 2018a). But

there are major differences in how rapidly these technologies are spreading across countries. The

number of industrial robots per thousand workers in US manufacturing stands at 9.14 in 2014,

while the same number is considerably higher in Japan (14.20), Germany (16.95) and South Korea

(20.14). Similarly, the United States lags behind Germany and Japan in the production of robots—

a single major producer of industrial robots is headquartered in the United States, compared to six

in each of Germany and Japan (Leigh and Kraft, 2018). These differences in automation are not

only notable given the central role that this and other automation technologies are likely to play in

the next several decades, but they may also be related to a puzzling fact noted in Acemoglu and

Restrepo (2017): despite the potential negative effects of aging on productivity and output, there

is no negative relationship between aging and GDP growth across countries.

In this paper, we advance the hypothesis that cross-country differences in automation are in part

explained by demographic trends. The United States, and to some degree the United Kingdom,

are lagging behind in robotics because they are not aging as rapidly as Germany, Japan and South

Korea. This is not because of differential demand for robots and automation in the service sector in

countries undergoing rapid aging—our focus is on the manufacturing sector. Rather, we document

that this pattern reflects the response of firms to the relative scarcity of middle-aged workers, who

appear to be most substitutable for robots.

We start with a simple model of technology adoption and innovation. Two types of workers,

middle-aged and older, are allocated across different tasks and industries. Middle-aged workers

have a comparative advantage in production tasks, while older workers specialize in nonproduction

services. In our model technology is endogenous: firms can invest resources to automate and

substitute machines for labor in production tasks, and will have stronger incentives to automate

when the middle-aged wage is greater. Using this framework, we show that demographic changes

that reduce the ratio of middle-aged to older workers induce the adoption of additional automation

technologies. This effect is particularly pronounced in industries that rely more on middle-aged

workers and those that have greater opportunities for automation. The productivity implications

of demographic change are ambiguous however: on the one hand, demographic change could reduce

output per worker given technology. On the other hand, the induced automation response enables

the substitution of cheaper machines for labor, increasing productivity.

The bulk of the paper investigates these predictions empirically, focusing on industrial robots as

well as other automation technologies. Our results point to a sizable impact of aging on the adoption

of robots and other automation technologies. We first use country-level data on the stock of robots

per thousand workers between 1993 and 2014 from that International Federation of Robotics (IFR)

to investigate the effects of aging on the adoption of robots. Our main specifications focus on long

differences, where our left-hand side variable is the change in the number of robots per thousand
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(industry) workers between 1993 and 2014. Our results indicate that countries undergoing more

rapid aging—measured as an increase in the ratio of workers above 56 to those between 21 and

55—invest more in robotics. The effects we estimate are quantitatively large. Aging alone explains

between 40% and 65% of the cross-country variation in the adoption of industrial robots. A 10

percentage point increase in our aging variable is associated with 0.9 more robots per thousand

workers—compared to the average increase of 3 robots per thousand workers observed during this

period. This magnitude suggests for instance that if the United States had the same demographic

trends as Germany, the gap in robotics between the two countries would be 25% smaller.

These results are robust to a range of controls allowing for differential trends across countries

in investment in robotics. For example, they are unchanged when we control for differential trends

by initial GDP per capita, population level, robot density, capital output ratio, human capital, the

size of the manufacturing sector, and unionization rates. Because age composition is potentially

endogenous due to migration patterns correlated with economic trends, we verify our baseline

results using an instrumental-variables (IV) strategy exploiting past birth rates and cohort sizes

which strongly predict aging and are unlikely to be correlated with subsequent automation decisions

through other channels. These estimates are similar to the ordinary least squares (OLS) estimates.

We also confirm these results using an alternative estimate of investment in robotics: imports of

industrial robots obtained from bilateral trade data.

The effects of demographic change on technology are not confined to robotics. Using bilateral

trade data, we show a similar relationship between aging and a number of other automation tech-

nologies (such as numerically controlled machines, automatic welding machines, automatic machine

tools, weaving and knitting machines, and various dedicated industrial machines), and also verify

that there is no such relationship for technologies that appear more broadly labor-augmenting (such

as manual machine tools and non-automatic machines as well as computers).

These effects are not confined to the adoption margin either. Using data on exports of au-

tomation technologies and patents, we provide evidence that countries undergoing more rapid

demographic change are developing more automation technologies.

We also estimate the effects of aging on the adoption of robots at the commuting zone level in

the US. Though we do not have measures of investments in robots for commuting zones, we use

Leigh and Kraft’s (2018) data on the location of robot integrators as a proxy for robotics-related

activity. Because integrators specialize in installing, reprogramming and maintaining industrial

robots, their presence indicates the adoption of robots in the area. Using this measure, we confirm

the relationship between demographic change and the adoption of robots.

We then move to investigate the mechanisms underlying the cross-country and cross-commuting

zone association between aging and automation technologies. We first document that, consistent

with our theoretical approach, automation is directly substitutable to production/blue-color work-

ers, which are disproportionately middle-aged. For example, automation is associated with sharp

declines in the share of production workers in an industry and with lower labor share. Most di-

rectly, we show once again using the variation across commuting zones that the adoption of robots
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is associated with lower wages and employment of middle-aged workers, but not of older workers.

We next turn to the prediction of the directed technological change approach that the effects of

demographic change should be particularly pronounced in industries that rely more on middle-aged

workers and that present greater opportunities for automation. Using industry-level data from the

IFR, we find robust support for these predictions as well.

Finally, we investigate the implications of aging on labor productivity. Consistent with our

theoretical expectations, we find a positive impact of demographic change on labor productivity

in industries that are most amenable to automation. We also verify that these are the same

industries experiencing the most pronounced declines in the labor share—a telltale sign of significant

automation in these industries (Acemoglu and Restrepo, 2018b). These results suggest that the

lack of a negative relationship between aging and GDP mentioned above might be partly due to the

more rapid adoption of automation technologies in countries undergoing significant demographic

change.

Our paper is related to a few literatures. The first is a literature estimating the implications

of automation technologies on labor markets. Early work (e.g., Autor, Levy and Murnane, 2003;

Goos and Manning, 2007; Michaels, Natraj and Van Reenen, 2014; Autor and Dorn, 2013; Gregory,

Salomons and Zierahn, 2016) provides evidence suggesting that automation of routine jobs has been

associated with greater wage inequality and decline of middle-skill occupations. More recently,

Graetz and Michaels (2018) and Acemoglu and Restrepo (2018a) estimate the effects of the adoption

of robotics technology on employment and wages (and in the former case, also on productivity). Our

work differs from these papers since we focus not on the implications of automation technologies,

but on the determinants of their adoption.

Second, a growing literature focuses on the potential costs of demographic change, in some

cases seeing this as a major disruptive factor that will bring slow economic growth (e.g., Gordon,

2016) and potentially other macroeconomic problems such as an aggregate demand-induced secular

stagnation (see the essays in Baldwin and Teulings, 2014). We differ from this literature by focusing

on the effects of demographic changes on automation—an issue that does not seem to have received

much attention in this literature.1 A few works focusing on the effects of demographic change on

factor prices (e.g., Poterba, 2001, Krueger and Ludwig, 2007) and human capital (e.g., Ludwig,

Schelkle and Vogel, 2012) are more related, but we are not aware of any papers studying the impact

of aging on technology, except the independent and simultaneous work by Abeliansky and Prettner

(2017). There are several differences between our work and this paper. These authors focus on

the effect of the slowdown of population growth—rather than age composition—on different types

of capital, one of which corresponds to automation (without any directed technological change).

They also do not consider the industry-level variation. We show that the effects we estimate are not

driven by the level of population or its slower growth, thus distinguishing our results from theirs.

1As mentioned above, our short paper, Acemoglu and Restrepo (2017), pointed out that despite these concerns,
there is no negative relationship between aging and GDP growth, and suggested that this might be because of the
effects of aging on technology adoption, but did not present any evidence on this linkage, nor did it develop the
theoretical implications of demographic change on technology adoption and productivity.
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Third, our work is related to the literature on technology adoption. Within this literature,

most closely linked to our conceptual approach is Zeira’s (1998) paper which develops a model of

economic growth based on the substitution of capital for labor, but does not explore the implications

of demographic change on technology adoption. A few recent papers that study the implications of

factor prices on technology adoption are related to our work as well. Manuelli and Seshadri (2010)

use a calibrated model to show that stagnant wages mitigated the adoption of tractors before

1940. Clemens et al. (2018) find that the exclusion of Mexican braceros—temporary agricultural

workers—induced farms to adopt mechanic harvesters and switch to crops with greater potential

for mechanization, while Lewis (2011) shows that in US metropolitan areas receiving fewer low-

skill immigrants between 1980 and 1990, equipment and fabricated metal plants adopted more

automation technologies.

Finally, our conceptual approach builds on the directed technological change literature (e.g.,

Acemoglu, 1998, 2002). Our model is a mixture of the setup in Acemoglu (2007, 2010), which

develops a general framework for the study of directed innovation and technology adoption, with the

task-based framework of Acemoglu and Restrepo (2018 a,b), Acemoglu and Autor (2011) and Zeira

(1998). One contribution of the theory part of our paper is to analyze the effects of demographic

changes on technology without the specific functional form restrictions (such as constant elasticity

of substitution and factor-augmenting technologies) as in the early literature or the supermodularity

assumptions as in Acemoglu (2007, 2010). Existing empirical works on directed technological change

(e.g., Finkelstein, 2004, Acemoglu and Linn, 2005, Hanlon, 2016) do not focus on demographic

changes. Acemoglu and Linn (2005) and Costinot, Donaldson, Kyle and Williams (2017) exploit

demographic changes as a source of variation, but this is in the context of the demand for different

types of pharmaceuticals rather than for technology adoption.

The rest of the paper is organized as follows. We introduce our model of directed technol-

ogy adoption in the next section. Section 3 presents our data sources. Section 4 presents our

cross-country evidence on the effect of demographic change on the adoption of robots and other

automation technologies. Section 5 provides evidence on the impact of demographic change on inno-

vation and development of automation technologies. Section 6 investigates the relationship between

demographics and robots across US commuting zones. Section 7 investigates the mechanisms at the

root of the effect of aging on automation technologies. We first show that (industrial) automation

technologies are indeed used predominantly to automate tasks performed by middle-aged workers,

and then proceed to demonstrate that, consistent with our theoretical approach, the effects of de-

mographic change on the adoption of robotics technology are most pronounced in industries that

rely more on middle-aged workers and in those with greater opportunities for automation. Section

8 considers the relationship between demographic change and productivity and the labor share at

the industry level. Section 9 concludes, while the (online) Appendix contains proofs omitted from

the text and additional data details and empirical results.
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2 Directed Technology Adoption

In this section, we introduce a simple model of directed technology adoption, which enables us to

derive the main implications of demographic change on automation technologies. In our model,

industries employ middle-aged workers, older workers and machines to perform tasks necessary

for production, and technology monopolists invest in the development of new technologies that

automate tasks performed by middle-aged workers.2 Our objective for presenting this model is

threefold. First, it clarifies the critical feature of automation—as technologies that enable the

substitution of machines for tasks previously performed by labor. Second, it demonstrates that there

is a natural complementarity between the adoption (and innovation) of these types of technologies

and the prices of the factors being replaced—in this case middle-aged workers. Third, it generates

additional empirical predictions that clarify the mechanism via which these effects work.

2.1 The Environment

The economy produces a numeraire good Y by combining the output of a continuum of industries

(or varieties) through a CES aggregator:

Y =

(∫

i∈I
Y (i)

σ−1
σ di

) σ
σ−1

, with σ > 1. (1)

Here Y (i) is the net output of industry i and I denotes the set of industries.

In each industry, gross output is produced by combining production tasks, service or support

(non-production) tasks, and intermediates that embody the state of technology (in particular au-

tomation) for this industry:

Y g(i) =
η−η

1− η

[
X(i)α(i)S(i)1−α(i)

]η
q(θ(i))1−η . (2)

Firms first combine production inputs, X(i), with service inputs, S(i).3 The exponent α(i) ∈ (α,α),

with 0 < α < α < 1, designates the importance of production inputs relative to service inputs in

the production function of industry i. The aggregate of these two inputs is then combined with unit

elasticity with the quantity of intermediates for this industry, q(θ(i)). The term θ(i) designates the

extent of automation embedded in the intermediates that firms purchase. Finally, 1− η ∈ (0, 1) is

the share of intermediates required for production.4

2In our model, there is directed technological change (investment by technology monopolists in developing different
types of technologies) and endogenous adoption of these technologies. We emphasize both margins since our focus is
not just on the development but also on the adoption of the robotics technologies.

3It is straightforward to extend this production function to have non-unitary elasticity of substitution between
X(i) and S(i), but we opted for the Cobb-Douglas specification for simplicity.

4The assumption that σ > 1 is for simplicity. The model can be extended to cover the case with σ < 1 if we
make two modifications to our baseline setup: (i) introduce limit pricing rather than monopoly pricing by technology
monopolists; (ii) change equation (2) so that the elasticity of substitution between intermediates and the aggregate
of production inputs, X(i)α(i)S(i)1−α(i), is less than one.
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Production inputs, X(i), are an aggregate of a unit measure of industry-specific tasks,

X(i) =

(∫ 1

0
X(i, z)

ζ−1
ζ dz

) ζ
ζ−1

,

where ζ is the elasticity of substitution between tasks.

Following Acemoglu and Restrepo (2018a,b), we model automation as the substitution of ma-

chines for labor in the production of tasks. Each production task X(i, z) is produced either by

labor or machines,

X(i, z) =

{
A(i)l(i, z) +m(i, z) if z ∈ [0, θ(i)]

A(i)l(i, z) if z ∈ (θ(i), 1],

where l(i, z) denotes the amount of production labor employed in task z in industry i, and m(i, z)

denotes machines used in industry i to produce task z. In addition, A(i) corresponds to the

productivity of labor relative to machines in tasks in industry i. Labor and machines are perfect

substitutes in (technologically) automated tasks (those with z ≤ θ(i) in industry i). An increase in

θ(i) extends the set of tasks where machines can substitute for labor and hence corresponds to an

advance in automation technology for industry i.

Intermediates embedding automation technology θ(i), q(θ(i)), are supplied by a technology mo-

nopolist that owns the intellectual property rights over these technologies and that serves industry

i. This technology monopolist produces each unit of q(θ(i)) using 1 − η units of industry i’s out-

put.5 The net output in industry i is then obtained by subtracting the total cost of intermediates,

(1− η)q(θ(i)), from the gross output of the industry:

Y (i) = Y g(i)− (1− η)q(θ(i)). (3)

There are two types of workers: middle-aged workers and older workers. We simplify the

analysis throughout the paper by imposing:

Assumption 1 Middle-aged workers fully specialize in production inputs. Older worker fully spe-

cialize in service inputs.

This assumption starkly captures the comparative advantage of middle-aged workers for pro-

duction tasks.6 It is consistent with the fact that these technologies are designed and used mostly

in industrial applications to automate tasks that are typically performed by blue-collar workers

(Ayres et al., 1987, Groover et al. 1986), and is supported by the empirical evidence we present in

Section 7.1.

We denote the total supply of middle-aged workers by L. For older workers, we assume that

each produces one unit of service tasks, which implies that S(i) is also the total employment of

5This formulation, linking the cost of intermediates to industry i to that industry’s output, is convenient, because it
avoids any relative price effects that would have been present if other inputs had been used for producing intermediates.

6This assumption simplifies the analysis relative to a more general setup where both types of workers can produce
both types of inputs but middle-aged workers have a comparative advantage in production tasks.
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older workers in sector i, and thus with a slight abuse of notation, we also denote the supply of

older workers by S. We denote the wage of middle-aged workers by W , the wage of older workers

by V , and the total supply of machines by M . Market clearing requires the demand for each factor

to be equal to its supply, or more explicitly,

L = Ld =

∫

i∈I

∫ 1

0
l(i, z)dzdi, M = Md =

∫

i∈I

∫ 1

0
m(i, z)dzdi, and S = Sd =

∫

i∈I
s(i)di,

where the last equality in each expression defines the demand for that factor. Finally, we assume

that machines are supplied at an exogenously fixed rental price P .

2.2 Equilibrium with Exogenous Technology

Denote the set of technologies adopted across all industries by Θ = {θ(i)}i∈I . We first characterize

the equilibrium with exogenous technology, where the set of technologies, Θ, is taken as given.

An equilibrium with exogenous technology is defined as an allocation in which all industries choose

the profit-maximizing levels of employment of middle-aged workers, employment of older work-

ers, machines and intermediates, all technology monopolists set profit-maximizing prices for their

intermediates, and the markets for middle-aged workers, older workers and machines clear.

Let PY (i) denote the price of output in industry i, and p(θ(i)) be the price of the intermediate

for industry i that embodies technology θ(i). The demand for q(θ(i)) is given by:

q(θ(i)) =
1

η
X(i)α(i)S(i)1−α(i)

(
p(θ(i)))

PY (i)

)−
1
η

. (4)

Faced with this demand curve with elasticity 1/η, the technology monopolist for industry i will

set a profit-maximizing price that is a constant markup of 1/(1 − η) over marginal cost. Given

our normalization of the marginal cost of intermediate production to 1− η units of the industry’s

product, the profit-maximizing price is p(θ(i)) = PY (i). Substituting this price into (4), and using

(2) and (3), we derive the net output of industry i as

Y (i) =
2− η

1− η
X(i)α(i)S(i)1−α(i).

The Cobb-Douglas production technology in equation (2) then implies

PY (i) = λ(i)PX (i)α(i)V 1−α(i),

where PX(i) denotes the price of X(i), and λ(i) = (1− η)α(i)−α(i)(1− α(i))α(i)−1.

We next turn to the decision to adopt existing automation technologies. These decisions depend

on the cost savings from automation, which are in turn determined by factor prices. Let π(i) denote

the cost savings from automation in industry i, meaning the percent decline in costs when a task
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is produced by machines rather than labor:

π(i) =
1

1− ζ

[
1−

(
A(i)P

W

)1−ζ
]
. (5)

When W
A(i) > P , the effective cost of producing with labor in industry i, W

A(i) , is greater than the cost

of using a machine, P , and as a result, π(i) > 0. Conversely, when W
A(i) < P , it is more expensive to

produce with machines in industry i and firms do not adopt the automation technologies because

it would raise their cost. Therefore, available automation technologies will be adopted if π(i) > 0.

We can then summarize automation decisions by defining an automation threshold, θA(i), which

satisfies

θA(i) =

{
θ(i) if π(i) > 0

0 if π(i) ≤ 0,
(6)

where we are assuming without loss of any generality that when indifferent, firms do not switch

to machines. Equation (6) highlights a key point in our model: firms adopt existing automation

technologies when the effective wage of middle-aged workers is high.

Using the threshold θA(i), we can express the price of X(i) as

PX(i) =

(
θA(i)P 1−ζ + (1− θA(i)(i))

(
W

A(i)

)1−ζ
)1−ζ

, (7)

and the share of middle-aged labor in the production of X(i) as:7

sL(i) = (1− θA(i))

(
W

A(i)PX (i)

)1−ζ

∈ [0, 1] (8)

Using the above expressions for prices and the share of labor in X(i), we can derive the demand

for factors of production in the economy as

Ld =
Y

(2− η)W

∫

i∈I
λ(i)1−σPY (i)

1−σα(i)sL(i)di (9)

Md =
Y

(2− η)P

∫

i∈I
λ(i)1−σPY (i)

1−σα(i)(1 − sL(i))di (10)

Sd =
Y

(2− η)V

∫

i∈I
λ(i)1−σPY (i)

1−σ(1− α(i))di. (11)

The next proposition establishes the existence and uniqueness of the equilibrium and charac-

terizes it. In what follows, we let φ = S
L+S denote the share of older workers in the population, and

think of aging as an increase in φ.

7Let L(i) =
∫ 1

0
l(i, s)dsdi and M(i) =

∫ 1

0
m(i, s)dsdi denote the amounts of middle-aged labor and machines

employed in industry i, respectively. Then total production in industry i can be written as

X(i) =
(
θA(i)

1

ζ M(i)
ζ−1

ζ + (1− θA(i))
1

ζ L(i)
ζ−1

ζ

) ζ
ζ−1

.

Thus as highlighted in (7), an increase in θ(i) (and hence θA(i)) makes the production of X(i) less labor intensive.
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Proposition 1

1. An equilibrium with exogenous technology always exists and is unique. The equilibrium levels

of middle-aged and older wages, W and V are the unique solutions {WE(φ; Θ), V E(φ,Θ)} to

the system of equations given by: the ideal price index condition,

1 =

(∫

i∈I
λ(i)1−σPY (i)

1−σdi

) 1
1−σ

, (12)

and the relative demand for workers,

1− φ

φ
=

V

W

∫
i∈I PY (i)

1−σα(i)sL(i)di∫
i∈I PY (i)1−σ(1− α(i))di.

(13)

Aggregate output and machinery per worker, {yE(φ; Θ),mE(φ,Θ)}, can be then computed

using {WE(φ; Θ),V E(φ,Θ)}.

2. The middle-aged wage WE(φ,Θ) is increasing in φ, and the older worker wage V E(φ,Θ) is

decreasing in φ. On the other hand, φ has an ambiguous impact on output per capita yE(φ,Θ).

Like all other proofs, the proof of Proposition 1 is provided in the Appendix.

Panel A of Figure 1 depicts the characterization of the equilibrium with exogenous technology.

Let C(W,V, P ) denote the cost of producing one unit of the final good, which is given by the right-

hand side of equation (12). The equilibrium wages, WE and V E, are then given by the tangency

of the isocost curve C(W,V, P ) = 1 (condition (12)) with a line of slope −1−φ
φ (at which point

we have ∂C(W,V,P )/∂W
∂C(W,V,P )/∂V = 1−φ

φ , which is condition (13)). Aging—an increase in φ—raises WE and

lowers V E along the convex isocost curve C(W,V, P ) = 1, as shown in Panel A.

Proposition 1 also shows that aging has an ambiguous effect on aggregate output per worker.

In particular, in the Appendix we show that

1

2− η
yEφ (φ,Θ) = V E(φ,Θ) −WE(φ,Θ) + P ·mE

φ (φ,Θ). (14)

This expression clarifies that the effect of aging on aggregate output depends on the wage of middle-

aged workers relative to the wage of older workers. In particular, if V E < WE, there will be a

negative effect on productivity (though mE
φ can be positive, offsetting this effect). Existing evidence

(e.g., Murphy and Welch, 1990) suggests that earnings peak when workers are in their 40s, which

in our model implies V < W , and thus creates a tendency for aging to reduce productivity. This

negative effect echoes the concerns raised by Gordon (2016) on the potential for slower growth in

the next several decades because of demographic change.

The next proposition shows how demographic change affects the adoption of existing automation

technologies. For this proposition and for what follows, we denote by I+(φ,Θ) the set of industries

for which π(i) > 0 and new automation technologies are all adopted.

Proposition 2 The set I+(φ,Θ) satisfies the following properties:
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• For φ ≤ φ′ we have I+(φ,Θ) ⊆ I+(φ′,Θ).

• There exists a positive threshold φ̃ < ∞ (independent of the θ(i)’s), such that for φ < φ̃, the

set I+(φ,Θ) has measure zero. For φ > φ̃, the set I+(φ,Θ) has positive measure.

The proposition shows that aging encourages the adoption of existing automation technologies.

The intuition is similar to models of technology adoption building on Zeira (1998) and works through

the effect of higher wages on incentives to adopt automation technologies. For φ < φ̃, there is no

adoption of automation technologies because middle-aged workers are abundant and thus cheap.

When φ > φ̃, the middle-aged wage is sufficiently high that automation becomes profitable.

What is the effect of automation on factor prices? As in Acemoglu and Restrepo (2018a,b),

this is determined by two competing forces. On the one hand, we have a displacement effect—

when automation technologies are adopted, they squeeze middle-aged workers into fewer tasks,

reducing the demand for middle-aged labor. On the other hand, we have a productivity effect—

when automation technologies are adopted, they allow industries to reduce their costs and expand

output, raising the demand for middle-aged workers in non-automated tasks. When π(i) is small

(but positive), the productivity effect is weak; available automation technologies will be adopted

in industry i, generating the displacement effect, but only a minimal productivity effect. This

reasoning implies that there exists a threshold π > 0 such that, when new automation technologies

are introduced in industry i with π(i) ∈ (0, π), the displacement effect dominates the productivity

effect, and automation reduces wages.8 This result is stated and some of its implications are

developed in the next proposition, where for simplicity we consider marginal changes in automation

technologies, denoted by {dθ(i)}i∈I (with dθ(i) ≥ 0).

Proposition 3 Suppose new automation technologies {dθ(i)}i∈I become available. Then:

• New automation technologies are not adopted when φ < φ̃, and are adopted in industries in

I+(φ,Θ) when φ > φ̃.

• There exists a threshold φ(Θ) > φ̃ such that, if φ̃ < φ < φ(Θ), then π(i) < π for almost all

industries. In this region, if dθ(i) > 0 for a (positive measure) subset of I+(φ,Θ), the wage

of middle-aged workers declines and the wage of older workers increases.

Panel B of Figure 1 illustrates the comparative statics presented in this proposition. The

displacement effect corresponds to a clockwise rotation of the isocost curve C(W,V, P ) = 1 around

the equilibrium point, reducing W and increasing V . The productivity effect corresponds to an

outward shift of the isocost curve, increasing both wages.9
8This discussion also highlights the critical difference between automation technologies and the more familiar

factor-augmenting technologies (see Acemoglu and Restrepo, 2018c, for more details). This distinction will play an
important role in shaping the incentives for the adoption and development of automation technologies as well.

9Although the impact of automation on middle-aged wages is ambiguous when φ < φ(Θ), it is straightforward
to see that automation still reduces the demand for middle-aged workers relative to older workers in the industries
adopting the automation technologies. For example, if θ(i) increases in a single industry with π(i) > 0, L(i)/S(i)
declines in that industry.
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2.3 Equilibrium with Endogenous Technology

Our analysis so far took the available automation technologies, Θ = {θ(i)}i∈I , as given. We now

endogenize these technologies using an approach similar to Acemoglu (2007, 2010).

For industry i, there is a single technology monopolist who can develop new automation tech-

nologies and sell the intermediates embodying them—the q(θ(i))’s—to firms in that industry. De-

veloping an automation technology θ(i) costs the monopolists 1−η
2−ηPY (i)Y (i) · Ci(θ(i)) units of the

final good, where Ci(·) is an increasing and convex function that varies across industries. The spec-

ification imposes that the cost of introducing innovations is proportional to 1−η
2−ηPY (i)Y (i), which

is adopted to simplify the algebra.

