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The United States underwent an enormous housing market cycle between 2000 and 2011,

shown in Figure 1. The rise and fall in house prices caused several problems for the U.S.

economy. During the boom, a surge in housing investment drew resources into construction

from other sectors (Charles, Hurst and Notowidigdo, 2017) and contributed to a capital

overhang that slowed the economic recovery from the subsequent recession (Rognlie, Shleifer

and Simsek, 2017). During the bust, millions of households lost their homes in foreclosure,

and falling house prices led many others to cut consumption (Mayer, Pence and Sherlund,

2009; Mian, Rao and Sufi, 2013; Mian, Sufi and Trebbi, 2015; Mian and Sufi, 2014; Guren

and McQuade, 2015). Large real estate cycles are not unique to the U.S. (Mayer, 2011) or

to this time period (Case, 2008; Glaeser, 2013). Given the economic costs of these recurring

episodes, understanding their cause is critical for economists and policymakers.

This paper presents theory and evidence that speculation is a key driver of real estate

cycles.1 Building on Cutler, Poterba and Summers (1990) and De Long, Shleifer, Summers

and Waldmann (1990), we present a model in which extrapolation—the belief that asset

prices continue to rise after recent gains—causes house prices to go through a boom and bust

cycle in response to a positive demand shock. In a departure from the existing extrapolation

literature, we relax the assumption of Walrasian price discovery to allow the possibility

that homes listed for sale may not sell immediately. This innovation allows the model to

describe the other salient features of Figure 1: the pronounced lead–lag relationship between

transaction volume and prices, and the sharp rise in unsold listings as volume falls and

price growth slows. We then document new facts on the composition of buyers and sellers

during the recent U.S. housing bubble using transaction-level data between 1995 and 2014

for 115 metropolitan statistical areas (MSAs) that represent 48% of the U.S. housing stock.

The facts highlight the aggregate role of speculation in driving the bubble, rule out some

alternative explanations, and confirm several predictions of the model.

In each period of our model, potential buyers interact with movers who are trying to

sell their house immediately. Movers post list prices, and then as many transactions as

possible clear at the posted prices. The average transacted price, or market price, diverges

from the Walrasian price due to a subset of movers who engage in extrapolative price-

posting: rather than set list prices optimally, they simply list at the market price they

1Harrison and Kreps (1978, p. 323) define speculation as follows: “Investors exhibit speculative behavior
if the right to resell a stock makes them willing to pay more for it than they would pay if obliged to hold it
forever.”
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expect under extrapolative beliefs. The remaining movers set list prices optimally because

they are fully informed about market fundamentals. In evaluating whether to buy, potential

buyers extrapolate market prices to estimate the future price at which they can sell. Potential

buyers differ in the expected time until moving, meaning that some potential buyers have

short horizons while others have long horizons. This heterogeneity captures the difference in

previous models between long-term investors and short-term arbitrageurs.2

We solve for the equilibrium dynamics of prices and volume following a one-time, per-

manent demand shock to a steady state. After the shock, informed movers sharply raise

their list prices while extrapolative movers do so more gradually. During this time, a dis-

proportionate share of buyers are short-horizon investors hoping to exploit rising prices for

a quick capital gain. As they turn to sell, this influx of short-horizon investors leads to a

sharp increase in subsequent listings and volume. Eventually, so many houses are listed that

not all of them can sell at the extrapolative movers’ price. This glut leads informed movers

to cut their list prices to the extrapolative list price, which continues to rise as it traces out

the path expected under extrapolative beliefs. The slowdown in price growth causes demand

to fall, leading volume to decline as unsold listings accumulate. Once demand falls enough,

informed movers cut their list prices below the extrapolative list price, causing the market

price to decline for the first time. The resulting bust in market prices occurs on low volume

and continues until the entire stock of unsold listings sells.

The most novel feature of this cycle is the middle period in which prices continue to rise

despite falling volume and accumulating unsold listings. We refer to this period as the quiet.

The quiet characterizes the joint behavior of prices, volume, and listings in the U.S. housing

market between 2005 and 2007. This pattern contrasts with the focus in existing literature

on the contemporaneous correlation between prices and volume in the housing market (Stein,

1995; Genesove and Mayer, 2001; Ortalo-Magné and Rady, 2006) and in bubbles (Scheinkman

and Xiong, 2003; Barberis, Greenwood, Jin and Shleifer, 2017). The average correlation is

positive, but masks the changing relationship between prices and volume during different

parts of the cycle, driven in our model by the absence of Walrasian price discovery.3

2The closest model to ours is Hong and Stein (1999), which features momentum traders who follow simple
price-based trading rules and newswatchers who receive new information slowly over time but do not infer
additional information from prices. We discuss connections between our model and theirs below.

3Barberis, Greenwood, Jin and Shleifer (2017) present an extrapolative, Walrasian model of bubbles
which, like our model, generates endogenous trading and a joint dynamic of prices and volume. Though
their model delivers a positive relationship between past returns and volume, it does not naturally generate
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The model features endogenous entry of short-term, speculative buyers into the market,

who drive volume during the boom by selling shortly after they enter. Using transaction-

level data collected by CoreLogic on 50 million home sales between 1995 and 2014, we exploit

the panel structure of this data to link shifts in the distribution of realized holding periods

to dynamic patterns in volume and prices during the U.S. cycle. Because realized holding

times do not perfectly capture holding times expected upon purchase, we supplement this

analysis with survey data from the National Association of Realtors (NAR) on heterogeneity

in expected holding horizons in the cross-section and over time.

We present four facts concerning the composition of aggregate volume. First, much of

the 2000–2005 rise in volume comes from short-term investment, with 42% of the national

volume increase arising from the growth in sales of homes held for less than 3 years. The rise

in short-term sales also explains much of the variation in volume across MSAs and across ZIP

codes within each MSA. Second, short-term sales decline during the 2005–2006 quiet and

subsequent bust, matching when short-term buyers begin to exit in the model. Third, a sharp

rise in non-occupant purchases explains much of the variation in volume across and within

MSAs between 2000 and 2005. This fact matches the model’s prediction of a rising share

of “speculative buyers”—those who would not buy absent expected capital gains—during

the boom. Fourth, non-occupant buyers disproportionately contribute to the growth in

short-term volume, further suggesting that speculative motives drive their trading behavior.

Consistent with these facts, the NAR survey data reveals wide variation in expected holding

times, shorter expected holding times among investors, and increases in the short-term buyer

share following recent price gains.4

The most likely alternative explanation for the rise of short-term volume is that this

activity reflects move-up purchases enabled by higher home equity during the boom (Stein,

1995; Ortalo-Magné and Rady, 2006). While surely part of the story, this channel is unlikely

to explain the full rise in short-term volume for two reasons. First, following Bayer, Geissler,

Mangum and Roberts (2011) and Anenberg and Bayer (2013), we use the names of buyers

a lead–lag relationship between prices and volume, which they note was a puzzling phenomenon during the
Dotcom bubble. Section 5 has more detail on connections between our models.

4These empirical results build on a number of prior studies of the housing bubble, surveyed in Section 5.
Our contribution is documenting the role of speculation in driving aggregate market dynamics, in particular,
with complete market-level information across many MSAs. These findings complement those in Haughwout,
Lee, Tracy and van der Klaauw (2011), who use data from mortgage accounts to show investors were
important for aggregate mortgage growth during the boom and aggregate delinquencies during the bust.
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and sellers to evaluate the frequency of within-MSA moves. Only 24% of all transactions

and 31% of short-term transactions appear to be associated with move-up purchases within

an MSA. Second, short-term volume sharply increases even among transactions where the

seller used low leverage initially when buying. Another possible explanation for the rise

of short-term sales is the construction of new homes and entry of sophisticated real estate

arbitrageurs. However, only 14% of short-term purchases were made by companies such

as developers or incorporated real estate investors. Of the remaining short-term purchases,

73% were from people buying only one or two homes, who seem unlikely to be professional

developers given the small number of houses they buy.

To further test the predictions of our model, we then present four facts about the joint

price–volume relationship. First, the lead–lag relationship between prices and volume in our

model holds both at the national level and across MSAs, and is more pronounced in MSAs

that experience larger price booms. In the cross-section of MSAs, prices correlate most

strongly with a 24-month lag of volume. Second, price booms are correlated with volume

booms, both across MSAs and across ZIP codes within MSAs. Price booms are similarly

correlated with short-term volume booms and non-occupant purchase booms.5 Third, rising

listings enable the 2000–2005 increase in volume, but falling listings do not drive the subse-

quent decline in volume. Instead, volume declines due to a slowdown in the rate at which

listings sell. This dichotomy matches the model’s predictions about how speculative demand

determines volume during the boom and quiet. Finally, the house price cycle is larger in

MSAs where the 2000 rate of existing sales is greater. As implied in our model, a higher

frequency of short-term buyers increases both steady-state volume and the amplitude of the

price response to the demand shock. Other theories, including housing search and Walrasian

behavioral finance models, struggle to explain many of these facts.

The paper proceeds as follows. Section 1 presents the theoretical results. Section 2

details the data we use. Section 3 describes the composition of buyers and sellers over the

2000–2011 U.S. housing cycle, while Section 4 relates these changes in volume to changes in

house prices. We compare our paper to the existing literature in Section 5 and conclude in

Section 6.

5Gao, Sockin and Xiong (2017) argue that this correlation between house price booms and non-occupant
volume booms is causal using state level capital gains taxes as an instrument for investment activity.
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1 Model

1.1 Setup

We present a discrete-time model of a city with a fixed amount of perfectly durable housing,

normalized to have measure one. Agents go through a life cycle with three possible phases:

potential buyer, stayer, and mover.

Each period, a measure At of potential buyers arrive. Some are matched to take-it-or-

leave-it offers from movers and decide whether to buy a house. The potential buyer value

function is:

Vpbi,t = max
(
0,Vsi,t − Pi,t

)
(1)

where 0 is the value of not buying, Pi,t is the price of housing the potential buyer faces, and

Vsi,t is the value of being a stayer. Non-buying potential buyers exit permanently.

Upon buying, the potential buyer becomes a stayer and earns idiosyncratic flow utility

δi (received at the beginning of next period) from the house, but cannot sell it. Stayers face

an idiosyncratic probability λi > 0 of becoming movers. The stayer value function is:

Vsi,t = ρδi + ρ(1− λi)E
(
Vsi,t+1 | Fi,t

)
+ ρλiE

(
Vmi,t+1 | Fi,t

)
, (2)

where Vmi,t is the value of being a mover, Fi,t is the information set available to agent i at time

t, and ρ is the discount factor corresponding to a risk-free discount rate r. The characteristics

δi and λi are distributed independently and identically across potential buyers according to

the time-invariant pareto density fδ(δi) = εδε0/δ
ε+1
i where δ0, ε > 0, and a general density

fλ(λi).
6

Movers choose list prices and then match to potential buyers, with potential buyers in

descending order of willingness-to-pay matched to movers in ascending order of list prices.

A transaction occurs when the list price is below the matched willingness-to-pay, and the

transaction price equals the list price. Our model follows Hong and Stein (1999), Mankiw

and Reis (2002), and Guren (2018) in that some movers are inattentive and do not adjust

their list prices in response to abnormal levels of demand, while other movers observe current

6Heterogeneity in δ is necessary only to produce the demand curve that is a decreasing function of the
price. A similar demand curve would hold in a model with risk-averse agents and homogeneous δ, which
may better describe the stock market because dividends are the same for all owners.
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demand and choose their list prices in response to it. Extrapolative movers post E(Pt | Fi,t),
their expectation of the average transacted price at t, which we denote Pt. Their value is

Vxmi,t . Informed movers have complete information and choose the list price according to:

Vnmi,t = max
Pi,t

πt(Pi,t)Pi,t + (1− πt(Pi,t)) ρ
(
E
(
Vnmi,t+1|Fi,t

)
− k
)
, (3)

where πt(Pi,t) is the probability of selling at price Pi,t and k is the flow cost from owning a

house if the mover does not sell. Among movers posting the same price, informed movers

match to potential buyers before extrapolative movers. Movers face a constant probability

β of becoming informed. Combining these types gives the mover value function:

Vmi,t = βVnmi,t + (1− β)Vxmi,t . (4)

The model contains three features common in the housing search literature: a lockup

period in which homeowners do not sell, a Poisson hazard of the expiration of this lockup

period, and a loss of housing flow benefits upon lockup expiration (Wheaton, 1990; Caplin

and Leahy, 2011; Burnside, Eichenbaum and Rebelo, 2016). In contrast to this literature,

the Poisson hazard may differ across agents in our model. This hazard influences whether

potential buyers choose to buy, leading the composition of buyers to vary over the cycle.

All agents use extrapolative expectations to forecast future prices. Such extrapolative

expectations match a growing body of survey evidence on how investors predict prices in

asset markets (Case, Shiller and Thompson, 2012; Amromin and Sharpe, 2014; Greenwood

and Shleifer, 2014). Let Pt denote the average of all transacted prices in period t. Define

the moving average of past price changes, ωt ≡ µtω0 + (1−µ)
∑t−1

j=0 µ
j(Pt−j −Pt−j−1), where

0 < µ < 1. Agents expect that prices evolve linearly as a function of past price growth:

P x
t ≡ E(Pt) = Pt−1 + γωt−1, (5)

where 0 < γ < 1 reflects the strength of extrapolation.7

At t, information available to potential buyers about past prices is limited to ωt−1. Ex-

trapolative movers observe the history of average market prices but not other market fun-

7This functional form of extrapolation is the discrete-time analog of the belief specification in Barberis,
Greenwood, Jin and Shleifer (2015), for which Glaeser and Nathanson (2017) provide a microfoundation.
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damentals. Extrapolative movers choose P x
t as their listing price, while informed movers

adjust their listing prices to maximize (3). The additional information available to informed

movers fully reveals the current state of the housing market. This information includes the

current number of listings Lt, the number of potential buyers At, and the number of stayers

of each type St(λ).

