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Abstract

This paper proposes that complexity generates noise in financial markets. There is a
large number of funds following a wide variety of different trading rules. And, because
it’s too computationally complex to predict how these trading rules will interact with
one another, a stock’s demand can appear random even if you yourself are fully rational.
We first model a particular kind of trading rule—index-fund rebalancing—to show how
complexity can generate demand noise. In the model, it’s easy to predict if a stock will
be involved in an index-fund rebalancing cascade, but it’s computationally infeasible to
predict how the stock’s demand will be affected (buy? or sell?). As a result, traders treat
the demand coming from index-fund rebalancing cascades as noise. We then analyze the
rebalancing activity of a particular kind of index fund—exchange-traded funds (ETFs)—
to give empirical evidence that complexity actually does generate demand noise in
real-world financial markets. We document that ETF rebalancing cascades transmit
economically large demand shocks that are statistically unpredictable.
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1 Introduction
Imagine you’re a trader who’s just discovered that stock Z is under-priced. In a market
without noise, there’s no way for you to take advantage of this discovery. The moment you
try to buy a share, other traders will immediately realize that you must have uncovered some
good news about the stock. And, you won’t find anyone willing to sell you a share at the old
price (Aumann, 1976; Milgrom and Stokey, 1982).

Noise pulls the rug out from under this no-trade theorem. In a market with noise, there
are always people buying and selling stock Z for erratic non-fundamental reasons. So, when
you try to buy a share, other traders won’t jump directly to the conclusion that you’ve
uncovered good news. Your buy order might just be some more random noise. And, it’s this
convenient cover story that allows you to both trade on and profit from your discovery. It’s
this plausible alibi that “makes financial markets possible (Black, 1985)”.

But, where exactly does this all-important demand noise come from? Who generates it?
And, what are their erratic non-fundamental reasons for trading?

The standard answers to these questions are that i) demand noise comes from individual
investors and ii) individual investors’ demand looks erratic and unrelated to fundamentals
because they are just plain bad traders. We know that individual investors suffer from all
sorts of behavioral biases when they trade (Barberis and Thaler, 2003), and we also know
that they trade far too often (Barber and Odean, 2000). So, these are the standard answers
for a reason. It’s clear that individual investors can generate demand noise.

But, are they the only source? It seems unlikely. After all, the importance of individual
investors has steadily declined over the past few decades. While individual investors held
47.9% of all U.S. equity in 1980, this percentage was down to only 21.5% by 2007 (French,
2008). And, by June 2017, only “10% of trading was done by traditional, ‘discretionary’ traders,
as opposed to systematic rules-based ones.”1 Yet, in spite of this drop in the importance of
individual investors, there’s been no corresponding decline in trading volume.

So, we propose an alternative noise-generating mechanism: complexity. Financial markets
contain a large number of funds following a wide variety of different trading rules. And, if it’s
too computationally complex to predict how these various trading rules will interact with one
another, then the resulting demand will appear random even if you yourself are fully rational.
We start by modeling a particular kind of trading rule—index-fund rebalancing—to show
theoretically how complexity can generate noise. We then study the rebalancing activity of
a particular kind of index fund—exchange-traded funds (ETFs)—to give empirical evidence
that complexity actually does generate noise in real-world financial markets.
1Financial Times. 6/14/2017. Not Your Father’s Market: Tech Tantrum Shows How Trading Has Changed.
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Theoretical Model. As retail investing has shrunk in importance, “passive investing—
indexing—has become popular as an alternative to active investment management”, and
“active managers. . . have become more index-like in their investing (Stambaugh, 2014).” These
new index-like funds have not been created in Jack Bogle’s image, however. Many choose
their holdings based on custom threshold-based rules. For instance, the PowerShares S&P
500 Low-Volatility ETF [SPLV] tracks a benchmark consisting of the 100 lowest volatility
S&P 500 stocks. This benchmark involves a threshold because an arbitrarily small change in
a stock’s volatility can move it from 101st to 100th place on the low-volatility leaderboard.
When this happens, SPLV has to exit its position in one stock and build a new position in
another, affecting each stock in equal-but-opposite ways. The price of the stock being added
will rise while the price of the stock formerly known as 100th will fall.

We begin our analysis by presenting a model where, because there are so many of these
index funds tracking so many different threshold-based benchmarks, a small change in stock
A’s price can cause one index fund to buy stock A and sell stock B, which can then cause
a second index fund using a different threshold to sell stock B and buy stock C, which
can then cause. . . Our main theoretical result is that, although it’s possible to determine if
an unrelated stock Z will be affected by one of these index-fund rebalancing cascades, the
problem of determining how this stock Z will be affected (buy? or sell?) is computationally
intractable. In fact, it’s NP hard. As a result, even if every underlying index fund is following
a completely deterministic trading rule, fully rational traders will still treat the direction
of the demand shock coming from this index-fund rebalancing cascade as a random coin
flip—i.e., as demand noise.

This model delivers two key insights. The first relates to why index-fund rebalancing
cascades are complex. In the past, when financial economists saw a complex market outcome,
they went looking for some complex market input, such as an abstruse financial footnote
(Loughran and McDonald, 2011) or a convoluted derivative payout (Arora et al., 2011). But,
the model shows that market complexity is much more pervasive. It can emerge even when all
these complex inputs have been stripped away; it can emerge even in a market involving only
index funds making simple deterministic rebalancing decisions. The second insight concerns
the nature of the resulting complexity. The model doesn’t just hint that some traders might
be confused by the complexity of index-fund rebalancing cascades. You don’t need a model
to see that. Instead, the model shows that no trader will be able to predict whether an index-
fund rebalancing cascade will result in buy or sell orders for an unrelated stock Z. Thus,
even the simplest decisions, such as those involved in index-fund rebalancing, can generate
demand shocks that look provably random to all traders, which suggests that computational
complexity is an important source of demand noise in modern financial markets.
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Empirical Evidence. Having outlined the model, we next provide evidence that compu-
tational complexity actually does generate demand noise in the real world. We do this by
studying the end-of-day holdings of a particular kind of index fund—exchange-traded funds
(ETFs)—from January 2011 to December 2017 using data from ETF Global. We net-out
changes in ETF holdings due to creations and redemptions since these trades are executed as
in-kind transfers for tax reasons (Madhavan, 2016; Ben-David et al., 2017). We also restrict
our data to only include ETFs that rebalance more than once a quarter. So, when you look
at our results, you should have in mind the PowerShares S&P 500 Low-Volatility ETF rather
than the SPDR S&P 500 ETF. It’s true that ETFs which rebalance more often also tend
to be smaller than ETFs which track broad value-weighted market indexes that rebalance
infrequently. But, the rebalancing activity of these smaller ETFs still matters because they
tend to do all their trading during the final 20-to-30 minutes of the trading day.2