Equation (4) shows that the monopolist in industry i earns profits 1−η
2−ηPY (i)Y (i). Using the fact

that Y (i) = PY (i)
−σY , we can write the net profits from developing automation technology θ(i) as

1−η
2−ηPY (i)

1−σY (1−Ci(θ(i))). Moreover, because monopolists, like their industries, are infinitesimal,

they take wages and aggregate output, Y , as given. We can then write the profit-maximizing

problem of the technology monopolist for industry i in logs as

max
θ(i)∈[0,1]

πM (i) = (1− σ)α(i) ln

(
θA(i)P 1−ζ + (1− θA(i))

(
W

A(i)

)1−ζ
)

+ ln(1− Ci(θ(i))) (15)

This expression clarifies that monopolists have an incentive to develop automation technologies

that reduce PX(i), which translates into greater profits for them. We further simplify the analysis

by assuming that the cost function Ci(·) takes the form

Ci(θ(i)) = 1− (1−H(θ(i)))
1

ρ(i) ,

whereH is an increasing and convex function that satisfies H ′(0) = 0, limx→1H(x) = 1, and h(x) ≥

1/(1−x), where h(x) = H ′(x)/(1−H(x)). The last assumption strengthens convexity and ensures

that (15) has a unique solution. The exponent ρ(i) > 0 captures heterogeneity across industries in

the technological possibilities for automation; a higher ρ(i) characterizes industries in which, due

to engineering reasons, monopolists can more easily develop new automation technologies.

Given the convexity assumptions on H, the maximization problem in equation (15) yields a

unique technology choice for each industry, θRi (W ), which depends only on parameters and the

middle-aged wage, W . We define the mapping ΘR(W ) = {θRi (W )}i∈ I from the middle-aged wage

to the equilibrium technology choices.

We define an equilibrium with endogenous technology as an allocation where technology choices

ΘR(W ) maximize (15), and given technology choices ΘR(W ), Proposition 1 applies. From this

proposition, technology choices Θ determine factor prices, and in particular, the middle-age wage

W as WE(φ,Θ). Thus, an equilibrium corresponds to a middle-aged wage, W ∗, that is a solution

to the following fixed point problem,

W ∗ = WE(φ,ΘR(W ∗)). (16)
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To study this fixed point problem, we first characterize the behavior of the equilibrium technol-

ogy choice θRi (W ) for industry i.

Lemma 1

1. The maximization problem in equation (15) exhibits increasing differences in W and θ(i).

Thus, θRi (W ) is nondecreasing in W .

2. If θRi (W ) > 0, then π(i) > 0.

The key result in this lemma is that the technology monopolists face stronger incentives to

develop new automation technologies when the middle-aged wage, W , is higher.10 Economically,

this is the case because automation allows firms to substitute machines for middle-aged labor, and

when this labor is more expensive, automation is more profitable.

The last part of the lemma shows that, in an equilibrium with endogenous technology in which

θA(i) > 0, we always have π(i) > 0. Thus, monopolists only introduce technologies that will be

immediately adopted, and in an equilibrium with endogenous technology, we always have θA(i) =

θ(i). An immediate corollary is that any comparative static result that applies to the innovation

margin θ(i) also applies to the adoption margin θA(i).

The next proposition establishes the existence of an equilibrium with endogenous technology.

Proposition 4 For any φ ∈ (0, 1), there exists an equilibrium with endogenous technology. In such

equilibrium the middle-aged wage, W ∗, satisfies the fixed point condition in equation (16). Each

fixed point W ∗ defines a unique set of technology choices Θ∗ = {θ∗i }i∈ I given by Θ∗ = ΘR(W ∗).

To illustrate this proposition, suppose that the mapping WE(φ,ΘR(W )) is decreasing in W .11

In this case, automation decisions across industries are strategic substitutes—because more automa-

tion in one industry reduces the middle-aged wage and discourages automation in other industries.

Consequently, the equilibrium with endogenous technology is unique as in Panel A of Figure 2.

In general, WE(φ,ΘR(W )) need not be decreasing inW , because strong productivity gains from

automation could make the middle-aged wage increasing in automation. In this case, we could have

multiple equilibria, as automation in one sector increases the wage W and creates incentives for

further automation in other sectors. Nevertheless, there are still well-defined least and greatest

equilibria as shown in Figure 2, determined by the smallest and largest equilibrium values of the

wage W that solve the fixed point problem in equation (16). The Appendix shows that, in the least

10In the Appendix we show that equilibrium technology satisfies the complementary slackness condition,

h(θRi (W )) ≥ (σ − 1)α(i)ρ(i)
sL(i)

1− θRi (W )
π(i), (17)

and θRi (W ) ≥ 0, and that a greater W leads to higher cost savings from automation, π(i). It is this property that
implies the maximization problem of monopolists exhibits increasing differences in W and θ(i).

11The Appendix shows that a sufficient condition for this mapping to be decreasing is φ̃ < φ < φ(Θ = ({0}i∈I))
(so that the productivity gains from automation are positive for some industries but still smaller than π). In this

case, the mapping WE(φ,ΘR(W )) is constant for W ≤ W̃ and decreasing for W > W̃ (here, W̃ is the largest wage

such that W̃ < Ã(i)P for almost all i ∈ I). Note also that for φ ≤ φ̃ the unique equilibrium involves θ(i)∗ = 0.
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and the greatest equilibrium, the mapping WE(φ,ΘR(W )) cuts the 45 degree line from above (as

shown in Panel B of Figure 2). Then we have

Proposition 5 In the least and the greatest equilibrium, an increase in φ—aging—increases the

equilibrium wage W ∗, expands the set of automation technologies Θ∗, and expands the set of indus-

tries that adopt automation technologies I+(φ,Θ∗).

This proposition provides one of our main results: aging always encourages the development

and use of automation technologies, and this is regardless of whether automation has a positive or

negative effect on the middle-aged wage and whether or not there are multiple equilibria (if there are

multiple equilibria, it applies for the relevant equilibria, which are those with the least and greatest

values of the middle-aged wage). Intuitively, machines compete against middle-aged workers, and

a greater scarcity of these workers always increases the relative profitability of automation.

Finally, the next proposition shows how the response of technology to aging varies by industry.

Proposition 6 In the least and the greatest equilibrium, θ∗i exhibits increasing differences in φ

and α(i), and φ and ρ(i).

This proposition thus implies that aging—an increase in φ—should have a more pronounced

impact on automation in industries that rely more heavily on middle-aged workers (i.e., those with

high α(i)) and that present greater technological opportunities for automation (i.e., those with high

ρ(i)). In our empirical work, we investigate both implications.

2.4 Implications for Productivity

As noted in the Introduction, the endogenous response of automation technologies might fundamen-

tally alter the implications of demographic change for productivity. With endogenous technology,

aging creates a positive effect via the response of automation, and we next show that as a result,

when the workforce is aging, productivity in industries with greater opportunities for automation

tends to increase relative to others.

Proposition 7 In the least and the greatest equilibrium, equilibrium output in industry i, Y ∗(i),

exhibits increasing differences in φ and ρ(i).

From Proposition 6, the endogenous response of technology is stronger in industries with greater

α(i) and greater ρ(i), which implies that industries that have greater opportunities for automation

(a large ρ(i)) increase their relative performance in aging economies, and for the same reason, these

industries will also experience a greater decline in their labor share (recall from footnote 7 that

automation makes industry production less labor-intensive). But there are no unambiguous results

for industries that rely more heavily on middle-aged workers (i.e., those with high α(i)). This

is because, on the one hand, these industries are more exposed to the increase in wages, and on

the other hand, as a result of this, they also have greater incentives to automate their production

process, increasing productivity.
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Propositions 1 and 7 highlight that the aggregate productivity implications of aging will be

ambiguous in the presence of endogenous developments of automation technologies, and as a result,

demographic change may not have as significant negative effects once technology adjusts.

2.5 Extensions

In the Appendix, we consider two extensions of this framework. First, we endogenize the industry-

level labor-augmenting technology, A(i). In this case, demographic change impacts technology not

just by encouraging automation but also by directly influencing the productivity of middle-aged

labor in the production tasks it performs. We show that the effect of aging on the endogenous

choice of A(i) is ambiguous. By increasing the share of middle-aged workers in value added (when

ζ < 1), aging encourages the development of labor-augmenting technologies. But it also fosters

automation and thus reduces the set of tasks performed by middle-aged workers, making labor-

augmenting technologies less profitable. In our empirical work, we will indeed find that there are

no positive effects of aging on non-automation technologies.

Second, we consider an extension to a global economy with multiple countries, where some of

them are ahead of others in the development of automation technologies. In this setup, not only

will we see imports and exports of automation technologies (as in our empirical work), but we also

find that advances in automation technologies in one country are later adopted in another country

and can lead to a decline in the wages of middle-aged workers in the adopting country.

3 Data and Trends

In this section, we present our data sources and show some of the most salient trends in our data.

The Appendix contains additional description and details.

3.1 Cross-Country Data

We focus on demographic changes related to aging, and measure them by the change in the ratio

of older workers (56 and older) to middle-aged workers (between 21 and 55). The cutoff of 55

years of age is motivated by the patterns of substitution between robots and workers we document

in the next section. We obtained the demographic variables from the United Nations (UN) data,

which measure population by age and also provide a forecast of these variables up to 2050. As

Figure 3 shows, both our entire world sample and the OECD have experienced significant aging

starting around 1990—a trend that is expected to continue into the future. Aging is much faster

in Germany and South Korea and is slower in the United States than the OECD average. We use

the change in the ratio of older to middle-aged workers between 1990 and its expected level in 2025

as our baseline measure of aging. This latter choice is motivated by the fact that investments in

robotics and automation technologies are forward looking. The IFR estimates the average life-span

of a robot to be about 12 years, so investments in robots in the 2010s should take into account

demographic change until at least 2025. In our empirical exercises, we instrument aging using crude

birth rates between 1950 and 1985, which we also obtained from UN data.
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We use four sources of data to measure the adoption and development of robots and other

automation technologies across countries: data on the use of robots from the IFR; data on imports

of robots and other types of machinery from Comtrade; data on exports of robots and other types

of machinery also from Comtrade; and patents by different countries filed at the USPTO.

The IFR provides data on the stock of robots and new robot installations by industry, country

and year. The data are compiled by surveying global robot suppliers. Table A1 in the Appendix

provides the list of countries covered by the IFR.12 In our cross-country analysis we use the change in

the stock of robots divided by industry employment as our dependent variable. The denominator is

constructed using employment data for 1990 from the International Labour Organization (ILO). To

account for differences in hours worked, we normalize the stock of robots using full-time equivalent

industry workers.13 The resulting measure of the stock of robots per thousand (industry) workers

covers 52 countries between 1993 and 2014, and is illustrated in Figure 3. The figure underscores

the pattern we noted in the Introduction—that Germany and South Korea are considerably ahead

of the United States in terms of the adoption of robotics technology. Panel A of Table A2 in the

Appendix provides summary statistics separately for all the countries in our sample, for OECD

countries, and for rapidly-aging countries (above the median in terms of expected aging between

1990 and 2025) and slowly-aging countries. In our full sample, the number of robots per thousand

workers increased from 0.72 in 1993 to 3.79 in 2014.

We complement the IFR data with estimates of robot imports and exports from the bilateral

trade statistics obtained from Comtrade. When using the data on robot imports, we exclude

Japan, which mostly uses domestically produced robots (the other major producer, Germany, also

has significant imports; see Leigh and Kraft, 2018). In addition, to account for entrepôt trade, we

remove re-exports of robots and keep only countries whose imports of robots net of re-exports are

positive. Likewise, we keep only countries whose exports of robots (without including re-exports)

are positive. The resulting data cover 131 countries importing robots between 1996 and 2015,

and 105 countries exporting robots between 1996 and 2015.14 We also use the Comtrade data to

compute imports and exports of other intermediates related to industrial automation. Panel B of

Table A2 provides summary statistics for the Comtrade data.

12Although the IFR also reports numbers for Japan and Russia, the data for these countries underwent major
reclassifications. For instance, the IFR used to count dedicated machinery as part of the stock of industrial robots
in Japan, but starting in 2000, stopped doing so, making the numbers reported for Japan not comparable over time.
We thus exclude both countries from our analysis.

13ILO’s industry employment data includes employment in manufacturing, mining, construction and utility, which
cover the sectors currently using robots.

14Industrial robots are counted under the HS6 code 847950. Because this category was introduced in 1996, it is
only possible to track international trade of industrial robots after this date. For the remaining types of equipment
used in our empirical analysis, we compute imports and exports going back to 1990.

There are several reasons why there is a relatively large number of countries exporting robots. First, some exporting
firms may use ports located in different countries to send their robots (for example, German and Belgium robot
producers can export from Luxembourg). Second, there are likely some classification errors by custom authorities.
Finally, some countries may sell used inventory. All of these add measurement error to this variable, but should
not bias our results. In the exports data, Nigeria is a massive outlier, with a share of robotic exports two orders of
magnitudes greater than other countries, which is almost certainly a mistake in the data. We thus exclude Nigeria
from regressions for industrial robots, though because we focus on weighted regressions the results are very similar
even if it is included.
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Finally, we use data on robotics-related patents granted by the USPTO to assignees based in

each country between 1990 and 2015. We focus on patents in the USPTO 901 class, which comprises

technologies related to industrial robots, and patents that reference the 901 class. The Appendix

describes these data and our construction of other proxies for robotics-related patents, including

measures that search for robotics-related words in patent abstracts, and measures based on citation

patterns. We exclude countries with no robotics-related patents and focus on 69 countries (31 of

them in the OECD) that patented in robotics-related classes. Panel C of Table A2 shows that the

average number of robotics-related patents received by a country in our sample is 718, while the

same number is about twice as large for the OECD and for rapidly-aging countries.

We also use data on GDP per capita, population and average years of schooling obtained

from version 9.0 of the Penn World Tables (Feenstra, Inklaar and Timmer, 2015), and data on

manufacturing value added in 1990 from UNIDO.

3.2 Data on Robot Integrators

For US labor markets we do not have data on the adoption or use of robots. Instead, we proxy

robotics-related activities in a commuting zone using a dichotomous measure of whether it houses

robot integrators, obtained from Leigh and Kraft (2018).15 Integrators install, program and main-

tain robots, and tend to locate close to their customers.

For commuting zones, we measure aging by the change in the ratio of older to middle-aged

workers between 1990 and 2015, obtained from the NBER Survey of Epidemiology and End Results

dataset (we do not have forecasts of aging at the commuting-zone level). We also use various

demographic and economic characteristics of commuting zones in 1990, obtained from the NHGIS

at the county level (Manson et al., 2017), and data on exposure to robots from Acemoglu and

Restrepo (2018a) to measure the local effects of robots.

3.3 Industry Data

In addition to the country-level data, the IFR reports data on robot installations by year separately

for 19 industries in 50 of the countries in our sample, including 13 industries at the three-digit level

within manufacturing and six non-manufacturing industries at the two-digit level. As Table A1

in the Appendix shows, these data are not available in every year for every country-industry pair,

so in our analysis, we focus on an unbalanced panel of annual data rather than long differences.

Table A3 summarizes the industry-level data. For each industry, we report the average number of

robot installations per thousand workers, using two possible denominators. The first one uses the

ILO data described above, while the second uses data from EUKLEMS, which provides the 1995

employment levels for all 19 industries used in our analysis, but only covers 21 of the countries in

our sample (Jägger, 2016).16 In the Appendix, we further use the UNIDO dataset for an additional

15Commuting zones, defined in Tolbert and Sizer (1996), are groupings of counties approximating local labor
markets. We use 722 commuting zones covering the entire US continental territory (this excludes Alaska and Hawaii).

16We use employment levels in 1995 to normalize the number of robot installations because the data are missing
for many countries before then. We also focus on the growth in value added per worker and the labor share between
1995 and 2007 because post-2007 data disaggregated by industry are unavailable for many countries in our sample.
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robustness check and describe these data there.

From the EUKLEMS data, we also obtain information on value added per worker (in real

dollars) and the change in the share of labor in value added. These outcomes are available only

between 1995 and 2007, and cover all 19 industries included in the IFR data. The third and fourth

columns of Table A3 summarize these data.

To explore whether aging has heterogeneous impacts on different industries, we construct

industry-level measures of reliance on middle-aged workers, and opportunities for automation. We

measure an industry’s reliance on middle-aged workers with the ratio of middle-aged to older work-

ers, computed from the 1990 US Census data. Heavy manufacturing industries, construction and

utilities have significantly greater reliance on middle-aged workers. We use two proxies for the

opportunities for automation (focusing in particular on robots). The first is the “replaceability”

index constructed by Graetz and Michaels (2018), which is derived from data on the share of hours

spent by workers in the United States on tasks that can be performed by industrial robots. The

replaceability index is strongly correlated with robot adoption and explains 22% of the total vari-

ation in the installation of robots across industries. The second measure is a dummy variable for

automobiles, electronics, metal machinery, and chemicals, plastics and pharmaceuticals, which are

are singled out by a recent report by the Boston Consulting Group (BCG, 2015) as having the

greatest technological opportunities for the use of robots, based on the type of tasks that workers

perform on the job. The data presented in Table A2 confirm that these are among the industries

experiencing the fastest growth in the adoption of robots. Figure A1 in the Appendix summarizes

the industry heterogeneity in their reliance on middle-aged workers and replaceability index.

4 Demographic Change and Automation

In this section, we present our main cross-country results, which show a robust positive association

between aging and the adoption of automation technologies.

4.1 Main Results

Our main specification relates the adoption of robots to the aging of the population in a country:

∆Rc

Lc
= βAgingc + ΓXc,1990 + εc. (18)

Here ∆Rc
Lc

is the (annualized) change in the stock of robots between 1993 and 2014 in country c

normalized by thousands of industry workers in 1990 from the ILO (we keep the denominator fixed

in 1990 to avoid endogenous changes in employment impacting our left-hand side variable). Agingc

is the expected change between 1990 and 2025 in the ratio of older workers (who are above the

age of 56) to middle-aged workers (between the ages of 21 and 55).17 As described in Section 3,

17The relative employment rates of workers of different age groups in blue-collar and white-collar occupations
documented in Section 7.1 motivate the use of 55 years of age as our baseline cutoff to define older and middle-aged
workers. Table A4 in the Appendix shows that our results are robust to different ways of classifying middle-aged and
older workers.
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we use UN population forecasts to measure aging. Finally, the vector Xc,1990 includes covariates

and εc is an heteroscedastic error term. We present both unweighted specifications and regressions

weighted by manufacturing value added in 1990, which are useful because robots and the industrial

automation technologies that guide our model are used much more intensively in manufacturing

than in other sectors.

Panel A of Table 1 presents our unweighted OLS estimates of equation (18). Columns 1-3

are for the full sample of 52 countries. Column 1 controls for dummies for East Asia and the

Pacific, South Asia, Middle East and North Africa, Africa, Eastern Europe and Central Asia, Latin

America and the Caribbean, and OECD countries to account for regional trends. Column 2 adds

the 1993 values of log GDP per capita, log population, average schooling and the ratio of middle-

aged and older workers as covariates; these variables control for differential trends depending on

initial levels of economic development and demographic characteristics. Column 3 also includes

the stock of industrial robots per thousand workers and the log of manufacturing value added in

1990 as controls, and thus allows for the possibility that countries with more robots or a larger

manufacturing sector at the beginning of the sample may adopt robots at differential rates. Columns

4-6 present the same specifications for the 30 countries in the OECD sample.

In all six columns of Panel A, we find that aging—an increase in the ratio of older to middle-aged

workers—is associated with the adoption of more robots. All estimates are statistically significant

and quantitatively sizable. The specification in column 1 has a R2 of 0.47 (and the partial R2 of

aging alone is close to 0.40 in column 3 as noted in the Introduction). In column 3, the coefficient

estimate on aging is 0.57 (s.e.=0.24). This implies that a 20 percentage point increase in our aging

variable, which is roughly the difference between Germany and the United States (0.5 vs. 0.28,

respectively), leads to an increase of 0.11 robots per thousand workers per year. This adds up to

two additional robots per thousand workers over our sample period, which accounts for 25% of the

Germany-US difference in the adoption of robots.

Figure 4 depicts the relationship between demographic change and the number of robots per

thousand workers in the full sample of countries and in the OECD (using the models estimated in

columns 2 and 5 in Table 1). Even though South Korea is an outlier, Table A5 in the Appendix

presents several strategies to show that the relationship between aging and adoption of robots is

not driven by outliers.

Panel B presents instrumental-variables (IV) models. Our IV models are motivated by the con-

cern that changes in labor markets that influence the adoption of robots may also affect migration

(and even mortality) patterns, which would bias our OLS estimates. To address this concern, we

instrument expected aging between 1990 and 2025 using the average birth rates over each five-year

interval from 1950-1954 to 1980-1984. These birth rates satisfy the requisite exogeneity assumption

since past changes in birth rates are unlikely to be driven by contemporaneous wages or technolo-

gies, and also explain a large portion of the variation in aging across countries (in column 1, the first

stage F -statistic is 25.2). The IV estimates of the effect of demographic change on the adoption of
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robots are slightly larger than their OLS counterparts.18

One potential concern with our IV estimates is that our first-stage is borderline weak in the

OECD sample. We address this concern in two ways. First, Panel B reports the p-value of the

Anderson-Rubin test for the coefficient β being equal to zero. Second, Panel C reports estimates

where we use a single instrument computed as the percent decline in birth rates from 1960 to 1985.

Using this single instrument we estimate a similar effect of aging on the adoption of robots, but

now the first-stage F -statistic is above 14 in all columns.

Panels D and E present OLS and IV estimates from regressions weighted by manufacturing

value added in 1990. The estimates are larger and more precise than their counterparts in Panels

A and B. Correspondingly, the estimates become quantitatively more important than before. With

the IV estimate in column 3, the differential demographic trends of Germany and the United States

explain about half of the difference in the adoption of robots between the two countries.

In Table 1 we focused on a parsimonious specification with the change in the ratio of older

to middle-aged population as our main explanatory variable. In Table A6 in the Appendix we

justify this specification by showing that, when allowed to enter independently, the change in the

log population of middle-aged workers has a negative impact on the adoption of robots, while the

change in the log population of older workers has a positive impact of a similar magnitude. In line

with these findings, Table A7 further shows that, once we control for our measure of aging, there

is no relationship between the change in population and the adoption of robots. Thus the patterns

we are reporting are all about the relative size of middle-aged and older cohorts.19

4.2 Past vs. Expected Aging, Robustness and Additional Results

In this subsection we show that past demographic changes do not predict the adoption of robotics

technology, and then document the robustness of the results in Table 1 to a range of variations.

In Panel A of Table 2, we include aging between 1950 and 1990 as an additional explanatory

variable. Past demographic changes should have no impact on the adoption of robotics technology

after 1990, unless countries that have adopted more robots since 1993 were on different demo-

graphic trends before the 1990s. The results in Panel A confirm the lack of such differential trends,

bolstering our confidence in the interpretation presented so far. Panel B goes one step further

and looks at the relationship between aging between 1950 and 1990 and the adoption of robots

after 1993 without controlling for expected aging. This is a more demanding specification because

correlation between past aging and our main aging variable could bias our estimates. Nevertheless,

with the exception of the estimate in column 3 which is marginally significant at 10%, we see no

systematic and significant relationship between past aging and the adoption of robots. Table A8

in the Appendix reports similar findings using weighted specifications.

Panel C of Table 2 investigates the question of whether it is contemporaneous demographic

18In all tables, when we have more than one instrument, we report the p−value from Hansen’s overidentification
test. Except for a few marginal Instances, in most cases this test does not reject the joint validity of our instruments.

19These results are the basis of our claim in the Introduction that we do not find a robust relationship between the
level or change in population and automation (which contrasts with the results in Abeliansky and Prettner, 2017).
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change or the expectation of future aging that is more strongly associated with the adoption of

robots. We simultaneously include aging between 1990 and 2015—the contemporaneous demo-

graphic change—and expected aging between 2015 and 2025. The results are not as precise as

before, since contemporaneous and expected aging are highly correlated. Nevertheless, both aging

variables are positively associated with the adoption of robots. In no specification can we reject the

null hypothesis that contemporaneous and expected aging have the same impact on robot adoption.

These results support our choice of focusing on expected aging between 1990 and 2025 as our main

explanatory variable.20

We have so far reported estimates from long-differences specifications, focusing on the change

in the stock of robots between 1993 and 2014. This is a transparent specification, especially in

view of the evidence that it is not just contemporaneous but future demographic changes that are

impacting the adoption of robots. However, long-difference specifications fail to exploit covariation

between the timing of aging and the adoption of robots within subperiods. To exploit this source

of variation, Table 3 turns to stacked-differences specifications where for each country we include

two observations on the left-hand side: the change in the stock of robots between 1993 and 2005

and between 2005 and 2014. We then regress these changes on aging between 1990 and 2005 and

between 2005 and 2015, respectively. To ease the comparison with our previous estimates, we

re-scale the coefficients so that they are directly comparable to the estimates in Table 1. Panel A

presents our OLS estimates. Columns 1 and 4 give our most parsimonious model where we only

control for region and period dummies. Columns 2 and 5 include all the country level covariates as

controls (baseline values of log GDP per capita, log population, average schooling, ratio of older to

middle-aged workers, stock of industrial robots per thousand workers and the log of manufacturing

value added). Panel B presents the corresponding IV estimates, while Panels C and D report

results from weighted regressions. The estimates confirm the results in Table 1. In columns 3 and

6, we go one step further and include linear country trends. These specifications only exploit the

differential rate at which demographic change proceeds and additional robots are adopted in the

two subperiods for each country. Remarkably, the estimates in these demanding specifications are

similar to our baseline estimates, and statistically significant at 10% or less except in Panel C.

Besides aging, our model suggests that other factors affecting the wage of production workers,

such as unionization, and the wage level itself are important determinants of the adoption of robots.

We explore these issues in Table A11 in the Appendix, where in addition to estimating the impact of

aging on robot adoption, we control for the 1990-1995 union membership and the log of hourly wages

in 1993.21 The results support the idea that countries with greater unionization rates adopt more

20Table A9 in the Appendix demonstrates that our results are very similar if we use aging between 1990 and 2015
in our main specifications. Table A10, on the other hand, presents the cross-sectional (level) relationship between
demographic structure (the ratio of older to middle-aged workers) and the stock of robots, and shows that countries
with an older workforce use significantly more robots.

21We use the average share of workers belonging to a union between 1990 and 1995 as our measure of unionization
(from Rama and Artecona, 2002). The data on wages are from the Penn World Tables, version 9.0 (see Feenstra,
Inklaar and Timmer, 2015). In addition, because wages partly reflect differences in labor productivity, in all these
models we control for the log of output per worker in 1993. Because the data on union membership are only available
for a subset of countries, our sample now consists of 46 countries, 30 of which are in the OECD.
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robots, presumably because unions raise labor costs (though we lack instruments for unionization).

Quantitatively, our estimates in column 6 of Panel B imply that a 10 percentage point increase in

union membership—roughly the difference between Germany and the United States—is associated

with 0.04 additional robots per thousand workers per year, a magnitude that is about 40% of the

quantitative effects from aging reported above. The wage level, on the other hand, has a positive

point estimate, but this estimate is not robust.22 Importantly, our point estimates for aging do

not change when we control for unionization, suggesting that aging is not capturing differences in

labor market institutions across countries.

Finally, we explored models for the percent increase in robots rather than the increase in the

number of robots per thousand workers as in our baseline specification. In Table A12, we present

estimates using either ∆ ln(1 +Rc) or ∆ lnRc as the dependent variable. The former specification

is motivated by the fact that the initial stock of robots is equal to zero for several countries. In all

cases, the results are similar to our baseline estimates.