Lemma 1 in Appendix A applies the law of iterated expectations to derive a term structure

of expectations given by:

E(Pt+τ ) = Pt + g(µ, γ, τ)ωt, (6)

where g(·) is positive, increasing in γ, and concavely increasing in τ . This term structure

leads past price growth to disproportionately attract short-horizon potential buyers, who

drive the dynamics of market prices and volume.8

To decide whether to buy, potential buyers at t must forecast Vmi,t+τ , which depends in

general on both Pt+τ and the probability of selling upon becoming a mover. However, if

potential buyers expect to sell immediately at the market price upon becoming a mover,

then E(Vmi,t+τ | Fi,t) = E(Pt+τ | Fi,t) and we can solve the model in closed form for each

potential buyer i using equation (6). To achieve this goal and simplify our analysis, we

impose the following restrictions on β and k:

(a) β < At,

(b) k > E(Vnmi,t+1 | Fi,t)− ρ−1 maxπ−1t (1) for each informed mover i, and

(c) Pr(β = 1 | Fi,t) = 1 for each potential buyer i.

The bound on β in part (a) guarantees that there is sufficient demand among potential

buyers for all informed movers to sell each period. The bound on k in part (b) is an

equilibrium condition stating that holding costs are sufficiently large so as to lead informed

movers to choose a list price that will guarantee immediate sale. In Appendix B, we solve

for this bound in equilibrium and numerically calculate it in the calibration. Part (c) is a

8Consistent with the concavity of g with respect to τ , past asset returns do influence annualized expected
capital gains more strongly over short versus long future horizons. Armona, Fuster and Zafar (2016) find
that 1-year-ahead expectations of house price growth are nearly five times more sensitive to perceived past
price changes than annualized expectations of price growth 2-to-5 years in the future. Graham and Harvey
(2003) and Vissing-Jorgensen (2004) show that, in the US between 1998 and 2003, expected (excess) stock
returns over the next year responded more strongly to recent (excess) returns than did expected returns
over the next ten years. Frankel and Froot (1990) find that a 1% increase in the exchange rate over the
past week increases expectations of next week’s appreciation by 0.13% and decreases expectations of weekly
appreciation over the next 12 months by 0.01%.
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restriction on beliefs; it states that all potential buyers think that all movers are informed.

This mistake is a form of overconfidence in which potential buyers fail to forecast their own

possible inattention and thus naively believe that they will be informed when they go to sell.

Together, these restrictions imply that potential buyers believe that all movers immediately

sell, which is sufficient to guarantee E(Vmi,t+τ | Fi,t) = E(Pt+τ | Fi,t) and allows us to solve

the model.

1.2 Equilibrium

Combining the potential buyer and stayer value functions, we iterate forward to derive a

cutoff flow utility above which a potential buyer matched to a price Pi,t is willing to buy.

Proposition 1 (Potential buyer demand and horizon). Potential buyer i matched to price

Pi,t buys when

δi ≥ rPi,t − φ(λi;µ, γ, r)ωt−1, (7)

where φ is positive and increasing in λi.

Proof. See Appendix A.

The first term on the right side of this cutoff captures the user cost of holding a house

for one period and the second term captures the benefit from expected capital gains. The

function φ(·) is increasing in the probability of becoming a mover, λi, both because of dis-

counting and because extrapolation from past price changes has a concave term structure.

Thus, speculative motives magnify total demand when buyers expect capital gains and atten-

uate total demand when buyers expect capital losses. Furthermore, the force of this motive

increases as the buyer’s horizon shortens, and expected capital gains stimulate demand more

for buyers with low flow utility.

Total demand among all potential buyers as a function of P and λ is given by:

Dt(P, λ) = Atfλ(λ) (1− Fδ [rP − φ(λ; ·)ωt−1]) . (8)

Integrating over the distribution of λ yields a demand function:

Dt(P ) =

∫ 1

0

Dt(P, λ)dλ. (9)
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Total listings include past unsold listings and the flow of stayers who become movers:

Lt = It−1 +

∫ 1

0

λSt−1(λ)dλ, (10)

where It−1 is the stock of unsold inventory from t−1 and St−1 is the stock of stayers from t−1.

The expression for Lt has two key implications for the dynamics of volume. First, volume

today depends on volume before, as past buyers become current sellers. Second, the number

of listings today depends both on the level of past volume and on the expected holding

periods among past buyers. The larger the number of past buyers with short horizons, the

larger the flow of current listings.

Proposition 2 derives equilibrium volume and prices:9

Proposition 2 (Equilibrium prices and volume).

Vt =


Lt, Dt(P

x
t ) > Lt

Dt(P
x
t ), Dt(P

x
t ) ∈ [βLt, Lt]

βLt, Dt(P
x
t ) < βLt

(11)

Pt =


(1− β)P x

t + βD−1t (Lt), Dt(P
x
t ) > Lt

P x
t , Dt(P

x
t ) ∈ [βLt, Lt]

D−1t (βLt), Dt(P
x
t ) < βLt.

(12)

Proof. See Appendix A.

We partition equilibrium into three possible phases in the relationship between supply

Lt and demand at the extrapolative price Dt(P
x
t ). When Dt(P

x
t ) > Lt, there is excess

demand relative to supply at the extrapolative price. We refer to this period as the boom.

During the boom, volume includes all extrapolative movers, who post P x
t , and all informed

movers, who post the highest price that would guarantee sale given the total number of

listings, D−1t (Lt) > P x
t . Prices during the boom equal a weighted average of the informed

and extrapolative movers’ posted prices, and all listings sell.

9When the number of potential buyers exactly equals the number of movers, At = Lt, the formula for the
equilibrium price Pt when Dt(P

x
t ) = Lt differs slightly from (12). The proof of Proposition 2 in Appendix

A gives the expression for this special case.
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When βLt ≤ Dt(P
x
t ) ≤ Lt, demand at the extrapolative price is between supply from

informed movers and supply from all movers. We refer to this period as the quiet. During

the quiet, volume equals all informed movers plus a share of extrapolative movers. Everyone

posts P x
t . Informed movers do not post lower prices than extrapolative movers because they

are guaranteed to sell and therefore maximize value at this price.

When Dt(P
x
t ) < βLt, supply from informed movers exceeds demand at the extrapolative

price. We refer to this period as the bust. During the bust, volume equals all informed

movers, who post the highest price that would guarantee sale given the total number of

listings, D−1(βLt) < P x
t . Extrapolative movers post P x

t but do not sell.

Given Vt, we can solve for two additional state variables. Inventories of unsold listings

can accumulate during both the quiet and the bust when extrapolative movers post prices

that are too high to guarantee sale:

It = Lt − Vt =


0, Dt(P

x
t ) > Lt

Lt −Dt(P
x
t ), Dt(P

x
t ) ∈ [βLt, Lt]

(1− β)Lt, Dt(P
x
t ) < βLt.

(13)

The number of stayers of type λ equals past stayers who do not receive moving shocks plus

new buyers:

St(λ) = (1− λ)St−1(λ) + Vt(λ), (14)

where Vt(λ) equals volume to potential buyers of type λ. Because cheaper houses are matched

to potential buyers first, potential buyers are rationed according to the highest equilibrium

list price, which is the price posted by informed movers: P n
t = D−1t (Lt) during the boom

and P n
t = Pt during the quiet and bust. As a result, Vt(λ) = Vt

Dt(Pnt ,λ)

Dt(Pnt )
= Dt(P

n
t , λ).

1.3 Calibration

To investigate the model’s predictions over a boom-bust cycle, we calibrate the model and

study how equilibrium prices and quantities adjust to a one-time, unanticipated, permanent

shock to the number of potential buyers arriving each period, At.
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Initial and Terminal Conditions

We follow Barberis, Greenwood, Jin and Shleifer (2017) and simulate a finite-horizon version

of the model that features a fixed liquidation price P T received by all stayers and movers in

the final period T . We simulate the model at a quarterly frequency and set T = 48, which

corresponds to a 12-year window. Potential buyers know P T when deciding whether to buy.

Imposing the finite horizon allows us to focus on a single boom-bust episode.

We define an efficient steady state of this finite-horizon version of the model to be one

in which state variables are constant over time and there are no unsold listings, It = 0.

Appendix B gives the conditions under which a unique efficient steady state exists and

characterizes this equilibrium along with its implied liquidating price. To study how prices

and volume respond to a demand shock, we initialize the model in this efficient steady state

at t = 0 with an initial arrival rate of Ai. At t = 1, the arrival rate jumps to Af > Ai and

we study the joint dynamics of prices and volume as prices converge to the level that would

be consistent with the new efficient steady state associated with this higher level of demand.

Parameter Values

We must specify the distribution of potential holding periods fλ(·) and the eight other

parameters of the model: µ, γ, β, r, ε, δ0, A
i, and Af . This section briefly discusses our

method for calibrating these parameters. Appendix B contains further details.

Since the distribution of potential holding periods is the key force in our model, we mea-

sure fλ(·) non-parametrically in the data, rather than specifying an explicit functional form.

We use data from the National Association of Realtors’ (NAR) Investment and Vacation

Home Buyer Survey, which annually asks a representative sample of recent home buyers the

“length of time [the] buyer plans to own [the] property.” The responses to this question

map directly into values of λi, so we measure fλ(·) as the distribution of these values across

survey respondents.

Another important ingredient in the model is the term structure of extrapolation, gov-

erned by the parameters µ and γ. We calibrate these parameters with survey evidence on

expectation formation over different horizons in the housing market. Armona, Fuster and

Zafar (2016) estimate that a 1% increase in perceived house price growth over the last year

causally increases expected annualized house price growth by 0.2% over the next year and
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by 0.05% over the next two-to-five years. We map these estimates into our model using (6),

yielding µ = 0.71 and γ = 0.40. We set β = 0.17, which implies an upper bound of 1.5 years

on the expected time for a mover to sell during the bust.10

The model’s information structure means that market participants observe prices with

a quarterly lag. We use a quarterly discount rate of r = 0.015, which implies an annual

discount rate of 6 percent. The elasticity of demand ε is 0.6, a value in the range of estimates

suggested by Hanushek and Quigley (1980). The remaining three parameters, δ0, A
i, and

Af , are chosen to normalize the initial price level to P0 = 1 and generate a final price of

P T = 1.6, which means that we study a demand shock that raises steady-state prices by

60%.

1.4 Results

Figure 2 displays results from simulating the model at the chosen parameter values. Panel

(a) plots total transaction volume and average market prices. The demand shock leads to

a large boom and bust. Average market prices overshoot the new steady-state price by 60

percent, rising to 2.6, then falling to 1.4 before recovering to the new steady-state price of

1.6. Volume doubles, reaching its peak 8 quarters prior to the peak in market prices. Prices

fall on relatively low volume.

Panels (b)-(d) shed further light on the mechanism driving these results. Panel (b)

disaggregates the average market price into its two components: the extrapolative price

posted by extrapolative movers, and the market-clearing price posted by informed movers.

Panel (c) plots the inventory of unsold listings each period. Panel (d) plots the share of

buyers with expected holding periods less than three years.

The rise in prices occurs in two stages. In the first stage, the boom, both prices and

volume increase. During the boom, informed movers post higher prices than extrapolative

movers and all listings sell. Extrapolative movers underreact to the demand shock as the

price they post is a function only of prior prices, even though demand at the extrapolative

price exceeds total listings. Informed movers react to this sluggish behavior and increase

their prices to the level that clears the market, equating volume and listings. Combing these

10During the bust, the probability that a mover sells in a given period is β, as only informed movers sell.
Once the bust ends, the probability of selling rises above β, as some extrapolative movers sell. Thus, an
upper bound on the expected time until sale is 1/β = 6 quarters.
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effects leads to an initial underreaction in market prices, similar in spirit to the effect of slow

information diffusion in Hong and Stein (1999). However, in our model the underreaction

derives from extrapolation among uninformed movers. As prices continue to rise, extrap-

olative expected capital gains increase and demand among potential buyers grows. Demand

growth leads informed movers to raise list prices above 1.6, the new steady-state price, and

eventually the market price exceeds this level. The growth in demand is disproportionately

high among short-term buyers, whose share of market activity expands. Entry of these buy-

ers also leads the supply of listings to rise in subsequent periods, enabling rising volume

during the boom.

The boom does not continue indefinitely. Eventually, the shifting composition of buyers

toward short horizons leads listings to rise enough that, for informed movers to guarantee

sale, they must reduce their prices. At this point, informed movers match the price being

posted by extrapolative movers, so market prices continue to rise but at slower rates. The

slowdown in average price growth leads to a fall in expected capital gains, causing demand

growth among short-term buyers to slow. Transaction volume falls and some extrapolative

movers fail to sell. The fall in volume and reduction in informed price-setting mark the

beginning of the quiet. During this period, prices are rising, volume is falling, an inventory

of unsold listings accumulates, and the composition of buyers skews away from short-term.

As unsold listings accumulate in the quiet, it becomes harder for informed movers to

guarantee sale by posting the extrapolative price. The bust begins as they choose to undercut

extrapolative movers, causing average market prices to fall. During the bust, prices fall on

very low volume relative to the boom. Volume is low both because falling average prices

lead to further declines in expected capital gains—which discourage short-term buyers—and

market prices are high relative to the steady-state flow of housing services—which discourage

long-term buyers. Once prices stabilize, expected capital gains rise and volume recovers. The

large stock of unsold listings, which gradually sell over several periods, prevents informed

movers from raising prices too quickly and thus slows the recovery of market prices.