In the model, we study index-fund rebalancing cascades that stem from an initial shock
to some stock A. So, in our empirical analysis, we have to make a decision about which initial
shocks to use. To this end, we study ETF rebalancing activity in the days around an M&A
announcement, referring to the target of the M&A announcement as stock A. M&A deals are
a natural choice for the initial shocks because “a profusion of event studies has demonstrated
that mergers seem to create shareholder value, with most of the gains accruing to the target
company (Andrade et al., 2001).” While M&A targets are not randomly chosen, the exact
date of the announcement—Wednesday vs. Thursday—may as well be. Our data on M&A
announcements comes from Thomson Financial.

We then look for evidence that ETF rebalancing cascades transmit the effects of these
initial M&A-announcement shocks to other stock Zs that are unrelated to the M&A target,
stock A. For stock A and stock Z to be unrelated, they must be twice removed in the network
of ETF holdings at the time of the M&A announcement. Stock Z can’t have been recently
held by any ETF that also recently held stock A. And, if stock A and stock B were both
recently held by the same ETF, then stock Z also can’t have been recently held by any ETF
that recently held stock B. In other words, the chain of ETF rebalancing decisions connecting
stock A and stock Z must be A → B → C → Z or longer. Because there are smart-beta
ETFs tracking things like large-cap, value, and industry, this double-separation criteria also
implies that stock A and stock Z have dissimilar factor exposures and firm characteristics.

The model predicts that i) an unrelated stock Z that’s on the cusp of many ETF rebal-
ancing thresholds is more likely to be hit by an ETF rebalancing cascade than an unrelated
stock Z that’s on the cusp of few rebalancing thresholds; however, ii) it shouldn’t be possible
to predict the direction of any resulting demand shock. To test these predictions, we split
2Wall Street Journal. 5/27/2015. Stock-Market Traders Pile In at the Close.
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each set of stock Zs that’s unrelated to the target of an M&A announcement, stock A, into
two subsets: those that are on the cusp of rebalancing for an above-median number of ETFs,
and those that aren’t. After verifying that these two groups of stocks do not display different
pre-trends in the days leading up to each M&A announcement, we show that ETF rebalancing
volume is 2.06% higher for the above-median stock Zs than for the below-median stock Zs in
the five days immediately after an M&A announcement. But, we also show that this increase
in ETF rebalancing volume is no more likely to be made up of buy orders than of sell orders.
Taken together, these results suggest that it’s possible to predict if stock Z will be affected by
an ETF rebalancing cascade but not how stock Z will be affected. We run two placebo tests to
further bolster these results. The first involves using randomly assigned announcement dates
while the second involves focusing on a subset of ETFs that rarely rebalances. In addition,
we show that the unpredictable demand coming from ETF rebalancing cascades affects the
prices of the underlying stocks. Large positive demand shocks to price increases; whereas,
lots of selling pressure leads to price decreases.

What’s more, there are several reasons why this point estimate represents a lower bound
on the amount of demand noise generated by computational complexity. First, not all ETF
rebalancing cascades begin with an initial M&A announcement. We estimate that a 1σ

increase in a stock’s exposure to ETF rebalancing cascades more generally—i.e., not just those
starting with an M&A announcement—is associated with a 0.4σ increase in ETF rebalancing
volume. Second, not all rebalancing cascades involve ETFs. Our theoretical analysis applies
to any situation where there’s a large group of funds following a wide variety of threshold-
based rebalancing rules. For other examples, think about quantitative hedge funds following
strategies of the form ‘Buy the top 30% and sell the bottom 30% of stocks when sorting on
X’ (Khandani and Lo, 2007) or pension funds with mandates of the form ‘15% of our assets
must be held in asset class X’ (Pennacchi and Rastad, 2011). The interactions of these funds’
trading rules can also generate demand noise. Third, rebalancing cascades are not the only
source of complexity in financial markets. Financial markets are complex for all sorts of
reasons. We focus our attention on rebalancing cascades because we can theoretically prove
that it’s computationally infeasible to predict how they will affect a stock’s demand and then
provide empirical evidence that this complexity results in demand noise.

1.1 Related Literature
This paper borrows from and builds on four main strands of literature.

Noise. Noise plays a central role in information-based asset pricing models (Grossman
and Stiglitz, 1980; Hellwig, 1980; Admati, 1985; Kyle, 1985) and limits-to-arbitrage models
(Shleifer and Summers, 1990; Shleifer and Vishny, 1997; Gromb and Vayanos, 2010). The
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Figure 1. Existing Papers on Indexing. Existing papers on the effects of index-
linked investing can be classified into one of two subgroups. The first studies how
trading due to index inclusion can directly affect a stock (Row 1). The second studies
how stock A’s inclusion in an index will affect its relationship with stock B in a
predictable fashion (Row 2). By contrast, this paper focuses on the unpredictable
consequences of stock A’s index inclusion, not for stock A or for stock B, but for
an unrelated stock Z that’s several steps removed (Row 3). A seemingly innocuous
change in the buy-sell-buy-sell sequence connecting stock A to stock Z—i.e., the slight
difference in the two dashed lines—can completely change how a rebalancing cascade
will affect stock Z—i.e., whether the cascade result in buy or sell orders for stock Z.

key contribution of this paper is to propose an explanation for where this demand noise
comes from that does not rely on individual investors behaving randomly. What’s more,
the mechanism proposed in this paper differs from other approaches to doing this, such as
hedging demand, because it makes quantitative predictions about which assets should have
more/less demand noise.