4.3 Other Automation Technologies

We now show a similar relation between aging and other automation technologies using Comtrade

imports data. We first confirm the results presented so far using imports of industrial robots.

To do so, we estimate a variant of equation (18) with the log of robot imports relative to other

intermediate imports between 1996 and 2015 as the dependent variable.23 Because these measures

are imprecise for countries with little trade and small manufacturing sectors (that tend to trade

few intermediates), we focus on regressions weighted by manufacturing value added in 1990.24

Panels A and B of Table 4 presents our OLS and IV estimates. The table has the same

structure as the previous tables, with the exception that in columns 3 and 6 we now control for

the log of intermediate imports instead of the initial robot density. Moreover, because Comtrade

data cover more countries, our sample now includes 130 countries, 34 of which are in the OECD

(recall that these models exclude Japan). We find that aging countries tend to import more

industrial robots relative to other intermediate goods. The IV coefficient estimate in column 3,

1.82 (s.e.=0.77), implies that a 20 percentage point increase in aging, corresponding to the difference

between Germany and the US, leads to a 36% increase in the imports of industrial robots relative

to total intermediate imports and closes about a third of the gap between the two countries (which

22This might be because high wages reflect not just greater “wage push”, but also a higher marginal product of
workers, or because our measure is the average wage rather than the wage of blue-collar or middle-aged workers,
which are the ones that should matter in our model.

23Several points. First, since imports (and later exports and patents) are flow variables, our dependent variable
corresponds to the growth in the stock of these intermediates, in line with our baseline specification with the increase
in robots on the left-hand side in equation (18). Second, our normalization ensures that our findings are not driven
by an overall increase in imports in aging countries. Third, because data on robot imports and exports are only
available between 1996 and 2015, in these models we focus on aging between 1995 and 2025, and measure all of our
controls in 1995 rather than in 1993. Finally, we choose the specification with logs as the baseline because it turns
out to be less sensitive to outliers, and we focus on the sample of countries with positive imports or exports of the
relevant intermediates (and later patenting)—the IFR sample is defined in a similar way, as it only includes countries
with positive robot installations. In Table A13 and Figures A3 and A4 in the Appendix, we show the robustness of
our results to different specifications and to samples that include countries with zero imports, exports or patents.

24The results are similar if we use total intermediate imports (exports) as weights in our regressions.
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is comparable to the quantitative magnitudes for robot installations in our baseline estimates).

Figure 5 provides regression plots for the full sample and the OECD sample.

Figure 7 turns to imports of other equipment from the Comtrade data, and reports estimates of

the IV models in columns 2 and 5 of Table 4. We provide results for three sets of imported interme-

diates. The first set includes intermediates related to industrial automation: dedicated machinery

(including robots), numerically controlled machines, automatic machine tools, automatic welding

machines, weaving and knitting machines, dedicated textile machinery, automatic conveyors, and

regulating and control instruments. The second set comprises non-automated technologies used

for similar industrial tasks. This set includes manual machine tools, manual welding machines,

machines that are not numerically controlled, other conveyors, and other industrial machinery.

Finally, we consider intermediates related to nonindustrial technologies, which should not become

more profitable when the population ages—at least not through the channels we have been empha-

sizing. This set includes vending machines, laundry machines, agricultural machinery (including

tractors) and computers.25 The evidence in Figure 7 is consistent with the idea that aging is

associated with the adoption of a range of technologies for industrial automation, and not other

technologies. For the full sample of countries, aging leads to a sizable increase in the relative imports

of all of our industrial automation technologies, except automatic conveyors. For the OECD, the

estimates are less precise but paint a similar picture. Reassuringly from the viewpoint of our theory,

in neither sample do we find a relationship between aging and imports of technologies unrelated to

automation of blue-collar jobs, including computers.26

5 Demographic Change and Innovation

While our theory links demographic change to both the adoption and development of automation

technologies, the evidence so far has focused on adoption. We turn to two measures of innovation

and development of new automation technologies. The first is the export of intermediates that

embody automation technologies, starting with industrial robots. The introduction of new varieties

of specialized machinery or quality improvements often leads to greater exports. Motivated by

this reasoning, we investigate whether countries that are aging rapidly increase their exports of

automation technologies.27 We start with a variant of equation (18) focusing on log robot exports

relative to other intermediate exports between 1996 and 2015 as dependent variable. Similar to our

strategy with imports, we weight our regressions by manufacturing value added in 1990.

Panels C and D of Table 4 present OLS and IV estimates for exports of industrial robots. These

panels follow the structure of Panels A and B, except that in columns 3 and 6 we control for the

log of intermediate exports instead of imports. Our sample now includes 103 countries, 35 of which

25Computers are of interest in and of themselves; they are also quite distinct from automation technologies, since
they are typically used to complement labor in existing tasks as well as automating a smaller subset of tasks (and
this non-automating role of computers is in line with the results in Acemoglu and Restrepo, 2018a).

26Figures A3 and A4 in the Appendix show that these results are robust when we use log(1 + x) or shares on the
left-and side, and when we exclude outliers.

27Costinot, Donaldson, Kyle and Williams (2017) also look at exports as a measure of the development of new
technologies, but focus on pharmaceuticals.
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are in the OECD. Because we are looking at exports, these models include Japan as well. The

results indicate that demographic change is associated with greater exports of industrial robots

relative to other intermediate goods. The IV estimate in column 3, 5.2 (s.e.=1.02), implies that a

20 percentage point increase in expected aging, corresponding to the difference between Germany

and the US, doubles robotics exports, which closes the gap between the two countries (which is

about 63%). Figure 6 depict these relationships for the full sample and the OECD sample.

Panel B of Figure 7 then turns to exports of other types of machinery, including intermedi-

ates that are unrelated to industrial automation. With the exception of regulating and control

instruments, we find a strong effect of aging on the export share of all intermediates that em-

body industrial automation technologies. As was the case with imports, we do not see a similar

association with aging for technologies unrelated to industrial automation.28

Our second measure of innovation and development of new automation technologies involves

robotics-related patents, as described in Section 3. We estimate a variant of equation (18) with

the log of robotics-related patents relative to other utility patents granted between 1990 and 2015

as the dependent variable. The normalization ensures that our findings are not driven by an

overall increase in patenting activity at the USPTO among aging countries. As before, we focus

on regressions weighted by manufacturing value added in 1990, which ensures that countries with

larger manufacturing sectors and thus more patents get more weight. Panels A and B of Table 5

present our OLS and IV estimates. Our sample now includes 68 countries, 31 of which are in the

OECD. The results show a strong positive association between demographic change and robotics-

related patents (relative to other utility patents). The IV estimate in column 6, for example, is

1.34 (s.e.=0.46) and implies that a 20 percentage point increase in expected aging, corresponding

to the difference between Germany and the US, leads to a 27% increase in robotics-related patents

relative to all utility patents, which is about half of the gap between the two countries. Figure 8

presents this relationship visually.

We investigated the robustness of these results in a number of dimensions. Some of those are

shown in Figure 9. Here we use alternative definitions of automation patents and also verify that

there is no similar positive association when we look at patents related to computers, nanotech-

nology or pharmaceuticals. Our alternative measures of robotics-related and other automation

patents are: just the 901 USPTO class (as opposed to our baseline measure which also includes

all patents referring to the 901 class); patent classes that tend to cite the 901 class frequently

(using two definitions); patents whose abstract contains words related to robots or to industrial

robots; patents whose abstract contains words related to industrial machinery; and finally patents

whose abstract contains words related to numerical control. In all these cases we find a positive

association between aging and the share of patents in these classes. The remaining entries in the

figure show that the relationship for computers, nanotechnology and pharmaceuticals are either

zero or negative. These results bolster our interpretation that demographic change encourages the

28Figures A3 and A4 in the Appendix show that these results are robust when we use log(1 + x) or shares on the
left-and side, and when we exclude outliers (see Table A13).
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development of a specific class of technologies related to industrial automation.29

6 Demographics and Robots across US Commuting Zones

In this section, we explore the relationship between aging and the adoption of robots across US

commuting zones. We use Leigh and Kraft’s (2018) data on the location of robot integrators to

proxy for robotics-related activity. Panel A of Table 6 reports OLS estimates of the model

Integratorsz = βAgingz + ΓXz,1990 + υz

across 722 US commuting zones indexed by z. The dependent variable Integratorsz is a dummy

for whether a commuting zone has any robot integrators. Agingz denotes the change in the ratio

of workers above 56 to those between 21 and 55 between 1990 and 2015, and Xz,1990 is a vector

of additional commuting-zone characteristics measured in 1990. As in our cross-country models

for robots, we focus on unweighted regressions and present weighted ones in the Appendix. The

standard errors are robust against heteroskedasticity and spatial correlation at the state level.

Because people migrate across commuting zones more commonly than across countries, the

endogeneity of local age composition is a more important issue in this case than in our cross-

country analysis. To address it, in Panel B we instrument aging using the average birth rates of the

commuting zone over five-year intervals from 1950-1954 to 1980-1984, while in Panel C we present

an alternative IV strategy using the decline in birth rates from 1950 to 1985 as a single instrument.

All panels in this table share the same structure. Column 1 controls just for regional dummies

(Midwest, Northeast, South, and West). Column 2 includes demographic characteristics of com-

muting zones measured in 1990—a period when the US had few industrial robots and integrators.

These characteristics include log average income, log population, the urbanization rate, the initial

ratio of older to middle-aged workers, and the shares of people by education, race, and gender.

Column 3 includes the measure of exposure to robots between 1990 and 2015 from Acemoglu and

Restrepo (2018a), which captures the extent to which a commuting zone specializes in industries

that are prone to the adoption of robots.30 This column also controls for the shares of employment

in manufacturing, agriculture, mining, construction, and finance and real estate in 1990. Column

29The construction of the various patent classes is further described in the Appendix, where we also show that our
main results for patents are robust when we use other functional forms or when we take into account the presence of
outliers (see Table A14).

30To construct this variable, we first define the adjusted penetration of robots in industry i between time t0 and t1,

APRi,t0,t1 =
1

5

∑

j

(
mj

i,t1
−mj

i,t0
− gj(i, t0, t1)m

j
i,t0

)
,

which is based on robot adoption trends among European countries. In particular, in this equation j indexes Denmark,
Finland, France, Italy or Sweden, and mj

i,t denotes the number of robots in country j’s industry i at time t (from the

IFR data), normalized by thousand workers in 1990. The term gj(i, t0, t1) gives the growth rate of output of industry
i during this period, so that subtracting gj(i, t0, t1)m

j
i,t0

adjusts for the fact that some industries are expanding more
than others (see Acemoglu and Restrepo, 2018a). The exposure to robots of a commuting zone is then

Exposure to robotsz,t0,t1 =
∑

i∈I

ℓ1970zi APRi,t0,t1 ,
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4 controls for other major trends affecting US labor markets—exposure to Chinese imports, off-

shoring, and the share of routine jobs. Finally, in column 5 we follow Acemoglu and Restrepo

(2018a) and exclude the top 1% commuting zone with the highest exposure to robots to ensure

that the results are not being unduly affected by the most exposed commuting zones.

Overall, the results in this table, especially the IV estimates, suggest that integrators locate

in commuting zones that are aging more rapidly as well as those with the greatest exposure to

robots (as shown by Acemoglu and Restrepo, 2018a). The estimates in column 4 of Panel B imply

that a 10 percentage point increase in aging—the standard deviation among US commuting zones

in this period—is associated with a 8.8 percentage points increase in the probability of having an

integrator (compared to an average probability of 22%).31

Figure 10 presents binned scatter plots of the relationship between predicted aging (from the IV

and single-IV first stages) and the location of integrators corresponding to the IV estimates from

the specification in column 4, Panels B and C, of Table 6. In addition, Figure A7 in the Appendix

presents a map of commuting zones that house robot integrators next to the predicted aging patterns

across commuting zones, depicting the spatial association between these two variables.

Overall, even though the presence of integrators in an area does not fully capture the extent of

industrial automation or the use and development of robotics technologies, the evidence is broadly

supportive of the positive impact of aging on the adoption of robots.

7 Mechanisms

We have documented the relationship between aging and automation technologies across countries

and US commuting zones. Our theory suggests that this occurs because, relative to older workers,

middle-aged workers specialize in production tasks that can be automated using industrial automa-

tion technologies. When this is the case, aging raises the wage of production workers and makes

automation technologies more profitable, particularly in industries that rely more on middle-aged

workers and those that have greater opportunities for automation. This section provides evidence to

bolster our interpretation. We start by showing that automation technologies (in particular, indus-

trial robots) substitute for production workers who are significantly more likely to be middle-aged

(rather than older). We then investigate the additional industry-level predictions of our theory.

7.1 The Substitution between Robots and Workers

In this section, we provide three pieces of evidence consistent with the assumption that middle-aged

workers specialize in production tasks that can be automated using industrial robots and related

automation technologies.

where the sum runs over all the industries in the IFR data, and ℓ1970zi stands for the 1970 share of commuting zone z
employment in industry i (computed from the 1970 Census).

31Table A15 in the Appendix shows that our commuting zone-level results are robust across a range of specifications,
for example, when we exclude outliers, weight the data by the size of the manufacturing sector in each commuting
zone, or use the log of the number and the employment of integrators as the dependent variable.
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Using data from the the 1990 US Census, the 2000 US Census, and the 2007 American Com-

munity Survey, we first documents how the allocation of employed workers across industries and

occupations varies with their age. Panel A of Figure 11 plots the ratio of workers employed in blue-

collar jobs relative to workers employed in white-collar and service jobs for five-year age brackets.

Blue-collar jobs include production workers and machinists, and represent about 13% of US em-

ployment. White-collar jobs include clerks, accountants, secretaries and salespersons, and represent

about 25% of US employment, while service jobs account for 15% of US employment. The figure

shows a sharp decline in this ratio starting around age 50 (in the 2007 ACS) and age 55 (in the 1990

Census). Panel B reveals a similar picture when we look at the share of workers by age employed in

industries that later became more robotized. Both figures support the presumption that, relative

to their older counterparts, middle-aged workers specialize in blue-collar jobs and in industries that

are more prone to the use of industrial robots. Consistent with automation technologies replacing

middle-aged workers in production tasks, both figures also show a decline over time in the share of

middle-aged workers employed in blue-collar jobs and in industries prone to the use of industrial

robots.

Our second strategy documents that as an industry adopts more robots, the employment and

wage bill shares of production workers in that industry decline. This evidence suggests that, consis-

tent with our theoretical framework, robots replace workers in production tasks in manufacturing,

which from Figure 11 tend to be the middle-aged workers. For each industry, we measure the share

of wages paid to production workers employed using data from the NBER-CES Manufacturing

Industry Database. Following Acemoglu and Restrepo (2018a), we use the adjusted penetration of

robots in each industry (see footnote 30), which focuses on common technological developments

driving the adoption of robots throughout the world. Figure 12 indicates that, across the 13 man-

ufacturing industries covered by the IFR and NBER-CES, the adjusted penetration of robots is

correlated with a significant decline in the employment and wage bill shares of production workers

during the 1993-2007 period.

Finally, we look at the impact of automation on the wages and employment of workers by age.

We follow Acemoglu and Restrepo’s (2018a) approach to estimate the impact of robots across US

commuting zones and use the exposure to robots (see footnote 30). We then estimate the following

model for employment and wages by 10-year age group across commuting zones:

∆Yz,a = βY
a Exposure to robots 1993 to 2007z + ǫLz,a,

where ∆Yz,a is the change in the employment rate (or the wage rate) of age group a in commuting

zone z between 1990 and 2007. Figure 13 presents the estimates of the coefficients for employment

and wages by 10-year age groups (together with 95% confidence intervals). We report three specifi-

cations similar to those in Acemoglu and Restrepo (2018a), except that in line with the focus here

all regressions are unweighted. The first one we report is the baseline specification in Acemoglu

and Restrepo (2018a), which controls for Census region fixed effects, demographic differences across

commuting zones, broad industry shares, the share of routine jobs and the impact of trade with
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China (as in Autor, Dorn and Hanson, 2013).32 The second specification removes the top 1% com-

muting zones with the highest exposure to robots, to ensure that the results are not being driven

by the most exposed commuting zones. The last specification pools the data for all age groups and

forces our covariates, except exposure to robots, to have the same impact on all workers.

For both employment and wages, the negative effects of industrial robot adoption concentrate

on workers between the ages of 35 and 54, with mild effects on those older than 55 and no effects

on those above 65.33 The results from this strategy are our most direct evidence that, relative to

older workers, middle-aged workers specialize in tasks that can be performed by, and thus are more

substitutable to, industrial robots.

7.2 Industry-Level Results

A key prediction of our model is that the impact of aging should be more pronounced in industries

that rely more on middle-aged workers and also in industries in which these middle-aged workers

engage in tasks that can be more productively automated. This subsection explores this prediction

using robot adoption data by industry and country.

Table 7 estimates regression models using IFR data on robot installations by country, industry

and year, where we also interact aging with industry characteristics:

IRi,c,t

Li,c,1990
=βAgingc + βRAgingc ×Reliance on Middle-Aged Workersi (19)

+ βPAgingc ×Opportunities for Automationi + Γi,tXc,1990 + αi + δt + εi,c,t.

In contrast to equation (18), the left-hand side variable now denotes the (annual) installation of

new robots per thousand workers (still normalized by employment in 1990).34 Agingc is once again

defined as the change in the ratio of the population above 56 to those between 21 and 55 between

1990 and 2025. We include industry and year effects, and also allow the covariates in Xc,1990 to have

time-varying coefficients and affect industries differentially. Reliance on Middle-Aged Workersi and

Opportunities for Automationi were defined in Section 3 and capture the relevant dimensions of

industry heterogeneity according to our theory. Our sample for this regression covers up to 50

countries for which industry data are available, and covers the 1993-2014 period but is unbalanced

since, as indicated in Table A1, data are missing for several country×industry×year combinations.35

32Specifically, we control for the 1990 levels of: log population, the share of population above 65; the shares of
population with different education levels, the share of population by race and gender, and the shares of employment
in manufacturing, light manufacturing, mining and construction, as well as the share of female employment in
manufacturing. The variables are described in detail in Acemoglu and Restrepo (2018a).

33In Figure A8 in the Appendix, we report similar results by five-year age bins. In weighted regressions, the
estimates for employment are similar, but we do see some significant negative wage effects for older groups as well.
This might reflect the downward wage pressure exerted by displaced middle-aged workers on jobs occupied by older
workers in some large commuting zones.

34Table A16 in the Appendix shows that if we estimate an analogue of equation (19) using yearly data on robot
installation for countries, the results are similar to our baseline cross-country estimates in Table 1. The slight
differences are due to the depreciation of the stock of robots (if robots did not depreciate, the two models would yield
the exact same results since total installations would add up to the change in the stock of robots).

35In this and subsequent industry-level regressions, we weight country-industry pairs using the baseline share of
employment in each industry in that country. This weighting scheme ensures that all countries receive the same
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Standard errors are now robust against heteroscedasticity, and cross-industry and temporal corre-

lation at the country level.

To normalize our left-hand side variable, we use several approaches. First, in Panels A and B

we use the ILO country data to normalize robot installations by Lc,1990/19 (recall that the IFR

reports data for 19 industries). This normalization allows us to use all 50 countries for which there

are industry-level robots data. Second, in Panels C and D we use data for employment by industry

and country from EUKLEMS, which cover all the industries in our sample for 22 countries. Finally,

Table A17 in the Appendix uses data on employment by industry and country from UNIDO, which

covers manufacturing industries for 44 countries.

Column 1 presents estimates of equation (19) without the interaction terms. The positive

estimates for aging across all panels show that, even within a given industry, countries that are

aging rapidly adopted more robots than other countries. This result confirms that our cross-

country relationship between aging and the adoption of robots takes place within industries (as in

our model), and does not simply reflects differences in the industry composition of aging countries.

The remaining columns include the interaction of aging with an industry reliance on middle-

aged workers and opportunities for automation. In columns 2-4, Opportunity for Automationi is

proxied using Graetz and Michaels’s replaceability index, while in columns 5-7, it is proxied by

a dummy for the industries identified by BCG (2015). The estimates in columns 2 and 5 show

positive and statistically significant interactions with both variables in all panels. Those in column

2 of Panel A, for example, indicate that a 10 percentage point increase in aging leads to an increase

of 0.2 (= 2.25 × 0.89 × 0.1) annual robot installations per thousand workers in an industry at the

95th percentile of reliance on middle-aged workers compared to an industry at the 5th percentile.

In the plastic and chemicals industry, which is at the 95th percentile of reliance on middle-aged

workers, a 10 percentage point increase in aging raises robot installations by 0.27 per thousand

workers per year, while in textiles, which is at the 5th percentile, the same change leads to 0.07

more installations per thousand workers. On the other hand, a 10 percentage point increase in aging

is associated with an increase of 0.23 (= 0.35× 6.47× 0.1) annual robot installations per thousand

workers in an industry at the 95th percentile of the replaceability index compared to an industry

in the 5th percentile. For instance, in the metal products industry, which is at the 95th percentile

of the replaceability index, a 10 percentage point increase in aging raises robot installations by 0.27

per thousand workers per year; while in agriculture, which is at the 5th percentile, the same change

leads to 0.04 more installations per thousand workers. These columns report the main effect of aging

evaluated at the 95th percentile of reliance on middle-aged workers and replaceability. Evaluated

at this point, the main effect of aging is 2.5 times larger than at the average industry, illustrating

the quantitative importance of industry heterogeneity.

The remaining columns show that our results are robust to the inclusion of other controls. In

weight—as in our unweighted country specifications—while industry weights reflect their relative importance in each
country (this is the same weighting scheme used by Graetz and Michaels, 2018).

Though not reported in our tables to save space, our covariates, Xc,1990 , include region dummies, log GDP per
capita, log population, average years of schooling and the ratio of older to middle-aged workers in 1990.
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columns 3 and 6, we control for a measure of the baseline extent of robot use in each country-

industry pair, which accounts for any unobserved industry characteristics that may be correlated

with initial investments and subsequent trends in robotics and/or for mean-reversion (or other)

dynamics.36 In columns 4 and 7 we control for a full set of country fixed effects (we no longer

estimate the main effect of aging in this case). In these models the interaction between aging and

industry characteristics is identified solely from within-country variation. Reassuringly, the size of

the interaction coefficients does not change much in either case.

Finally, Panels B and D present IV specifications. As in our cross-country analysis, we in-

strument aging using past birth rates, and we also include interactions of these birth rates with

our measures of reliance on middle-aged workers and opportunities for automation to generate

instruments for the interaction terms. The IV estimates are similar to the OLS ones.37

Overall, the cross-industry patterns provide support for the theoretical predictions of our frame-

work, and indicate that the adoption of robots responds to aging precisely in industries that rely

more on middle-aged workers and that have greater opportunities for automation.

8 Productivity and the Labor Share

We finally turn to the implications of our model for productivity (value added per worker) and the

labor share. As highlighted in Section 2, the relationship between aging and industry productivity

is in general ambiguous. On the one hand, demographic change might reduce the number of high-

productivity middle-aged workers relative to lower-productivity older workers. On the other hand,

demographic change might increase productivity because of the technology adoption it induces.

Nevertheless, our model makes some unambiguous predictions: because of the induced increase in

automation, in aging countries, industries with the greatest opportunities for automation should

increase their value added per worker relative to other industries that cannot rely on automation

to substitute for middle-aged workers. For the same reason, we also expect a differential negative

impact of aging on the labor share in industries with the greatest opportunities for automation.

Panels A and B of Table 8 present OLS and IV estimates of a variant of equation (19) with the

change in log value added per worker in industry i in country c between 1995 and 2007 as the left-

hand side variable (instead of annual robot installations, so that now we have a single observation

for each country-industry pair). Otherwise, the structure of Table 8 is similar to that of Table 7.38

Column 1 in Panel A shows a small and insignificant main effect of aging on value added per

worker. A 10 percentage point increase in aging is associated with a 2.6% decline in value added

36Because we do not observe the stock of robots for all country-industry pairs in 1993, we follow Graetz and Michaels
(2018) and impute them when missing by deflating the first observation of the stock of robots in a country-industry
pair back in time using the growth rate of the stock of total robots in the country during the same period.

37We also confirmed that past demographic changes neither have significant main effects nor interaction effects
(with reliance on middle-aged workers or opportunities for automation) and further verified that these results are
robust under different specifications and to excluding outliers. These results are presented in Tables A18, A19, and
A20 in the Appendix.

38The only difference is that, because the value added data from EUKLEMS is available for a wide range of countries
starting only in 1995, we compute our aging variable to be between 1995 and 2025.
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per worker (s.e.=2.2%). The point estimate for aging is more negative than what we found in

Acemoglu and Restrepo (2017), where we showed that there was no negative relationship between

aging and growth in GDP per capita. The difference is driven by the smaller EUKLEMS sample

(22 countries). As Table A21 shows, if we estimate the analogue of this equation at the country

level using GDP per capita data from the Penn World Tables, we obtain a similar point estimate,

and as we increase the sample, the point estimates become positive or zero.

Of greater interest given our model predictions is the interaction between aging and opportu-

nities for automation. Columns 2-7 show a positive interaction, indicating that as countries age,

industries with greater potential for automation experience relative productivity gains. The mag-

nitudes are sizable. The IV estimate in column 2 of Panel B shows that a 10 percentage points

increase in aging causes an increase of 17.5% (= 0.35 × 5 × 0.1) in the value added per worker in

an industry at the 95th percentile of the replaceability index compared to an industry at the 5th

percentile. Our main effects, which are evaluated at an industry at the 95th percentile of replace-

ability and 5th percentile of reliance on middle-aged workers, show that aging is associated with an

absolute increase in value added per worker in industries that can automate in response to aging.39

Finally, in Panels C and D of Table 8, we present regressions for the change in the labor

share between 1995 and 2007 as outcome. Column 1 shows that, on average, industries located in

countries undergoing more rapid demographic change experienced a decline in their labor share.

The remaining columns show that these effects are more pronounced in industries that have greater

opportunities for automation, which is consistent with the presumption that these industries are

undergoing faster automation in countries with aging workforces. We also find a positive interaction

between aging and reliance on middle-aged workers, which is consistent with production tasks being

complements (ζ < 1 in our model). The heterogeneous effects on the labor share across industries

are again sizable.

Overall, consistent with our theoretical predictions, the evidence suggests that aging increases

relative productivity and reduces the labor share in industries that have the greatest opportunities

for automation, and has ambiguous effects in the aggregate.

9 Conclusion

The populations of most developed and many developing countries are aging rapidly. Many

economists see these demographic changes as “headwinds” potentially slowing down or depress-

ing economic growth in the decades to come. However, a reasoning based on directed technological

change models—which highlight the effects of changing scarcity of different types of labor on the

adoption and development of technologies substituting for these factors—suggests that these demo-

graphic changes are associated with major, and potentially countervailing, technological responses.