The simulation produces many features of empirical price and volume dynamics in the

housing market: an overshooting of prices, a rise in volume along with prices, a lead–lag

relation between prices and volume, a rise in listings during the boom and an even sharper

rise during the quiet, and a price crash on low volume. It also makes new predictions: a rise

in the short-term buyer share during the boom, a fall in this share during the quiet, and
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a rise in volume coming primarily from short-term sellers. We now turn to confirm these

patterns in the data.

2 Data

In the remainder of the paper, we provide empirical evidence linking shifts in the distribution

of realized holding periods over the course of the 2000–2011 U.S. housing cycle to dynamic

patterns in volume and prices that directly mirror the patterns implied by our model. We

focus on the housing market both because of its macroeconomic relevance and because the

availability of comprehensive, asset-level microdata permits a uniquely rich analysis of hold-

ing periods and the details of buyers and sellers.

To conduct our analysis, we use data on individual housing transactions provided by

CoreLogic, a private vendor that collects and standardizes publicly available tax assessments

and deeds records from municipalities across the U.S. Our main analysis sample spans the

years 1995–2014 and includes data from 115 metropolitan statistical areas (MSAs), which

together represent 48% of the U.S. housing stock.

We include all transactions of single-family homes, condos, or duplexes that satisfy the

following filters: (a) the transaction is categorized by CoreLogic as occurring at arm’s length,

(b) there is a nonzero transaction price, and (c) the transaction is not coded by CoreLogic

as being a nominal transfer of title between lenders following a foreclosure. We then drop a

small number of duplicate transactions where the same property is observed to sell multiple

times at the same price on the same day or where multiple transactions occur between the

same buyer and seller at the same price on the same day. Appendix C specifies the exact

steps followed to arrive at a final sample of 51,080,640 transactions. Given the geographic

coverage of these data and their source in administrative records, our analysis sample serves

as a proxy for the population of transactions in the U.S. during the sample period.

We supplement these data with national and MSA-level housing stock counts from the

U.S. Census, national counts of sales and listings of existing homes from the NAR, and

national and MSA-level nominal house-price indices from CoreLogic. We also use the In-

vestment and Vacation Home Buyer Survey from the NAR mentioned in Section 1.3; further

details on these data appear in Appendix B.
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3 The Composition of Buyers and Sellers

3.1 Variation in Expected Holding Times

Our model implies that recent price changes will differentially draw in short-term investors

who amplify volume by selling more frequently and destabilize prices through positive feed-

back. The magnitude of these effects depends on the degree of heterogeneity in the distribu-

tion of expected holding times among prospective investors. While scarce data are available

concerning the expected holding times of investors, the best data we are aware of, which

come from the housing market, suggest that investment horizons vary considerably across

individuals and commove strongly with recent price changes.

Figure 3, Panel (a) documents the substantial cross-sectional heterogeneity in expected

holding times among respondents to the Investment and Vacation Home Buyers Survey.

Each bar reports an equal-weighted average of the share of recent buyers who report a given

expected holding time across survey years. Averages are reported separately by property

type. Two facts stand out. First, the vast majority of recent homebuyers (roughly 80%)

report knowing what their expected holding time will be. Second, there is wide variation in

expected holding times among those who report. About half of the expected holding times

are between 0 and 11 years and are distributed somewhat uniformly over that range. The

survey question groups the remaining half of the responses into a single expected holding

time of greater than or equal to 11 years; however, there may be substantial variation within

that group as well. Expected holding times also vary in an intuitive way across property

types. Recent buyers of investment properties report substantially shorter expected holding

periods than recent buyers of primary residences or vacation homes.

There is also significant variation in the time series. To demonstrate this variation, we

construct a “short-term buyer share,” the fraction of respondents (other than those reporting

“don’t know”) who report an expected holding time of less than 3 years or had already sold

their property by the time of the survey. Across survey years, the short-term buyer share

varies from 26% to 41% for investment properties, from 10% to 22% for primary residences,

and from 13% to 34% for vacation properties. The weighted average of the short-term buyer

share across property types varies from 13% to 26%.

This variation over time is not random. Figure 3, Panel (b) shows the short-term buyer

share moves closely with recent price appreciation in the housing market. A simple regression
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of the pooled short-term buyer share on the equal-weighted average year-over-year change

in the nominal quarterly FHFA U.S. house price index during the survey year yields a

statistically significant coefficient estimate of 0.82.11 This coefficient implies that a recent

nominal gain of 10% in house prices is associated with an increase in the short-term buyer

share of 8.2 percentage points. Nominal house price appreciation was 11% in the US in

2005 and much larger in some metropolitan areas. Thus, changes in house prices over the

last cycle may have induced significant shifts in the distribution of expected holding times

among homebuyers at different points in the cycle. Because the NAR data on expected

holding periods is only available from 2008, we turn to transaction-level data on realized

holding periods over the last cycle to investigate this possibility.

3.2 The Composition of Buyers and Sellers over Time

The key mechanism that generates time variation in transaction volume in our model is that

changes in expected capital gains over the course of the housing cycle differentially attract

buyers with shorter versus longer expected holding periods. This phenomenon, which follows

from the cutoff rule for market entry in Proposition 1, implies that large swings in volume

should be accompanied by parallel changes in the distribution of realized holding periods

among those who sell their homes at various points in the cycle.

Figure 4 presents a simple yet compelling illustration of the time variation in realized

holding periods during the 2000–2011 U.S. housing cycle. For each transaction in our sample

of CoreLogic deeds transfers, we define the holding period as the number of days since the

last transaction involving the same property. We then group all transactions with holding

periods of less than 5 years into bins of 1, 2, 3, 4, or 5 years and count the number of

transactions falling into each bin. Figure 4 plots these bin counts by year for each year

between 2000 and 2011.

During the boom years of 2000–2005, there is a clear compression in the distribution

of realized holding periods toward shorter holding periods. This pattern then reverses as

national house prices peak in 2006 and begin to fall in the subsequent years. The increase in

transaction volume at short holding periods during the boom years represents a nontrivial

portion of the overall increase in volume during this period. For example, total volume

11Unlike the CoreLogic indices available to us that we use elsewhere in the paper, the FHFA house price
index covers the period 2015–2016. For this reason we use the FHFA index in Figure 3.
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across all holding periods (including those greater than 5 years) increased from 2,766,902

transactions in 2000 to 3,835,049 transactions in 2005. During the same period, total volume

in the 1-, 2-, and 3-year bins increased from 484,666 transactions to 928,611, which implies

that these three groups alone account for 42 percent of the total increase in volume between

2000 and 2005.

Although these patterns are consistent with speculative motives leading short-term buyers

to enter and exit the local housing market in response to expected capital gains, it is also

possible that some short-term sellers do not truly exit the market and instead choose to buy

another house within the same MSA. Rather than speculation, such a pattern may reflect

move-up purchases enabled by higher home equity during the boom, as in Stein (1995)

and Ortalo-Magné and Rady (2006). Furthermore, these within-MSA movers complicate

mapping the data to the model because in the model, sellers leave the city and expect to do

so upon buying.

We take two approaches to exploring this alternative explanation. First, we follow the

methodology of Anenberg and Bayer (2013) and construct a direct measure of within-MSA

moves. We use the names of buyers and sellers to match transactions as being possibly linked

in a joint buyer-seller event. For each sale transaction, we attempt to identify a purchase

transaction in which the seller from the sale matches the buyer from the purchase. To allow

the possibility that a purchase occurs before a sale or with a lag, we look for matches in a

window of plus or minus one quarter around the quarter of the sale transaction. We only

look for within-MSA matches, as purchases associated with cross-city moves are similar in

spirit to our model.

Our match accounts for several anomalies that would lead a naive match strategy to

understate the match rate.12 Our approach is likely to overstate the number of true matches,

because it does not use address information to restrict matches and it allows common names

to match even if they represent different people. Because we find a low match rate even

with this aggressive strategy, we do not make use of address information in our algorithm or

otherwise attempt to refine matches.

We focus on transactions between 2002 and 2011 because the seller name fields are

12These include: inconsistent use of nicknames (e.g., Charles versus Charlie), initials in place of first
names, the presence or absence of middle initials, transitions from a couples buyer to a single buyer via
divorce, transitions from a single buyer to a couples buyer via cohabitation, and reversal of order in couples
purchases.
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incomplete in prior years for several cities. We also restrict sales transactions to those

with human sellers, as indicated by the name being parsed and separated into first and last

name fields by CoreLogic. The sample includes 16.3 million sales transactions. Of these, we

are able to match 3.9 million to a linked buyer transaction, or 24%. Thus, three-quarters of

transactions do not appear to be associated with joint buyer-seller decisions. Among sellers

who had bought within the last three years, the match rate is slightly higher, equal to 31%,

consistent with move-up purchase behavior. In addition, the match rates peak in 2005 at

29% and 38% for all transactions and short-term transactions, respectively. These patterns

confirm and extend the findings in Anenberg and Bayer (2013), who conduct a similar match

for the Los Angeles metro area. However, the evidence supports the notion that most of

the short-term volume represents sellers not engaging in move-up purchases, even during the

cycle’s peak.

Our second approach provides evidence on whether down-payment constraints for move-

up buyers can account for our results. In particular, we ask how much of the increase in

short-term selling occurs among transactions when the original buyer used low leverage. To

do this we focus on the subset of transactions where the seller originally purchased with a

loan-to-value (LTV) ratio below 60 percent. Low LTV ratios suggest buyers are less likely to

be down-payment-constrained when they subsequently choose to sell the property. Therefore,

if we observe a significant increase in short-term selling among this subsample of buyers, we

can be relatively certain that it is not due to a relaxation of the down-payment constraint

on their next purchase.

We find that total volume by low-LTV sellers increased from 239,253 in 2000 to 466,650 in

2005. During the same period, total volume by low-LTV sellers in the 1-, 2-, and 3-year bins

increased from 157,567 to 254,204. This low LTV growth accounts for approximately 22%

((254−158)/(929−485)) of the total increase in volume in these bins. This pattern suggests

that the compression in holding periods cannot be entirely due to down-payment constraints

for move-up buyers, as a considerable share of the growth in short-term transactions occurred

among low-LTV sellers. At the same time, the proportional growth in short-term buying

was stronger among high-LTV sellers, which is consistent with the move-up channel being an

important factor during the boom. This evidence is also consistent with high credit growth

among speculative buyers during the boom, as documented by Haughwout, Lee, Tracy and

van der Klaauw (2011) and Bhutta (2015).
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3.3 The Composition of Buyers and Sellers in the Cross-section

Variation across MSAs

The shift in the composition of buyers and sellers toward shorter holding periods during the

boom correlates highly with changes in total volume across local markets. This correlation

can be seen clearly in Figure 5, which presents binned scatter plots of the percent change in

total volume at the MSA-level from 2000–2005 versus the percent change in volume for short

holding periods (< 3 years) in Panel (a) and long holding periods (≥ 3 years) in Panel (b).13

Not only does the growth in volume of short-holding-period transactions correlate strongly

with the increase in total volume across MSAs during this period, but this relationship is

much stronger for short holding periods relative to long holding periods.

Panel (c) further shows that these cross-sectional differences in the growth rate of short-

holding-period volume explain a significant portion of the differences in the growth in total

volume across MSAs during this period. For each MSA, we plot the change in short-holding-

period volume divided by initial total volume on the y-axis against the percent change in

total volume on the x-axis. The slope of this line provides an estimate of how much of a

given increase in total volume during this period came in the form of short-holding-period

volume. The answer is 32%. Thus, shifts in the distribution of holding periods of buyers and

sellers over the course of the cycle are a major determinant of changes in total transaction

volume.

Proposition 1 suggests that expected capital gains increase demand through the extensive

margin by lowering the threshold level of housing flow utility required to justify a purchase.

A corollary of this result is that volume will increase more strongly in response to a change in

expected capital gains among buyers with low housing utility. While we do not observe hous-

ing utility in our data, we do observe whether each purchased property is owner-occupied.

Under the assumption that non-occupants receive less housing utility than occupants, we

test this prediction by examining whether non-occupant purchases rose more than occupant

purchases from 2000 to 2005.14

13For visual clarity, we group MSAs into 25 equal-sized bins based on their percent change in total volume
during this period and calculate the average percent change in short- and long-holding-period volume in each
of these bins.

14One interpretation of the housing utility received by investors, who represent one group of non-occupant
buyers, is the rent they collect. This rent is less than the housing utility of many owner occupants because in
a competitive market, rent equals the housing utility of the marginal occupant. Frictions that arise from the
separation of ownership and control may further lower rent relative to occupant housing utility (Nathanson
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To track non-occupant buyers in the market over time, we follow Chinco and Mayer (2016)

by marking buyers as non-occupants when the transaction lists the buyer’s mailing address

as distinct from the property address. While this proxy may misclassify some non-occupants

as living in the home if they choose to list the property’s address for property-tax-collection

purposes, we believe it to be a useful gauge of the level of non-occupant purchases. For the

analysis of non-occupant purchases, we drop 13 MSAs for which the mailing address data

are not consistently populated using a procedure specified in Appendix C.

Using this proxy, Figure 6 displays plots that are analogous to those in Figure 5 but

use non-occupancy as the sorting variable rather than holding periods. We find that, like

short-term volume, non-occupant volume is an important driver of total volume during the

cycle. The top panels compare volume growth for non-occupant and occupant buyers; the

relationship between total volume growth and non-occupant volume growth is much stronger.

The bottom panel shows that non-occupant volume growth accounts for more than half of

the growth in total volume across MSAs. We assess below the extent to which the short-term

and non-occupant categories overlap.