Indexing. Our paper also relates to work on index-linked investing (Wurgler, 2010). This
literature can be classified into two subgroups. The first group of papers studies how index
inclusion directly affects the underlying stocks in a predictable way (Figure 1, Row 1). For
instance, papers such as Bessembinder (2015), Shum et al. (2015), Bai et al. (2015), and
Ivanov and Lenkey (2018) all study the predictable effects of ETF rebalancing decisions on
stock A. And, Chang et al. (2014) shows how getting added to the Russell 2000 predictably
results in further price increases for stock A. For other examples, see Ben-David et al. (2017),
Bessembinder et al. (2016), Brown et al. (2016), and Israeli et al. (2017). The second group
studies how stock A’s inclusion in an index will affect its relationship with some other stock
B in a predictable fashion (Figure 1, Row 2). For instance, Barberis et al. (2005) shows that
a stock’s beta with the S&P 500 jumps sharply after index inclusion. For more examples, see
Greenwood and Thesmar (2011), Vayanos and Woolley (2013), and Anton and Polk (2014).
By contrast, this paper focuses on the unpredictable consequences of stock A’s index inclusion,
not for stock A or stock B, but for a completely unrelated stock Z (Figure 1, Row 3).

6



Thresholds. In addition, this paper connects to a broad behavioral-economics literature
studying thresholds. People use heuristic threshold-based decision rules in all sorts of different
contexts (Gabaix, 2014). The existing literature typically measures the cost of using a heuristic
rule in terms of its expected -utility loss (Bernheim and Rangel, 2009). Whereas, we look at
how simple decision rules can affect demand volatility. In other words, we show that the
interaction of many different heuristics can have important aggregate effects that a researcher
would miss by looking only at the consequences of a single agent’s decision rule.

Complexity. Finally, our paper adds to a line of literature studying complexity and chaos
in financial markets (e.g., Baumol and Benhabib, 1989; Frank and Stengos, 1989; Scheinkman
and LeBaron, 1989; Hsieh, 1991; Rosser, 1999). The current paper is clearly inspired by
this ambitious earlier work. But, we would also like to point out an important distinction.
These earlier papers use complexity to show that economic phenomena, such as financial
crises, are fundamentally unpredictable. Notice that most of the papers cited above were
published en masse following the 1987 crash. By contrast, the current paper is using complexity
constructively. We show how computational complexity can generate the demand noise which
makes financial markets possible and show where this noise will be the loudest, giving a new
way to empirically test existing asset-pricing models.

2 Theoretical Model
This paper proposes that complexity generates noise in financial markets. Because there are
so many index funds tracking so many different benchmarks, a small change in stock A’s
characteristics can cause one index fund to buy stock A and sell stock B, which can then
cause a second index fund following a different benchmark to sell stock B and buy stock
C, which can then cause. . . This section presents a model showing that, while it’s possible
to determine if a stock will be affected by one of these index-fund rebalancing cascades,
predicting how the stock will be affected (buy? or sell?) is an NP-hard problem. As a result,
demand shocks coming from index-fund rebalancing cascades are effectively random even
though each individual index fund is following a simple, deterministic, rebalancing rule. The
key insights from the model are that market outcomes can be complex even if individual
agents are behaving in a simple way and that this complexity is provably hard to untangle.

2.1 Market Structure
Here’s how we model index funds transmitting an initial shock from stock A to stock B,
and then from stock B to stock C, and then from stock C to stock D, and so on via their
rebalancing rules. These rebalancing rules are going to be extremely simple. And, that’s the
precisely point. One of the goals of the model is to show how complexity can generate noise
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even if individual agents are following extremely simple decision rules. Using a more realistic
set of rules will just make predicting the effect of a rebalancing cascade even harder.

Network. Imagine a market where index-fund rebalancing rules define a network over a
set of stocks S = {1, 2, . . . , S}. There is an edge from stock s to stock s′, not if they both
currently belong to the same benchmark, but rather if a shock to stock s would cause an
index fund to swap its position in stock s for a new position in stock s′. If a positive shock
to stock s would cause some fund to sell stock s′ and buy stock s, then stock s′ is a negative
neighbor to stock s:

N−s =
{
s′ ∈ S | positive shock to s ⇒ negative shock to s′

}
Whereas, if a negative shock to stock s would cause some fund to buy stock s′ and sell stock
s, then stock s′ is a positive neighbor of stock s:

N+
s =

{
s′ ∈ S | negative shock to s ⇒ positive shock to s′

}
A market’s structure is the set of all neighbors for each stock, M = {(N+

1 ‖N−1 ), . . . , (N+
S ‖N−S )}.

Distortion.We want to analyze how this index-fund rebalancing network propagates shocks
through the market in discrete rounds indexed by t = 0, 1, 2, . . . And, for this to happen, it’s
important that demand curves slope down (Shleifer, 1986). Index-fund rebalancing decisions
must have the potential to distort stock characteristics. If one fund decides to sell stock s, then
this decision must have the potential to change stock s in a way that causes a second fund
to rebalance, too. This assumption is consistent both with trader descriptions and current
academic research (Ben-David et al., 2017). More and more people are talking about how ETF
rebalancing “influences trading in individual stocks.”3 And, there’s a lot of overlap between
index-fund portfolios. A stock is often involved in numerous ETF benchmarks: “active beta,
momentum, dividend growth, deep value, quality, and total earnings.”4

We embed this rebalancing-distortions assumption in our model by using a single variable,
xs,t, to keep track of both index-fund rebalancing decisions and changes in stock characteristics:

xs,t ∈ {−1, 0, 1} ∆xs,t = xs,t − xs,t−1

If (xs,t,∆xs,t) = (1, 1), then stock s has realized a positive shock because some fund built a
new position in stock s. If (xs,t,∆xs,t) = (−1, −1), then the opposite outcome has taken place.
Stock s has realized a negative shock because some fund exited an existing position in stock
s. To emphasize that index-fund rebalancing decisions can affect more than just a stock’s
price, we refer to changes in a stock’s characteristics rather than its price. For example, if a
large-cap fund decides to buy a stock, then this additional buying pressure might increase
3Bloomberg. 4/10/2015. Tail Can Wag Dog When ETFs Influence Single Stocks, Goldman Says.
4Financial Times. 10/7/2017. On The Perverse Economic Effects Created by ETFs.
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the stock’s volatility enough to force a second low-vol fund to exit its position in the stock.