39We also find some negative estimates of the interaction between aging and reliance on middle-aged workers, but
as emphasized in Section 2, our model has no tight predictions in this case, because both the direct effect (which is
negative) and the technology response effect (which can be positive) tend to be greater for industries that rely more
heavily on middle-aged workers.
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We have documented that this is the case; countries and local US labor markets undergoing

major demographic change have invested more in new robotic and automation technologies. We

have argued that this is because ongoing demographic changes are increasing the scarcity of middle-

aged workers and industrial automation is most substitutable with middle-aged workers. The effects

of demographic change on investment in robots are robust and quantitatively sizable. For example,

differential aging alone accounts for about 40% of the cross-country variation in investment in

robotics. We have also shown using data on intermediate exports and patents that demographic

change encourages not just the adoption of automation technologies but also their development.

Our directed technological change model further predicts that the effects of demographic change

should be more pronounced in industries that rely more on middle-aged workers (because the

scarcity of middle-aged workers will be felt more acutely in these industries) and in those that

present greater technological opportunities for automation. Using the industry dimension of our

data, we provide extensive support for these predictions as well.

The technology responses to aging mean that the productivity implications of demographic

changes are more complex than previously recognized. In industries most amenable to automation,

aging can trigger a sizable adoption of robots and as a result, lead to greater productivity. Using

industry-level data, we find that the main effect of aging on productivity is ambiguous, but as in

our theoretical predictions, in the presence of demographic change, industries with the greatest op-

portunities for automation are experiencing more rapid growth of productivity and greater declines

in labor share relative to other industries.

Several questions raised in this paper call for more research. First, it is important to study the

effects of aging on technology adoption and productivity using more disaggregated industry-level

or firm-level data. Second, it is necessary to further investigate whether the effects of demographic

change on technology adoption are being mediated through wages and whether other factors, such

as differences in labor market institutions, also have direct effects on technology. Third, it would

be interesting to investigate technology responses to changes in the gender composition of the

workforce as well (though our data on automation technologies are too late to capture the most

major changes in the developed world). Finally, motivated by industrial automation, our focus has

been on the substitution of machines for middle-aged workers in production tasks (and mostly in

manufacturing). Though it is well-known that with the advent of artificial intelligence, a broader

set of tasks can be automated, there is currently little research on incentives for the automation of

nonproduction tasks and their productivity implications.
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Main Figures and Tables:

Panel A Panel B

Figure 1: Equilibrium wages WE and V E . The downward-slopping red curve is the isocost C(W,V, 1) = 1

(condition (12)). The equilibrium is given by the point of tangency between the isocost and a line with slope − 1−φ
φ

,

and at this point ∂C/∂W
∂C/∂V

= 1−φ
φ

(condition (13)). Panel B shows that automation rotates the isocost curve clockwise

(displacement effect) and shifts it outwards (productivity effect).

Panel A Panel B

Figure 2: Equilibrium middle-aged wage with endogenous technology. Panel A: unique equilibrium. Panel B:

multiple equilibria. Aging shifts the mapping WE up, and this increases the equilibrium wage in the least and the

greatest equilibrium.
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Figure 3: Panel A presents trends in aging—the ratio of older (56 years of age or older) to middle-aged (between

21 and 55 years of age) workers—using data and forecasts from the UN. Panel B presents trends in robot adoption.

Robot adoption is measured by the number of robots (using robot data from the IFR) normalized by thousand

industry workers in 1990 (from the ILO).

BELGIUM

CHILE

CHINA P.REP.

CHINA,HONG KONG S.A.R.

DENMARK

EGYPT

FINLAND

GERMANY

MOLDOVA, REPUBLIC OF

PAKISTAN
POLAND

SINGAPORE

SOUTH KOREA

SWEDEN

UNITED STATES

0
.2

.4
.6

.8
In

cr
ea

se
 in

 r
ob

ot
s 

be
tw

ee
n 

19
93

 a
nd

 2
01

4

0 .2 .4 .6
Aging between 1990 and 2025

Panel A

BELGIUM

CHILE

DENMARK

ESTONIA

FINLAND

GERMANY

ISRAEL

ITALY

NEW ZEALAND

POLAND

SOUTH KOREA

SWEDEN

TURKEY

UNITED KINGDOM

UNITED STATES

0
.2

.4
.6

.8
In

cr
ea

se
 in

 r
ob

ot
s 

be
tw

ee
n 

19
93

 a
nd

 2
01

4

.1 .2 .3 .4 .5
Aging between 1990 and 2025

Panel B

Figure 4: Relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between

1990 and 2025) and the increase in the number of industrial robots per thousand workers between 1993 and 2014.

The plots partial out the covariates included in the regression models in columns 2 and 5 of Table 1.
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Figure 5: Relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between 1990

and 2025) and the log of imports of industrial robots between 1996 and 2015 (relative to imports of intermediates).

Panel A is for the full sample and Panel B is for the OECD sample. The plots partial out the covariates included in

the regression models in columns 2 and 5 of Table 4. Marker size indicates manufacturing value added.
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Figure 6: Relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between 1990

and 2025) and the log of exports of industrial robots between 1996 and 2015 (relative to exports of intermediates).

Panel A is for the full sample and Panel B is for the OECD sample. The plots partial out the covariates included in

the regression models in columns 2 and 5 of Table 4. Marker size indicates manufacturing value added.
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Figure 7: Estimates of the relationship between aging (change in the ratio of workers above 56 to workers aged
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this period. The figure presents separate estimates for the full sample of countries and for the OECD sample.
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Figure 8: Relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between

1990 and 2025) and the log of automation patents granted to a country between 1990 and 2016 (relative to total

patents at the USPTO). Panel A is for the full sample and Panel B is for the OECD sample. The plots partial out

the covariates included in the regression models in columns 2 and 5 of Table 5. Marker size indicates manufacturing

value added.
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Figure 9: Estimates of the relationship between aging (change in the ratio of workers above 56 to workers aged 21-
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are normalized by the total patents granted by the USPTO during this period. The figure presents separate estimates

for the full sample of countries with patent data and for OECD countries.
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Figure 10: Binned plot of the relationship between predicted aging (change in the ratio of workers above 56 to

workers aged 21-55 between 1990 and 2015) and the location of robot integrators in the US (from Leigh and Kraft,

2018). Panel A uses predicted aging based on birthrates from 1950 to 1985, and thus corresponds to the IV estimates

in Table 6. Panel B uses predicted aging based on the decline in birth rates between 1950-1985, and thus corresponds

to the single-IV estimates in Table 6. The plots partial out the covariates included in the regression models in column

4 in Table 6.
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Figure 11: For each age group, Panel A plots the ratio of the number of employees in blue-collar production

jobs to the number of employees in white-collar and service jobs. For each age group, Panel B plots the share

of employees working in industries with the greatest opportunities for automation (car manufacturing, electronics,

metal machinery, and chemicals, plastics, and pharmaceuticals). Both figures present data from the 1990 and 2000

Censuses, the 2007 American Community Survey, and an average of these series.
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Figure 12: The figure presents the correlation across industries between the exposure to robots and the change

between 1993 and 2007 in the share of production workers (Panel A) and the share of wages paid to production

workers (Panel B) across three-digit US industries. Data from the NBER-CES Manufacturing Industry Database.

Marker size indicates total employment in each industry. The dotted line is from a regression excluding the automotive

industry.
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Figure 13: The figure presents estimates of the impact of one additional robot per thousand workers on the

employment and wages of different age groups across US commuting zones. The three specifications and the data

used are described in the main text and in Acemoglu and Restrepo (2018a). The spiked bars present 95% confidence

intervals based on standard errors that are robust to heteroskedasticity and serial correlation within US states.
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Table 1: Estimates of the impact of aging on the adoption of industrial robots.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2025 0.769 0.712 0.567 1.117 0.983 0.711
(0.252) (0.237) (0.241) (0.366) (0.298) (0.311)

log of GDP per capita in 1993 0.032 -0.005 0.037 -0.112
(0.030) (0.050) (0.052) (0.081)

Robots per thousand workers in 1993 0.077 0.065
(0.013) (0.026)

Observations 52 52 52 30 30 30
R-squared 0.47 0.59 0.70 0.38 0.54 0.64

Panel B. IV estimates

Aging between 1990 and 2025 0.874 0.767 0.714 1.576 1.018 0.901
(0.263) (0.241) (0.251) (0.473) (0.316) (0.323)

Observations 52 52 52 30 30 30
First-stage F stat. 25.2 17.8 15.2 7.7 7.1 8.7
Overid p− value 0.67 0.66 0.09 0.75 0.34 0.10

Anderson-Rubin Wald test p− value 0.02 0.03 0.00 0.03 0.03 0.00
Panel C. Single-IV estimates

Aging between 1990 and 2025 1.011 0.831 0.637 1.622 1.265 1.051

(0.361) (0.329) (0.363) (0.555) (0.402) (0.494)
Observations 52 52 52 30 30 30
First-stage F stat. 32.4 27.9 19.6 14.6 29.9 17.7

Panel D. OLS estimates weighted by manufacturing value added

Aging between 1990 and 2025 1.054 1.185 0.829 1.185 1.336 0.936
(0.340) (0.196) (0.223) (0.361) (0.172) (0.288)

Observations 52 52 52 30 30 30
R-squared 0.66 0.82 0.86 0.52 0.79 0.82

Panel E. IV estimates weighted by manufacturing value added

Aging between 1990 and 2025 1.020 1.146 1.035 1.120 1.281 1.080
(0.300) (0.187) (0.235) (0.381) (0.178) (0.270)

Observations 52 52 52 30 30 30
First-stage F stat. 6.9 7.4 19.1 9.2 14.6 22.7
Overid p− value 0.07 0.13 0.17 0.45 0.20 0.18
Anderson-Rubin Wald test p− value 0.00 0.01 0.00 0.00 0.00 0.00
Covariates included:
Baseline country covariates X X X X

Initial robot density and
manufacturing value added

X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots. In all
panels, the dependent variable is the change in the stock of industrial robots per thousand workers between 1993 and
2014 (from the IFR). Aging is the expected change in the ratio of workers above 56 to workers between 21 and 55
between 1990 and 2025 (from the UN Population Statistics). Panels A and D present OLS estimates. Panels B and
E present IV estimates where aging is instrumented using the size of five-year birth cohorts between 1950 and 1985.
Panel C presents IV estimates where aging is instrumented using the decline in birth rates between 1960 and 1980.
For our IV estimates, we report the first-stage F−statistic. When using multiple instruments, we also report the
p−value of Hansen’s overidentification test, and the p−value of Anderson and Rubin’s test for the coefficient on aging
being zero. We present results for two samples: columns 1-3 use the full sample; columns 4-6 use the OECD sample.
Columns 1 and 4 include region dummies. Columns 2 and 5 include the 1993 values of log GDP per capita, log of
population, average years of schooling and the ratio of workers above 56 to workers aged 21-55 in 1990. Columns
3 and 6 add the 1993 value of robots per thousand workers and the log of the 1990 value added in manufacturing.
The regressions in Panels A, B and C are unweighted, while the regressions in Panels D and E are weighted by value
added in manufacturing in 1990. Standard errors are robust against heteroscedasticity.

41



Table 2: OLS estimates of the impact of past and expected aging on the adoption of industrial
robots.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. Estimates of past vs. expected aging

Aging between 1990 and 2025 0.801 0.717 0.523 1.105 0.988 0.700
(0.263) (0.229) (0.234) (0.348) (0.306) (0.314)

Aging between 1950 and 1990 -0.304 -0.052 0.272 -0.243 0.192 0.392
(0.377) (0.329) (0.226) (0.436) (0.315) (0.293)

Observations 52 52 52 30 30 30
R-squared 0.49 0.59 0.70 0.38 0.54 0.65

Panel B. Estimates of past aging

Aging between 1950 and 1990 -0.098 0.226 0.583 -0.357 0.095 0.455
(0.378) (0.411) (0.340) (0.587) (0.456) (0.409)

Observations 52 52 52 30 30 30
R-squared 0.25 0.42 0.63 0.02 0.26 0.54

Panel C. Estimates of current vs. future aging

Aging between 1990 and 2015 0.694 0.524 0.431 0.861 0.688 0.555
(0.268) (0.288) (0.270) (0.366) (0.347) (0.358)

Aging between 2015 and 2025 0.855 0.935 0.734 1.398 1.320 0.925
(0.442) (0.520) (0.557) (0.527) (0.564) (0.722)

Test for equality 0.75 0.54 0.67 0.31 0.38 0.69
Observations 52 52 52 30 30 30
R-squared 0.47 0.59 0.70 0.38 0.55 0.64
Covariates included:
Baseline country covariates X X X X

Initial robot density and
manufacturing value added

X X

Notes: The table presents OLS estimates of the relationship between past and expected aging and the adoption of
robots. In all panels, the dependent variable is the change in the stock of industrial robots per thousand workers
between 1993 and 2014 (from the IFR). The aging variable varies across panels: Panels A and B present estimates
using the change in the ratio of workers above 56 to workers between 21 and 55 between 1950 and 1990 (from the UN
Population Statistics) as an explanatory variable. Panel C separately estimates coefficients for aging between 1990
and 2015 (current aging) and between 2015 and 2025 (expected aging). We present results for two samples: columns
1-3 use the full sample; columns 4-6 use the OECD sample. Columns 1 and 4 include region dummies. Columns 2
and 5 include the 1993 values of log GDP per capita, log of population, average years of schooling and the ratio of
workers above 56 to workers aged 21-55 in 1990. Columns 3 and 6 add the 1993 value of robots per thousand workers
and the log of the 1990 value added in manufacturing. All regressions are unweighted, and the standard errors are
robust against heteroscedasticity.
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Table 3: Stacked-differences estimates of the impact of aging on the adoption of industrial robots.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Contemporary aging 0.843 0.552 0.448 0.983 0.733 0.583
(0.291) (0.207) (0.206) (0.440) (0.281) (0.323)

Observations 104 104 104 60 60 60
R-squared 0.28 0.49 0.13 0.15 0.41 0.13

Panel B. IV estimates

Contemporary aging 1.157 0.831 0.797 1.752 1.043 1.122
(0.401) (0.294) (0.473) (0.773) (0.412) (0.647)

Observations 104 104 104 60 60 60
First-stage F stat. 10.4 6.1 4.1 6.6 6.1 4.2
Overid p− value 0.50 0.07 0.49 0.64 0.29 0.47
Anderson-Rubin Wald test p− value 0.02 0.00 0.14 0.00 0.00 0.00

Panel C. OLS estimates weighted by manufacturing value added

Contemporary aging 1.384 0.744 0.509 1.484 0.775 0.595
(0.445) (0.268) (0.352) (0.437) (0.302) (0.417)

Observations 104 104 104 60 60 60
R-squared 0.40 0.62 0.05 0.27 0.55 0.07

Panel D. IV estimates weighted by manufacturing value added

Contemporary aging 1.907 0.831 1.024 1.854 1.112 1.135
(0.549) (0.294) (0.370) (0.481) (0.290) (0.434)

Observations 104 104 104 60 60 60
First-stage F stat. 4.8 6.1 3.5 39.7 22.4 39.7
Overid p− value 0.37 0.07 0.26 0.11 0.48 0.71
Anderson-Rubin Wald test p− value 0.00 0.00 0.00 0.00 0.00 0.00
Covariates included:
Baseline country covariates X X X X

Initial robot density and manufacturing
value added

X X X X

Country trends X X

Notes: The table presents OLS and IV stacked-differences estimates of the relationship between aging and the
adoption of robots for the two periods 1993-2005 and 2005-2014. In all panels, the dependent variable is the change
in the stock of industrial robots per thousand workers (from the IFR) for two periods: between 1993 and 2005 and
between 2005 and 2014. The aging variable is the expected change in the ratio of workers above 56 to workers
between 21 and 55 for both periods as well (from the UN Population Statistics). Panels A and C present OLS
estimates. Panels B and D present IV estimates where the aging variable is instrumented using the size of five-year
birth cohorts between 1950 and 1985. For our IV estimates, we report the first-stage F−statistic, the p−value of
Hansen’s overidentification test, and the p−value of Anderson and Rubin’s test for the coefficient on aging being zero.
We present results for two samples: columns 1-3 use the full sample; columns 4-6 use the OECD sample. Columns 1
and 4 include region dummies. Columns 2 and 5 include the 1993 values of log GDP per capita, log of population,
average years of schooling and the ratio of workers above 56 to workers aged 21-55 in 1990, the 1993 value of robots
per thousand workers, and the log of the 1990 value added in manufacturing. Columns 3 and 6 include country fixed
effects. The regressions in Panels A and B are unweighted, while the regressions in Panels C and D are weighted by
value added in manufacturing in 1990. Standard errors are robust against heteroscedasticity and correlation within
countries.
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Table 4: Estimates of the impact of aging on imports and exports of industrial robots.

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Dependent variable:
log of imports of industrial robots relative to intermediates

Panel A. OLS estimates

Aging between 1995 and 2025 3.501 3.155 1.818 3.495 3.287 2.160
(1.281) (0.865) (0.768) (1.511) (0.860) (0.724)

Log of the GDP per capita in 1995 -0.122 -1.327 -0.406 -1.311
(0.195) (0.388) (0.373) (0.467)

Log of intermediate imports 0.161 0.220
(0.261) (0.318)

Observations 130 130 130 34 34 34
R-squared 0.29 0.50 0.58 0.27 0.71 0.79

Panel B. IV estimates

Aging between 1995 and 2025 3.266 3.197 1.969 3.268 2.883 1.691
(1.469) (0.902) (0.962) (1.727) (0.820) (0.806)

Log of the GDP per capita in 1995 -0.123 -1.304 -0.402 -1.383
(0.182) (0.402) (0.353) (0.419)

Log of intermediate imports 0.154 0.218
(0.251) (0.267)

Observations 130 130 130 34 34 34
Instruments F-stat 13.67 11.90 10.70 23.79 11.29 9.65
Overid p-value 0.16 0.71 0.68 0.32 0.12 0.04

Dependent variable:
log of exports of industrial robots relative to intermediates

Panel C. OLS estimates

Aging between 1995 and 2025 6.141 4.396 4.657 6.309 4.516 4.144
(1.048) (0.952) (0.985) (1.131) (1.147) (1.165)

Log of the GDP per capita in 1995 0.688 0.675 0.967 0.631
(0.246) (0.465) (0.404) (0.682)

Log of intermediate exports -0.114 -0.104
(0.128) (0.197)

Observations 103 103 103 35 35 35
R-squared 0.78 0.83 0.83 0.61 0.76 0.77

Panel D. IV estimates

Aging between 1995 and 2025 7.015 4.713 5.199 6.903 4.645 4.803
(0.935) (1.039) (1.167) (1.064) (1.230) (1.177)

Log of the GDP per capita in 1995 0.680 0.770 0.974 0.772
(0.232) (0.431) (0.370) (0.598)

Log of intermediate exports -0.132 -0.123
(0.126) (0.177)

Observations 103 103 103 35 35 35
Instruments F-stat 11.56 13.13 15.00 36.39 19.03 12.23
Overid p-value 0.10 0.16 0.14 0.11 0.22 0.14
Covariates included:
Baseline country covariates X X X X

Manufacturing value added X X

Notes: The table presents OLS and IV estimates of the relationship between aging and imports and exports of
industrial robots. In Panels A and B, the dependent variable is the log of imports of industrial robots relative to
all intermediates between 1996 and 2015 (from Comtrade). In Panels C and D, the dependent variable is the log
of exports of industrial robots relative to all intermediates between 1996 and 2015 (from Comtrade). The aging
variable is the expected change in the ratio of workers above 56 to workers between 21 and 55 between 1995 and 2025
(from the UN Population Statistics). Panels A and C present OLS estimates. Panels B and D present IV estimates
where the aging variable is instrumented using the size of five-year birth cohorts between 1950 and 1985. For our
IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test. We present
results for two samples: columns 1-3 use the full sample; columns 4-6 use the OECD sample. Columns 1 and 4
include region dummies. Columns 2 and 5 include the 1995 values of log GDP per capita, log of population, average
years of schooling and the ratio of workers above 56 to workers aged 21-55. Columns 3 and 6 add the log of the 1990
value added in manufacturing and the log of intermediate imports (Panels A and B) or exports (Panels C and D) as
additional covariates. All regressions are weighted by value added in manufacturing in 1990, and the standard errors
are robust against heteroscedasticity.
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Table 5: Estimates of the impact of aging on patents related to robotics.

Dependent variable:
log of robotics-related patents relative to utility patents

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2025 1.642 1.382 1.411 1.639 1.302 1.593
(0.334) (0.294) (0.444) (0.347) (0.275) (0.547)

Log of the GDP per capita in 1990 0.126 0.110 0.187 0.456
(0.132) (0.248) (0.233) (0.421)

Log of patents at USPTO -0.055 -0.142
(0.039) (0.056)

Observations 68 68 68 31 31 31
R-squared 0.58 0.63 0.64 0.42 0.58 0.66

Panel B. IV estimates

Aging between 1990 and 2025 1.630 1.241 0.755 1.830 1.372 1.342
(0.405) (0.316) (0.572) (0.435) (0.325) (0.464)

Log of the GDP per capita in 1990 0.126 -0.128 0.196 0.338
(0.121) (0.258) (0.215) (0.361)

Log of patents at USPTO -0.030 -0.131
(0.039) (0.047)

Observations 68 68 68 31 31 31
Instruments F-stat 7.11 6.13 5.03 27.39 26.14 18.63
Overid p-value 0.14 0.08 0.21 0.41 0.11 0.33
Covariates included:

Baseline country covariates X X X X

Manufacturing value added X X

Notes: The table presents OLS and IV estimates of the relationship between aging and robotics-related patents
assigned to companies and inventors from different countries by the USPTO. In both panels, the dependent variable
is the log of robotics-related patents relative to all utility patents granted between 1990 and 2015 (from Patents
View). The aging variable is the expected change in the ratio of workers above 56 to workers between 21 and 55
between 1990 and 2025 (from the UN Population Statistics). Panel A presents OLS estimates. Panel B presents IV
estimates where the aging variable is instrumented using the size of five-year birth cohorts between 1950 and 1985.
For our IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test. We
present results for two samples: columns 1-3 use the full sample; columns 4-6 use the OECD sample. Columns 1
and 4 include region dummies. Columns 2 and 5 include the 1995 values of log GDP per capita, log of population,
average years of schooling and the ratio of workers above 56 to workers aged 21-55. Columns 3 and 6 add the log of
utility patents received by each country and the log of the 1990 value added in manufacturing as additional covariates.
All regressions are weighted by value added in manufacturing in 1990, and the standard errors are robust against
heteroscedasticity.
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Table 6: Estimates of the impact of aging on the location of robot integrators in the US.

Dependent variable:
Dummy for presence of robot integrator

(1) (2) (3) (4) (5)

Panel A. OLS estimates

Aging between 1990 and 2015 -0.087 0.143 0.141 0.141 0.169
(0.146) (0.090) (0.077) (0.079) (0.075)

Exposure to robots 0.058 0.056 0.094
(0.019) (0.020) (0.021)

Observations 722 722 722 722 712
R-squared 0.03 0.41 0.45 0.45 0.46

Panel B. IV estimates

Aging between 1990 and 2015 1.371 0.759 0.611 0.608 0.604
(0.386) (0.241) (0.231) (0.231) (0.227)

Exposure to robots 0.051 0.049 0.088
(0.020) (0.021) (0.020)

Observations 722 722 722 722 712
First-stage F stat. 11.4 20.6 22.9 23.7 23.2

Overid p− value 0.00 1.00 0.84 0.82 0.69
Panel C. Single-IV estimates

Aging between 1990 and 2015 2.307 1.043 0.949 0.944 0.991

(0.737) (0.402) (0.388) (0.390) (0.389)
Exposure to robots 0.046 0.044 0.083

(0.021) (0.022) (0.021)
Observations 722 722 722 722 712
First-stage F stat. 16.4 55.0 54.1 55.9 58.5
Covariates included:
Regional dummies X X X X X

Demographics X X X X

Industry composition X X X

Other shocks X X

Excluding highly exposed
commuting zone

X

Notes: The table presents OLS and IV estimates of the relationship between aging and the location of robot integrators
across US commuting zones. In all panels, the dependent variable is a dummy for the presence of robot integrators
in each US commuting zone (from Leigh and Kraft, 2018). The aging variable is the change in the ratio of workers
above 56 to workers between 21 and 55 between 1990 and 2015 (from the NBER-SEER). Panel A presents OLS
estimates. Panel B presents IV estimates where the aging variable is instrumented using the size of five-year birth
cohorts between 1950 and 1985. Panel C presents IV estimates where the aging variable is instrumented using the
decline in birth rates between 1950 and 1980. For our IV estimates, we report the first-stage F−statistic. When
using multiple instruments, we also report the p−value of Hansen’s overidentification test. Column 1 includes Census
region dummies. Column 2 includes the 1990 values for the log of average income, the log of the population, the
initial ratio of older to middle-aged workers, and the share of workers with different levels of education in each
commuting zone. Column 3 includes the exposure to robots measure from Acemoglu and Restrepo (2018a) and
also controls for the shares of employment in manufacturing, agriculture, mining, construction, and finance and
real estate in 1990. Column 4 includes additional demographic characteristics measured in 1990, including the racial
composition of commuting zones and the share of male and female employment, and controls for other shocks affecting
US markets, including offshoring, trade with China and the decline of routine jobs. Finally, column 5 excludes the
top 1% commuting zones with the highest exposure to robots. All regressions are unweighted, and in parenthesis we
report standard errors that are robust against heteroscedasticity and correlation in the error terms within states.

46



Table 7: Estimates of the impact of aging on robot installations by country-industry pairs.

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: Installation of robots in country-industry pairs
normalizing by average employment in an industry from ILO

Panel A. OLS estimates.

Aging between 1990 and 2025 1.560 4.085 2.800 6.734 4.850
(0.439) (1.127) (0.882) (1.851) (1.537)

Aging × reliance on middle-aged 0.886 0.627 0.628 0.264 0.182 0.183
(0.255) (0.218) (0.215) (0.090) (0.086) (0.085)

Aging × opportunities for automation 6.469 4.433 4.439 6.046 4.440 4.458
(2.255) (1.528) (1.506) (1.681) (1.356) (1.340)

Observations 10602 10602 10602 10602 10602 10602 10602
Countries in sample 50 50 50 50 50 50 50

Panel B. IV estimates.

Aging between 1990 and 2025 1.430 3.780 2.992 6.585 5.246
(0.477) (1.254) (1.025) (2.175) (1.768)

Aging × reliance on middle-aged 0.958 0.682 0.680 0.327 0.193 0.194

(0.318) (0.247) (0.243) (0.112) (0.094) (0.093)
Aging × opportunities for automation 4.919 4.597 4.553 5.902 4.835 4.823

(2.228) (1.883) (1.863) (1.986) (1.594) (1.575)
Observations 10602 10602 10602 10602 10602 10602 10602
Countries in sample 50 50 50 50 50 50 50
Instruments F-stat 19.1 . 6.2 7.9 . 7.4 8.4
Overid p-value 0.86 0.32 0.46 0.38 0.17 0.15 0.07

Dependent variable: Installation of robots in country-industry pairs
normalizing by industry employment from KLEMS

Panel C. OLS estimates.