Variation within MSAs

The MSA-level results from Figures 5 and 6 also hold across local neighborhoods within

MSAs. To show this, in Table 1 we repeat the cross-MSA analysis using a ZIP-code-level

panel data set constructed from the same underlying sample of transactions.15 In column

1, we regress the percentage change in the number of short (< 3 years) holding period

transactions in each ZIP code on the corresponding percentage change in total volume for

that ZIP code. Column 2 runs the same regression, using the percentage change in the

number of long (≥ 3 years) holding period transactions as the outcome. Both regressions

include a full set of MSA fixed effects, so that the coefficient estimates reflect only within-

MSA variation in transaction volume. Echoing the cross-MSA results from Figure 5, the

change in short-holding-period volume is strongly correlated with changes in total volume

and is much stronger than the corresponding relationship for long holding periods. Column

3, which is analogous to panel (c) of Figure 5, shows that these changes in short-holding-

period volume are also quantitatively important for explaining cross-ZIP-code differences in

and Zwick, 2018).
15We assign each transaction to a Census ZIP-Code Tabulation Area (ZCTA) using the postal ZIP code

of the property and a ZCTA-to-ZIP code crosswalk file provided by the Missouri Census Data Center.
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the change in total volume within MSA. In this specification, we regress the change in short

holding period volume measured as a fraction of the level of total volume in 2000 on the

change in total volume for the ZIP code. The coefficient estimate implies that roughly 24%

of the cross-ZIP-code variation within an MSA in the growth of volume over this period can

be attributed to differences in the number of short-holding-period transactions.

The results for occupants versus non-occupants are similar. Columns 4–6 of Table 1 report

estimates from similar regressions where we instead group borrowers by their occupancy

status. As in Figure 6, we find an important role for non-occupants. The coefficient estimate

in column 6 implies that roughly a third of the within-city variation in the growth rate of

total volume between 2000 and 2005 can be attributed to changes in the number of purchases

by non-occupants.

The Characteristics of Short-term Buyers

Our results thus far indicate that short-term buyers were a major driver of changes in

transaction volume over time, across MSAs, and within MSAs during the boom years of

the 2000s housing cycle. In this section, we explore three additional questions designed

to shed further light on the nature of these speculative short-term purchases. The results

point to the quantitative importance of a class of inexperienced speculative entrants into the

housing market during the cycle.

First, we ask what share of short-term volume was due to firms or developers rather than

individuals. To evaluate this question, we mark transactions as developer purchases when

the buyer name is both not parsed as a person by CoreLogic and contains strings reflecting

developer names.16 Across the cities in our sample, these transactions account for 6% of

total volume and 10% of the growth in volume between 2000 and 2005. Of the 4,015,261

transactions between 2000 and 2005 made by buyers with short-holding periods, 576,081

(14%) were developer buyers. Between 2000 and 2005, the number of short-term-buyer

transactions increases from 510,309 to 951,516, while the number of short-term-developer-

buyer transactions increases from 78,856 to 131,421, or 12% of the growth in short-term

transactions. We conclude that, though developers were actively involved in the housing

market, they did not contribute disproportionately to the growth in short-term volume during

16We identify developer names using CoreLogic’s internal new construction flag as described in Appendix
C.
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the boom. A possible explanation is that developers were more likely to engage in speculation

in the raw land market (Nathanson and Zwick, 2018).

Second, we ask what share of short-term volume was from sellers who were non-occupant

buyers. The results above indicate that both short-term and non-occupant buyers were

disproportionately active during the run-up in house prices from 2000 to 2005. However,

there may be overlap between these two groups. Of the 2000–2005 short-term volume, we

find that 848,933 (25%) were non-occupant buyers (excluding developer buyers). Between

2000 and 2005, the number of short-term-non-occupant-buyer transactions increases from

94,298 to 248,334, or 40% of the growth in short-term transactions overall. Non-occupant

buyers thus account for an excess share of the growth in short-term buyers, further suggesting

that speculative motives drive their trading behavior.

Finally, we ask what share of short-term buyers were experienced investors versus inex-

perienced speculators in merely one or two homes. To answer this question, we count the

total number of transactions for each unique buyer name in an MSA and then ask what share

of total transactions in that MSA are associated with buyers with few purchases during the

entire sample period versus buyers with many purchases. We classify buyers with one or two

purchases as inexperienced and those with three or more as experienced. Of the 2000–2005

short-term volume, 2,521,787 (73%) were inexperienced buyers (excluding developer buyers).

Between 2000 and 2005, the number of inexperienced short-term-buyer transactions increases

from 315,638 to 593,062, or 71% of the growth in short-term transactions. Consistent with

the evidence in Bayer, Geissler, Mangum and Roberts (2011), who use a similar methodology

for the Los Angeles metro area, entry of inexperienced buyers is critical for understanding

the growth in aggregate volume. Bayer, Geissler, Mangum and Roberts (2011) show that

inexperienced entrants pursue a momentum-trading strategy, consistent with the prediction

of Proposition 1.

4 The Joint Dynamics of Prices and Volume

4.1 The Lead–Lag Relationship

One of the key features of our model is that it is able to produce dynamic patterns in prices

and volume that are consistent with the patterns typical of housing cycles. In particular, it
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can generate episodes in which both prices and volume go through a boom and bust cycle,

with the volume cycle leading the price cycle. Panel (a) of Figure 1, which plots aggregate

trends in prices and transaction volume between 2000–2011, shows that this pattern was

clearly present in the 2000s housing cycle. Volume peaks before prices and there is a sustained

period during which volume is falling rapidly on high prices. This period corresponds to the

quiet in our model and is marked in the figure as the period between the peak of volume

and the last peak of prices before their pronounced decline. In this section, we provide

evidence that this lead–lag relation is a robust feature of housing cycles that holds not just

in aggregate but also across MSAs and in a way that is directly related to the severity of the

housing cycle itself.

Figure 7, Panel (a) presents evidence that the lead–lag relation holds on average across

MSAs. We search for the horizon over which a given change in volume has the most predictive

power for the contemporaneous change in prices at the MSA level. Changes in volume

generally lead changes in prices if the correlation between prices and volume is maximized

at a positive lag.

To implement this search, we build a monthly panel of log house prices and transaction

volume at the MSA level running from January 2000 to December 2011. We normalize

transaction volume in each MSA-month by dividing by the total housing stock for the MSA

recorded in the 2000 Census. Using this panel, we run a series of simple regressions of the

form:

pi,t = βτvi,t−τ + ηi,t, (15)

where p is log price, v is volume, i indexes MSAs, and time is measured in months. To

account for the seasonal adjustment in the CoreLogic price indices, for each regression we

demean prices at the MSA level and demean volume at the MSA–calendar month level.17

The coefficient βτ provides an estimate of how movements in volume around MSA–

calendar month averages at a τ -month lag are correlated with contemporaneous movements

in prices around MSA averages. We run these regressions separately for up to 4 years of lags

(τ = 48) and one year of leads (τ = −12). Panel (a) of Figure 7 plots the implied correlation

from each regression along with its 95% confidence interval.18 The correlation is positive at

17For other work regressing house prices on lagged transaction volume, see Leung, Lau and Leong (2002),
Clayton, Miller and Peng (2010), and Head, Lloyd-Ellis and Sun (2014).

18The implied correlation equals βτ std(vi,t−τ )/ std(pi,t), where vi,t−τ and pi,t are the demeaned regressors.
Confidence intervals for each estimate come from standard errors clustered at the month level.
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most leads and lags but reaches its maximum at a positive lag of 24 months. Thus, changes

in volume generally lead changes in prices by about two years.

Figure 7, Panel (b) shows that this lead–lag relation is robust across MSAs and increasing

in the size of the boom-bust cycle. We sort MSAs into 20 groups based on the increase in

prices from January 2000 to peak and then plot average prices and volume relative to housing

stock for each group. The results indicate that the strength of the lead–lag relation between

prices and volume appears to increase in the size of the price boom, which provides further

support that the patterns in volume through the cycle are linked to market prices.

In Figure 8, we further decompose volume in the cross-section of MSAs and ZIP codes

and ask how volume growth in various categories correlates with cross-sectional variation in

the size of the price boom. The goal is to connect the evidence on the composition of buyers

and sellers during the volume boom to the rise of prices. We present binned scatter plots of

growth for total volume, short-term volume, and non-occupant volume against the percent

change in prices from January 2000 to peak. Panels (a), (c), and (e) plot the cross-MSA

relationships, while Panels (b), (d), and (f) plot the cross-ZIP relationship after absorbing

MSA fixed effects. We fix the axes so that the slopes are equal in each row and report the

slope of the fitted line. The ZIP code plots weight observations by initial volume in 2000 to

avoid undue influence from small ZIP codes.

Panels (a) and (b) confirm the facts in Figure 7 that the relationship between the volume

and price booms is robustly positive, both across MSAs and across ZIP codes within MSAs.

The slopes are quantitatively close and imply a 0.63-0.67% increase in volume per 1% increase

in prices. Panels (c) and (d) show the relationship is stronger for short-term volume and

robust across MSAs and ZIP codes within MSAs. Panels (e) and (f) reveal a somewhat

stronger relationship between non-occupant purchases and the price boom at the ZIP level

than across MSAs. Together this evidence suggests that the growth in both short-term and

non-occupant volume documented in the aggregate above is not only robust across local

markets but also directly related to the size of the boom in prices.

4.2 Listings over the Cycle

Because our model departs from Walrasian price discovery, it also has implications for the

dynamics of listings and unsold inventory over the course of a housing cycle. In particular,

Proposition 2 implies that when demand is sufficiently low relative to the stock of current
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listings, an inventory of unsold listings will accumulate as extrapolative movers fail to cut

prices quickly enough to clear the market. This can happen either because of an influx

of listings from recent short-term buyers, or because of a fall in price growth that lowers

speculative demand even holding current listings constant.

Figure 1, Panel (b) plots the empirical evolution of unsold listings and national prices

between 2000 and 2011. Unsold listings equal the inventory of listed existing houses reported

by the NAR (both volume and listings are seasonally adjusted using month-of-year fixed

effects). As in Panel (a), we continue to shade the quiet period for reference. The existence

of this quiet period confirms the prediction of Proposition 2, and the contemporaneous sharp

increase in unsold listings matches the path of simulated unsold inventory in Figure 2, Panel

(c).

Our model also has implications for the relation between listings and volume at different

stages of the cycle. Proposition 2 predicts that during the boom, volume increases entirely

because owners are more likely to list their houses for sale. The speed at which listings sell

remains constant, with all listings selling instantaneously just as they do in steady state.

Conversely, volume falls during the quiet because the speed at which listings sell begins to

decline, as listings outstrip demand.

To determine the relative importance of listing and selling rates for explaining movements

in volume, we use the methodology of Ngai and Sheedy (2016) to measure these rates during

the cycle. In discrete time, the equations determining these rates are Vt = stIt, It = It−1 −
Vt−1 + Lt, and Lt = nt(Kt − It), where K denotes the housing stock, s denotes the rate

at which listings sell, and n denotes the rate at which owners list unlisted houses. Using

monthly data on V , I, and K, we calculate st = Vt/It and nt = (It − It−1 + Vt−1)/(Kt − It)
for each month. Figure 9 plots these probabilities averaged within each year.19

Figure 9 shows that the listing rate nt rose 40% during the boom, whereas the rate st

at which listings sold remained flat. In contrast, the decline in volume during the quiet is

driven primarily by st, which contracts by about 30% while nt remains high. As implied by

the steady-state equation V = Ksn/(s+ n), these rates multiplicatively determine volume,

so their proportional changes determine their relative importance. This evidence confirms

the model’s predictions about what drives volume during the boom and the quiet.

19In discrete time, V and L are integrals of their continuous time counterparts, whereas I equals the
integral of continuous-time listings. In this exercise, we use existing sales from the NAR for V , because it is
analogous to the data on I. Burnside, Eichenbaum and Rebelo (2016) plot the same series for st.
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4.3 Initial Volume and the Size of the Cycle

An additional implication of the model is that an increase in the distribution of expected

holding times fλ(·) raises both the level of steady-state volume and the amplitude of the

boom–bust cycle. All else equal, markets with a larger pool of potential short-term buyers

should experience larger price swings during the cycle. To evaluate this prediction, we test

whether steady-state volume and the amplitude of the price cycle are positively correlated

across MSAs. Our measure of steady-state volume is the number of existing home sales in

2000 as a share of the housing stock.20 The boom in each MSA is the percentage change in

prices between January 2000 and the price peak, and the bust equals the percentage change

between the month of the peak and the month in which prices reached their lowest level

subsequent to the peak month.

Figure 10 plots the relationship between steady-state volume and the magnitude of the

boom and bust in prices across MSAs. Panel (a) shows a clear positive relationship between

initial volume and the magnitude of the price boom: MSAs with higher initial volume

experienced significantly larger house price booms. As shown in Panel (b), these MSAs also

experienced more drastic drops in prices following the boom.

Columns 1 and 3 of Table 2 quantify this relationship by reporting coefficient estimates

from simple linear regressions of the price boom (Column 1) and bust (Column 3) on steady-

state volume. A one percentage point increase in the share of the existing housing stock that

turned over in 2000 is associated with a 15 percentage point higher increase in prices from

January 2000 to peak and a 4 percentage point larger fall in prices from peak to trough.

In Columns 2 and 4, we report analogous and nearly identical estimates from regressions

that instead assume that the boom ended in January of 2006 for all MSAs. These results

are strongly consistent with the prediction of our model that steady-state volume should be

correlated with the magnitude of swings in house prices during boom–bust episodes.