Propagation. Because we want to illustrate how computational complexity can generate
seemingly random demand shocks even in the absence of any random behavior on the part
of individual investors, we model how index-fund rebalancing decisions propagate shocks
through the market as a mechanical completely deterministic three-step process. First, Step

1 involves identifying the all stocks that will be affected at time (t + 1) by index-fund
rebalancing decisions made at time t:

Out+s,t =


{
s′ ∈ N+

s | s /∈ Out−s′,t−1

}
if (xs,t,∆xs,t) = (−1, −1)

∅ otherwise

Out−s,t =


{
s′ ∈ N−s | s /∈ Out+s′,t−1

}
if (xs,t,∆xs,t) = (1, 1)

∅ otherwise

Out−s,t is the set of stocks that will be negatively affected at time (t+ 1) by some index fund’s
decision to buy stock s at time t. Likewise, Out+s,t is the set of stocks that will be positively
affected at time (t+1) by some index fund’s decision to sell stock s at time t. The restrictions
that s /∈ Out−s′,t−1 and s /∈ Out+s′,t−1 respectively ensure that a shock doesn’t just bounce back
and forth between stocks s and s′ over and over again in perpetuity.

Next, Step 2 involves identifying all the ways that each stock s ∈ S will be affected at
time (t+ 1) by this collection of outgoing links due to decisions made at time t:

In+
s,t+1 =

{
s′ ∈ S | s ∈ Out+s′,t

}
In−s,t+1 =

{
s′ ∈ S | s ∈ Out−s′,t

}
Positive incoming links for stock s correspond to situations where an index fund sold stock
s′ at time t, and this selling pressure then forced a second index fund following a different
benchmark to buy stock s at time (t+ 1). Negative incoming links for stock s correspond to
the same sequence of events with opposite signs.

Finally, Step 3 involves calculating how the net effect of this collection of incoming links
will distort the characteristics of each stock at time (t+ 1):

us,t+1 = 1{|In+s,t+1|>|In−s,t+1|} − 1{|In+s,t+1|<|In−s,t+1|}

xs,t+1 = Sign[xs,t + us,t+1] (1)

In the equation above, Sign[y] = y/|y|. This updating rule simply says that, if more index
funds decided to buy stock s than sell stock s at time (t+ 1), then it will realize a positive
shock; whereas, if more index funds decided to sell, then stock s will realize a negative shock.
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Cascades. A rebalancing cascade starts at time t = 0 with all stocks at their default levels:

(xs,0,∆xs,0) = (0, 0)

Then, at t = 1, nature selects an ε-small set of stocks, A, to receive an initial positive shock:

(xs,1,∆xs,1) = (1, 1) for each s ∈ A

We assume that everyone knows the identity of the stocks in A. We say that A is ε-small if
there’s a positive constant ε > 0 such that |A| < ε · S as S →∞.

Following this initial shock, an index-fund rebalancing cascade is just the iteration of the
3-step updating procedure outlined above until a time limit T ∈ {1, 2, . . .} has been reached:

function CascadeM,T (A):
t← 0

for all (s ∈ A):
(xs,∆xs)← (1, 1)

while (t ≤ T ):
for all (s ∈ S):

Step 1: (Out+s ,Out
−
s )← Update[(Out+s ,Out

−
s )|(xs,∆xs)]

for all (s ∈ S):
Step 2: (In+

s , In
−
s )← Update[(In+

s , In
−
s )]

Step 3: (xs,∆xs)← Update[(xs,∆xs)]

t← t+ 1

return [x1 x2 · · · xS ]

An index-fund rebalancing cascade’s effect on stock Z, EffectM,T (A, Z), is the Zth element
of the output from CascadeM,T (A). The positive-initial-shock convention is without loss of
generality. Notice that how description of an index-fund rebalancing cascade suggests a second
interpretation for the symbol M. The symbol M doesn’t just represent a description of the
index-fund rebalancing rules in a particular market. It also represents a description of a
machine that computes the effects of any resulting cascades.

An Example. Figure 2 shows an example of an index-fund rebalancing cascade involving
5 stocks that starts with a positive shock to stock A. At time t = 3, the cascade delivers a
positive shock to stock Z, EffectM,3({A}, Z) = +1. But then, at time t = 4, a second branch of
the cascade hits stock Z, canceling out the effect of the first shock, EffectM,4({A}, Z) = 0. This
example highlights the two questions we want to ask about index-fund rebalancing cascades
in the following two subsections. First, is there any way for an index-fund rebalancing cascade
that starts at stock A to effect stock Z? Second, suppose there is. What will be the net effect
of the rebalancing cascade on stock Z? In the next two subsections, we’re going to investigate
the computational complexity of answering each of these questions.

10



1

1

A

B′ C ′

B

Z

1

1

2

2

1

1

2

2
3

1

1

2

2
3

A

B′ C ′

B

Z

t = 1 t = 2 t = 3 t = 4

A

B

B′

C ′

Z

N+
s N−s
‖
‖
‖
‖
‖

B,B′

A,Z

A,C ′

B′, Z

C ′ B

+1 +1 +1 +1

0 −1 −1 −1

0 −1 −1 −1

0 0 +1 +1

0 0 +1 0

C
as

ca
d

e M
,4

(A
)

= EffectM,4(A, Z)

Figure 2. An Example. An index-fund rebalancing cascade involving 5 stocks that
starts with a positive shock to stock A, A = {A}. Grey box depicts market structure,
M. Columns to the right depict state of each stock, xs,t, at times t = 1, 2, 3, 4. Diagrams
above depict propagation of shock through the market. Dots denote stocks. Red dot
is xs,t = +1; blue dot is xs,t = −1; black dot is xs,t = 0. Dashed box reports result of
index-fund rebalancing cascade at time t = 4, CascadeM,4(A). Notice that cascade has
positive effect on stock Z in round t = 3, EffectM,3(A, Z) = +1. But, in round t = 4,
its net effect on stock Z reverts to EffectM,4(A, Z) = 0.

2.2 ‘If?’ Problem
How hard is it to figure out whether an index-fund rebalancing cascade triggered by an initial
shock to stock A might eventually affect the demand for stock Z? It turns out that the answer
to this question is: ‘Not very hard.’ And, we now explore why this is the case.