Aging between 1990 and 2025 0.787 4.598 2.471 5.180 3.455
(0.184) (1.169) (0.906) (1.258) (1.004)

Aging × reliance on middle-aged 0.363 0.412 0.372 0.116 0.171 0.139
(0.134) (0.126) (0.129) (0.065) (0.071) (0.073)

Aging × opportunities for automation 10.300 4.335 4.716 4.665 3.019 3.070
(2.776) (2.143) (2.113) (1.159) (0.901) (0.885)

Observations 5833 5833 5833 5833 5833 5833 5833
Countries in sample 21 21 21 21 21 21 21

Panel D. IV estimates.

Aging between 1990 and 2025 0.850 4.953 3.088 5.817 4.149
(0.195) (1.171) (0.927) (1.414) (1.231)

Aging × reliance on middle-aged 0.417 0.338 0.295 0.182 0.108 0.072
(0.141) (0.193) (0.194) (0.063) (0.107) (0.109)

Aging × opportunities for automation 10.953 6.244 6.658 5.181 3.752 3.815
(2.666) (2.008) (1.966) (1.346) (1.089) (1.065)

Observations 5833 5833 5833 5833 5833 5833 5833
Countries in sample 21 21 21 21 21 21 21
Instruments F-stat 32.5 65.9 130.5 20.9 57.2 89.3 19.0
Overid p-value 0.06 0.30 0.43 0.18 0.36 0.30 0.18
Covariates included:
Baseline country covariates X X X X X X X

Initial robot density X X X X

Country fixed effects X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots for industry-
country cells. In all panels, the dependent variable is robot installations per thousand workers in each industry-country cell for
all available years between 1993 and 2014 (from the IFR). The explanatory variables include aging (defined as the change in the
ratio of workers above 56 to workers between 21 and 55 between 1990 and 2025); the interaction between aging and industry
reliance on middle-aged workers (proxied using 1990 US Census data on the age distribution of workers in each industry); and
the interaction between aging and two measures of opportunities for automation: the replaceability index from Graetz and
Michaels (2018) in columns 2-4; and a measure of opportunities for the use of robots from the BCG in columns 5-7. Panels
A and B use data on average employment by industry from the ILO to normalize robot installations; whereas Panels C and
D use data on industry employment from KLEMS to normalize robot installations. Panels A and C present OLS estimates.
Panels B and D present IV estimates where the aging variable is instrumented using the size of five-year birth cohorts between
1950 and 1985. For our IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test.
All columns include region dummies, the 1993 values of log GDP per capita, log of population, average years of schooling and
the ratio of workers above 56 to workers aged 21-55 in 1990. Columns 3 and 6 add the initial robot density in 1993 for each
industry-country cell as a control. All these covariates are allowed to affect industries differently. Columns 4 and 7 add a full
set of country dummies. All regressions weigh industries by their share of employment in a country, and the standard errors
are robust against heteroscedasticity and correlation within countries.
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Table 8: Estimates of the impact of aging on the value added of country-industry pairs per year.

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: Change in value-added per worker between 1995 and 2007
Panel A. OLS estimates

Aging between 1995 and 2025 -0.261 1.627 1.222 1.763 1.290
(0.224) (0.880) (1.005) (0.905) (1.075)

Aging × reliance on middle-aged -0.278 -0.183 -0.246 -0.288 -0.191 -0.259
(0.202) (0.241) (0.218) (0.202) (0.245) (0.225)

Aging × opportunities for automation 3.388 3.119 3.187 1.304 1.140 1.225
(1.065) (1.085) (0.997) (0.452) (0.484) (0.463)

Observations 399 399 399 399 399 399 399
Countries in sample 21 21 21 21 21 21 21

Panel B. IV estimates

Aging between 1995 and 2025 -0.472 2.786 2.583 2.545 2.315
(0.294) (0.846) (0.990) (1.013) (1.222)

Aging × reliance on middle-aged -0.581 -0.548 -0.549 -0.557 -0.523 -0.536
(0.244) (0.282) (0.299) (0.255) (0.297) (0.319)

Aging × opportunities for automation 5.011 4.962 4.458 1.579 1.532 1.468
(1.140) (1.016) (1.031) (0.353) (0.345) (0.386)

Observations 399 399 399 399 399 399 399
Countries in sample 21 21 21 21 21 21 21
Instruments F-stat 9.62 430.37 127.00 5.08 134.35 5.94 5.92
Overid p-value 0.25 0.40 0.51 0.36 0.36 0.35 0.35

Dependent variable: Change in the labor share between 1995 and 2007
Panel A. OLS estimates

Aging between 1995 and 2025 -0.389 -2.659 -2.673 -3.069 -3.111
(0.099) (0.894) (0.884) (1.059) (1.058)

Aging × reliance on middle-aged 0.681 0.685 0.667 0.709 0.717 0.702

(0.254) (0.255) (0.271) (0.265) (0.267) (0.286)
Aging × opportunities for automation -0.929 -0.939 -0.811 -0.689 -0.703 -0.665

(0.615) (0.580) (0.602) (0.291) (0.279) (0.306)
Observations 399 399 399 399 399 399 399
Countries in sample 21 21 21 21 21 21 21

Panel B. IV estimates

Aging between 1995 and 2025 -0.432 -3.529 -3.677 -4.271 -4.496
(0.133) (0.903) (1.014) (1.192) (1.318)

Aging × reliance on middle-aged 1.059 1.088 1.107 1.100 1.141 1.176
(0.302) (0.318) (0.353) (0.321) (0.336) (0.376)

Aging × opportunities for automation -0.347 -0.423 -0.211 -0.802 -0.868 -0.884
(0.600) (0.611) (0.637) (0.241) (0.268) (0.340)

Observations 399 399 399 399 399 399 399
Countries in sample 21 21 21 21 21 21 21
Instruments F-stat 9.62 430.37 127.00 5.08 134.35 5.94 5.92
Overid p-value 0.22 0.65 0.72 0.47 0.47 0.52 0.37
Covariates included:
Baseline country covariates X X X X X X X

Initial value added in 1995 X X X X

Country fixed effects X X

Notes: The table presents OLS and IV estimates of the relationship between aging and value added and the labor share for
industry-country cells. In Panels A and B, the dependent variable is the change in value added per worker between 1995
and 2007 for each industry-country cell (from the KLEMS data). In Panels C and D, the dependent variable is the change
in the labor share between 1995 and 2007 for each industry-country cell (from the KLEMS data). The explanatory variables
include aging (defined as the change in the ratio of workers above 56 to workers between 21 and 55 between 1995 and 2025);
the interaction between aging and industry reliance on middle-aged workers (proxied using 1990 US Census data on the age
distribution of workers in each industry); and the interaction between aging and two measures of opportunities for automation:
the replaceability index from Graetz and Michaels (2018) in columns 2-4; and a measure of opportunities for the use of robots
from the BCG in columns 5-7. Panels A and C present OLS estimates. Panels B and D present IV estimates where the aging
variable is instrumented using the size of five-year birth cohorts between 1950 and 1985. For our IV estimates, we report the
first-stage F−statistic and the p−value of Hansen’s overidentification test. All columns include region dummies, the 1995 values
of log GDP per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged 21-55.
All these covariates are allowed to affect industries differently. Columns 3 and 6 add the log of value added per worker in 1995
for each industry-country cell as a control. Columns 4 and 7 add a full set of country dummies. All regressions weigh industries
by their share of employment in a country, and the standard errors are robust against heteroscedasticity and correlation within
countries.
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Appendix: Omitted Proofs

Proof of Proposition 1

1. Existence and uniqueness of the equilibrium with exogenous technology.

Recall that C(W,V, P ) is the cost of producing one unit of aggregate output. The Cobb-Douglas

production function for Y (i) in equation (2) implies that

PY (i) = (1 − η)ηη × (α(i)η)−α(i)η((1 − α(i)η))−(1−α(i))η (1− η)−(1−η)PX(i)α(i)ηV (1−α(i))ηPY (i)
1−η .

Solving for PY (i) yields the formula for PY (i) given in the main text. Equation (1) then implies

C(W,V, P ) =

(∫ 1

0
PY (i)

1−σ

) 1
1−σ

=

(∫ 1

0
λ(i)1−σPX(i)α(i)(1−σ)V (1−α(i))(1−σ)

) 1
1−σ

,

where PX(i) is given in equation (7) in the main text.

The demand for middle-aged workers can then be computed as

Ld =
1

W

∫

i∈I
L(i)Wdi

=
1

W

∫

i∈I
PX(i)X(i)sL(i)di

=
1

W

∫

i∈I
PY (i)Y

g(i)ηα(i)sL(i)di

=
1

W

∫

i∈I
PY (i)Y (i)

Y g(i)

Y (i)
ηα(i)sL(i)di

=
Y

W

∫

i∈I
PY (i)

1−σ 1

η(2− η)
ηα(i)sL(i)di

=
Y

(2− η)W

∫

i∈I
PY (i)

1−σα(i)sL(i)di

=
Y

2− η
CW (W,V, P ).

This derivation uses the fact that ηα(i) is the share of production inputs in the gross production of

Y (i), and that the ratio of Y g(i)
Y (i) equals 1

η(2−η) . The last line arrives at a result similar to Shepherd’s

lemma, but now, the 2 − η in the denominator accounts for the intermediate goods, q(θ(i)), and

the cost of producing these goods.
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Likewise, the demand for older workers can be computed as

Sd =
1

V

∫

i∈I
S(i)V di

=
1

V

∫

i∈I
PY (i)Y

g(i)η(1 − α(i))di

=
1

V

∫

i∈I
PY (i)Y (i)

Y g(i)

Y (i)
η(1 − α(i))di

=
Y

V

∫

i∈I
PY (i)

1−σ 1

η(2 − η)
η(1 − α(i))di

=
Y

(2− η)V

∫

i∈I
PY (i)

1−σ(1− α(i))di

=
Y

2− η
CV (W,V, P ).

From these equations, conditions (12) and (13) can be written as

1 =C(WE(φ,Θ), V E(φ,Θ), P ), (A1)

1− φ

φ
=
CW (WE(φ,Θ), V E(φ,Θ), P )

CV (WE(φ,Θ), V E(φ,Θ), P )
, (A2)

where CW and CV denote the partial derivatives of the cost function.

We now show that, for any φ ∈ (0, 1) there is a unique pair {WE(φ,Θ), V E(φ,Θ)} that solves

(A1) and (A2). Consider the isocost C(W,V, P ) = 1. The market equilibrium occurs at a point

where the tangent to this curve has slope − φ
1−φ as shown in Figure 1.

Along this isocost, CW (W,V, P )/CV (W,V, P ) = 0 as V
W → 0. To prove this, note that

0 ≤
CW (W,V, P )

CV (W,V, P )
=

V

W

∫
α(i)sL(i)λ(i)

1−σPY (i)
1−σdi∫

(1− α(i))λ(i)1−σPY (i)1−σdi

≤
V

W

α

1− α

∫
λ(i)1−σPY (i)

1−σdi∫
λ(i)1−σPY (i)1−σdi

=
V

W

α

1− α
. (A3)

Therefore, as V
W → 0, CW (W,V,P )

CV (W,V,P ) → 0.

Likewise, along the isocost, CW (W,V, P )/CV (W,V, P ) = ∞ as V
W → ∞. To prove this, note

that

CW (W,V, P )

CV (W,V, P )
≥

V

W

α

1− α
[min
i∈I

sL(i)]

∫
λ(i)1−σPY (i)

1−σdi∫
λ(i)1−σPY (i)1−σdi

=
V

W

α

1− α
[min
i∈I

sL(i)]. (A4)

Since V
W → ∞, W → 0 (otherwise, we would have V → ∞ and W > 0, which would not satisfy

C(W,V, P ) = 1). Because W → 0, θA(i) = 0 for all tasks, which implies that sL(i) = 1 for all i.

Therefore, as V
W → ∞, we must have CW (W,V,P )

CV (W,V,P ) → ∞.
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Because CW (W,V, P )/CV (W,V, P ) = 0 as V
W → 0 and CW (W,V, P )/CV (W,V, P ) = ∞ as

V
W → ∞, the intermediate value theorem implies that there exists WE(φ,Θ), V E(φ,Θ) along the

isocost that satisfies equation (A2). This establishes existence.

To prove uniqueness, note that since C(W,V, P ) is a cost function, it is jointly concave in W,V,

and P , which implies that the isocost curve C(W,V, P ) = 1 is convex. That is, along the curve

C(W,V, P ) = 1, CW /CV is decreasing in W and is increasing in V . Thus, there is a unique pair

WE(φ,Θ), V E(φ,Θ) along the isocost that satisfies equation (A2).

Finally, aggregate output per worker is given by

yE(φ,Θ) = (2− η)
φ

CV (WE(φ,Θ), V E(φ,Θ), P )
,

while machinery per worker is given by

mE(φ,Θ) = φ
CP (W

E(φ,Θ), V E(φ,Θ), P )

CV (WE(φ,Θ), V E(φ,Θ), P )
;

and the threshold θA(i) can be computed from equation (6).�

2. Comparative statics with respect to φ.

Because the isocost curve C(W,V, P ) = 1 is convex, an increase in φ raises WE(φ,Θ) and

reduces V E(φ,Θ). To complete the proof, we derive the formula for yEφ (φ,Θ) given in the main

text. The national income accounting identity implies

1

2− η
yE(φ,Θ) = φV E(φ,Θ) + (1− φ)WE(φ,Θ) +mE(φ,Θ)P, (A5)

where the 1
2−η accounts for the cost of intermediate goods. Differentiating this expression with

respect to φ, we obtain

1

2− η
yEφ (φ,Θ) = V E(φ,Θ)−WE(φ,Θ) +mE

φ (φ,Θ)P + φV E
φ (φ,Θ) + (1− φ)WE

φ (φ,Θ).

Next differentiating C(W,V, P ) = 1 with respect to φ, and recalling that CW
CV

= 1−φ
φ , we obtain

φV E
φ (φ,Θ)+(1−φ)WE

φ (φ,Θ) = 0. Substituting this into the previous expression, we obtain (14).�

Proof of Proposition 2

Part 1: Suppose that φ ≤ φ′ and take an i ∈ I+(φ,Θ), so that WE(φ,Θ)
A(i) > P . Proposition 1

implies that WE(φ,Θ) ≤ WE(φ′,Θ), and thus WE(φ′,Θ)
A(i) > P and i′ ∈ I+(φ′, A), which implies that

I+(φ,Θ) ⊆ I+(φ′, A).

Part 2: Let WE(φ,Θ0) denote the middle-aged wage that would result if θ(i) = 0 and there were

no automation technologies. Proposition 1 implies that WE(φ,Θ0) is increasing in φ.

In addition, we have that WE(φ,Θ0) → 0 when φ → 0, and WE(φ,A) → ∞ when φ → 1. To
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prove the first claim, we use the inequality in equations (A3) and (A4) derived above, which implies

V E(φ,Θ0)

WE(φ,Θ0)

α

1− α
. ≤

1− φ

φ
≤

V E(φ,Θ0)

WE(φ,Θ0)

α

1− α
.

When φ → 0, the right-hand side of the above inequality must converge to ∞. This requires

that either WE(φ,Θ0) → 0 or V E(φ,Θ0) → ∞. Suppose it is the latter. Then C(W,V, P ) = 1

implies WE(φ,Θ0) → 0. Thus in either case we have WE(φ,Θ0) → 0 as desired.

On the other hand, when φ → 1, the left-hand side of the above inequality must converge to 0.

This requires that either WE(φ,Θ0) → ∞ or V E(φ,Θ0) → 0. Supposed again that it is the latter.

Then C(W,V, P ) = 1 once again implies WE(φ,Θ0) → ∞, and thus in either case the desired

conclusion is established.

We can therefore define φ̃ as the maximum level of φ such that WE(φ,Θ0)
A(i) ≤ P for almost all

i. For φ ≤ φ̃, we have that the unique equilibrium is given by θA(i) = 0 for almost all i and

WE(φ,Θ0) = WE(φ,Θ). Thus, for φ ≤ φ̃, the set I+(φ,A) has measure zero.

For φ > φ̃, we have WE(φ,Θ) > WE(φ̃,Θ) = WE(φ̃,Θ0). Thus, the equilibrium must involve

a positive measure of industries that are adopting automation technologies. �

Proof of Proposition 3

We start by providing a formula for d lnW following a change in technology. We then state and

prove a lemma on the conditions under which automation reduces the middle-aged wage, and then

we provide a proof of the proposition.

Let χ(i) denote the share of expenditure going to industry i, χL(i) the share of payments to

middle-aged workers going to those in industry i, and χS(i) the share of payments to older workers

going to those in industry i.

We have

dθA(i) =

{
dθ(i) if i ∈ I+(φ,Θ)

0 otherwise.

Following an increase in dθ(i) > 0, we have

d lnPX(i) = sL(i)d lnW −
sL(i)

1− θA(i)
π(i)dθA(i).

Using this expression, and taking log-derivatives of the equilibrium conditions, we obtain:

• From the ideal price condition, (12):

Λπ
W d lnW + Λπ

V d lnV = Π (A6)
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where

Λπ
V =

∫

i∈I
χ(i)(1 − α(i))di > 0,

Λπ
W =

∫

i∈I
χ(i)α(i)sL(i)di > 0,

Π =

∫

i∈I
χ(i)α(i)sL(i)π(i)

dθA(i)

1 − θA(i)
di ≥ 0.

Here, Π ≥ 0 denotes the productivity gains from automation.

• From the demand for middle-aged workers, (9):

ΛL
Wd lnW = d ln Y − ΛL

V d lnV + TL −∆, (A7)

where

ΛL
W =ζ + (1 − ζ)

∫

i∈I
χL(i)sL(i)di + (σ − 1)

∫

i∈I
χL(i)α(i)sL(i)di,

ΛL
V =(σ − 1)

∫

i∈I
χL(i)(1 − α(i))di,

TL =(σ − 1)

∫

i∈I
χL(i)α(i)sL(i)π(i)

dθA(i)

1 − θA(i)
di,

∆ =

∫

i∈I
χL(i)

dθA(i)

1 − θA(i)
− (1− ζ)

∫

i∈I
χL(i)sL(i)π(i)

dθA(i)

1 − θA(i)
di.

Here, ∆ > 0 denotes the displacement effect from automation, which tends to reduce the

demand for middle-aged workers, while TL captures how sectoral shifts affect the demand for

middle-aged workers.

• From the demand for older workers, (11):

ΛS
V d lnV = d lnY − ΛS

W d lnW + T S, (A8)

where

ΛS
V =1 + (σ − 1)

∫

i∈I
χS(i)(1 − α(i))di,

ΛS
W =(σ − 1)

∫

i∈I
χS(i)α(i)sL(i)di,

T S =(σ − 1)

∫

i∈I
χS(i)α(i)sL(i)π(i)

dθA(i)

1 − θA(i)
di.

Here, T S captures how sectoral shifts affect the demand for middle-aged workers.

A-5



Using equations (A6), (A7) and (A8), we can solve for d lnW as:

d lnW =
1

Λπ
V (Λ

L
W − ΛS

W ) + Λπ
W (ΛS

V − ΛL
V )

[
(ΛS

V − ΛL
V )Π + Λπ

V (T
L − T S)− Λπ

V ∆
]
, (A9)

where the denominator, Λπ
V (Λ

L
W − ΛS

W ) + Λπ
W (ΛS

V − ΛL
V ), is always positive.

40

Lemma A2 Suppose that for almost all industries

π(i) < π =
1

(σ − 1)α + 1− ζ + σ
1−αα

.

Then dθ(i) > 0 for a positive measure subset of industries in I+(φ,Θ) leads to a lower W and a

larger V .

Proof. Equation (A9) implies that a sufficient condition to ensure that d lnW < 0 is

χL(i) >

(
(σ − 1)(χL(i)− χS(i))α(i)sL(i) + (1− ζ)χL(i)sL(i)

+
1 + (σ − 1)

∫
i∈I(χL(i)− χS(i))α(i)di∫

i∈Iχ(i)(1− α(i))di
χ(i)α(i)sL(i)

)
π(i)∀i ∈ I

In addition, we also have

σ > 1 + (σ − 1)

∫

i∈I
(χL(i)− χS(i))α(i)di,

and
1

1− α
>

1∫
i∈I χ(i)(1 − α(i))di

.

A sufficient condition to ensure that d lnW < 0 is

χL(i) >

(
(σ − 1)χL(i)α(i)sL(i) + (1− ζ)χL(i)sL(i) +

σ

1− α
χ(i)α(i)sL(i)

)
π(i)

for all i ∈ I. This inequality is equivalent to:

1 >

(
(σ − 1)α(i)sL(i) + (1− ζ)sL(i) +

σ

1− α

χ(i)α(i)sL(i)

χL(i)

)
π(i).

40The fact that Λπ
V (ΛL

W − ΛS
W ) + Λπ

W (ΛS
V − ΛL

V ) > 0 is equivalent to C(W,V, P ) being strictly quasi-concave in
{V,W }. In particular, Λπ

V (ΛL
W − ΛS

W ) + Λπ
W (ΛS

V − ΛL
V ) > 0 if and only if

CWWC2
V + CV V C2

W − 2CWV CV CW < 0,

which corresponds to the determinant of the bordered Hessian of C(W,V, P ) with respect to V and W ,

H =




0 CW CV

CW CWW CWV

CV CWV CV V


 ,

being positive. Since C(W,V, P ) is strictly concave in its first two arguments, we always have Λπ
V (ΛL

W − ΛS
W ) +

Λπ
W (ΛS

V − ΛL
V ) > 0.
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Finally, because sL(i) ≤ 1 and

χ(i)α(i)sL(i)

χL(i)
=

∫

i∈I
χ(i)α(i)sL(i)di < α,

we obtain that a sufficient condition to ensure that d lnW < 0 is given by:

1 >

(
(σ − 1)α + (1− ζ) +

σ

1− α
α

)
π(i) ∀i ∈ I,

which is equivalent to

1

(σ − 1)α+ 1− ζ + σ
1−αα

= π > π(i) ∀i ∈ I.

In addition, equation (A6) implies that automation must increase the price of at least one type

of labor. Thus, when π(i) < π for almost all i, d ln V > 0 and d lnV/W increases.

Proof of Proposition 3:

The definition of φ̃ implies that for φ < φ̃, we have θA(i) = 0. Therefore, changes in automation

technologies do not lead to their adoption (and there is no impact on equilibrium wages). Con-

versely, when φ > φ̃, new automation technologies will be adopted by all industries in I+(φ,Θ).

This completes the proof of the first part of the proposition.

Because WE(φ,Θ) is increasing in φ, cost savings from automation for industry i ∈ I+(φ,Θ),

π(i), are also increasing in φ. Therefore, there exists a threshold φ(Θ) > φ̃ such that π(i) < π for

almost all industries.

This definition implies that, for φ ∈ (φ̃, φ(Θ)), we have π(i) < π for almost all industries.

Lemma A2 then implies that automation reduces middle-aged wages and increases older worker

wages. �

Proof of Lemma 1

We first prove that the optimal technology choice θRi (W ) is unique and lies in [0, 1).

We start by showing that every critical point of πM (i) is a local maximum. Suppose that we

have an interior critical point, θ0 > 0. Then it satisfies the first-order condition

∂πM (i)

∂θ(i)
= 0 → (σ − 1)α(i)

sL(i)

1 − θ0
π(i) =

1

ρ(i)
h(θ0).

The second derivative of πM (i) is

∂2πM (i)

∂θ(i)∂θ(i)
=

1

ρ(i)

h(θ0)

1− θ0
(ζ − 1)sL(i)π(i) −

1

ρ(i)
h′(θ0).

Because (ζ − 1)sL(i)π(i) < 1, this expression is negative provided that h′(θ)
h(θ) ≥ 1

1−θ . This condition
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is satisfied in view of the properties of the H function in the text. In particular,

h′(θ)

h(θ)
=

H ′′(θ)

H ′(θ)
+ h(θ) ≥

1

1− θ
.

Thus, every critical point is a local maximum.

Now, suppose that πM (i) has two local maxima, θ0 and θ1 > θ0. The intermediate value

theorem then implies that πM (i) has a local minimum in (θ0, θ1), which contradicts the fact that

any critical point of πM (i) is a maximum. This contradiction establishes that πM (i) is single

peaked, and therefore has a unique global maximum. Moreover, our boundary conditions on H(x)

implies that θRi (W ) ∈ [0, 1). Thus, equation (17) is a necessary and sufficient condition for the

global maximum.

Part 1: The cross-partial derivative of πM (i) with respect to θ(i) and W is

∂2πM (i)

∂W∂θ
= (σ − 1)α(i)

1

1 − θA(i)

∂sL(i)

∂W
π(i) + (σ − 1)α(i)

1

1 − θA(i)
sL(i)

π(i)

∂W
.

When ζ ≤ 1, the equations for sL(i) (equation (8)) and π(i) (equation (5)) in the main text imply

that ∂sL(i)
∂W ≥ 0 and ∂π(i)

∂W ≥ 0.

When ζ > 1, we can group terms differently and rewrite this derivative as

∂2πM (i)

∂W∂θ
=

1

W

(
(σ − 1)α(i)

1

1 − θA(i)
sL(i) + (σ − 1)α(i)

[
P 1−ζ

P 1−ζ
X

−
(W/A)1−ζ

P 1−ζ
X

]
sL(i)

)
≥ 0.

Therefore, ∂2πM (i)
∂W∂θ ≥ 0 in all cases (and this is an equality only when π(i) = 0). This implies

that πM (i) exhibits increasing differences in W and θ(i). Increasing differences ensure that the

function θRi (W ) is nondecreasing in W (see Topkis, 1981).

Part 2: Suppose that θ(i) > 0. Then ∂πM (i)
∂θ(i) = 0, and equation (17) holds with equality. Because

h(θ(i)) > 0 (recall that H is convex), we must have π(i) > 0. �

Proof of Proposition 4

To prove the existence of an equilibrium we analyze the properties of the function WE(φ,ΘR(W ))

when W = 0 and W → ∞.

When W → 0, we have π(i) = 0. Part 2 of Lemma 1 implies θRi (W ) = 0. Thus, WE(φ,Θ =

{0}i∈I) > 0.

When W → ∞, θRi (W ) converges to a finite limit (recall that θRi (W ) is increasing in W , and

bounded above by 1). Thus, WE(φ,ΘR(W )) converges to a finite limit as well.

These observations imply that the curve WE(φ,ΘR(W )) starts above the 45 degree line and

ends below it. Thus, there exists at least one solution to W = WE(φ,ΘR(W )), establishing the

existence of an equilibrium. If there are multiple intersections, the ones with the smallest and the

largest wage give the least and the greatest equilibria in view of the results in Lemma 1.

Finally, the result that given the equilibrium middle-aged wage W ∗, the set of equilibrium

technology choices Θ∗ is uniquely defined is an immediate consequence of the fact that by definition
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Θ∗ = ΘR(W ∗) and ΘR(W ) is uniquely defined from Lemma 1. �

Recall that in the main text, we mentioned that a sufficient condition to ensure that the equi-

librium is unique is φ < φ(Θ = {0}i∈I). We now provide a formal statement and proof of this

result.

Proposition A1 1. If φ < φ̃, the mapping WE(φ,ΘR(W )) is constant at WE(φ,Θ = {0}i∈I).

In this case, the unique equilibrium involves Θ = {0}i∈I .