20We omit new construction sales from this exercise in order to avoid conflating differences in supply elas-
ticity or the rate of new construction with differences in steady-state existing sales volume. New construction
sales are identified as described in Appendix C.
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5 Comparison to Related Work

5.1 Empirics

Our empirical results build on a number of prior studies of the 2000s housing bubble. In

particular, our focus on short-term investment relates our work to several other papers

exploring the role of “flippers” in the U.S. housing market. Adelino, Schoar and Severino

(2016) note that ZIP codes with faster house price growth between 2002 and 2006 witness

more flipping activity, but do not directly explore the implications of this fact for aggregate

transaction volume. Bayer, Geissler, Mangum and Roberts (2011) focus on Los Angeles

and distinguish inexperienced flippers who trade only two or three houses from experienced

flippers who trade many more. Inexperienced flippers sharply enter the housing market

during the boom and, unlike experienced flippers, make money primarily from market-wide

price growth. We find similarly high entry rates of inexperienced flippers in our larger sample

of 115 MSAs, and our model explains why new short-term investors would disproportionately

enter the market during a price boom. Because we use data from multiple MSAs, we are

also able to show that the relationship between the entry of short-term investors and house

price growth holds both within and across local markets. In related work, Bayer, Mangum

and Roberts (2016) find evidence that contagion may have played a role in driving the entry

of these flippers; contagion shares the spirit of extrapolation in that witnessing capital gains

drives more people to pursue short-term strategies in the market.

Our results on non-occupant purchases also relate this paper to a growing empirical

literature documenting the role of investors in the U.S. housing market. Haughwout, Lee,

Tracy and van der Klaauw (2011) and Bhutta (2015) use credit registry data to show that

borrowers with multiple first lien mortgages explain a disproportionate share of mortgage

growth during the housing boom, especially in states with the largest price increases. Chinco

and Mayer (2016) and Gao, Sockin and Xiong (2017) complement these findings by arguing

that investors causally increased house price growth during this episode. We confirm the

disproportionate role of non-occupant buyers with complete market-level information derived

from deeds records across many MSAs. By using the entire universe of home sales, we account

for the role of non-occupants for explaining aggregate volume.

Finally, several of our empirical findings relate our work to the large literature surveyed

by Han and Strange (2015) that uses search and matching models to understand housing
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market dynamics. As pointed out by Ngai and Sheedy (2016), volume rises during price

booms in many search models because of an increase in selling speed (see, e.g., Dı́az and

Jerez (2013), Head, Lloyd-Ellis and Sun (2014), Burnside, Eichenbaum and Rebelo (2016),

and Hedlund (2016)). Our results in Figure 9 show the opposite: volume rose from 2000 to

2005 because the number of listings grew while the speed at which listings sold remained

flat. Our model explains this phenomenon via the entry of short-horizon buyers during the

boom. Ngai and Sheedy (2016) offer a complementary theory based on homeowners who are

more likely to move while prices are rising. Our finding that most sellers do not show up

as repeat buyers within the same MSA and that the entry of short-term and non-occupant

buyers are key to explaining aggregate volume also poses a challenge for many search models

in which equilibrium dynamics are driven by the joint buyer–seller problem in a housing

market that is modeled as a closed system (Wheaton, 1990; Caplin and Leahy, 2011; Dı́az

and Jerez, 2013; Ngai and Tenreyro, 2014).

In summary, our paper explains existing empirical results and establishes them more

broadly in data that allow us to account for the role of short-term investors in driving total

volume over the cycle. We connect these facts on speculation to the pronounced lead–lag

relationship between prices and transaction volume at the aggregate level, which prior work

has not emphasized. We document the robustness of this lead–lag relationship across MSAs

and the cross-sectional relationship between the size of the price boom and the entry of

speculative buyers.

5.2 Theory

Recent papers by Barberis, Greenwood, Jin and Shleifer (2017) and Liao and Peng (2018)

are similar to ours: we all propose models of volume dynamics in extrapolative bubbles.

All three papers predict that volume increases along with prices, but the mechanisms differ.

Volume rises in our model due to the entry of short-horizon buyers into the market. In

contrast, rising prices make an individual investor more likely to sell in the other two papers.

Psychological mechanisms generate this channel: wavering in Barberis, Greenwood, Jin and

Shleifer (2017) and realization utility (Barberis and Xiong, 2012) in Liao and Peng (2018).

Other predictions are unique to our model.

First, only our model predicts a period of rising listings and falling volume at the end of

the price boom. A divergence between listings and volume is not possible in models with
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Walrasian price discovery such as Barberis, Greenwood, Jin and Shleifer (2017) and Liao

and Peng (2018). While volume may decline before prices in a model with Walrasian price

discovery, interest in selling must fall alongside volume. Exactly this phenomenon plays out

in Barberis, Greenwood, Jin and Shleifer (2017) and Liao and Peng (2018). Figure 9 shows

that the listing rate remained high during the 2006 quiet in the U.S. housing market.

Second, neither Barberis, Greenwood, Jin and Shleifer (2017) nor Liao and Peng (2018)

predict that potential buyers with exogenously short horizons buy disproportionately in a

boom. In the housing market, relatively exogenous demographics like age and education

predict investment horizons (Henderson and Ioannides, 1989; Kan, 1999), and individuals

with such characteristics are indeed more likely to buy a home when house prices have

been rising (Edelstein and Qian, 2014). Because demographics provide a natural source of

variation in average horizons across cities, only our model seems to predict that cities with

more housing turnover in 2000 witness larger cycles thereafter.

Our model builds on the work of Frankel and Froot (1986), Cutler, Poterba and Summers

(1990) and De Long, Shleifer, Summers and Waldmann (1990), who show that positive

feedback trading causes booms and busts in asset prices. Cutler, Poterba and Summers

(1990) and De Long, Shleifer, Summers and Waldmann (1990) feature three classes of agents:

positive feedback traders who buy more stock when prices have been rising, fundamentalists

who sell stock when prices rise above an eventual liquidation value, and arbitrageurs who

rationally exploit the other two traders. As prices rise, their models generate short-term

volume as arbitrageurs buy from the fundamentalists and then sell to the positive feedback

traders. Thus, in each of our papers, extrapolation and short-run trading raise prices and

volume after a shock.

Our contribution is to maintain the insight of their papers in a model that can be cal-

ibrated to the housing market. In particular, we endogenously derive asset demand as a

function of past price changes (Proposition 1), whereas Cutler, Poterba and Summers (1990)

and De Long, Shleifer, Summers and Waldmann (1990) assume that asset demand from pos-

itive feedback traders increases in past price changes. Our approach explicitly ties demand

to investment horizons and beliefs in the housing market, allowing us to calibrate demand

using the NAR data on horizons and the survey evidence on house price expectations from

Armona, Fuster and Zafar (2016). Each agent from the earlier papers appears in some form

in our work: the positive feedback traders emerge as the short-horizon buyers, the fundamen-
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talists become the long-horizon buyers, and the arbitrageurs resemble the informed movers

in that both determine market prices by rationally exploiting the extrapolative tendencies

of other market participants. Our setup also permits an arbitrary number of periods and

departs from Walrasian price discovery.

In emphasizing sluggish price adjustment and extrapolators with fixed horizons, our

model is closer to the earlier work of Hong and Stein (1999). However, our models differ

in key ways. Everyone extrapolates in our model, not just the short-horizon investors. We

endogenously derive that short-horizon investors are more sensitive to expected capital gains.

Another difference is our departure from Walrasian price discovery. Broadly speaking, our

model takes extrapolation as a primitive and studies the implications for volume and market

participation, whereas Hong and Stein (1999) start from inattention and derive extrapolation

as a boundedly rational response for short-run arbitrageurs.

A related literature in behavioral finance pins overpricing and trading volume not on

extrapolation but on disagreement (e.g., Scheinkman and Xiong (2003); see Hong and Stein

(2007) and Daniel and Hirshleifer (2015) for surveys). While disagreement surely accounts

for some of the average prices and volume in the housing market (as Bailey, Cao, Kuchler

and Stroebel (2016) document empirically), most disagreement models do not characterize

the dynamics of prices and volume over a single bubble episode. An exception is Burnside,

Eichenbaum and Rebelo (2016). While that model produces an increase in volume during

a house price boom, it does not predict an increase in short-term sales. More generally,

models with heterogeneous beliefs explain short-term sales only when optimists are likely to

become pessimists exogenously, as is the case in Piazzesi and Schneider (2009), Penasse and

Renneboog (2016), and Barberis, Greenwood, Jin and Shleifer (2017). Disagreement also

struggles to explain the widespread optimism about house price growth during the boom we

study (Case, Shiller and Thompson, 2012; Foote, Gerardi and Willen, 2012; Cheng, Raina

and Xiong, 2014), although it can account for the dispersion in these beliefs (Piazzesi and

Schneider, 2009; Burnside, Eichenbaum and Rebelo, 2016).

6 Final Remarks

Our paper raises additional lines of inquiry within the housing market. We have argued, the-

oretically and empirically, that short-term investors play a crucial role in the housing cycle.
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Do the expansions in credit that typically accompany housing booms appeal disproportion-

ately to short-term investors? Barlevy and Fisher (2011) document a strong correlation

across U.S. metropolitan areas between the size of the 2000s house price boom and the take-

up of interest-only mortgages. These mortgages back-load payments by deferring principal

repayment for some amount of time and thus might appeal especially to buyers who expect

to resell quickly. The targeting of credit expansions to short-term buyers might explain the

amplification effects of credit availability on real estate booms documented by Di Maggio

and Kermani (2017), Favara and Imbs (2015), and Rajan and Ramcharan (2015).

A second line of inquiry within housing concerns tax policy. The capital gains tax dis-

courages housing speculation by lowering expected after-tax capital gains. However, it dis-

courages productive residential investment as well. Is this tax optimal, and if not, what

type of tax policy would be better? Many economists have analyzed or proposed transac-

tion taxes (Tobin, 1978; Stiglitz, 1989; Summers and Summers, 1989; Dávila, 2015). It is

unclear whether these taxes would particularly discourage short-term investors, given that

the incidence of this tax might fall more on buyers than sellers.

Although this paper focuses on the housing market, many of the patterns we study

appear in other asset markets as well. Several famous bubbles involve large movements in

transaction volume (Cochrane, 2011). The lead–lag relation between prices and volume holds

in four other boom-bust episodes shown in Figure 11: the 1995–2005 market in technology

stocks, the 1985–1995 Japanese stock market, the experimental bubbles studied by Smith,

Suchanek and Williams (1988), and the 1985–1995 bubble in Postwar art. Short-horizon

trading was prevalent during the technology boom (Cochrane, 2002; Ofek and Richardson,

2003). Even outside of bubbles, stock market volume increases following high returns and

predicts negative subsequent returns (Lee and Swaminathan, 2000; Jones, 2002; Statman,

Thorley and Vorkink, 2006; Griffin, Nardari and Stulz, 2007).

Cutler, Poterba and Summers (1991) document price dynamics such as momentum and

mean reversion in many asset classes. They conclude the generality of these patterns suggests

that inherent features of the speculative process likely explain them. Can our model of

speculation explain the joint dynamics of prices and volume outside the housing market?

The assumption most tailored to housing is the departure from Walrasian price discovery,

which does not permit a direct analogy to more centralized markets. We hope that future

work will investigate the striking similarity of volume dynamics in other markets.
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FIGURE 1
The Dynamics of Prices, Volume, and Inventories

(a) Prices and Volume
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Notes: This figure displays the dynamic relationship between prices, volume, and the inventory of listings
in the U.S. housing market between 2000 and 2011. Panel (a) plots monthly prices and sales volume, and
panel (b) plots monthly prices and inventory. Monthly price index information comes from CoreLogic and
monthly sales volume is based on aggregated transaction data from CoreLogic for 115 MSAs representing
48% of the U.S. housing stock. Inventory information comes from the National Association of Realtors. We
apply a calendar-month seasonal adjustment for both volume and inventories.
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FIGURE 2
Simulation Results

(a) Prices and Volume
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(b) List Prices
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(c) Unsold Listings

0
.0

2
.0

4
.0

6
.0

8
.1

U
ns

ol
d 

Li
st

in
gs

 R
el

at
iv

e 
to

 S
to

ck

0 4 8 12 16 20 24 28 32 36 40 44 48
Time Period in Quarters

(d) Short-term Buyer Share
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Notes: These figures plot results from model simulation. The shaded area denotes the quiet. Panel (a) plots
the joint pattern of prices and transaction volume relative to the total housing stock. Panel (b) plots the
market price and the list prices of informed and extrapolative sellers. Panel (c) plots inventories relative to
the total housing stock. Panel (d) plots the share of buyers with expected holding periods of less then 12
quarters. 39



FIGURE 3
Expected Holding Times of Homebuyers, 2008–2015

(a) Response Heterogeneity
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(b) Short-Term Buyers and Recent House Price Growth
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Notes: Panel (a) plots the response frequency averaged equally over each year from 2008 to 2015. In Panel
(b), “annual house price growth” equals the average across that year’s four quarters of the log change in
the all-transactions FHFA U.S. house price index from four quarters ago, and “short-term buyer share”
equals the share of respondents other than those reporting “don’t know” who report a horizon less than
three years. Data come from the annual Investment and Vacation Home Buyers Survey conducted by the
National Association of Realtors. We reclassify buyers who have already sold their properties by the time
of the survey as having an expected holding time in [0,1).
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FIGURE 4
The Dynamics of Holding Times in the Housing Market
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Notes: This figure illustrates the time variation in realized holding periods between 2000 and 2011 in the
U.S. For each transaction, we define the holding period as the number of days since the last transaction of
the same property. We then group all transactions with holding periods less than or equal to 5 years into
bins of 1, 2, 3, 4, or 5 years, respectively. For each year between 2000 and 2011, we plot aggregate transaction
counts in each of these five holding-period groups.
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FIGURE 5
The Role of Short-Holding-Period Volume Growth for Total Volume Growth

(a) Holding Periods < 3 Years (b) Holding Periods ≥ 3 Years
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(c) Contribution of Short Volume to Total Volume Growth

slope = 0.32
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Notes: This figure illustrates the quantitative importance of short-holding-period volume in accounting for
the increase in total volume between 2000 and 2005. We present binned scatter plots (“binscatters”) of the
percent change in total volume from 2000 to 2005 versus the percent change in volume for short holding
periods (< 3 years) in Panel (a) and long holding periods (≥ 3 years) in Panel (b). Panel (c) shows that
the growth in short-holding-period volume is a quantitatively important component of the growth in total
volume across MSAs. For each MSA, we plot the change in short-holding-time volume divided by initial
total volume on the y-axis against the percent change in total volume on the x-axis.
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FIGURE 6
The Role of Non-Occupant Volume Growth for Total Volume Growth