Decision Problem. Figuring out whether an index-fund rebalancing cascade starting with
stock A might affect stock Z means finding at least one path connecting stock A to stock Z
in the ETF rebalancing network. We define a K-path connecting stock A to stock Z as a
sequence of K stocks {s1, . . . , sK} such that the first stock is stock A, the last stock is stock
Z, and for each stock k ∈ {2, . . . , K − 1} we have that

sk ∈

N+
sk−1

k odd

N−sk−1
k even

for all k ∈ {2, . . . , K}

For example, in Figure 2, there are two different paths from stock A to stock Z. One travels
from stock A to stock B to stock Z:

A
B

Z {
(∅‖{B}
Stock A

), (
→
{A,Z}‖∅
Stock B

), (
→
∅‖{B}
Stock Z

)
}

(2)
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The other travels from stock A to stock B′ to stock C ′ to stock Z:

A

B′ C ′

Z

{
(∅‖{B′}
Stock A

), (
→
{A,C ′}‖∅
Stock B′

), (
→
∅‖{B′,Z}
Stock C′

), (
→
{C ′}‖∅
Stock Z

)
}

(3)

If such a path exists, then it’s possible that an index-fund rebalancing cascade triggered by
an initial shock to stock A might affect the demand for stock Z.

Below we give a formal definition of the ‘If?’ problem.

Problem 2.2a (If).
• Instance: A choice for stock Z; a market structure M; a time T ≥ 1; and, a subset of
stocks Ŝ ⊆ S.

• Question: For each stock s ∈ Ŝ, is there a K-path connecting stock s to stock Z for
some K ≤ T?

The set If denotes the set of instances where the answer is ‘Yes’. Solving the ‘If?’ problem
means deciding whether (Z,M, T, Ŝ) ∈ If. So, when it’s the case that (Z,M, T, Ŝ) ∈ If, there’s
at least one K-path connecting each stock s ∈ Ŝ to stock Z in K ≤ T steps.

If Complexity. Problems with polynomial-time solutions are considered “tractable prob-
lems” that “can be solved in a reasonable amount of time (Moore and Mertens, 2011).” And,
the proposition below shows that If can be solved in polynomial time. In other words, it’s
easy to determine which stock As have the potential to trigger an index-fund rebalancing
cascade that affecting stock Z.

Proposition 2.2a (If Complexity). If can be solved in polynomial time.

We say that f(y) = O[g(y)] if there exists an α > 0 and a y0 > 0 such that |f(y)| ≤ α · |g(y)| for
all y ≥ y0. And, we say that f(y) = Poly[y] if there exists some β > 0 such that f(y) = O[yβ].
The size of an instance of If is governed by the number of stocks in the market, S. So, a
polynomial-time solution for If is an algorithm that decides whether (Z,M, T, Ŝ) ∈ If in
Poly[S] steps for every possible choice of (Z,M, T, Ŝ)—i.e., computational-complexity results
typically provide bounds on the time needed to solve worst-case instances.

Predicting If. The computational tractability of If also means that you can make useful
predictions about the size of Ŝ for a given stock Z. To illustrate, suppose that for any pair
of stocks (s, s′) ∈ S2, stock s′ is chosen as a positive neighbor to stock s independently
with probability κ/S where κ > 0 is some O[log(S)] function. Under these assumptions, the
number of positive neighbors for each stock, N+

s = |N+
s |, obeys a Poisson distribution as

S →∞ (Erdos and Rényi, 1960)

N+
s ∼ Poisson(κ, S) (4)
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which implies that the typical stock has E[N+
s ] = κ positive neighbors. Thus, if κ ≈ 0, then

the market will be fragmented with most stocks having no neighbors; whereas, if κ ≈ log(S),
then the market will be densely connected with each stock on the cusp of rebalancing for
many different funds. The fact that there are “now more indexes than stocks”5 suggests that
the typical stock is on the cusp of more than one rebalancing threshold, κ > 1.

The proposition below shows that it’s easy to predict how many stocks are connected to
stock Z just by counting the number of neighbors for stock Z.

Proposition 2.2b (Predicting If). If M is a market structure generated using connectivity
parameter κ > 1 and

Ŝmax(Z,M, T ) = max
Ŝ∈2S

{
|Ŝ| s.t. (Z,M, T, Ŝ) ∈ If

}
denotes the number of stocks with a K-path to stock Z for some K ≤ T , then E[Ŝmax(Z,M, T )]

is increasing in the total number of neighbors to stock Z.

Put differently, stocks with more neighbors are more likely to be affected by index-fund
rebalancing cascades. And, you can infer this property about stock Z without having to trace
out each individual path that a rebalancing cascade might take. All you have to do is count
stock Z’s immediate neighbors. We will make use of this fact in our empirical analysis below.

We want to emphasize, however, that our main results are not about the emergence of a
giant component in a random graph when the connectivity parameter crosses κ = 1. In fact,
Proposition 2.2b takes the existence of the giant connected component as given; it assumes
κ > 1. And, this is a reasonable assumption to make in our setting since, as discussed
above, modern financial markets contain more indexes than stocks. Our main point is that
the interactions between a large number of heterogeneous rebalancing rules in this giant
component can create seemingly random demand shocks.

2.3 ‘How?’ Problem
Although it’s easy to predict if some stock Z is likely to be affected by an index-fund
rebalancing cascade starting with stock A, predicting how this stock Z will be affected turns
out to be computationally intractable. Let’s now examine why this is the case.

Some Intuition. What does it mean to say that if is an easier question than how? To
build some intuition, let’s start by looking at Figure 3. Each row depicts a single market
with S = 25 stocks. Here’s the exercise we have in mind. First, examine the left panel, which
depicts the index-fund rebalancing rules that define each market, in each row. Then, ask
yourself: i) ‘Will stock Z, which is denoted by the large black square with a question mark in
5Bloomberg. 5/12/2017. There Are Now More Indexes Than Stocks.
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☀
∎?

☀
∎?

☀
∎

☀
∎

☀
∎?

☀
∎

☀
∎

☀
∎?

☀
∎

☀
∎

Network If? How?