2. If φ̃ < φ < φ(Θ = {0}i∈I), the mapping WE(φ,ΘR(W )) is nonincreasing in W , and the

equilibrium is unique.

Proof. First suppose that φ < φ̃. The definition of φ̃ implies that for almost all industries we

will have π(i) = 0. Thus, independently of ΘR(W ), we will have that θA(i) = 0 for almost all

industries, and

WE(φ,ΘR(W )) = WE(φ,Θ = {0}i∈I),

which does not depend on W . This implies that there is a unique equilibrium given by a wage

W = WE(φ,Θ = {0}i∈I). At this wage, π(i) = 0 for almost all industries. Part 2 of Lemma 1 then

implies that there will be zero introduction and adoption of automation technologies.

Now suppose that φ̃ < φ < φ(Θ = {0}i∈I). The definition of φ(Θ = {0}i∈I) implies that

when Θ = {0}i∈I , we have that π(i) < π for almost all industries. Lemma A2 then implies that

WE(φ,Θ) is nonincreasing in Θ around Θ = {0}i∈I , which in turn implies that WE(φ,ΘR(W )) is

nonincreasing in W around W = 0.

Suppose to obtain a contradiction that WE(φ,ΘR(W )) is increasing in W at some point. Let

W0 > 0 be the first point where WE(φ,ΘR(W )) starts increasing. Because WE(φ,ΘR(W )) is

nonincreasing in [0,W0), we have

WE(φ,ΘR(W0)) ≤ WE(φ,ΘR(0)) = WE(φ,Θ = {0}i∈I).

This inequality then implies that at W0 we have π(i) ≤ π for almost all i. Lemma A2 then implies

that WE(φ,ΘR(W )) is nonincreasing in W around W0, yielding a contradiction and establishing

that WE(φ,ΘR(W )) must be nonincreasing throughout.

Proof of Proposition 5

Both parts of this proposition follow from Topkis’s monotonicity theorem (Topkis, 1998).

In particular, Proposition 1 shows that an increase in φ shifts the map WE(φ,ΘR(W )) up (as

shown in Panel A of Figure 2, which raises W ∗ in the least and the greatest equilibrium). Lemma

A2 then shows that θ∗i = θRi (W
∗) increases for i ∈ I+(φ,Θ∗), and the formula for π(i) in equation

(5) shows that the set i ∈ I+(φ,Θ∗) expands. �
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Proof of Proposition 6

Recall that W ∗ is increasing in φ. Because θ∗i = θRi (W
∗), it is sufficient to show that θRi (W

∗)

exhibits increasing differences in W ∗ and α(i), and in W ∗ and ρ(i).

From Lemma 1, θRi (W
∗) satisfies the necessary and sufficient first-order condition in equation

(17). Suppose first that the first-order condition in equation (17) is slack, and θRi (W
∗) = 0. Then

clearly,
dθRi (W ∗)
d lnW ∗ = 0.

Suppose now that the first-order condition in equation (17) holds with equality. The implicit

function theorem then implies that θRi (W
∗) is continuous and differentiable, and the derivative of

θRi (W
∗) with respect to lnW ∗ is

dθRi (W
∗)

d lnW ∗
=

(σ − 1)α(i)ρ(i)sL(i)(1−sL(i))
θ∗i (1−θ∗i )

h′∗(i)) + h(θ∗i )
(1−sL(i)−θ∗i )

θ∗i (1−θ∗i )

.

This expression shows that the (semi-)elasticity of θ∗i with respect to middle-aged wages is

Γ(α(i)ρ(i)) =





(σ − 1)α(i)ρ(i)sL(i)(1 − sL(i))

h′∗(i))θ∗i (1− θ∗i ) + h(θ∗i )(1 − sL(i) − θ∗i )
d lnW ∗ > 0 if θ∗i > 0

0 otherwise.

.

The desired result then follows by observing that aging only impacts automation decisions

through the change in middle-age wages, W ∗, and that the (semi-)elasticity of θRi (W ) with respect

to W , Γ(α(i)ρ(i)), is nondecreasing in α(i)ρ(i).41 �

Proof of Proposition 7

We have Y ∗(i) = P ∗
Y (i)

−σY ∗. Taking a log-derivative of this expression we obtain

d lnY ∗(i)

dφ
=
d ln Y ∗

dφ
− σα(i)sL(i)

d lnW ∗

dφ
− σ(1− α(i))

d ln V ∗

dφ

+ σα(i)
sL(i)

1 − θ∗i
π(i)Γ(α(i)ρ(i))

d lnW ∗

dφ
.

The term σα(i) sL(i)
1−θ(i)π(i)Γ(α(i)ρ(i))

d lnW ∗

dφ captures the productivity benefits to industry i arising

from the endogenous response of automation. Because of the term Γ(α(i)ρ(i)), theses productivity

benefits are larger for industries with a larger ρ(i), which implies that aging raises output in

industries with a greater ρ(i) relative industries with lower ρ(i). �.

Extensions

Endogenous development of labor-augmenting technologies: We now sketch a version of

our model in which monopolists also invest in labor-augmenting technologies A(i). The main

41Note that the denominator in our formula for Γ(α(i)ρ(i)) is a transformed version of the negative of the second-
order condition for θRi (W ∗), and is thus positive.
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difference is that now, the monopolist problem is given by:

max
θ(i),A(i)

πM (i) =(1− σ)α(i) ln

(
θA(i)P 1−ζ + (1− θA(i))

(
W

A(i)

)1−ζ
)

+
1

ρ(i)
ln(1−H(θ(i))) +

1

υ(i)
ln(1−G(A(i))) for all i ∈ I,

where G is a cost function satisfying the same restrictions as H.

The first-order condition for A(i) is given by:

g(A(i)) =
1

A(i)
(σ − 1)υ(i)α(i)sL(i).

This first-order condition shows that the effect of aging on A(i) is ambiguous when ζ < 1. On the

one hand, aging raises W and hence the labor share sL(i). But on the other hand, aging fosters

automation, reducing sL(i).

Instead, when ζ ≥ 1, one can show that the maximization problem in equation (15) exhibits

increasing differences in W, θ(i), and −A(i). This implies that aging will reduce the development

of labor-augmenting technologies but will increase the development of automation technologies.

Multiple countries: We now sketch a version of our model that incorporates multiple coun-

tries.

Suppose that there are two countries: U—the US—and J—Japan (or Germany). We use

superscripts to distinguish variables related to these two countries, with φU and φJ denoting aging

in country U and in country J , respectively.

Relative to the previous model, the only difference is that we now assume that country U

can “import” part of the automation technologies from the more advanced country J , and as a

result, in the tasks it is importing technologies, automation becomes much easier for the technology

monopolists in country U . We capture this by positing:

ρU (i) =ρ(i; θJ(i))

ρJ(i) =ρ(i),

where ρ(i; θJ(i)) is increasing in θJ(i). This captures in a simple way the idea that advances

in automation technologies in country J , that is, increases in θJ(i), generate opportunities for

automation in country U and for imports and exports of technologies.

It is straightforward to establish that an equilibrium with endogenous technology exists in this

global economy. In particular, Proposition 4 establishes that an equilibrium exists for country J ,

and taking as given the equilibrium value of ΘJ∗, another application of this proposition charac-

terizes the equilibrium in country U . Let us also define the greatest (least) equilibrium in this

case as the equilibrium with the highest (lowest) level of automation in each country (these are

also the equilibria with the largest (smallest) values of the middle-aged wage in country J , but not

necessarily in country U as we will see next).

A-11



The following proposition summarizes the results from this extension:

Proposition A2 Assume that φJ > φ̃J and φ
U
(Θ = {0}i∈I) > φU > φ̃U . Then there exist

well-defined greatest and least equilibria. In the least or the greatest equilibrium, an increase in φJ :

1. increases the middle-aged wage W J∗, increases automation technologies {θJ
∗
(i)}i∈I+(φJ ,ΘJ∗),

and expands the set of industries that adopt automation I+(φJ ,ΘJ∗) in country J ;

2. increases automation technologies θU
∗
(i) in a positive subset of industries and reduces the

middle-aged wage WU ∗
in country U .

Proof. The existence of greatest and least equilibria follow from applying Proposition 4 in the

main text. In particular, from this proposition we can characterize the equilibrium with endogenous

technology in country J in isolation, which leads to the existence of a least and greatest equilibrium

for this country. Then applying Proposition A1 to country U we can see immediately that the

least equilibrium in country J will lead to a unique equilibrium with the lowest possible level of

automation in country U , and likewise for the greatest equilibrium.

The comparative statics for country J follows from applying Proposition 5 in the main text.

The comparative statics for country U follows from observing that aging in J results in an

increase in ρ(i; θJ
∗
) for all i. The first-order condition for a monopolist in country U is now:

h(θRi (W )) ≥ (σ − 1)ρ(i; θJ
∗
(i))α(i)

sUL(i)

1 − θRi (W )
πU (i),

with equality if θRi (W ) > 0. As a result, when θJ
∗
(i) increases, the optimal choice of technology

in country U , θRi (W ), shifts up for any given wage level. Because we have assumed that φ
U
(Θ =

{0}i∈I) > φU > φ̃U , country U is in the region in which automation reduces W . This implies

that for U , the mapping WE(φU ,ΘR(W )) shifts down, bringing down the equilibrium wage, but

increasing automation in a positive measure of industries.

Additional References:

Donald M. Topkis (1998) Supermodularity and Complementarity, Princeton University Press.

Appendix: Data Description

This Appendix describes in detail some of the sources of data used in our analysis.

Comtrade data

As explained in the text, we complement the IFR data with estimates of robot imports and exports

from the bilateral trade statistics obtained from Comtrade.

We focus on trade in intermediate goods, defined as products whose two-digit HS code is given

by 82 (Tools), 84 (Mechanical machinery and appliances), 85 (Electrical machinery and equip-

ment), 87 (Tractors and work trucks), and 90 (Instruments and apparatus). We partitioned all
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intermediates into the categories reported in Figures 7, A3, and A4. We defined the categories us-

ing the HS-2012 classification, and mapped them to the HS-1992 classification using the crosswalks

available at https://unstats.un.org/unsd/trade/classifications/. The 1992 classification allows us

to track our categories consistently over time and compute the total value of imports and exports

of intermediates between 1990 and 2016 in constant 2007 dollars.

The categories used in the paper are defined as follows:

• Industrial robots: This category includes industrial robots. It is defined by the six-digit HS

code 847950. This category was introduced to the HS-1996 classification, and so we only

compute data on imports of robots between 1996 and 2016.

• Dedicated machinery (including robots): This category includes machinery and mechanical

appliances with individual functions. It is defined by the six-digit HS code 847989. This

category was introduced in the HS-1992 classification. It is a superset of industrial robots

and in addition to industrial robots, it contains dedicated (automatic) machinery. It can be

tracked consistently over time between 1990 and 2016.

• Numerically controlled machines: For a wide class of metal-working machines (lathes, milling

machines), the HS classification distinguishes “numerically controlled” vintages from “other

than numerically controlled” vintages. Based on this distinction we create two separate

categories: numerically controlled machines and not-numerically controlled machines. Both

can be tracked consistently over time between 1990 and 2016.

• Machine tools: For a wide class of machine tools (six-digit HS codes 845600 to 851519), the

HS classification distinguishes those that are for “working with hands” from the rest. Based

on this distinction we create two separate categories: automatic machine tools and manual

machine tools. Both can be tracked consistently over time between 1990 and 2016.

• Tools for industrial work: This category includes tools (not machines or machine tools) used

in industrial applications. It is defined by the six-digit HS codes between 820200 and 821299.

This category can be tracked consistently over time between 1990 and 2016.

• Welding machines: For welding machines (six-digit HS codes 851521 to 851590), the HS

classification distinguishes those that are automatic from those that are not. Based on this

distinction we create two separate categories: automatic welding machines and manual weld-

ing machines. Both can be tracked consistently over time between 1990 and 2016.

• Weaving and knitting machines: This category includes weaving and knitting machines used

in the textile industry. It is defined by the six-digit HS codes 844600-844699 (weaving ma-

chines) and 844700-844799 (knitting machines). We grouped the remaining dedicated machin-

ery used in textiles (six-digit HS codes 844400-845399) into Other textile dedicated machinery.

Both can be tracked consistently over time between 1990 and 2016.

• Conveyors: For conveyors (six-digit HS codes 842511-842839), the HS classification distin-

guishes those that are “continuous action” and therefore automatic from other machinery
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that transfer or move materials with human operation (like work trucks). Based on this dis-

tinction we create two separate categories: automatic conveyors and other conveyors. Both

can be tracked consistently over time between 1990 and 2016.

• Regulating and control instruments: This category includes instruments typically used for

control applications in manufacturing (six-digit HS codes 902500-903299). These intermedi-

ates can be tracked consistently over time between 1990 and 2016.

• Other industrial machinery : This is defined as a residual category that includes all industrial

machinery that were not otherwise classified as related (or unrelated) to industrial automa-

tion.

• Vending machines: This category includes vending machines and their parts. It is defined by

the six-digit HS codes 847621-847690. This category can be tracked consistently over time

between 1990 and 2016.

• Laundry machines: This category includes laundry machines and their parts. It is defined by

the six-digit HS codes 845100-845199. This category can be tracked consistently over time

between 1990 and 2016.

• Agricultural machinery: This category includes agricultural machinery (six-digit HS codes

843200-843799) and tractors (six-digit HS codes 843200-843799). This category can be tracked

consistently over time between 1990 and 2016.

• Computers: This category includes computers and their parts. It is defined by the six-digit

HS codes 847100-847199. This category can be tracked consistently over time between 1990

and 2016.

As a final check on the Comtrade data on robot imports and exports, we explore the relationship

between robot imports and robot use from the IFR. This measure of the change in the value of

imports of industrial robots is highly correlated with our IFR measure of the change in the stock

of robots per thousand workers, both in levels and in logs, as shown in Figure A6. In the level

specification, the bivariate regression coefficient is 48,722 (standard error=11,873). This coefficient

is reasonable in view of the fact that the cost of a typical robot ranges between $50,000 and $100,000

(This excludes the costs of installation and programming, which often add about $300,000 to the

cost of a robot, but since these services are typically provided by local integrators, they do not

show up in import statistics).

USPTO patent data

Finally, we use data on robotics-related patents granted by the USPTO between 1990 and 2015,

and allocate them across countries according to the last recorded location of the assignee of the

patent. The assignee of the patent is the company, foundation, partnership, holding company or

individual that owns the patent. The latter could be an “independent inventor”, meaning that

the assignee is the same person as the inventor of the patent. In a small fraction of cases (about
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3% of our sample), patents have multiple assignees, and we allocate them proportionately to the

countries of all of the assignees.

We use several measures of robotics-related patents. First, we use patents in the USPTO class

901, which includes inventions related to industrial robots. This category is labeled as 901 USPTO

class in our figures. We then construct a category containing patents in classes referenced by the

901 class. These classes contain technologies that are related to robotics, even if the patent itself is

not for a different type of robot. This category is labeled as Classes related to 901 in our figures,

and it is the category we use in our baseline estimates for patents.

We also used patent citations to define classes related to industrial robots. We created two

categories, one including all classes with at least 25% of their citations referencing class 901, and

another one including all classes with at least 10% of their citations referencing class 901.

In another approach, we used the words in the abstracts of patents to define robotics-related

patents. In a first category, labeled words related to robots, we count patents including the words

“robot.” In the category words related to industrial robots, we count patents including the words

“robot” and “industrial.” The category words related to robots and manipulators expands the pre-

vious one by also including patents with the the words “robot arm” and “robot machine” or “robot

manipulator.” Finally, the category words related to numerical control includes patents whose ab-

stracts include the words “numeric” and “control.” When computing these categories, we exclude

patents related to prosthetic arms, which tend to share several of the same keywords.

We also counted patents related to computers, software, nanotechnology, and pharmaceuticals.

For computers, we have classes related to computers, which includes the USPTO classes 708, 709,

710, 711, 712, 713, 718 and 719, and words related to computers, which includes patents whose

abstract includes the word “computer.” For software, we have classes related to software, which

includes the USPTO classes 717, and words related to software, which includes patents whose asb-

tract includes the words “software.” For nanotechnology, we have classes related to nanotechnology,

which includes the USPTO class 977, and words related to nanotechnology, which includes patents

whose abstract includes the words “nano” and “technology.” For pharmaceuticals, we have classes

related to pharmaceuticals, which includes the USPTO classes 514 and 424, and words related to

pharmaceuticals, which includes patents whose asbtract includes the words “pharma.”
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Appendix Figures and Tables
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Figure A1: The figure plots industries according to their reliance on middle-aged workers (hori-
zontal axis) and their share of replaceable jobs (vertical axis). The size of the markers indicate the
average robot installations per thousand workers by industry over the 1993-2014 period.
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Figure A2: Residual plots of the relationship between aging (change in the ratio of workers above
56 to workers aged 21-55 between 1990 and 2025) and the increase in the number of industrial
robots per thousand workers between 1993 and 2014. The plots partial out the covariates included
in the regression models in columns 2 and 5 of Table A12.
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Figure A3: Estimates of the relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between 1990 and 2025) and exports (left
panel) and imports (right panel) of different intermediate goods between 1990 and 2015. These outcomes are normalized by the total intermediate exports and imports,
respectively, during this period. The figure presents several estimates, including our baseline, a specification using the log of one plus the imports (or exports) of
industrial robots per million dollars of intermediate goods imported (exported), a specification using the share of robot imports (or exports), and a version of our
baseline specification where we exclude outliers manually (observations with a standardized residual outside the ±1.96 range).
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Figure A4: OECD estimates of the relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between 1990 and 2025) and exports
(left panel) and imports (right panel) of different intermediate goods between 1990 and 2015. These outcomes are normalized by the total intermediate exports and
imports, respectively, during this period. The figure presents several estimates, including our baseline, a specification using the log of one plus the imports (or exports)
of industrial robots per million dollars of intermediate goods imported (exported), a specification using the share of robot imports (or exports), and a version of our
baseline specification where we exclude outliers manually (observations with a standardized residual outside the ±1.96 range).
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Figure A5: Estimates of the relationship between aging (change in the ratio of workers above 56 to
workers aged 21-55 between 1990 and 2025) and the log of patents with different characteristics be-
tween 1990 and 2015. These outcomes are normalized by the total patents granted by the USPTO
during this period. The figure presents several estimates, including our baseline, a specification
using the log of one plus the imports (or exports) of industrial robots per million dollars of inter-
mediate goods imported (exported), a specification using the share of robot imports (or exports),
and a version of our baseline specification where we exclude outliers manually (observations with
a standardized residual outside the ±1.96 range).
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Figure A6: Scatter plots of the relationship between imports of robots per thousand workers (in
2007 dollars, from Comtrade) and the increase in the number of industrial robots per thousand
workers between 1993 and 2014, both in levels and in logs.
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Figure A7: The maps present the location of commuting zones that house robot integrators (Panel A) and

predicted aging across commuting zones based on birthrates from 1950 to 1985 (Panel B).
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Figure A8: The figure presents estimates of the impact of one additional robot per thousand
workers on the employment and wages of people in different age groups. These estimates are
computed by exploiting differences in the exposure to robots across US commuting zones. The
three specifications and the data used are described in the main text and in Acemoglu and Restrepo
(2018a).
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Table A1: Set of countries in our sample and availability of robot installations by industry.

OECD sample Other countries

Country name Industry data since Country name Industry data since
Australia 2006 Argentina 2004
Austria 2003 Brazil 2004
Belgium 2004 Bulgaria 2006
Chile 2006 China 2006
Czech Republic 2004 Colombia 2007
Denmark 1996 Egypt 2005
Estonia 2004 Hong Kong 2006
Finland 1993 India 2006
France 1993 Indonesia 2006
Germany 1993 Malaysia 2006
Greece 2006 Moldova 2010

Hungary 2004 Morocco 2005
Iceland 2006 Peru 2006
Ireland 2006 Philippines 2006
Israel 2005 Romania 2004
Italy 1993 Singapore 2005
Netherlands 2004 Thailand 2005
New Zealand 2006 Ukraine 2004
Norway 1993 Venezuela 2007
Poland 2004 Vietnam 2005
Portugal 2004
Rep. of Korea 2001 Countries with no industry data

Slovakia 2004 Pakistan .
Slovenia 2005 Macau .
Spain 1993
Sweden 1993
Switzerland 2004
Turkey 2005
United Kingdom 1993
United States 2004

Notes: The table presents a list of the countries in our sample as well as the years for which industry-level data are
available from the IFR.
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Table A2: Summary statistics for countries

All
countries

OECD
Rapidly-
aging

countries

Slowly-
aging

countries

Panel A: IFR data.
Robots per thousand workers in 2014 3.79 5.71 5.76 1.81

(4.60) (4.83) (5.29) (2.64)
Robots per thousand workers in 1993 0.72 1.14 1.09 0.34

(1.13) (1.22) (1.24) (0.87)
Annualized increase between 1993 and 2014 0.15 0.22 0.22 0.07

(0.18) (0.19) (0.21) (0.09)
Ratio of older to middle-aged workers 0.38 0.45 0.41 0.34

in 1990 (0.13) (0.09) (0.12) (0.14)
Change in older to middle-aged workers 0.27 0.31 0.37 0.16
between 1990 and 2025 (0.13) (0.11) (0.09) (0.07)
Change in older to middle-aged workers 0.13 0.16 0.19 0.08
between 1990 and 2015 (0.08) (0.06) (0.05) (0.08)
Value added in manufacturing 1990 76 106 115 38
(in billions of dollars) (172) (220) (234) (52)

N = 52 N = 30 N = 26 N = 26
Panel B: Comtrade data.
Robot imports per thousand workers $37K $112K $70K $4K
between 1996 and 2015 (thousand dollars) ($89K) ($118K) ($118K) ($11K)
Robot imports per million dollars of total $272 $268 $279 $219
intermediate imports between 1996 and 2015 ($145) ($138) ($143) (%158)
Value added in manufacturing 1990 36 101 64 7.5
(in billions of dollars) (116) (207) (159) (18)

N=130 N=34 N=65 N=65

Robot exports per thousand workers $42K $110K $69K $16K

between 1996 and 2015 (thousand dollars) ($115K) ($168K) ($127K) ($95K)
Robot exports per million dollars of total $292 $375 $314 $89
intermediate exports between 1996 and 2015 ($590) ($314) ($307) ($1,613)
Value added in manufacturing 1990 52 121 93 11
(in billions of dollars) (148) (237) (202) (20)

N=103 N=35 N=52 N=51
Panel C. USPTO patents sample.
Robot-related patents granted between 718 1,578 1,406 49
1990 and 2016 by the USPTO (3,365) (4,928) (4,728) (148)
Robot-related patents granted by USPTO 13.4 13.5 13.5 12.8
for every other thousand patents (3.3) (3.0) (3.0) (8.1)
Value added in manufacturing 1990 77 135 118 36
(in billions of dollars) (179) (248) (241) (61)

N=68 N=31 N=34 N=34

Notes: The table presents summary statistics for the main variables used in our cross-country analysis. The data
are presented separately for the full sample, the OECD sample, and countries above and below the median aging
between 1990 and 2025 in each sample. Section 3 in the main text describes the sources and data in detail.
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Table A3: Summary statistics for industries

Robot installations per thousand
workers

Normalized
using

average
employment

Normalized
using

KLEMS
employment

Normalized
using

UNIDO
employment

Percent
increase in
value added

Change in
labor share

(p.p.)

Reliance on
middle-aged
workers

Share of
replaceable

tasks

Share of
KLEMS

employment

Prone to the use of robots
Automotive 2.94 7.69 5.52 46.0% -5.93 7.78 0.35 1.2%
Chemicals, plastics, and pharmaceuticals 1.27 1.32 1.25 38.4% -3.86 8.15 0.30 2.1%
Electronics 1.07 0.76 0.74 54.0% -6.84 8.10 0.33 2.4%
Metal machinery 0.43 0.44 0.46 48.3% -4.19 6.79 0.34 1.9%

Other industries
Metal products 0.84 1.14 0.92 44.1% -7.25 6.44 0.37 1.8%
Basic metals 0.15 0.49 0.32 51.6% -9.77 6.13 0.37 0.7%
Food and beverages 0.54 0.46 0.33 33.0% -1.24 7.80 0.30 2.2%
Wood and furniture 0.11 0.39 0.10 37.6% -0.82 7.78 0.35 0.6%
Other vehicles 0.06 0.31 0.17 58.8% -13.64 6.48 0.35 0.6%
Glass and non-metals 0.09 0.26 0.14 49.1% -5.48 6.94 0.34 0.8%
Textiles 0.03 0.08 0.03 32.9% 0.39 5.88 0.31 2.2%
Paper and printing 0.04 0.06 0.03 33.1% -0.96 7.10 0.21 1.7%
Miscellaneous manufacturing 0.15 0.37 34.5% -0.71 6.34 0.39 1.1%
Research and education 0.09 0.04 30.3% 0.82 5.94 0.01 6.1%

Mining 0.01 0.09 56.3% -10.58 8.52 0.14 0.6%
Agriculture 0.02 0.02 19.9% 11.80 3.85 0.01 5.7%
Construction 0.03 0.01 38.7% -4.46 8.08 0.08 7.1%
Utilities 0.00 0.01 53.3% -5.14 8.04 0.07 0.8%
Services 0.01 0.00 36.7% -0.16 6.91 0.03 60.5%

Summary statistics
Average 0.42 0.20 0.81 36.7% -0.55 6.82 0.09
Unweighted Average 0.42 0.73 0.83 41.9% -3.40 7.00 0.24
Countries covered 50 21 44 21 21 US US

Notes: The table presents summary statistics for each of the 19 industries covered in the IFR data. The bottom rows present summary statistics for each variable.
We follow the Boston Consulting Group in labeling the automotive, chemicals, plastics, pharmaceuticals, electronics, and metal machinery industries as being prone
for the use of industrial robots (Boston Consulting Group, 2015). We compute the reliance on middle-aged workers using the 1990 US Census. The measure is defined
as the share of middle-aged (21 to 55 years) to older (56 years or more) workers employed in each industry. The share of replaceable tasks comes from Graetz and
Michaels (2018). Section 3 in the main text describes the sources of the data.
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Table A4: Estimates of the impact of aging on the adoption of industrial robots using different
definitions of middle-aged and older workers.