(a) Non-Occupant Buyers (b) Occupant Buyers
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(c) Contribution of Non-Occupant Volume to Total Volume Growth

slope = 0.54
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Notes: This figure illustrates the quantitative importance of non-occupant volume in accounting for the
increase in total volume between 2000 and 2005. We present binned scatter plots (“binscatters”) of the
percent change in total volume from 2000 to 2005 versus the percent change in volume for non-occupant
buyers (transactions with distinct mailing and property addresses) in Panel (a) and occcupant buyers (trans-
actions with mailing address missing or matching the property address) in Panel (b). Panel (c) shows that
the growth in non-occupant volume is a quantitatively important component of the growth in total volume
across MSAs. For each MSA, we plot the increase in non-occupant volume divided by initial total volume
on the y-axis against the percent change in total volume on the x-axis.
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FIGURE 7
The Lead-Lag Relationship between Prices and Volume

(a) Correlation between Prices and Volume at Various Lags
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Notes: Panel (a) shows that the correlation between prices and lagged volume is robust across MSAs and
maximized at a positive lag of 24 months. We regress the demeaned log of prices on seasonally adjusted
lagged volume divided by the 2000 housing stock for each lag from -12 months to 48 months and plot the
implied correlation and its 95% confidence interval calculated using standard errors that are clustered by
month. Panel (b) shows the relationship is robust across MSAs and increasing in the size of the boom-bust
cycle. We sort MSAs into 20 groups based on the increase in prices from January 2000 to peak and then
plot average prices and volume relative to housing stock for each group.
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FIGURE 8
The Cross-Sectional Relationship between Volume and the Price Run-up

(a) Cross MSA Total Volume (b) Cross ZIP, Within MSA Total Volume
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(c) Cross MSA Holding < 3 Years (d) Cross ZIP, Within MSA Holding < 3 Years

slope = 1.38 (0.29)
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(e) Cross MSA Non-Owner (f) Cross ZIP, Within MSA Non-Owner

slope = 0.71 (0.37)
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Notes: These figures demonstrate the relationship between prices and speculative volume across MSAs
and across ZIP codes within MSAs. We present binned scatter plots (“binscatters”) of growth in different
categories of volume between 2000 and 2005 against the percent change in prices from January 2000 to peak.
Binscatters for ZIP graphs plot residuals after absorbing MSA fixed effects. Standard errors for ZIP-linear
fits are clustered at the MSA level.

45



FIGURE 9
Sale and Listing Rates for U.S. Existing Homes, 2000–2011

(a) Sale Rate
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Notes: The figure displays the average monthly sale rate and listing rate for each year. For each month,
the sale rate equals sales divided by listed inventory, and the listing probability equals new listings divided
by the stock of unlisted houses. Monthly data on the U.S. housing stock are interpolated from quarterly
estimates provided by the U.S. Census, and monthly sales and inventory numbers come from data provided
by the National Association of Realtors; new listings are calculated using the inventory and sales data. The
shaded region corresponds to the quiet as demarcated in Figure 1.
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FIGURE 10
Initial Volume and the Magnitude of the Housing Boom and Bust

(a) Boom
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(b) Bust
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Notes: This figure provides empirical support for the cross-sectional prediction that the magnitude of price
swings during boom–bust episodes should be correlated with the level of steady-state transaction volume
across markets. We present binned scatter plots (“binscatters”) of the percent change in prices from January
2000 to peak (Panel (a)) and from peak to trough (Panel (b)) versus total existing homes in 2000. To facilitate
comparisons across cities of different sizes, we normalize existing sales by the size of the housing stock in
2000 for each city. House prices are measured using the monthly CoreLogic repeat-sales house price indicies.
The price peak for each MSA is measured as the highest price recorded for that MSA prior to January, 2012.
We restrict the peak to occur prior to January 2012, since prices in some markets had already recovered to
levels higher than those experienced during the boom by the end of our sample. The trough is the lowest
price subsequent to the month of the peak.
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FIGURE 11
The Joint Dynamics of Prices and Volume

(a) US Equities, Tech (1995–2005) (b) Japan Equities (1985–1995)
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Notes: These figures display the dynamic relationship between prices and transaction volume for four distinct
bubble episodes: (a) the 1995–2005 market in technology stocks, (b) the 1985–1995 Japanese stock market,
(c) the bubbles in experimental asset markets, and (d) the 1985–1995 bubble in the Postwar art market.
Panel (a) data come from CRSP and cover the Dotcom sample in Ofek and Richardson (2003). For prices,
we plot aggregate Dotcom market capitalization. For volume, we plot average monthly turnover (shares
traded/shares outstanding), weighted by market cap. Panel (b) data come from the Tokyo stock exchange
online archive and cover all first- and second-tier (i.e., large and micro-cap) stocks. For volume, we plot total
shares traded per month (shares-outstanding data are not available). For prices, we plot aggregate market
capitalization. Panel (c) data were manually entered from the published Smith, Suchanek and Williams
(1988) manuscript and cover all eight experiments that include a price boom and bust (IDs are 16, 17, 18,
26, 124xxf, 39xsf, 41f, 36xx). For prices, we plot average deviations from fundamental value. For volume,
we plot the average number of trades. Panel (d) data come from Figure 1 of the working paper version of
Penasse and Renneboog (2016) and cover aggregate art prices and transaction volume from auction houses
for paintings and works on paper for more than 10,000 artists.
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TABLE 1
Within-MSA Role of Short-Holding-Period and

Non-Occupant Volume Growth for Total Volume Growth (2000–2005)

Holding Period Occupancy Status

%∆ Short
Volume

%∆ Long
Volume

∆ Short/
Total Volume

%∆ Non-Occupant
Volume

%∆ Occupant
Volume

∆ Non-Occupant/
Total Volume

%∆ Total Volume 1.517*** 0.936*** 0.241*** 1.525*** 1.044*** 0.356***
(0.104) (0.020) (0.018) (0.094) (0.093) (0.027)

R2 0.57 0.95 0.77 0.17 0.48 0.75
Observations 6,763 6,763 6,763 5,597 5,597 5,597

Notes: This table reports estimates of the quantitative importance of short-holding-period and non-occupant
volume in accounting for the increase in total volume between 2000 and 2005 at the ZIP-code level. We
assign each transaction to a Census ZIP Code Tabulation Area (ZCTA) using the postal ZIP code of the
property and a ZCTA-to-ZIP code crosswalk file provided by the Missouri Census Data Center. Each column
reports estimates from a separate regression of the change in a given component of volume on the percent
change in total volume in the ZCTA. All specifications include MSA fixed effects. A short holding period is
defined as any holding period less than three years. Occupancy of the buyer is identified using information
on the mailing address of the property as described in the text. In columns 3 and 6, we divide the level
change in short-holding-period and non-occupant volume by total volume in the ZCTA in 2000. All other
changes are expressed as percent changes from the 2000 level for the indicated type of transaction. ZCTAs
are weighted according to their total volume in 2000. To eliminate the influence of outliers, all specifications
drop the 99.9th and 0.1st percentile of the left- and right-hand-side variables. Standard errors are reported
in parentheses and are clustered at the MSA level. Significance levels 10%, 5%, and 1% are denoted by *,
**, and ***, respectively.
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TABLE 2
Initial Volume and the Magnitude of the Housing Boom and Bust

Percentage Change in Prices

2000–Peak 2000–2006 Peak–Trough 2006–Trough

Existing Sales/Stock (2000) 14.626*** 14.477*** −4.325*** −4.677***
(3.813) (3.739) (1.172) (1.259)

R2 0.11 0.10 0.12 0.12
Observations 115 115 115 115

Notes: This table reports estimates of the cross-sectional relationship between the magnitude of the housing
boom and bust and initial transaction volume at the MSA level. Each column reports estimates from
a separate regression where the dependent variable is the percentage change in prices measured over the
indicated horizon. Initial transaction volume is measured as total year 2000 existing home sales in each
MSA scaled by the total number of housing units in the MSA as reported in the 2000 Census. House prices
are measured using the monthly CoreLogic repeat-sales house price indicies. The price peak for each MSA
is measured as the highest price recorded for that MSA prior to January, 2012. The trough is measured as
the lowest price subsequent to either the month in which the peak occurred (column 3) or January, 2006
(column 4). In columns 1, 2, and 4, price changes are calculated using the January price level in 2000 and
2006. Heteroskedasticity robust standard errors are reported in parentheses. Significance levels 10%, 5%,
and 1% are denoted by *, **, and ***, respectively.
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A Omitted Proofs of Mathematical Statements

A.1 Lemma 1

Lemma 1. Given (5), the forward term structure of expectations is

E(Pt+τ ) = Pt +
(1−mτ )γ

1−m
ωt, (16)

where m = µ+ (1− µ)γ < 1.

Proof. For t > 0, the definition of ωt may be written iteratively as ωt = µωt−1 + (1−µ)(Pt−
Pt−1). Thus, for any k > 0 we have E(ωt+k) = µE(ωt+k−1) + (1−µ)E(Pt+k−Pt+k−1). From
(5), this equation reduces to E(ωt+k) = (µ + (1 − µ)γ)E(ωt+k−1) = mE(ωt+k−1). Iterating
backward gives E(ωt+k) = mkE(ωt) = mkωt. Applying this formula and (5) gives

E(Pt+τ ) = Pt +
τ−1∑
k=0

E(Pt+k+1 − Pt+k) = Pt +
τ−1∑
k=0

E(γωt+k) = Pt +
τ−1∑
k=0

mkγω0, (17)

which reduces to (16).

A.2 Proposition 1

Proof. Because potential buyers expect to sell with certainty at their expected list price upon
becoming movers, E(Vmi,t+τ | Fi,t) = E(Pi,t+τ | Fi,t) = E(Pt+τ | Fi,t). Iterating (2) forward
gives

Vsi,t =
ρδi

1− ρ(1− λi)
+ ρλi

∞∑
τ=1

ρτ−1(1− λi)τ−1E (Pt+τ | Fi,t) . (18)

The potential buyer’s information set is Fi,t = {Pi,t, ωt−1}. Because ωt−1 conveys no in-
formation about the price level, E(Pt | Fi,t) = Pi,t. As shown in the proof of Lemma 1,
E(ωt | ωt−1) = mωt−1. Substituting this equation and (16) into (18) gives

Vsi,t =
ρδi

1− ρ(1− λi)
+

ρλiPi,t
1− ρ(1− λi)

+
mγλiρωt−1

(1− ρ(1− λi))(1−mρ(1− λi))
. (19)

The potential buyer buys when Vsi,t ≥ Pi,t. With the substitution ρ = 1/(1 + r), this
inequality reduces to

δi ≥ rPi,t −
mγλi(1 + r)ωt−1

1 + r −m(1− λi)
, (20)

which matches (7). The coefficient φ(λi;µ, γ, r) is positive because γ, λi > 0 and increasing
in λi because ∂φ/∂λi = m(1 + r)(1 + r −m)γ/(1 + r −m(1− λi))2 > 0.

A.3 Proposition 2

Proof. Define Ut(P ) to be the measure of movers listing below P plus the measure of in-
formed movers listing at P . In equilibrium, all informed movers post the highest price that
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guarantees sale, which is
P n
t = max{P | Ut(P ) ≤ Dt(P )}. (21)

Hence, all informed movers post the same price in equilibrium. We solve for equilibrium in
the three cases delineated in the proposition.

First, consider the boom, in which Dt(P
x
t ) > Lt. If P n

t ≤ P x
t , then Ut(P ) = Lt for

P ≥ P x
t . Because Dt(·) is continuous and Lt < Dt(P

x
t ), there exists P > P x

t such that
Ut(P ) = Lt ≤ Dt(P ). The existence of such P contradicts (21). Thus, the only possible
equilibria in this case have P n

t > P x
t . In this case, Ut(P ) = (1− β)Lt for P x

t < P < P n
t , and

Ut(P ) = Lt for P ≥ P n
t . Because Dt(·) is continuous and weakly decreasing, (21) holds if

and only if Dt(P
n
t ) = Lt and Dt(P ) is strictly maximized for P ≥ P n

t at P = P n
t . From (8)

and (9), Dt(P ) strictly decreases over the domain of P such that Dt(P ) < At, which is the
maximum of Dt. Thus, because Dt(P

n
t ) = Lt < Dt(P

x
t ), Dt(P

n
t ) < At, and Dt(P ) strictly

decreases past P n
t . In summary, the only equilibrium when Dt(P

x
t ) > Lt has P n

t = D−1t (Lt).
Because a share β of movers post P n

t and a share 1−β post P x
t , Pt = (1−β)P x

t +βD−1t (Lt).
The informed movers all sell, and because the extrapolative movers post a lower price, they
all sell as well. As a result, Vt = Lt.