M
1

M
2

M
3

M
4

Figure 3. Some Intuition. Each row contains 3 panels and depicts simulated results
for a single market with S = 25 stocks—i.e., one market structure per row. Nodes are
stocks. Node color denotes effect of index-fund rebalancing cascade: blue=positive,
red=negative, black=no effect. Star: stock A. Square: stock Z. Edges denote index-
fund rebalancing rules. Blue(s)-to-red(s′): stock s′ is negative neighbor to stock s.
Red(s)-to-blue(s′): stock s′ is positive neighbor to stock s. Stock A and stock Z
are in same position in all panels. Network: Index-fund rebalancing rules. If?: Path
connecting stock A to stock Z if one exists. How?: Net effect of index-fund rebalancing
cascade if path exists.
In the first row, M1, you can immediately see that there’s no way for an initial shock
to stock A to trigger an index-fund rebalancing cascade affecting stock Z; whereas, in
the rows two, three, and four there is. And, the middle column traces out one such
path from stock A to stock Z that ends in a positive shock for stock Z in each of
these three markets: M2, M3, M4. But, the right column shows that there’s no easy
way to determine whether the net result of the entire rebalancing cascade (buy? or
sell?) will be the same as in the middle column. The effect of the single path and the
net effect of the entire cascade only agree in the second row, M2.
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it, be affected by an index-fund rebalancing cascade that starts at stock A, which is denoted
by the large blue star?’ and ii) ‘If so, how exactly will stock Z be affected (buy vs. sell)?’

On one hand, you can immediately see how easy it is to answer the first question. The
middle panels show that there’s a path connecting stock A to stock Z in markets M2, M3,
and M4 (rows two through four) but not in market M1 (row one). So, stock Z might be
affected by an index-fund rebalancing cascade starting with stock A in M2, M3, and M4 but
not in M1. Answering this first question gives you a sense of what it means to have an easy
polynomial-time solution. All you have to do is find a break in the chain.

On the other hand, you can also immediately see how hard it is to answer the second
question. There’s no way to guess how an index-fund rebalancing cascade will affect stock
Z by examining the set of index-fund rebalancing rules involved, even though these rules
are completely deterministic. The middle column shows that markets M2, M3, and M4 (rows
two through four) all have individual paths connecting stock A to stock Z that end with a
positive demand shock for stock Z. But, the right column shows that the net effect of the
entire index-fund rebalancing cascade in each of these markets only agrees with this naïve
prediction for market M2 in the second row. Even though there are individual paths from
stock A to stock Z that would result in a positive demand shock for stock Z in markets M3

and M4, neither rebalancing cascade results in a positive demand shock for stock Z on net.

Decision Problem. Below is the formal definition of the ‘How?’ decision problem.

Problem 2.3a (How).
• Instance: A choice for stock Z; a market structure M; a time T = Poly[S]; a positive
constant ε > 0; and, the power set Â ⊆ 2S of all ε-small sets A ⊆ S.

• Question: Is there some A ∈ Â such that EffectM,T (A, Z) 6= +1?

The set How denotes the set of instances where the answer is ‘Yes’. Here’s what this means
in plain English. Imagine the universe of all index-fund rebalancing cascades that stem from
an initial positive shock to an arbitrarily small subset of stocks in the market. Will every
single one of these rebalancing cascades have a positive effect on stock Z after T rounds of
rebalancing? Solving How means answering this question.

How Complexity. The proposition below gives a mathematical result that mirrors the
intuition we built up in Figure 3. Solving How is much harder than solving If.

Proposition 2.3a (How Complexity). How is an NP-complete problem.

Just like instances of If, the size of an instance of How is governed by the number of stocks
in the market, S. The complexity class NP is the set of decision problems with solutions that
can be verified in polynomial time. A crossword puzzle is a good example of a problem that’s
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hard to solve but easy to verify (Garey and Johnson, 2002). Solving this Sunday’s grid might
take you an hour, but it’ll only take you a second to verify your guess about the answer for
31-down once you see the answer key.

What does it mean for a decision problem to be NP complete? For any pair of decision
problems, Prob1 and Prob2, we say that solving Prob2 can be reduced to solving Prob1 if you
can solve Prob2 by just mapping each instance of Prob2 over to a corresponding instance of
Prob1 and then simply solving Prob1. Intuitively, if solving Prob2 can be reduced to solving
Prob1, then solving Prob2 is no harder than solving Prob1. A decision problem is NP complete
if it belongs to NP and every other decision problem in NP can be reduced to it.

Root of the Problem. Figure 4 illustrates precisely why How is so computationally in-
tractable. Each vertical gray region denotes a separate sequence events, starting at the top
and ending at the bottom. On the left, there’s a proposed path connecting stock A to stock
Z that ends with a positive shock to stock Z:

A

A B C D Z

The trouble is that stocks A and D are also connected to other stocks that may not belong
to the original path (dotted lines), which means that the market structure could contain a
secondary path. The four gray regions to the right show how small changes in the length of
this secondary path can change the cascade’s net effect on stock Z. If stock A and stock D
are directly connected, as in M0, then the secondary path doesn’t matter. If there is a 1-path
connecting stock A to stock D, as in M1, then the secondary path implies that stock Z will be
unaffected by the entire index-fund rebalancing cascade. But, if there’s a 2-path connecting
stock A to stock D, as in M2, then the secondary path won’t matter once again. And, if
there’s a 3-path connecting stock A to stock D, as in M3, then stock Z will be positively
affected by the index-fund rebalancing cascade even though stock D will be unaffected. Thus,
tiny changes in the structure of an index-fund rebalancing network can cause an index-fund
rebalancing cascade to affect stock Z in completely different ways.

As a result, determining how a particular index-fund rebalancing cascade will affect stock
Z requires a detailed simulation of how the entire cascade will play out. And, finding an
initial shock which results in a negative effect on stock Z could require checking every possible
ε-small subset. And, the size of this power set scales exponentially with the number of stocks
in the market, S. Suppose you could solve instances of How in less than one microsecond when
there were only 20 ETFs in the market. Proposition 2.3a implies that this same algorithm
would take longer than the current age of the universe to execute in today’s market, which
contains roughly 2,000 U.S.-listed ETFs.6 “A running time that scales exponentially implies
6Financial Times. 1/14/2017. ETFs Are Eating The US Stock Market.
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a harsh bound on the problems we can ever solve—even if our project deadline is as far away
in the future as the Big Bang is in the past (Moore and Mertens, 2011).”

Predicting How. Proposition 2.3a says that the problem of figuring out how every single
index-fund rebalancing cascade will effect stock Z is computationally intractable. But, maybe
this is an unreasonable goal. Never let the perfect be the enemy of the good. So, what if you
only tried to figure out how most index-fund rebalancing cascades will affect stock Z? We
introduce the following decision problem to make this idea precise.

Problem 2.3b (MajorityHow).
• Instance: A choice for stock Z; a market structure M; a time T = Poly[S]; a positive
constant ε > 0; and, the power set Â ⊆ 2S of all ε-small sets A ⊆ S.