Dependent variable:
Change in the stock of industrial robots

per thousand workers (annualized)
OLS estimates IV estimates

All countries OECD All countries OECD
(1) (2) (3) (4)

Panel A. Middle-aged from 21-50; Older from 51 onwards

Aging between 1990 and 2025 0.497 0.777 0.567 0.944
(0.193) (0.269) (0.194) (0.277)

Observations 52 30 52 30
First-stage F stat. 18.1 11.3
Overid p− value 0.79 0.50

Panel B. Middle-aged from 21-60; Older from 61 onwards

Aging between 1990 and 2025 0.911 1.237 1.023 1.245
(0.323) (0.414) (0.333) (0.425)

Observations 52 30 52 30
First-stage F stat. 19.8 8.1
Overid p− value 0.62 0.36

Panel C. Middle-aged from 21-55; Older from 56-65

Aging between 1990 and 2025 1.975 2.860 1.854 2.812
(0.721) (0.823) (0.748) (0.968)

Observations 52 30 52 30
First-stage F stat. 29.1 21.7
Overid p− value 0.24 0.26

Panel D. Middle-aged from 21-55; Older from 56-75

Aging between 1990 and 2025 1.024 1.527 1.130 1.680
(0.349) (0.445) (0.349) (0.482)

Observations 52 30 52 30

First-stage F stat. 21.3 12.5
Overid p− value 0.41 0.39

Panel E. Middle-aged from 35-55; Older from 56 onwards

Aging between 1990 and 2025 1.975 2.860 1.854 2.812
(0.721) (0.823) (0.748) (0.968)

Observations 52 30 52 30
First-stage F stat. 29.1 21.7
Overid p− value 0.24 0.26
Covariates included:
Baseline country covariates X X X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots using
different measures of aging. In all panels, the dependent variable is the change in the stock of industrial robots per
thousand workers between 1993 and 2014 (from the IFR). The aging variable varies by panel. In Panel A, it is is
the expected change in the ratio of workers above 51 to workers aged 21-50 between 1990 and 2025 (from the UN
Population Statistics). In Panel B, it is is the expected change in the ratio of workers above 61 to workers aged 21-60
between 1990 and 2025 (from the UN Population Statistics). In Panel C, it is is the expected change in the ratio of
workers aged 56-65 to workers aged 21-55 between 1990 and 2025 (from the UN Population Statistics). In Panel D, it
is is the expected change in the ratio of workers aged 56-75 to workers aged 21-55 between 1990 and 2025 (from the
UN Population Statistics). In Panel E, it is is the expected change in the ratio of workers aged 56-65 to workers aged
35-55 between 1990 and 2025 (from the UN Population Statistics). Columns 1-2 present OLS estimates. Columns
3-4 present IV estimates where aging is instrumented using the size of five-year birth cohorts between 1950 and 1985.
For our IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test. We
present results for two samples: columns 1 and 3 use the full sample; columns 2 and 4 use the OECD sample. All
models control for region dummies and the 1993 values of log GDP per capita, log of population, average years of
schooling and the ratio of workers above 56 to workers aged 21-55 in 1990. All regressions are unweighted, and the
standard errors are robust against heteroscedasticity.
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Table A5: Estimates of the impact of aging on the adoption of industrial robots controlling for
the influence of outliers.

All Countries OECD sample

(1) (2) (3) (4)

Panel A. Removing Korea

Aging between 1990 and 2025 0.457 0.271 0.590 0.301
(0.172) (0.109) (0.210) (0.164)

Observations 51 51 29 29
Panel B. Removing Korea, weighted by manufacturing value added

Aging between 1990 and 2025 1.021 0.556 1.183 0.673
(0.253) (0.165) (0.238) (0.246)

Observations 51 51 29 29
Panel C. Reweighting by employment in industry

Aging between 1990 and 2025 0.931 0.721 1.508 1.216
(0.231) (0.212) (0.176) (0.314)

Observations 52 52 30 30
Panel D. Removing outliers based on residuals

Aging between 1990 and 2025 0.502 0.318 0.679 0.305
(0.166) (0.106) (0.194) (0.164)

Observations 50 49 28 28

Panel E. Quantile (median) regression

Aging between 1990 and 2025 0.544 0.277 0.684 0.360
(0.252) (0.138) (0.195) (0.182)

Observations 52 52 30 30
Panel F. Huber M-regression

Aging between 1990 and 2025 0.498 0.345 0.796 0.368

(0.170) (0.135) (0.267) (0.234)
Observations 52 52 30 30
Baseline country covariates X X X X

Initial robot density and
manufacturing value added

X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots
controlling for the influence of outliers. In all panels, the dependent variable is the change in the stock of industrial
robots per thousand workers between 1993 and 2014 (from the IFR). The aging variable is the expected change in
the ratio of workers above 56 to workers aged 21-55 between 1990 and 2025 (from the UN Population Statistics).
Panel A presents OLS estimates excluding South Korea from the sample. Panel B presents OLS estimates excluding
South Korea from the sample but weighting the data by value added in manufacturing. Panel C presents estimates
weighted by employment in manufacturing (instead of value added). Panel D presents quantile (median) regressions.
Panel E presents a Huber-M estimator. We present results for two samples: columns 1-2 use the full sample; columns
2-3 use the OECD sample. Columns 1 and 3 include region dummies, the 1993 values of log GDP per capita, log of
population, average years of schooling and the ratio of workers above 56 to workers aged 21-55 in 1990. Columns 2
and 4 add the 1993 value of robots per thousand workers and the log of the 1990 value added in manufacturing. The
standard errors are robust against heteroscedasticity.
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Table A6: OLS estimates of the impact of population change in different age groups on the
adoption of industrial robots.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. Population in two age groups between 1990-2025

Change in the log of population aged
20-55 years

-0.451 -0.510 -0.538 -0.756 -1.202 -0.971

(0.148) (0.286) (0.292) (0.213) (0.447) (0.477)
Change in the log of population ≥ 56
years

0.366 0.368 0.307 0.605 0.478 0.312

(0.190) (0.203) (0.202) (0.237) (0.328) (0.368)
Robots per thousand workers in 1993 0.080 0.058

(0.014) (0.030)
Observations 52 52 52 30 30 30
R-squared 0.47 0.59 0.71 0.42 0.63 0.72

Panel B. Population in two age groups between 1990-2025

Change in the log of population aged
20-55 years

-0.489 -0.572 -0.543 -0.821 -1.187 -0.909

(0.164) (0.289) (0.304) (0.230) (0.408) (0.470)
Change in the log of population aged
55-75 years

0.377 0.399 0.351 0.643 0.630 0.476

(0.195) (0.231) (0.232) (0.243) (0.402) (0.489)
Robots per thousand workers in 1993 0.073 0.053

(0.012) (0.031)
Observations 52 52 52 30 30 30
R-squared 0.47 0.59 0.69 0.44 0.62 0.70

Panel C. Population in two age groups between 1990-2025, weighted by manufacturing value added

Change in the log of population aged
20-55 years

-0.781 -1.184 -0.762 -1.026 -1.303 -0.761

(0.236) (0.260) (0.263) (0.216) (0.299) (0.351)
Change in the log of population ≥ 56
years

0.623 0.451 0.426 0.872 0.896 0.750

(0.174) (0.380) (0.392) (0.113) (0.515) (0.558)
Robots per thousand workers in 1993 0.072 0.057

(0.024) (0.038)
Observations 52 52 52 30 30 30
R-squared 0.68 0.82 0.86 0.65 0.82 0.85

Panel D. Population in two age groups between 1990-2025, weighted by manufacturing value added

Change in the log of population aged
20-55 years

-0.866 -1.198 -0.819 -1.130 -1.348 -0.921

(0.207) (0.254) (0.288) (0.140) (0.220) (0.309)
Change in the log of population aged
55-75 years

0.713 0.702 0.692 0.980 1.381 1.388

(0.179) (0.486) (0.533) (0.111) (0.515) (0.703)
Robots per thousand workers in 1993 0.069 0.064

(0.022) (0.039)
Observations 52 52 52 30 30 30
R-squared 0.74 0.82 0.85 0.77 0.84 0.87
Covariates included:
Baseline country covariates X X X X

Initial robot density and
manufacturing value added

X X

Notes: The table presents OLS estimates of the relationship between changes in population and the adoption of
robots. In all panels, the dependent variable is the change in the stock of industrial robots per thousand workers
between 1993 and 2014 (from the IFR). The explanatory variables include the expected change in the log of population
in different age groups between 1990 and 2025 (from the UN population statistics). The exact age groups used in the
analysis vary across the panels. We present results for two samples: columns 1-3 use the full sample; columns 4-6 use
the OECD sample. Columns 1 and 4 include region dummies. Columns 2 and 5 include the 1993 values of log GDP
per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged 21-55 in
1990. Columns 3 and 6 add the 1993 value of robots per thousand workers and the log of the 1990 value added in
manufacturing. The regressions in Panels A, B and C are unweighted, while the regressions in Panels D and E are
weighted by value added in manufacturing in 1990. Standard errors are robust against heteroscedasticity.
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Table A7: Estimates of the impact of aging on the adoption of industrial robots controlling for
the change in overall population.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2025 0.814 0.748 0.463 1.183 0.807 0.425
(0.271) (0.235) (0.227) (0.426) (0.259) (0.308)

Change population 1990-2015 0.131 0.060 -0.154 0.131 -0.290 -0.411

(0.148) (0.239) (0.205) (0.205) (0.350) (0.377)
Observations 52 52 52 30 30 30
R-squared 0.48 0.59 0.70 0.38 0.55 0.66

Panel B. IV estimates

Aging between 1990 and 2025 0.897 0.844 0.727 1.570 0.794 0.668
(0.295) (0.312) (0.339) (0.515) (0.393) (0.494)

Change population 1990-2015 0.152 0.130 0.036 0.239 -0.299 -0.245
(0.145) (0.275) (0.237) (0.239) (0.387) (0.422)

Observations 52 52 52 30 30 30
First-stage F stat. 19.5 8.2 6.3 4.0 7.1 3.4
Overid p− value 0.28 0.59 0.09 0.55 0.32 0.11
Anderson-Rubin Wald test p− value 0.01 0.05 0.00 0.04 0.04 0.00

Panel C. Single-IV estimates

Aging between 1990 and 2025 1.007 0.912 0.613 1.541 1.312 1.078
(0.347) (0.412) (0.468) (0.472) (0.582) (0.816)

Change between 1990-2015 0.181 0.180 -0.046 0.231 0.077 0.037
(0.148) (0.283) (0.279) (0.223) (0.444) (0.549)

Observations 52 52 52 30 30 30
First-stage F stat. 39.0 28.3 19.1 26.2 14.4 8.4
Covariates included:
Baseline country covariates X X X X

Initial robot density and manufacturing
value added

X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots. In all
panels, the dependent variable is the change in the stock of industrial robots per thousand workers between 1993 and
2014 (from the IFR). The aging variable is the expected change in the ratio of workers above 56 to workers aged 21-55
between 1990 and 2025 (from the UN Population Statistics). In addition, all specifications control for the change in
the log of population between 1990 and 2015. Panel A presents OLS estimates. Panel B presents IV estimates where
the aging variable is instrumented using the size of five-year birth cohorts between 1950 and 1985. Panel C presents
IV estimates where the aging variable is instrumented using the decline in birth rates between 1960 and 1980. For our
IV estimates, we report the first-stage F−statistic. When using multiple instruments, we also report the p−value of
Hansen’s overidentification test, and the p−value of Anderson and Rubin’s test for the coefficient on aging being zero.
We present results for two samples: columns 1-3 use the full sample; columns 4-6 use the OECD sample. Columns 1
and 4 include region dummies. Columns 2 and 5 include the 1993 values of log GDP per capita, log of population,
average years of schooling and the ratio of workers above 56 to workers aged 21-55 in 1990. Columns 3 and 6 add
the 1993 value of robots per thousand workers and the log of the 1990 value added in manufacturing. All regressions
are unweighted, and the standard errors are robust against heteroscedasticity.
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Table A8: OLS estimates of the impact of past and expected aging on the adoption of industrial
robots, weighted regressions using manufacturing value added as weights.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. Estimates of past vs. expected aging

Aging between 1990 and 2025 1.153 1.179 0.707 1.313 1.333 0.863
(0.248) (0.203) (0.209) (0.206) (0.177) (0.288)

Aging between 1950 and 1990 -1.044 0.317 0.812 -1.326 0.188 0.565
(0.474) (0.434) (0.433) (0.499) (0.449) (0.457)

Observations 52 52 52 30 30 30
R-squared 0.73 0.82 0.87 0.67 0.79 0.83

Panel B. Estimates of past aging

Aging between 1950 and 1990 -0.592 0.560 1.282 -0.793 0.473 0.983
(0.402) (0.579) (0.492) (0.466) (0.655) (0.507)

Observations 52 52 52 30 30 30
R-squared 0.38 0.46 0.82 0.06 0.17 0.76

Panel C. Estimates of current vs. future aging

Aging between 1990 and 2015 1.626 0.896 0.385 1.780 0.974 0.462
(0.500) (0.447) (0.430) (0.508) (0.429) (0.468)

Aging between 2015 and 2025 0.576 1.448 1.311 0.700 1.665 1.596
(0.591) (0.397) (0.535) (0.625) (0.333) (0.637)

Test for equality 0.24 0.46 0.29 0.25 0.32 0.24
Observations 52 52 52 30 30 30
R-squared 0.68 0.82 0.86 0.55 0.80 0.84
Covariates included:
Baseline country covariates X X X X

Initial robot density and
manufacturing value added

X X

Notes: The table presents OLS estimates of the relationship between past and expected aging and the adoption of
robots from weighted regressions using manufacturing value added as weights. In all panels, the dependent variable is
the change in the stock of industrial robots per thousand workers between 1993 and 2014 (from the IFR). The aging
variable varies across panels: Panels A and B present estimates using the change in the ratio of workers above 56 to
workers between 21 and 55 between 1950 and 1990 (from the UN Population Statistics) as an explanatory variable.
Panel C separately estimates coefficients for aging between 1990 and 2015 (current aging) and between 2015 and
2025 (expected aging). We present results for two samples: columns 1-3 use the full sample; columns 4-6 use the
OECD sample. Columns 1 and 4 include region dummies. Columns 2 and 5 include the 1993 values of log GDP
per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged 21-55 in
1990. Columns 3 and 6 add the 1993 value of robots per thousand workers and the log of the 1990 value added in
manufacturing. The standard errors are robust against heteroscedasticity.
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Table A9: Estimates of the impact of aging between 1990 and 2015 on the adoption of industrial
robots.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2015 1.162 1.005 0.775 1.463 1.295 0.889

(0.393) (0.351) (0.338) (0.616) (0.478) (0.435)
Observations 52 52 52 30 30 30
R-squared 0.43 0.54 0.67 0.24 0.44 0.60

Panel B. IV estimates

Aging between 1990 and 2015 1.409 1.192 1.097 2.574 1.305 0.983
(0.393) (0.363) (0.354) (0.941) (0.450) (0.380)

Observations 52 52 52 30 30 30
First-stage F stat. 16.8 10.4 8.8 3.2 3.9 5.5
Overid p− value 0.45 0.73 0.09 0.68 0.45 0.17
Anderson-Rubin Wald test p− value 0.02 0.03 0.00 0.03 0.03 0.00

Panel C. Single-IV estimates

Aging between 1990 and 2015 2.435 2.067 1.662 5.110 3.101 2.458
(0.943) (0.895) (0.991) (2.391) (1.156) (1.273)

Observations 52 52 52 30 30 30
First-stage F stat. 13.4 12.4 8.2 3.6 12.8 7.6

Panel D. OLS estimates weighted by manufacturing value added

Aging between 1990 and 2015 2.029 1.996 0.964 2.256 2.185 0.983
(0.578) (0.538) (0.382) (0.601) (0.539) (0.491)

Observations 52 52 52 30 30 30
R-squared 0.66 0.73 0.82 0.50 0.63 0.78

Panel E. IV estimates weighted by manufacturing value added

Aging between 1990 and 2015 2.702 2.240 1.598 2.531 2.090 1.000
(0.612) (0.464) (0.401) (0.676) (0.479) (0.455)

Observations 52 52 52 30 30 30
First-stage F stat. 5.4 6.6 11.7 6.3 9.0 17.1
Overid p− value 0.11 0.23 0.23 0.10 0.24 0.23
Anderson-Rubin Wald test p− value 0.00 0.01 0.00 0.00 0.00 0.00
Covariates included:
Baseline country covariates X X X X

Initial robot density and manufacturing
value added

X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots. In all
panels, the dependent variable is the change in the stock of industrial robots per thousand workers between 1993 and
2014 (from the IFR). The aging variable is the expected change in the ratio of workers above 56 to workers between
21 and 55 between 1990 and 2015 (from the UN Population Statistics). Panels A and D presents OLS estimates.
Panels B and E presents IV estimates where the aging variable is instrumented using the size of five-year birth cohorts
between 1950 and 1985. Panel C presents IV estimates where the aging variable is instrumented using the decline
in birth rates between 1960 and 1980. For our IV estimates, we report the first-stage F−statistic. When using
multiple instruments, we also report the p−value of Hansen’s overidentification test, and the p−value of Anderson
and Rubin’s test for the coefficient on aging being zero. We present results for two samples: columns 1-3 use the full
sample; columns 4-6 use the OECD sample. Columns 1 and 4 include region dummies. Columns 2 and 5 include
the 1993 values of log GDP per capita, log of population, average years of schooling and the ratio of workers above
56 to workers aged 21-55 in 1990. Columns 3 and 6 add the 1993 value of robots per thousand workers and the
log of the 1990 value added in manufacturing. The regressions in Panels A, B and C are unweighted, while the
regressions in Panels D and E are weighted by value added in manufacturing in 1990. Standard errors are robust
against heteroscedasticity.
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Table A10: Cross-sectional estimates of relationship between the ratio of older to middle-aged
workers and the stock of industrial robots.

Dependent variable:
Stock of industrial robots per thousand worker

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Older to middle-age ratio in 2025 14.225 11.272 8.607 18.278 14.473 12.166
(3.689) (3.224) (3.330) (4.114) (3.326) (6.180)

log of GDP per capita in 2014 0.971 -0.420 2.329 0.910
(0.781) (1.231) (1.771) (3.731)

Observations 53 53 53 31 31 31
R-squared 0.45 0.59 0.61 0.28 0.52 0.52

Panel B. IV estimates

Older to middle-age ratio in 2025 13.909 8.189 5.250 18.683 11.875 9.588
(3.677) (3.699) (3.284) (4.751) (4.302) (5.055)

Observations 53 53 53 31 31 31
First-stage F stat. 34.2 26.3 16.7 12.8 30.0 7.5
Overid p− value 0.93 0.93 0.64 0.62 0.67 0.73
Anderson-Rubin Wald test p− value 0.02 0.02 0.05 0.01 0.01 0.06

Panel C. OLS estimates weighted by manufacturing value added

Older to middle-age ratio in 2025 18.304 19.318 17.818 19.228 21.302 33.543
(5.117) (3.991) (7.360) (5.376) (5.027) (16.825)

Observations 53 53 53 31 31 31
R-squared 0.67 0.76 0.76 0.45 0.64 0.66

Panel D. IV estimates weighted by manufacturing value added

Older to middle-age ratio in 2025 12.689 14.767 12.868 16.368 18.857 34.023
(4.120) (3.291) (5.654) (4.859) (4.359) (17.490)

Observations 53 53 53 31 31 31
First-stage F stat. 15.2 13.8 36.5 76.2 75.8 5.9

Overid p− value 0.22 0.33 0.48 0.15 0.60 0.45
Anderson-Rubin Wald test p− value 0.00 0.02 0.04 0.00 0.00 0.00
Covariates included:
Baseline country covariates X X X X

Manufacturing value added X X

Notes: The table presents OLS and IV cross-sectional estimates of the relationship between aging and the adoption
of robots. In all panels, the dependent variable is the stock of industrial robots in 2014 (from the IFR) normalized
by thousand industry workers. The main explanatory variable is the expected ratio of workers above 56 to workers
between 21 and 55 between in 2025 (from the UN Population Statistics). Panels A and C present OLS estimates.
Panels B and D present IV estimates where the aging variable is instrumented using the size of five-year birth cohorts
between 1950 and 1985. For our IV estimates, we report the first-stage F−statistic. When using multiple instruments,
we also report the p−value of Hansen’s overidentification test, and the p−value of Anderson and Rubin’s test for the
coefficient on aging being zero. We present results for two samples: columns 1-3 use the full sample; columns 4-6 use
the OECD sample. Columns 1 and 4 include region dummies. Columns 2 and 5 include the 2014 values of log GDP
per capita, log of population, and average years of schooling. Columns 3 and 6 add the log of the 1990 value added
in manufacturing. The regressions in Panels A and B are unweighted, while the regressions in Panels C and D are
weighted by value added in manufacturing in 1990. Standard errors are robust against heteroscedasticity.
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Table A11: Estimates of the impact of aging, unions, and the wage level on the adoption of
industrial robots.

Dependent variable:
Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2025 0.955 0.980 0.783 1.167 1.067 0.839
(0.275) (0.275) (0.277) (0.304) (0.338) (0.377)

Baseline union density 0.243 0.260 0.179 0.435 0.431 0.336
(0.094) (0.101) (0.112) (0.125) (0.126) (0.145)

log of hourly wages in 1993 0.129 0.072 0.186 0.149
(0.104) (0.101) (0.182) (0.199)

Observations 46 46 46 30 30 30
R-squared 0.63 0.65 0.71 0.67 0.68 0.71

Panel B. IV estimates

Aging between 1990 and 2025 0.922 0.980 0.920 1.232 1.231 1.154
(0.279) (0.263) (0.242) (0.296) (0.329) (0.361)

Baseline union density 0.237 0.260 0.209 0.446 0.455 0.400
(0.073) (0.081) (0.090) (0.109) (0.112) (0.124)

log of hourly wages in 1993 0.129 0.087 0.142 0.098
(0.087) (0.088) (0.153) (0.166)

Observations 46 46 46 30 30 30
First-stage F stat. 11.6 11.0 10.8 5.0 5.7 5.7
Overid p− value 0.13 0.15 0.05 0.59 0.55 0.37

Panel C. Single-IV estimates

Aging between 1990 and 2025 1.146 1.187 1.018 1.645 1.635 1.637
(0.447) (0.439) (0.485) (0.425) (0.453) (0.602)

Baseline union density 0.278 0.299 0.231 0.514 0.515 0.499
(0.103) (0.109) (0.123) (0.145) (0.144) (0.163)

log of hourly wages in 1993 0.141 0.098 0.034 0.021
(0.097) (0.101) (0.209) (0.210)

Observations 46 46 46 30 30 30
First-stage F stat. 15.0 15.0 12.9 16.1 13.4 9.0
Covariates included:
Baseline country covariates X X X X X X

Initial robot density and
manufacturing value added

X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots. In all
panels, the dependent variable is the change in the stock of industrial robots per thousand workers between 1993 and
2014 (from the IFR). The aging variable is the expected change in the ratio of workers above 56 to workers between
21 and 55 between 1990 and 2025 (from the UN Population Statistics). In addition, we also estimate the impact of
the baseline unionization rate (from Rama and Artecona, 2002) and wage level (from the Penn World Tables) in a
country. Panel A presents OLS estimates. Panel B presents IV estimates where the aging variable is instrumented
using the size of five-year birth cohorts between 1950 and 1985. Panel C presents IV estimates where the aging
variable is instrumented using the decline in birth rates between 1960 and 1980. For our IV estimates, we report the
first-stage F−statistic. When using multiple instruments, we also report the p−value of Hansen’s overidentification
test. We present results for two samples: columns 1-3 use the full sample; columns 4-6 use the OECD sample.
Columns 1 and 4 include region dummies. Columns 2 and 5 include the 1993 values of log GDP per capita, log of
population, average years of schooling and the ratio of workers above 56 to workers aged 21-55 in 1990. Columns 3
and 6 add the 1993 value of robots per thousand workers and the log of the 1990 value added in manufacturing. All
regressions are unweighted, and the standard errors are robust against heteroscedasticity.
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Table A12: Estimates of the impact of aging on the percent increase in robots by country.

Increase in the log of Robots Increase in the log of 1+ Robots

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2025 2.170 1.929 0.879 3.231 3.512 2.343
(0.910) (0.782) (1.126) (1.442) (1.505) (1.666)

Observations 23 23 23 52 52 52
R-squared 0.70 0.75 0.78 0.83 0.87 0.88

Panel B. IV estimates

Aging between 1990 and 2025 2.422 2.554 1.138 3.949 4.648 3.217
(1.296) (1.050) (0.855) (2.216) (2.225) (2.276)

Observations 23 23 23 52 52 52
First-stage F stat. 6.4 3.6 1.8 23.9 15.6 15.0
Overid p− value 0.03 0.09 0.08 0.10 0.01 0.02

Panel C. Single-IV estimates

Aging between 1990 and 2025 2.280 4.451 4.053 6.868 5.687 4.763
(1.563) (2.025) (4.149) (2.669) (2.613) (2.524)

Observations 23 23 23 53 52 52
First-stage F stat. 16.8 9.7 2.4 29.0 40.6 39.1

Panel D. OLS estimates weighted by manufacturing value added

Aging between 1990 and 2025 2.145 2.347 2.169 3.229 3.678 2.759
(1.161) (0.977) (1.467) (1.034) (0.738) (1.271)

Observations 23 23 23 52 52 52
R-squared 0.48 0.73 0.73 0.95 0.96 0.96

Panel E. IV estimates weighted by manufacturing value added

Aging between 1990 and 2025 2.115 2.496 2.428 2.715 3.578 3.592
(1.229) (0.817) (1.077) (1.107) (0.871) (1.187)

Observations 23 23 23 52 52 52
First-stage F stat. 9.7 19.2 3.9 8.5 8.5 14.4
Overid p− value 0.04 0.14 0.15 0.55 0.29 0.20
Baseline country covariates X X X X

Manufacturing value added X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots. The
dependent variable varies by column. In columns 1-3, it is the change in the log of the stock of industrial robots
between 1993 and 2014 (from the IFR). In columns 4-6, it is the change in the log of one plus the stock of industrial
robots between 1993 and 2014 (from the IFR). The aging variable is the expected change in the ratio of workers
above 56 to workers between 21 and 55 between 1990 and 2025 (from the UN Population Statistics). Panels A and
D present OLS estimates. Panels B and E present IV estimates where the aging variable is instrumented using the
size of five-year birth cohorts between 1950 and 1985. Panel C presents IV estimates where the aging variable is
instrumented using the decline in birth rates between 1960 and 1980. For our IV estimates, we report the first-stage
F−statistic. When using multiple instruments, we also report the p−value of Hansen’s overidentification test. All
columns control for the initial density of robots (in logs). Columns 2 and 5 include region dummies, the 1993 values
of log GDP per capita, log of population, average years of schooling, and the ratio of workers above 56 to workers
aged 21-55 in 1990. Finally, columns 3 and 6 add the log of the 1990 value added in manufacturing as a covariate.
The regressions in Panels A, B and C are unweighted, while the regressions in Panels D and E are weighted by value
added in manufacturing in 1990. Standard errors are robust against heteroscedasticity.
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Table A13: Robustness analysis of the impact of aging on imports and exports of robots.