We next consider the quiet, in which Dt(P
x
t ) ∈ [βLt, Lt]. If P n

t < P x
t , then Ut(P

x
t ) =

βLt ≤ Dt(P
x
t ), contradicting (21). Therefore, P n

t ≥ P x
t . We now consider two cases of the

quiet.
In the first case, Dt(P

x
t ) = Lt = At. This is the special case referenced in footnote

9. Define Pmax
t = max{P | Dt(P ) = At}, which exists by the continuity of Dt(P ). If

P n
t < Pmax

t , then Ut(P
max
t ) = Lt = At = Dt(P

max
t ), contradicting (21). If P n

t > Pmax
t , then

Ut(P
n
t ) = Lt = At > Dt(P

n
t ), contradicting (21). If P n

t = Pmax
t , then Ut(P

n
t ) = Lt = At =

Dt(P
n
t ), and Ut(P ) = Lt > Dt(P ) for all P > P n

t = Pmax
t . Therefore, P n

t = Pmax
t is the only

solution to (21). In this case,

Pt = (1− β)P x
t + βmax{P | Dt(P ) = At}. (22)

Because demand at the high price equals the number of movers, Dt(P
n
t ) = At = Lt, all

movers sell, giving Vt = Lt. This special case of the quiet resembles the boom in that all
listings sell and informed movers may post a higher price than extrapolative movers. Unlike
the boom, there is not any excess demand at P x

t .
In the other quiet case, either Dt(P

x
t ) < Lt or Dt(P

x
t ) < At. Given these conditions,

Dt(P ) < Lt for all P > P x
t , either because Dt(P ) ≤ Dt(P

x
t ) < Lt or because Dt(P

x
t ) < At,

which implies that Dt strictly decreases past P x
t so that Dt(P ) < Dt(P

x
t ) ≤ Lt. Suppose

that P n
t > P x

t . Then Dt(P
n
t ) < Lt, so Ut(P

n
t ) = Lt > Dt(P

n
t ), contradicting (21). The only

possible solution to (21) is then P n
t = P x

t , and this solution is valid because Ut(P
x
t ) = βLt ≤

Dt(P
x
t ) while Ut(P ) = Lt > Dt(P ) for all P > P x

t . In summary, P n
t = P x

t is the unique
equilibrium. As a result, Pt = P x

t . The total demand at this price equals Dt(P
x
t ), and as

this demand is at most the number of listings Lt, all of the demand is served. Volume thus
equals demand, Vt = Dt(P

x
t ), as claimed.

Finally, we consider the bust: Dt(P
x
t ) < βLt. Because βLt ≤ β < At, D

−1
t (βLt) exists.

Suppose that P n
t < D−1t (βLt). Then Ut(D

−1
t (βLt)) = βLt = Dt(D

−1
t (βLt)), contradicting

(21). Suppose that P n
t > D−1t (βLt). Then Ut(P

n
t ) ≥ βLt > Dt(P

n
t ), contradicting (21). If

52



P n
t = D−1t (βLt), then Ut(P

n
t ) = βLt = Dt(P

n
t ), and Ut(P ) ≥ βLt > Dt(P ) for all P > P n

t ,
validating (21). Thus, P n

t = D−1t (βLt) is the only equilibrium. In this case, demand at P n
t

equals supply, so there are no further transactions at P x
t . As a result, Pt = D−1t (βLt) and

Vt = βLt.

B Calibration Details

B.1 Efficient steady state

Before solving for the efficient steady state, we first update Proposition 1 in light of the finite
horizon now assumed.

Lemma 2. In the finite horizon model, potential buyer i matched to price Pi,t buys when

δi ≥ rPi,t − φ1(λi;µ, γ, r, T − t)ωt−1 − φ2(λi;µ, γ, r, T − t)(P T − Pi,t), (23)

where

φ1(λi;µ, γ, r, T − t) =

λimγ
1−m

(
1−

(
1−λi
1+r

)T−t−1 − m(r+λi)

(
1−

(
m(1−λi)

1+r

)T−t−1
)

1+r−m(1−λi)

)
1−

(
1−λi
1+r

)T−t (24)

and

φ2(λi;µ, γ, r, T − t) =
(r + λi)(1− λi)T−t−1

(1 + r)T−t − (1− λi)T−t
, (25)

with m = µ+ (1− µ)γ < 1.

Proof. Because all owners of housing at T receive P T , Vsi,T = Vmi,T = P T . For t < T , (2)
continues to hold, so we substitute ρ = 1/(1 + r) and iterate forward to obtain

Vsi,t =

(
1−

(
1−λi
1+r

)T−t)
δi

r + λi
+

(1− λi)T−t−1P T

(1 + r)T−t
+

T−t−1∑
τ=1

λi(1− λi)τ−1E(Pt+τ | Fi,t)
(1 + r)τ

. (26)

As in the proof of Proposition 1, we substitute E(ωt | ωt−1) = mωt−1 and (16) into (26) to
obtain

Vsi,t =

(
1−

(
1−λi
1+r

)T−t)
δi

r + λi
+

(1− λi)T−t−1(P T − Pi,t)
(1 + r)T−t

+

((
1−λi
1+r

)T−t
r + λi

)
Pi,t

r + λi

+

1−
(
1−λi
1+r

)T−t−1
r + λi

−
m

(
1−

(
m(1−λi)

1+r

)T−t−1)
1 + r − (1− λi)m

 λimγωt−1
1−m

.

(27)

Simplifying Vsi,t ≥ Pi,t yields Lemma 2.
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As Lemma 2 shows, the finite horizon introduces two new features to the potential buyer
decision rule. First, the rule now depends on P T − Pi,t, the difference between the current
list price and the eventual liquidation value. In the event that the potential buyer remains a
stayer until T , this difference affects the expected cost of holding the housing. Second, the
coefficients on ωt−1 and P T − Pi,t now depend on T − t, the remaining time until the final
period. As T →∞, φ1 → φ and φ2 → 0, meaning that Lemma 2 reduces to Proposition 1.

Proposition 3 proves the existence of a unique efficient steady state and characterizes it.

Proposition 3. If Ai > (
∫ 1

0
λ−1fλ(λ)dλ)−1, then a unique efficient steady state exists, which

is given by the liquidation value

P T =

(
Ai
∫ 1

0

λ−1fλ(λ)dλ

) 1
ε δ0
r

(28)

and initial conditions

P0 =

(
Ai
∫ 1

0

λ−1fλ(λ)dλ

) 1
ε δ0
r

(29)

ω0 = 0 (30)

I0 = 0 (31)

S0(λ) =
λ−1fλ(λ)∫ 1

0
(λ′)−1fλ(λ′)dλ′

. (32)

In this steady state, volume and listings for 0 < t < T both equal

Lt = Vt =

(∫ 1

0

λ−1fλ(λ)dλ

)−1
. (33)

Proof. We solve for variable values in an efficient steady state. Because variables do not
depend on time, we sometimes drop time subscripts. The recursive equation for ω implies
that ωt = µωt−1 + (1 − µ)(Pt − Pt−1), or ω = µω. Because µ < 1, the only solution to this
equation is ω = 0. Eq. (5) implies that P x = P + γω = P . From 2, P x

t = Pt only when
P x
t = P n

t = P . Hence, P n = P .
We claim that D(P n) < Ai. For a contradiction, assume not. Then D(P n) = Ai, as

the maximal value of demand is the number of potential buyers, Ai. In this case, demand
from each λ type must also equal its maximum: D(P n, λ) = Aifλ(λ). Eq. (14), which
implies that S(λ) = (1− λ)S(λ) +D(P n, λ), thus gives S(λ) = λ−1Aifλ(λ). Because I = 0,
end-of-period stayers comprise the entire housing stock, which has measure 1. Therefore,
1 =

∫ 1

0
S(λ)dλ = Ai

∫ 1

0
λ−1fλ(λ)dλ, implying that Ai = (

∫ 1

0
λ−1fλ(λ)dλ)−1, a contradiction

of the condition that Ai > (
∫ 1

0
λ−1fλ(λ)dλ)−1.

Because D(P n) < Ai, Lemma 2 implies that for some λ,

D(P n, λ) = Aifλ(λ)δε0
(
rP n − φ2(λ;µ, γ, r, T − t)(P T − P n)

)−ε
. (34)

Because φ2(λ;µ, γ, r, T−t) depends on t, we must have P T = P n. It follows that D(P n, λ) =
Aifλ(λ)δε0(rP

n)−ε for all λ. Substituting this equation for D(P n, λ) into (14) yields S(λ) =
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(1−λ)S(λ)+Aifλ(λ)δε0(rP
n)−ε, or S(λ) = Aiδε0(rP

n)−ελ−1fλ(λ). Because I = 0,
∫ 1

0
S(λ)dλ =

1, the size of the housing stock. We may therefore solve for P n to get

P n =

(
Ai
∫ 1

0

λ−1fλ(λ)dλ

)1/ε
δ0
r
, (35)

which equals P T and P as well, as we have already shown that P = P n = P T . We substitute
this equation for P n into S(λ) = Aδεm(rP n)−ελ−1fλ(λ) to obtain

S(λ) =
λ−1fλ(λ)∫ 1

0
(λ′)−1fλ(λ′)dλ′

.

We have proven that unique values of the initial and terminal conditions can give rise to
an efficient steady state. To prove that the efficient steady state exists, we verify that P n is
optimal. By Proposition 2, P n = P x if D(P x) ∈ [βL, L] and D(P x) < Ai (see footnote 9).

By (10), the equation for listings, L =
∫ 1

0
λS(λ)dλ, so

L =

(∫ 1

0

λ−1fλ(λ)dλ

)−1
.

Plugging the formula for P x = P n = P T into (23) and integrating over λ yields

D(P x) =


(∫ 1

0
λ−1fλ(λ)dλ

)−1
if Ai >

(∫ 1

0
(λ)−1fλ(λ)dλ′

)−1
Ai if Ai ≤

(∫ 1

0
(λ)−1fλ(λ)dλ

)−1
.

Because Ai > (
∫ 1

0
λ−1fλ(λ)dλ)−1, D(P x) = L < Ai, verifying seller optimality and the

existence of the efficient steady state. Because I = L− V = 0, L = V , as desired.

B.2 Parameter values

fλ

Each March, as part of the Investment and Vacation Home Buyers Survey, the National
Association of Realtors (NAR) surveys a nationally representative sample of around 2,000
individuals who purchased a home in the previous year. The survey asks respondents to
report the type of home purchased (investment property, primary residence, or vacation
property) as well as the “length of time [the] buyer plans to own [the] property.” Data on
expected holding times and the share of purchases of each type are available for 2008–2015.

The data on expected holding times are binned. For each property type, we see the share
of recent buyers whose expected holding time is in each of [0, 1), [1, 3), [3, 6), [6, 11), and
[11,∞) years. We also see the share of recent buyers of each type who have already sold the
property or do not know their expected holding time. We drop recent buyers who do not
know their expected holding time and reclassify buyers who have already sold the property
as having an expected holding time in [0, 1). Using the share of sales to each property type
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in each year, we calculate the distribution of expected holding times over the bins for each
year and then take an equal-weighted average across years to obtain a single distribution
across the bins. The resulting probability weights across the bins are (rounded) 0.1, 0.1, 0.2,
0.2, and 0.4.

We then map each bin to a value of λ as follows. When T =∞, the expected holding time
of potential buyer i, conditional on the expectation of selling immediately upon becoming a
mover, equals

∑∞
τ=1 τλi(1−λi)τ−1 = 1/λi. Given this relation, we map an empirical expected

holding time to a value of λ by taking its inverse. For each bin in the NAR data, we select
an expected holding time within it, giving us expected holding times of 0.25, 1.5, 4, 8, and
20 years, or 1, 6, 20, 32, and 80 quarterly periods. The resulting values of λ are (rounded)
1, 0.17, 0.06, 0.03, and 0.01.

µ and γ

We solve for the effects estimated by Armona, Fuster and Zafar (2016) within our expecta-
tions framework, giving us two equations that pin down µ and γ. Suppose that house price
growth perceived in the prior year increases by ∆. We interpret this change as a uniform in-
crease of ∆/4 over each of the prior four quarterly periods. Then ωt, which can be written as
ωt = (1−µ)((Pt−Pt−1)+µ(Pt−1−Pt−2)+µ2(Pt−2−Pt−3)+µ3(Pt−3−Pt−4))+µ4ωt−4, increases
by ∆(1−µ4)/4. By (6), the resulting change in expectations for the cumulative increase over
the next year is g(µ, γ, 4)∆(1 − µ4)/4, and the resulting change in expectations for the an-
nualized increase over the next two-to-five years is (1/4)(g(µ, γ, 20)− g(µ, γ, 4))∆(1−µ4)/4.
Substituting the expression for g(·, ·, ·) and equating the results with the empirical estimates
from Armona, Fuster and Zafar (2016) gives the following two equations:

0.226 =
(1−m4)(1− µ4)γ

4(1−m)
(36)

0.047 =
m4(1−m16)(1− µ4)γ

16(1−m)
, (37)

where m = µ+ (1−µ)γ. To solve these equations, we first take the quotient, which gives us
a single equation for m that can be written as 0.83 = m4(1 + m4)(1 + m8). The right side
strictly increases from 0 to 1 for 0 < m < 1, so the equation has a unique solution for m,
which we calculate numerically to be m = 0.83 (rounded). We substitute this solution and
γ = (m − µ)/(1 − µ) into (36) to obtain 0.83(1 −m)(1 − µ)/(m − µ) = (1 −m4)(1 − µ4).
For 0 < µ < m, the left increases while the right decreases, so the equation has at most one
solution in µ. We numerically calculate this solution to be µ = 0.71. We then use m and µ
to calculate γ = 0.40.

δ0, A
i, and Af

From Proposition 3,

1 = P0 =

(
Ai
∫ 1

0

λ−1fλ(λ)dλ

) 1
ε δ0
r

(38)
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and

1.6 = P T =

(
Af
∫ 1

0

λ−1fλ(λ)dλ

) 1
ε δ0
r
. (39)

Dividing these equations gives Af/Ai = 1.6ε. Because we have already calculated or are
assuming certain values for fλ, ε, and r, we have two equations in the three unknowns
Af , Ai, and δ0 that have a solution once one is specified. We experiment with different
values of Ai to find a value producing a simulation in which prices and volume converge
over the finite horizon. Doing so gives Ai = 0.2, meaning that in the initial steady state,
arriving potential buyers have a measure equal to 20% of the city’s housing stock. This value
implies that Af = 0.27 and δ0 = 0.00042. The requirements that Ai and Af exceed β and
(
∫ 1

0
λ−1fλ(λ)dλ)−1 are satisfied because β = 0.17 and (

∫ 1

0
λ−1fλ(λ)dλ)−1 = 0.02.