• Question: Is
∑

A∈Â 1{EffectM,T (A, Z)=+1} > |Â|/2?

Compared to How, the MajorityHow problem seems like a much closer analogue to the problem
that real-world traders care about. Traders know which index funds hold each stock. And,
they know the rebalancing rules that index funds are following. So, given this information,
they would like to determine how some stock Z will be affected by the majority of index-fund
rebalancing cascade that might possibly occur. For a particular market structure, will more
than half of all possible index-fund rebalancing cascades result in buy orders stock Z?

And, at first, the MajorityHow problem seems much easier to solve than How because
it doesn’t involve finding a particular verboten instance. But, this first reaction is wrong.
Proposition 2.2b shows that stock Zs with more neighbors are more likely to be hit by index-
fund rebalancing cascades. But, Proposition 2.3b shows that determining whether more than
half of all possible index-fund rebalancing cascades will result in buy orders is tantamount
to predicting the outcome of a coin flip.

Proposition 2.3b (Predicting How). MajorityHow is an NP-hard problem.

A decision problem is NP hard if every decision problem in NP can be reduced to it but the
problem itself might not belong to NP. So, if MajorityHow is an NP-hard problem, then it
is at least as hard as any decision problem in NP. Moreover, a polynomial-time solution to
MajorityHow would imply P = NP.

2.4 Key Ingredients
We’ve just seen that predicting how an index-fund rebalancing cascade will affect a stock’s
demand with accuracy better than a coin flip is an NP-hard problem, even if you are fully
rational and the index funds involved are following simple deterministic rebalancing rules.
As a result, traders have no choice but to treat the demand shock coming from index-fund
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Figure 4. Root of the Problem. Each vertical gray region denotes a separate
sequence events, which starts at the top and ends at the bottom. Each node denotes
a stock. Node color denotes effect of cascade: blue=positive, red=negative, black=no
effect. Star: initial shock to stock A. Square: final effect for stock Z. Edges denote
index-fund rebalancing rules. Blue(s)-to-red(s′): stock s′ is negative neighbor to stock
s. Red(s)-to-blue(s′): stock s′ is positive neighbor to stock s. Path: path connecting
stock A to stock Z. Location of stocks A, B, C, D, and Z remain unchanged in all
sequences. Dotted lines: neighbors to stock A and stock Z that could form alternate
path. Mk: market structure that contains alternate path with k ∈ {0, 1, 2, 3} stocks
separating stock A and stock D.
The left column depicts a path connecting stock A to stock Z via stocks B, C, and
D that results in a buy order for stock Z when ignoring the other connections that
stocks A and D have. The right four columns then illustrate how tiny changes in how
stocks A and D are connected to the rest of the network can alter the effect of a
cascade starting with stock A on stock Z. The cascade will result in buy orders for
stock Z in markets M0, M2, and M3 but not in market M1. Moreover, you can’t tell
which situation you are in just by looking at stock Z’s immediate neighbors. While
stock D realizes no net effect in both market M1 and market M3, the cascade only
results in a positive net demand shock for stock Z in market M3.
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rebalancing cascades as noise. We now describe three key features of index-fund rebalancing
cascades that make them so hard to predict.

Financial economists have long intuited a connection between apparent randomness and
complexity. For example, John Maynard Keynes (1921) pointed out that, because a daily
national census is logistically impossible, the answer to the question ‘Is the population of
France an even or an odd number?’ may as well be a coin toss. However, in the past, this
intuitive connection was just that—an intuition. When a financial economist encountered a
complex process with seemingly random output, he had no way of knowing if these data would
also look like random noise to a trader with more computational resources. Our theoretical
model makes this connection concrete by proving that the results of an index-fund rebalancing
cascade appear random for all traders. And, by showing precisely why no one can predict the
effects of an index-fund rebalancing cascade, we make it possible for researchers to identify
other situations where the same logic holds.

Alternation. First, index-fund rebalancing cascades are only hard to predict if they involve
alternating sequences of buy and sell orders. In a world where a positive shock to stock A
can only ever result in a positive shock to stock B, predicting how stock Z will be affected
by a rebalancing cascade is easy. In fact, it’s equivalent to solving the ‘If?’ problem.

Proposition 2.4a (Necessity of Alternation). Without alternation, How is solvable in poly-
nomial time.

Index-fund rebalancing cascades necessarily involve an alternating sequence of buy and
sell orders. When an index fund rebalances its portfolio, it swaps out an existing position
in one stock for a new position in another. But, there are other cascade-like phenomena
where this isn’t the case. For example, think about bank runs. During a bank run, depositors
are choosing whether to withdraw their money—the decision is about whether to sell or do
nothing at all. There is no alternation involved. And, as a result, equilibrium demand in
these models behaves in a predictable way depending on whether some threshold has been
crossed (Diamond and Dybvig, 1983; Brunnermeier and Pedersen, 2008).

Feedback Loops. Second, index-fund rebalancing cascades are only hard to predict in a
market structure that involves cancellation due to feedback loops. It’s important that different
cascade paths have the potential to cancel each other out, as highlighted in Figures 2 and
4. To illustrate, think about what would happen if every stock in the market had no more
than two neighbors. In this setting, there’s no way for a single stock to be affected by a
rebalancing cascade more than once. So, if there exists a path connecting stock A to stock Z,
then you can determine how a rebalancing cascade starting with stock A will affect stock Z
by counting the number of stocks in the path. If the number’s odd, the shock to stock Z will
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be positive, like in Equation (2); if it’s even, the shock will be negative, like in Equation (3).

Proposition 2.4b (Necessity of Feedback Loops). Without cancellation due to feedback
loops, How is solvable in polynomial time.

Again, we feel that feedback loops are a natural part of the index-fund universe. There
is no central-planning committee that limits the number of indexes holding a single stock.
There’s nothing stopping 20 different smart-beta ETFs from holding the same company at
the same time for different reasons.7 Thus, the associated collection of rebalancing rules will
contain market structures with feedback loops. And, it’s these loopy instances that make
solving How computationally intractable.