Baseline log of one plus share Share of robots Exclude outliers

OLS IV OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Imports of robots for the full sample
Aging between 1995 and 2025 1.818 1.969 1.832 1.849 4.899 4.314 1.847 1.761

(0.768) (0.962) (0.765) (0.968) (1.598) (1.971) (0.761) (0.987)

Observations 130 130 135 135 135 135 116 116
R-squared 0.58 0.58 0.58 0.58 0.63 0.63 0.61 0.61
Instruments F-stat 10.7 10.8 10.8 10.3
Overid p-value 0.68 0.78 0.92 0.75

Panel B. Imports of robots for the OECD sample
Aging between 1995 and 2025 2.160 1.691 2.149 1.683 1.618 1.248 2.007 1.724

(0.724) (0.806) (0.721) (0.802) (0.599) (0.621) (0.714) (0.762)
Observations 34 34 34 34 34 34 33 33
R-squared 0.79 0.79 0.79 0.79 0.76 0.76 0.81 0.81
Instruments F-stat 9.6 9.6 9.6 12.6
Overid p-value 0.04 0.04 0.06 0.06

Panel C. Exports of robots for the full sample
Aging between 1995 and 2025 4.657 5.199 4.231 5.279 14.389 15.683 4.511 5.372

(0.985) (1.167) (0.953) (1.131) (5.228) (6.899) (0.973) (1.136)
Observations 103 103 136 136 136 136 93 94
R-squared 0.83 0.83 0.85 0.85 0.64 0.64 0.87 0.87
Instruments F-stat 15.0 15.6 15.6 14.7
Overid p-value 0.14 0.17 0.34 0.09

Panel D. Exports of robots for the OECD sample
Aging between 1995 and 2025 4.144 4.803 4.107 4.758 4.687 5.484 4.554 4.973

(1.165) (1.177) (1.153) (1.167) (1.839) (2.005) (1.025) (1.124)
Observations 35 35 35 35 35 35 33 33
R-squared 0.77 0.77 0.77 0.77 0.62 0.62 0.81 0.81
Instruments F-stat 12.2 12.2 12.2 13.1
Overid p-value 0.14 0.14 0.19 0.23
Baseline country covariates
and manufacturing value
added

X X X X X X X X

Notes: The table presents OLS and IV estimates of the relationship between aging and imports and exports of industrial robots. Columns 1 and 2 present our baseline
estimates. Columns 3 and 4 present results using the log of one plus robot imports (or exports) per million dollars imported (exported). Columns 5 and 6 present
results using the share of robot imports (or exports) per million dollars imported (exported), and normalizes the estimates relative to the mean of this variable. Finally,
columns 7 and 8 return to our baseline estimates, but exclude outliers—countries with a standardized residual above 1.96 or below -1.96. The aging variable is the
expected change in the ratio of workers above 56 to workers between 21 and 55 between 1995 and 2025 (from the UN Population Statistics). The sample used varies
by panel: Panels A and C present estimates for the full set of countries. Panels B and D present estimates for the OECD. In even columns, the aging variable is
instrumented using the size of five-year birth cohorts between 1950 and 1985. For our IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s
overidentification test. All columns include region dummies, the 1995 values of log GDP per capita, log of population, average years of schooling and the ratio of
workers above 56 to workers aged 21-55, the log of the 1990 value added in manufacturing, and the log of intermediate imports (Panels A and B) or exports (Panels C
and D). All regressions are weighted by value added in manufacturing in 1990, and the standard errors are robust against heteroscedasticity.
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Table A14: Robustness analysis of the impact of aging on robotics-related patents.

Baseline log of one plus share Share of robots Exclude outliers

OLS IV OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Robotics-related patents for the full sample
Aging between 1990 and 2025 1.411 0.755 0.546 0.669 1.327 0.631 1.345 0.814

(0.444) (0.572) (0.612) (0.937) (0.441) (0.613) (0.444) (0.559)
Observations 68 68 125 125 125 125 62 63
R-squared 0.64 0.63 0.50 0.50 0.39 0.38 0.67 0.66
Instruments F-stat 5.0 6.1 6.1 4.9
Overid p-value 0.21 0.07 0.13 0.19

Panel B. Robotics related patents for the OECD sample
Aging between 1990 and 2025 1.593 1.342 0.800 0.630 1.616 1.349 1.670 1.448

(0.547) (0.464) (0.797) (0.647) (0.666) (0.581) (0.535) (0.444)
Observations 31 31 35 35 35 35 29 29
R-squared 0.66 0.66 0.46 0.46 0.63 0.62 0.72 0.72
Instruments F-stat 18.6 20.4 20.4 17.3
Overid p-value 0.33 0.13 0.37 0.27

Panel C. Robotics related patents for the OECD sample excluding the US
Aging between 1990 and 2025 1.481 1.240 0.306 0.348 1.424 1.206 1.731 1.447

(0.626) (0.522) (0.819) (0.644) (0.723) (0.605) (0.554) (0.479)
Observations 30 30 34 34 34 34 28 28
R-squared 0.63 0.63 0.50 0.50 0.58 0.58 0.69 0.69
Instruments F-stat 21.9 27.2 27.2 17.7
Overid p-value 0.40 0.20 0.41 0.25
Baseline country covariates
and manufacturing value
added

X X X X X X X X

Notes: The table presents OLS and IV estimates of the relationship between aging and robotics-related patents. Columns 1 and 2 present our baseline estimates.
Columns 3 and 4 present results using the log of one plus robotics-related patents per thousand utility patents. Columns 5 and 6 present results using the share of
robotics-related patents per thousand utility patents, and normalizes the estimates relative to the mean of this variable. Finally, columns 7 and 8 return to our baseline
estimates, but exclude outliers—countries with a standardized residual above 1.96 or below -1.96. The aging variable is the expected change in the ratio of workers
above 56 to workers between 21 and 55 between 1990 and 2025 (from the UN Population Statistics). The sample used varies by panel: Panel A presents estimates for
the full set of countries. Panel B presents estimates for the OECD. In even columns, the aging variable is instrumented using the size of five-year birth cohorts between
1950 and 1985. For our IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test. All columns include region dummies,
the 1990 values of log GDP per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged 21-55, the log of the 1990 value
added in manufacturing, and the log of total utility patents. All regressions are weighted by value added in manufacturing in 1990, and the standard errors are robust
against heteroscedasticity.
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Table A15: Robustness for IV estimates of aging on the location of robot integrators in the US.

Dependent variable:
Location, number and employment of robot integrator

(1) (2) (3) (4) (5)

Panel A. Baseline specification removing outliers

Aging between 1990 and 2015 1.386 0.587 0.496 0.489 0.477
(0.358) (0.188) (0.194) (0.223) (0.209)

Exposure to robots 0.084 0.077 0.125
(0.022) (0.020) (0.019)

Observations 671 683 678 680 668
First-stage F stat. 11.4 19.5 19.7 22.0 22.2
Overid p− value 0.00 0.72 0.69 0.69 0.98

Panel B. Baseline specification weighting by employment in manufacturing

Aging between 1990 and 2015 0.163 3.031 2.274 2.373 2.789
(1.279) (1.411) (1.333) (1.358) (1.407)

Exposure to robots 0.015 0.010 0.113
(0.024) (0.025) (0.030)

Observations 722 722 722 722 712
First-stage F stat. 8.1 8.7 9.4 9.0 7.8
Overid p− value 0.00 0.58 0.39 0.40 0.35

Panel C. Log of one plus number of integrators

Aging between 1990 and 2015 1.834 0.745 0.511 0.502 0.573
(0.594) (0.351) (0.336) (0.335) (0.327)

Exposure to robots 0.126 0.123 0.166
(0.021) (0.022) (0.042)

Observations 722 722 722 722 712
First-stage F stat. 11.4 20.6 22.9 23.7 23.2
Overid p− value 0.00 0.84 0.61 0.59 0.63

Panel D. Log of one plus employment in integrators

Aging between 1990 and 2015 5.593 2.510 1.701 1.665 1.766
(1.676) (1.047) (0.993) (0.988) (0.989)

Exposure to robots 0.341 0.333 0.514
(0.075) (0.078) (0.119)

Observations 722 722 722 722 712
First-stage F stat. 11.4 20.6 22.9 23.7 23.2
Overid p− value 0.00 0.92 0.77 0.74 0.67
Covariates included:
Regional dummies X X X X X

Demographic covariates X X X X

Industry composition X X X

Other shocks X X

Excluding highly exposed
commuting zone

X

Notes: The table presents IV estimates of the relationship between aging and the location of robot integrators across
US commuting zones. The dependent variable varies by panel. In Panels A and B, the dependent variable is a dummy
for the presence of robot integrators in each US commuting zone (from Leigh and Kraft, 2018). In Panels C and D,
the dependent variable is the log of one plus the number of integrators and employees in integrators, respectively
(both from Leigh and Kraft, 2018). Aging is the change in the ratio of workers above 56 to workers between 21 and 55
between 1990 and 2015 (from the NBER-SEER). All panels present IV estimates, where aging is instrumented using
the size of five-year birth cohorts between 1950 and 1985. For all estimates, we report the first-stage F−statistic
and the p−value of Hansen’s overidentification test. Column 1 includes Census region dummies. Column 2 includes
the 1990 values for the log of average income, the log of the population, the initial ratio of older to middle-aged
workers, and the share of workers with different levels of education in each commuting zone. Column 3 includes the
exposure to robots measure from Acemoglu and Restrepo (2018a) and also controls for the shares of employment in
manufacturing, agriculture, mining, construction, and finance and real estate in 1990. Column 4 includes additional
demographic characteristics measured in 1990, including the racial composition of commuting zones and the share
of male and female employment, and controls for other shocks affecting US markets, including offshoring, trade with
China and the decline of routine jobs. Finally, column 5 excludes the top 1% commuting zones with the highest
exposure to robots. The regressions in Panel B are weighted by manufacturing employment in 1990, and all other
regressions are unweighted. In parenthesis we report standard errors that are robust against heteroscedasticity and
correlation in the error terms within states. A-38



Table A16: Estimates of the impact of aging on robot installations per year.

Dependent variable:
Installations of industrial robots per thousand workers per year

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging between 1990 and 2025 1.275 1.067 0.646 1.785 1.519 0.862
(0.405) (0.385) (0.276) (0.482) (0.427) (0.351)

Observations 1144 1144 1144 660 660 660
Countries 52 52 52 30 30 30
R-squared 0.40 0.53 0.74 0.20 0.55 0.72

Panel B. IV estimates

Aging between 1990 and 2025 1.540 1.050 0.816 2.619 1.472 1.093
(0.435) (0.375) (0.287) (0.533) (0.459) (0.370)

Observations 1144 1144 1144 660 660 660
Countries 52 52 52 30 30 30
First-stage F stat. 29.0 20.8 17.9 10.0 9.4 11.9
Overid p− value 0.60 0.86 0.11 0.89 0.75 0.09
Anderson-Rubin Wald test p− value 0.01 0.02 0.00 0.01 0.08 0.00

Panel C. Single-IV estimates

Aging between 1990 and 2025 1.775 1.294 0.689 2.840 1.865 1.256
(0.541) (0.531) (0.425) (0.721) (0.509) (0.564)

Observations 1144 1144 1144 660 660 660
Countries 52 52 52 30 30 30
First-stage F stat. 32.5 28.0 19.7 15.1 30.1 17.9

Panel D. OLS estimates weighted by manufacturing value added

Aging between 1990 and 2025 2.056 2.128 0.977 2.327 2.405 1.149
(0.540) (0.383) (0.267) (0.521) (0.318) (0.347)

Observations 1144 1144 1144 660 660 660
Countries 52 52 52 30 30 30
R-squared 0.70 0.80 0.89 0.36 0.79 0.89

Panel E. IV estimates weighted by manufacturing value added

Aging between 1990 and 2025 1.924 1.921 1.217 2.239 2.247 1.333
(0.492) (0.390) (0.298) (0.556) (0.355) (0.336)

Observations 1144 1144 1144 660 660 660
Countries 52 52 52 30 30 30

First-stage F stat. 8.0 8.7 22.6 12.0 19.4 31.2
Overid p− value 0.05 0.22 0.20 0.33 0.34 0.21
Anderson-Rubin Wald test p− value 0.00 0.03 0.00 0.00 0.00 0.00
Covariates included:
Baseline country covariates X X X X

Initial robot density and manufacturing
value added

X X

Notes: The table presents OLS and IV estimates of the relationship between aging and yearly installations of industrial
robots. The dependent variable is installations of industrial robots per thousand workers for each country-year pair
between 1993 and 2014 (from the IFR). The aging variable is the expected change in the ratio of workers above
56 to workers between 21 and 55 between 1990 and 2025 (from the UN Population Statistics). Panels A and D
present OLS estimates. Panels B and E present IV estimates where the aging variable is instrumented using the
size of five-year birth cohorts between 1950 and 1985. Panel C presents IV estimates where aging is instrumented
using the decline in birth rates between 1960 and 1980. For our IV estimates, we report the first-stage F−statistic.
When using multiple instruments, we also report the p−value of Hansen’s overidentification test, and the p−value of
Anderson and Rubin’s test for the coefficient on aging being zero. We present results for two samples: columns 1-3
use the full sample; columns 4-6 use the OECD sample. Columns 1 and 4 include region dummies. Columns 2 and 5
include the 1993 values of log GDP per capita, log of population, average years of schooling and the ratio of workers
above 56 to workers aged 21-55 in 1990. Columns 3 and 6 add the 1993 value of robots per thousand workers and
the log of the 1990 value added in manufacturing. The regressions in Panels A, B and C are unweighted, while the
regressions in Panels D and E are weighted by value added in manufacturing in 1990. Standard errors are robust
against heteroscedasticity and correlation within countries.
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Table A17: Estimates of the impact of aging on robot installations by country-industry pairs per
year for manufacturing industries.

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: Installation of robots in country-industry pairs
normalizing by industry employment from UNIDO

Panel A. OLS estimates
Aging between 1990 and 2025 3.765 10.994 8.111 10.232 7.739

(1.425) (3.555) (2.666) (3.703) (3.052)
Aging × reliance on middle-aged 3.507 2.692 2.797 0.984 0.848 1.028

(1.299) (1.105) (1.090) (0.383) (0.457) (0.511)
Aging × opportunities for automation 20.108 14.451 13.183 7.871 5.895 5.649

(5.464) (4.636) (4.682) (2.965) (2.335) (2.194)
Observations 5866 5866 5866 5866 5866 5866 5866
Countries in sample 44 44 44 44 44 44 44

Panel B. IV estimates

Aging between 1990 and 2025 4.032 12.545 9.472 11.924 9.250
(1.524) (4.094) (3.352) (4.102) (3.550)

Aging × reliance on middle-aged 4.151 3.099 3.220 1.065 0.755 1.019
(1.426) (1.209) (1.220) (0.421) (0.421) (0.501)

Aging × opportunities for automation 23.211 18.234 14.830 9.731 7.728 7.239
(8.259) (7.350) (7.115) (3.492) (2.962) (2.750)

Observations 5866 5866 5866 5866 5866 5866 5866
Countries in sample 44 44 44 44 44 44 44
Instruments F-stat 17.9 11.7 15.2 11.5 8.7 10.7 7.7
Overid p-value 0.57 0.25 0.27 0.17 0.25 0.10 0.35
Covariates included:
Baseline country covariates X X X X X X X

Initial robot density X X X X

Country fixed effects X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots for
industry-country cells. In all panels, the dependent variable is robot installations per thousand workers in each
industry-country cell for all available years between 1993 and 2014 (from the IFR). The explanatory variables include
aging (defined as the change in the ratio of workers above 56 to workers between 21 and 55 between 1990 and
2025); the interaction between aging and industry reliance on middle-aged workers (proxied using 1990 US Census
data on the age distribution of workers in each industry); and the interaction between aging and two measures
of opportunities for automation: the replaceability index from Graetz and Michaels (2018) in columns 2-4; and a
measure of opportunities for the use of robots from the BCG in columns 5-7. Panel A presents OLS estimates. Panel
B presents IV estimates where aging is instrumented using the size of five-year birth cohorts between 1950 and 1985.
For our IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test All
columns include region dummies, the 1993 values of log GDP per capita, log of population, average years of schooling
and the ratio of workers above 56 to workers aged 21-55 in 1990. Columns 3 and 6 add the initial robot density
in 1993 for each industry-country cell as a control. All these covariates are allowed to affect industries differently.
Columns 4 and 7 add a full set of country dummies. All regressions weigh industries by their share of employment
in a country, and the standard errors are robust against heteroscedasticity and correlation within countries.
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Table A18: Estimates of the impact of aging and past aging on robot installations by country-
industry pairs per year.

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: Installation of robots in country-industry pairs
normalizing by average employment in an industry from ILO

Panel A. Estimates of past vs. expected aging
Aging between 1990 and 2025 1.598 4.179 2.752 6.794 4.712

(0.421) (1.084) (0.831) (1.776) (1.448)
Aging × reliance on middle-aged 0.882 0.610 0.611 0.262 0.181 0.182

(0.242) (0.206) (0.203) (0.085) (0.084) (0.083)
Aging × opportunities for automation 6.807 4.379 4.388 6.078 4.285 4.303

(2.187) (1.448) (1.426) (1.617) (1.273) (1.257)
Past aging between 1950 and 1990 -0.573 -1.462 0.694 -0.923 1.833

(0.739) (1.921) (1.396) (2.915) (2.260)
Past aging × reliance on middle-aged 0.068 0.267 0.266 0.035 0.002 0.002

(0.399) (0.300) (0.303) (0.155) (0.114) (0.114)
Past aging × opportunities for automation -5.422 0.762 0.740 -0.510 2.171 2.144

(4.160) (2.903) (2.986) (2.573) (2.115) (2.149)
Observations 10602 10602 10602 10602 10602 10602 10602
Countries in sample 50 50 50 50 50 50 50
R-squared 0.36 0.37 0.45 0.47 0.39 0.47 0.48

Panel B. Estimates of past aging
Past aging between 1950 and 1990 -0.053 -0.075 1.699 1.342 3.648

(0.743) (1.960) (1.444) (3.115) (2.432)
Past aging × reliance on middle-aged 0.364 0.478 0.475 0.123 0.055 0.057

(0.449) (0.332) (0.335) (0.171) (0.121) (0.121)
Past aging × opportunities for automation -3.135 2.523 2.369 1.532 3.857 3.797

(4.073) (2.934) (2.986) (2.808) (2.308) (2.328)
Observations 10602 10602 10602 10602 10602 10602 10602
Countries in sample 50 50 50 50 50 50 50
Covariates included:
Baseline country covariates X X X X X X X

Initial robot density X X X X

Country fixed effects X X

Notes: The table presents OLS estimates of the relationship between aging and the adoption of robots for industry-
country cells. In all panels, the dependent variable is robot installations per thousand workers in each industry-country
cell for all available years between 1993 and 2014 (from the IFR). The explanatory variables include past aging (defined
as the change in the ratio of workers above 56 to workers between 21 and 55 between 1950 and 1990); current aging
(defined as the change in the ratio of workers above 56 to workers between 21 and 55 between 1990 and 2015); the
interaction between aging and industry reliance on middle-aged workers (proxied using 1990 US Census data on the
age distribution of workers in each industry); and the interaction between aging and two measures of opportunities for
automation: the replaceability index from Graetz and Michaels (2018) in columns 2-4; and a measure of opportunities
for the use of robots from the BCG in columns 5-7. All columns include region dummies, the 1993 values of log GDP
per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged 21-55
in 1990. Columns 3 and 6 add the initial robot density in 1993 for each industry-country cell as a control. All
these covariates are allowed to affect industries differently. Columns 4 and 7 add a full set of country dummies. All
regressions weigh industries by their share of employment in a country, and the standard errors are robust against
heteroscedasticity and correlation within countries.

A-41



Table A19: Estimates of the impact of aging on the log of one plus robot installations per worker
in each country-industry cell.

Dependent variable:
log of one plus installation of robots in country-industry pairs

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Panel A. OLS estimates
Aging between 1990 and 2025 0.426 0.997 0.582 1.589 1.038

(0.111) (0.254) (0.200) (0.356) (0.273)
Aging × reliance on middle-aged 0.170 0.112 0.113 0.028 0.013 0.014

(0.042) (0.034) (0.033) (0.018) (0.020) (0.019)

Aging × opportunities for automation 1.713 0.912 0.926 1.419 0.968 0.982
(0.611) (0.517) (0.510) (0.325) (0.232) (0.229)

Observations 10602 10602 10602 10602 10602 10602 10602
Countries in sample 50 50 50 50 50 50 50

Panel B. IV estimates
Aging between 1990 and 2025 0.329 0.810 0.575 1.372 1.017

(0.111) (0.267) (0.221) (0.396) (0.313)
Aging × reliance on middle-aged 0.170 0.112 0.112 0.040 0.014 0.015

(0.050) (0.039) (0.038) (0.020) (0.021) (0.020)
Aging × opportunities for automation 1.223 0.916 0.898 1.244 0.956 0.954

(0.635) (0.535) (0.526) (0.366) (0.277) (0.273)
Observations 10602 10602 10602 10602 10602 10602 10602
Countries in sample 50 50 50 50 50 50 50
Instruments F-stat 19.1 . 6.6 7.8 . 6.4 8.9
Overid p-value 0.63 0.13 0.35 0.28 0.11 0.15 0.06
Covariates included:
Baseline country covariates X X X X X X X

Initial robot density X X X X

Country fixed effects X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots for
industry-country cells. In all panels, the dependent variable is robot installations per thousand workers in each
industry-country cell for all available years between 1993 and 2014 (from the IFR). The explanatory variables include
aging (defined as the change in the ratio of workers above 56 to workers between 21 and 55 between 1990 and
2025); the interaction between aging and industry reliance on middle-aged workers (proxied using 1990 US Census
data on the age distribution of workers in each industry); and the interaction between aging and two measures
of opportunities for automation: the replaceability index from Graetz and Michaels (2018) in columns 2-4; and a
measure of opportunities for the use of robots from the BCG in columns 5-7. Panel A presents OLS estimates. Panel
B presents IV estimates where aging is instrumented using the size of five-year birth cohorts between 1950 and 1985.
For our IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test. All
columns include region dummies, the 1993 values of log GDP per capita, log of population, average years of schooling
and the ratio of workers above 56 to workers aged 21-55 in 1990. Columns 3 and 6 add the initial robot density
in 1993 for each industry-country cell as a control. All these covariates are allowed to affect industries differently.
Columns 4 and 7 add a full set of country dummies. The standard errors are robust against heteroscedasticity and
correlation within countries.
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Table A20: Estimates of the impact of aging on robot installations by country-industry pairs per
year removing outliers.

Dependent variable:
Installation of robots in country-industry pairs

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Panel A. OLS estimates
Aging between 1990 and 2025 0.561 1.534 0.886 3.615 1.948

(0.162) (0.372) (0.293) (0.501) (0.371)
Aging × reliance on middle-aged 0.242 0.146 0.145 0.082 0.032 0.036

(0.058) (0.044) (0.049) (0.032) (0.032) (0.035)
Aging × opportunities for automation 2.776 1.688 1.642 3.283 1.827 1.973

(0.892) (0.879) (0.887) (0.469) (0.322) (0.429)
Observations 10290 10281 10334 10351 10260 10330 10345
Countries in sample 50 50 50 50 50 50 50

Panel B. IV estimates

Aging between 1990 and 2025 0.410 1.386 0.857 3.487 1.953
(0.151) (0.367) (0.280) (0.529) (0.390)

Aging × reliance on middle-aged 0.247 0.149 0.146 0.100 0.039 0.044
(0.058) (0.043) (0.047) (0.038) (0.037) (0.039)

Aging × opportunities for automation 2.004 1.511 1.605 3.094 1.810 1.968
(0.944) (0.843) (0.853) (0.534) (0.380) (0.522)

Observations 10287 10281 10334 10351 10260 10331 10345
Countries in sample 50 50 50 50 50 50 50
Instruments F-stat 28.6 12.5 8.0 10.4 16.9 13.0 13.5
Overid p-value 0.14 0.20 0.51 0.34 0.17 0.52 0.19
Covariates included:
Baseline country covariates X X X X X X X

Initial robot density X X X X

Country fixed effects X X

Notes: The table presents OLS and IV estimates of the relationship between aging and the adoption of robots for
industry-country cells removing observations with standardized residuals above 1.96 or below -1.96. In all panels, the
dependent variable is robot installations per thousand workers in each industry-country cell for all available years
between 1993 and 2014 (from the IFR). The explanatory variables include aging (defined as the change in the ratio of
workers above 56 to workers between 21 and 55 between 1990 and 2025); the interaction between aging and industry
reliance on middle-aged workers (proxied using 1990 US Census data on the age distribution of workers in each
industry); and the interaction between aging and two measures of opportunities for automation: the replaceability
index from Graetz and Michaels (2018) in columns 2-4; and a measure of opportunities for the use of robots from the
BCG in columns 5-7. Panel A presents OLS estimates. Panel B presents IV estimates where aging is instrumented
using the size of five-year birth cohorts between 1950 and 1985. For our IV estimates, we report the first-stage
F−statistic and the p−value of Hansen’s overidentification test. All columns include region dummies, the 1993
values of log GDP per capita, log of population, average years of schooling and the ratio of workers above 56 to
workers aged 21-55 in 1990. Columns 3 and 6 add the initial robot density in 1993 for each industry-country cell as
a control. All these covariates are allowed to affect industries differently. Columns 4 and 7 add a full set of country
dummies. The standard errors are robust against heteroscedasticity and correlation within countries.
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Table A21: Estimates of the impact of aging using EUKLEMS and Penn World tables data on output and the share of labor.

OLS estimates IV estimates

EUKLEMS
data

Penn World tables data
EUKLEMS

data
Penn World tables data

EUKLEMS sample OECD
Baseline
sample

EUKLEMS sample OECD
Baseline
sample

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Change in GDP (or value added) between 1995 and 2007
Aging between 1995 and 2025 -0.225 -0.311 0.031 0.344 -0.455 -0.718 -0.049 0.321

(0.232) (0.275) (0.232) (0.204) (0.337) (0.367) (0.379) (0.296)
Observations 21 21 30 52 21 21 30 52
First-stage F stat. 5.5 5.5 9.4 17.9
Overid p− value 0.19 0.26 0.11 0.00

Panel B. Change in labor share between 1995 and 2007
Aging between 1995 and 2025 -0.413 -0.173 -0.090 -0.110 -0.445 -0.013 0.070 -0.061

(0.148) (0.075) (0.072) (0.062) (0.232) (0.080) (0.069) (0.057)
Observations 21 21 30 50 21 21 30 50
First-stage F stat. 5.5 5.5 9.4 17.2
Overid p− value 0.34 0.48 0.63 0.32

Notes: The table presents OLS and IV estimates of the relationship between aging and the change in GDP (Panel A) and the labor share (Panel B) across countries.
Aging is the expected change in the ratio of workers above 56 to workers between 21 and 55 between 1990 and 2025 (from the UN Population Statistics). Columns
1-4 present OLS estimates. Columns 5-8 present IV estimates where aging is instrumented using the size of five-year birth cohorts between 1950 and 1985. For our
IV estimates, we report the first-stage F−statistic and the p−value of Hansen’s overidentification test. We present results for several samples: columns 1-2 and 5-6
use the EUKLEMS sample; columns 3 and 7 use the OECD sample, and columns 4 and 8 use the sample of all countries with IFR data. In columns 1 and 5 we use
data from EUKLEMS aggregated to the country level. In the remaining tables, we use data from the Penn World Tables, version 9.0 (Feenstra, Inklaar and Timmer,
2015). All models control for regional dummies, the 1995 values of log GDP per capita, log of population, average years of schooling and the ratio of workers above 56
to workers aged 21-55 in 1995. All regressions are unweighted, and the standard errors are robust against heteroscedasticity.
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