B.3 Holding cost bound

Here we calculate the bound on k given in Section 1 in equilibrium and calculate the bound
in the calibration. For 1 ≤ t < T , π−1t (1) equals the highest price that guarantees sale. As
the proof of Proposition 2 shows, this price is P n

t . The proof further shows that informed
movers sell at this price. At t = T , informed movers receive the liquidation value P T . Thus,
Vnmi,t = P n

t , where we have formally defined P n
T = P T . Because the model is deterministic,

informed movers foresee the future perfectly, meaning that E(Vnmi,t+1 | Fi,t) = Vnmi,t+1 = P n
t+1.

The parameter restriction on k in Section 1 becomes

k > P n
t+1 − ρ−1P n

t (40)

for 1 ≤ t < T . Thus we require that k be above the maximum value of this difference over
the possible values of t. Using the values of P n

t we calculate in the simulation (that appear
in panel b of figure 2), we compute the maximal value of this difference to be 0.41.
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C Data Appendix

To conduct our empirical analysis we make use of a transaction-level data set containing
detailed information on individual home sales taking place throughout the US between 1995–
2014. The raw data was purchased from CoreLogic and is sourced from publicly available
tax assessment and deeds records maintained by local county governments.

Selecting Geographies

To select our sample, we first focus on a set of counties that have consistent data coverage
going back to 1995 and which, together, constitute a majority of the housing stock in their
respective MSAs. In particular, to be included in our sample a county must have at least one
“arms length” transaction with a non-negative price and non-missing date in each quarter
from 1995q1 to 2014q4.21 Starting with this subset of counties, we then further drop any
MSA for which the counties in this list make up less than 75 percent of the total owner-
occupied housing stock for the MSA as measured by the 2010 Census. This leaves us with
a final set of 250 counties belonging to a total of 115 MSAs. These MSAs are listed below
in Table A1 along with the percentage of the housing stock that is represented by the 250
counties for which we have good coverage. Throughout the paper, when we refer to counts
of transactions in an MSA we are referring to the portion of the MSA that is accounted for
by these counties.

Selecting Transactions

Within this set of MSAs, we start with the full sample of all arms length transactions of single
family, condo, or duplex properties and impose the following set of filters to ensure that our
final set of transactions provides an accurate measure of aggregate transaction volume over
the course of the sample period:

1. Drop transactions that are not uniquely identified using CoreLogic’s transaction ID.

2. Drop transactions with non-positive prices.

3. Drop transactions that are recorded by CoreLogic as nominal transfers between banks
or other financial institutions as part of a foreclosure process.

4. Drop transactions that appear to be clear duplicates, identified as follows:

(a) If a set of transactions has an identical buyer, seller, and transaction price but are
recorded on different dates, keep only the earliest recorded transaction in the set.

(b) If the same property transacts multiple times on the same day at the same price
keep only one transaction in the set.

21We rely on CoreLogic’s internal transaction-type categorization to determine whether a transaction
occurred at arms length.
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5. If more than 10 transactions between the same buyer and seller at the same price
are recorded on the same day, drop all such transactions. These transactions appear
to be sales of large subdivided plots of vacant land where a separate transaction is
recorded for each individual parcel but the recorded price represents the price of the
entire subdivision.

6. Drop sales of vacant land parcels in MSAs where the CoreLogic data includes such
sales.22 We define a vacant land sale to be any transaction where the sale occurs a year
or more before the property was built.

Table A2 shows the number of transactions that are dropped from our sample at each stage
of this process as well as the final number of transactions included in our full analysis sample.

Identifying Occupant and Non-Occupant Buyers

We identify non-occupant buyers using differences between the mailing addresses listed by
the buyer on the purchase deed and the actual physical address of the property itself. In
most cases, these differences are identified using the house numbers from each address. In
particular, if both the mailing address and the property address have a non-missing house
number then we tag any instance in which these numbers are not equal as a non-occupant
purchase and any instance in which they are equal as occupant purchases. In cases where
the mailing address property number is missing we also tag buyers as non-occupants if both
the mailing address and property address street names are non-missing and differ from one
another. Typically, this will pick up cases where the mailing address provided by the buyer
is a PO Box. In all other cases, we tag the transaction as having an unknown occupancy
status.

Restricting the Sample for the Non-Occupant Analysis

Our analysis of non-occupant buyers focuses on the growth of the number of purchases by
these individuals between 2000 and 2005. To be sure that this growth is not due to changes
in the way mailing addresses are coded by the counties comprising the MSAs in our sample,
for the non-occupant buyer analysis we keep only MSAs for which we are confident such
changes do not occur between 2000 and 2005. In particular, we first drop any MSA in which
the share of transactions in any one year between 2000 and 2005 with unknown occupancy
status exceeds 0.5. Of the remaining MSAs, we then drop those for which the increase in
the number of non-occupant purchases between any year and the next exceeds 150%, with
the possible base years being those between 2000 and 2005.23 The MSAs that remain after
these two filters are marked with an “x” in Table A1.

Identifying New Construction Sales

In Table 2 and Figure 10 we correlate the size of the 2000–2005 house price boom with the
level of initial volume relative to the total housing stock in 2000. In performing this exercise,

22MSAs are flagged as including vacant land sales if more then 5 percent of the sales in the MSA occur
more then two years before the year in which the property was built.

23This step drops only Chicago-Naperville-Elgin, IL-IN-WI.
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we omit new construction sales from the calculation of transaction volume. This is done to
ensure that our calculations are not simply picking up cross-sectional differences in supply
elasticity or new construction rates across markets.

To identify sales of newly constructed homes, we start with the internal CoreLogic new
construction flag and make several modifications to pick up transactions that may not be
captured by this flag. CoreLogic identifies new construction sales primarily using the name
of the seller on the transaction (e.g. “PULTE HOMES” or “ROCKPORT DEV CORP”),
but it is unclear whether their list of home builders is updated dynamically or maintained
consistently across local markets. To ensure consistency, we begin by pulling the complete
list of all seller names that are ever identified with a new construction sale as defined by
CoreLogic. Starting with this list of sellers, we tag any transaction for which the seller is
in this list, the buyer is a human being, and the transaction is not coded as a foreclosure
sale by CoreLogic as a new construction sale. We use the parsing of the buyer name field
to distinguish between human and non-human buyers (e.g. LLCs or financial institutions).
Human buyers have a fully parsed name that is separated into individual first and name
fields whereas non-human buyer’s names are contained entirely within the first name field.

This approach will identify all new construction sales provided that the seller name is
recognized by CoreLogic as the name of a homebuilder. However, many new construction
sales may be hard to identify simply using the name of the seller. We therefore augment this
definition using information on the date of the transaction and the year that the property
was built. In particular, if a property was not already assigned a new construction sale using
the builder name, then we search for sales of that property that occur within one year of
the year that the property was built and record the earliest of such transactions as a new
construction sale.

Finally, for properties that are not assigned a new construction sale using either of the
two above methods, we also look to see if there were any construction loans recorded against
the property in the deeds records. If so, we assign the earliest transaction to have occurred
within three years of the earliest construction loan as a new construction sale. We use a
three-year window to allow for a time lag between the origination of the construction loan
and the actual date that the property was sold. Construction loans are identified using
CoreLogic’s internal deed and mortgage type codes.
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TABLE A1
List of Metropolitan Statistical Areas Included in the Analysis Sample

Metropolitan Statistical Area
Share of Housing

Stock Represented

Included in
Non-Occupant

Analysis
Metropolitan Statistical Area

Share of Housing
Stock Represented

Included in
Non-Occupant

Analysis

Akron, OH 1.00 x New York-Newark-Jersey City, NY-NJ-PA 0.97 x
Ann Arbor, MI 1.00 x North Port-Sarasota-Bradenton, FL 1.00 x
Atlanta-Sandy Springs-Roswell, GA 0.80 Norwich-New London, CT 1.00
Atlantic City-Hammonton, NJ 1.00 x Ocala, FL 1.00 x
Bakersfield, CA 1.00 x Ocean City, NJ 1.00 x
Baltimore-Columbia-Towson, MD 1.00 x Olympia-Tumwater, WA 1.00 x
Barnstable Town, MA 1.00 Orlando-Kissimmee-Sanford, FL 1.00 x
Bellingham, WA 1.00 x Oxnard-Thousand Oaks-Ventura, CA 1.00 x
Bend-Redmond, OR 1.00 x Palm Bay-Melbourne-Titusville, FL 1.00 x
Boston-Cambridge-Newton, MA-NH 0.89 Pensacola-Ferry Pass-Brent, FL 1.00 x
Boulder, CO 1.00 x Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1.00 x
Bremerton-Silverdale, WA 1.00 x Phoenix-Mesa-Scottsdale, AZ 1.00 x
Bridgeport-Stamford-Norwalk, CT 1.00 Pittsfield, MA 1.00
Buffalo-Cheektowaga-Niagara Falls, NY 0.80 x Portland-Vancouver-Hillsboro, OR-WA 0.97 x
California-Lexington Park, MD 1.00 x Port St. Lucie, FL 1.00 x
Canton-Massillon, OH 0.92 x Prescott, AZ 1.00 x
Cape Coral-Fort Myers, FL 1.00 x Providence-Warwick, RI-MA 0.78
Champaign-Urbana, IL 0.82 x Punta Gorda, FL 1.00 x
Charleston-North Charleston, SC 0.79 x Raleigh, NC 0.78 x
Chicago-Naperville-Elgin, IL-IN-WI 0.90 Reading, PA 1.00 x
Chico, CA 1.00 x Redding, CA 1.00 x
Cincinnati, OH-KY-IN 0.78 x Reno, NV 0.99 x
Cleveland-Elyria, OH 1.00 x Riverside-San Bernardino-Ontario, CA 1.00 x
Colorado Springs, CO 0.95 x Rockford, IL 0.84 x
Crestview-Fort Walton Beach-Destin, FL 1.00 x Sacramento–Roseville–Arden-Arcade, CA 1.00 x
Dallas-Fort Worth-Arlington, TX 0.85 x Salem, OR 0.79 x
Dayton, OH 0.86 x Salinas, CA 1.00 x
Deltona-Daytona Beach-Ormond Beach, FL 1.00 x San Diego-Carlsbad, CA 1.00 x
Denver-Aurora-Lakewood, CO 0.95 x San Francisco-Oakland-Hayward, CA 1.00 x
El Centro, CA 1.00 x San Jose-Sunnyvale-Santa Clara, CA 1.00 x
El Paso, TX 0.99 x Santa Cruz-Watsonville, CA 1.00 x
Elmira, NY 1.00 x San Luis Obispo-Paso Robles-Arroyo Grande, CA 1.00 x
Erie, PA 1.00 x Santa Maria-Santa Barbara, CA 1.00 x
Eugene, OR 1.00 x Santa Rosa, CA 1.00 x
Flagstaff, AZ 1.00 x Seattle-Tacoma-Bellevue, WA 1.00 x
Fort Collins, CO 1.00 x Sebastian-Vero Beach, FL 1.00 x
Fresno, CA 1.00 x Sebring, FL 1.00 x
Gainesville, FL 0.91 x Sierra Vista-Douglas, AZ 1.00 x
Gainesville, GA 1.00 Spokane-Spokane Valley, WA 0.87 x
Hanford-Corcoran, CA 1.00 x Springfield, IL 0.93 x
Hartford-West Hartford-East Hartford, CT 1.00 Springfield, MA 1.00
Homosassa Springs, FL 1.00 x Springfield, OH 1.00 x
Ithaca, NY 1.00 x Stockton-Lodi, CA 1.00 x
Jacksonville, FL 0.98 x Tampa-St. Petersburg-Clearwater, FL 1.00 x
Kahului-Wailuku-Lahaina, HI 1.00 x The Villages, FL 1.00 x
Kingston, NY 1.00 x Toledo, OH 0.92 x
Lake Havasu City-Kingman, AZ 1.00 x Trenton, NJ 1.00 x
Lakeland-Winter Haven, FL 1.00 x Tucson, AZ 1.00 x
Lancaster, PA 1.00 x Urban Honolulu, HI 1.00 x
Las Vegas-Henderson-Paradise, NV 1.00 x Vallejo-Fairfield, CA 1.00 x
Los Angeles-Long Beach-Anaheim, CA 1.00 x Vineland-Bridgeton, NJ 1.00 x
Madera, CA 1.00 x Visalia-Porterville, CA 1.00 x
Merced, CA 1.00 x Washington-Arlington-Alexandria, DC-VA-MD-WV 0.95 x
Miami-Fort Lauderdale-West Palm Beach, FL 1.00 x Worcester, MA-CT 1.00
Modesto, CA 1.00 x Youngstown-Warren-Boardman, OH-PA 0.80 x
Napa, CA 1.00 x Yuba City, CA 1.00 x
Naples-Immokalee-Marco Island, FL 1.00 x Yuma, AZ 1.00 x
New Haven-Milford, CT 1.00

Notes: This table lists the Metropolitan Statistical Areas that are included in the final analysis sample along
with the share of the total 2010 owner-occupied housing stock for each MSA that is represented by the subset
of counties for which CoreLogic has consistent data coverage back to 1995.
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TABLE A2
Number of Transactions Dropped During Sample Selection

Original Number of Transactions 57,668,026

Dropped: Non-unique CoreLogic ID 50
Dropped: Non-positive price 3,309,100
Dropped: Nominal foreclosure transfer 531,786
Dropped: Duplicate transaction 609,756
Dropped: Subdivision sale 1,304,920
Dropped: Vacant lot 831,774

Final Number of Transactions 51,080,640

Notes: This table shows the number of transactions dropped at each stage of our sample-selection procedure.
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