Thresholds. Third, index-fund rebalancing cascades are only hard to predict if their bench-
mark indexes involve threshold-based rebalancing rules. For example, it’s important that the
PowerShares S&P 500 Low-Volatility ETF [SPLV] tracks a benchmark consisting of only
the 100 lowest-volatility stocks on the S&P 500 and not a benchmark including all S&P
500 stocks with relatively more shares of lower-volatility constituents. In the first case, an
arbitrarily small change in a stock’s volatility can move it from 101st to 100th place on the
low-volatility leaderboard and force SPLV to exit its entire position. In the second case, an
arbitrarily small change in a stock’s volatility would only lead to an even smaller change
in the fund’s portfolio position. Without threshold-based rebalancing rules, longer cascade
paths would necessarily have smaller effects for the same reason that AR(1) impulse-response
functions get exponentially weaker at longer and longer horizons. So, without thresholds, you
can approximate a cascade’s net effect on stock Z with the effect of the shortest path.

Proposition 2.4c (Necessity of Thresholds). If index funds don’t use threshold-based rebal-
ancing rules, then there’s a fully polynomial-time approximation scheme for How.

We know that index funds use threshold-based rebalancing rules. In fact, this is how most
ETFs operate. But, threshold-based trading rules can be found all over the place in financial
markets. A typical stat-arb trading strategy will have the form, ‘Buy the top 30% and sell
the bottom 30% of stocks when sorting on X’, where X is some variable that predicts the
cross-section of expected returns. Our goal is not to explain why funds choose to follow these
sorts of trading rules; instead, our goal is to point out one natural consequence of these sorts
of trading rules: demand noise.

No-Trade Theorem. Finally, you might be wondering why the classic Milgrom and Stokey
(1982) no-trade theorem doesn’t apply to the setting we study in our paper. What implicit
assumption is being violated? Milgrom and Stokey (1982) consider a setting where all traders
7SeekingAlpha. 6/27/2017. Smart Beta ETFs Love These Stocks.
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start out with common priors and then one of them gets a private signal. Next, they prove
that, if this lone trader acts on his private signal using a simple deterministic trading rule,
everyone else in the market will be able to figure out what he’s learned by studying his trading
behavior. We show that this result breaks down in modern financial markets because there
isn’t just one lone trader following a simple deterministic trading rule. There are hordes of
them. So, even if each index fund is using a simple deterministic rebalancing rule, the net
demand coming from the entire interacting mass of index funds can still appear random.

3 Empirical Evidence
We’ve just seen a model showing how it’s theoretically possible for complexity to generate
demand noise. But, is there any evidence that complexity actually generates demand noise in
real-world financial markets? To answer this question, we analyze data on a particular kind
of index fund—exchange-traded funds (ETFs)—following a particular kind of initial shock—
M&A announcements. Throughout our analysis, we will use teletype font to indicate
variables that are either used in a regression or get reported as summary statistics.

3.1 Exchange-Traded Funds
The model characterizes index-fund rebalancing cascades that occur following an initial shock
to some stock A. So, to bring the model to the data, we need to choose a group of index funds
to study as well as a collection of initial shocks. We now address the first of these choices.
We use data on the end-of-day positions of U.S. exchange-traded funds (ETFs) from January
1st, 2011 to December 31st, 2017. Our data come from ETF Global. In our analysis, we only
consider ETFs that rebalance more than once a quarter. Here are the three reasons why we
focus our empirical attention on this particular market.

Reason #1: Apt Description. First, our theoretical model describes a market populated by
a large group of index funds following a heterogeneous collection of overlapping benchmark
indexes. And, this is an apt description of the modern ETF market. Of course, things didn’t
always look this way. Prior to January 2008, the ETF market was rather boring. Every ETF
during this period tracked some sort of pre-existing value-weighted market index. For a good
example, think about the SPDR S&P 500 ETF, which tracks the S&P 500 and was the first
ever ETF. But, in early 2008, the SEC changed its guidelines so that an ETF could now track
its own self-defined benchmark. After this change, Invesco PowerShares was free to create
an ETF that tracked the returns of the 100 lowest volatility S&P 500 stocks even if there
was no pre-existing low-volatility S&P 500 index it could point to. All Invesco had to do was
announce the weights involved in this low-volatility benchmark a day in advance.

The modern ETF industry closely resembles the environment that we model in Section
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2. There are now more ETFs than stocks.8 And, the sheer number and variety of these so-
called smart-beta ETFs divides popular opinion.9 “From ProShares we have CLIX (100% long
internet retailers and 50% short bricks-and-mortar U.S. retailers) and EMTY (which just bets
against bricks-and-mortar retailers). . .meanwhile from EventShares, we have policy-factor
ETFs like. . . GOP (full of oil drillers, gun manufacturers, and so on that would benefit from
Republican policies) and DEMS (with companies that should do well under Democrats, such
as clean-energy companies). There is also an ETF called TAXR that invests in companies
poised to benefit most from a successful attempt to pass a tax reform bill.”10

To be sure, niche ETFs tend to be smaller than broad value-weighted market ETFs,
such as the well-known SPDR S&P 500 ETF. But, even the rebalancing activity of niche
ETFs can affect a stock’s underlying characteristics because ETFs execute the bulk of their
trades during the final 20-to-30 minutes prior to market close.11 The numbers are stark:
“37% of New York Stock Exchange trading volume now happens in the last 30 minutes of
the session, according to JPMorgan. The chief culprit is the swelling exchange-traded fund
industry. . . ETFs are essentially investment algorithms of varying degrees of complexity, and
typically automatically rebalance their holdings at the end of the day.”12 A 2015 Goldman
Sachs report found that energy-sector ETFs accounted for “15% of Chevron and 12% of Exxon
Mobil’s average daily volume” during a three-month stretch in 2015.13

Reason #2: Lack of Discretion. Second, the model applies to a setting where index-fund
managers follow simple deterministic rebalancing rules. And, ETF managers don’t deviate
from their stated benchmarks like mutual-fund or hedge-fund managers do (Madhavan, 2016;
Ben-David et al., 2017). The company running an ETF (its ‘sponsor’) has an obligation to
create or redeem shares at the end-of-day market value of its stated benchmark. If an ETF’s
price is higher than the end-of-day market value of its benchmark, then an arbitrageur can sell
shares of the ETF back to the sponsor and use the proceeds to buy shares of the underlying
assets in the benchmark index. The reverse logic holds when an ETF is underpriced. So, if
arbitrageurs are constantly asking an ETF sponsor to create or redeem lots of shares, then
the sponsor must be losing lots of money. As a result, creations and redemptions are only
a small fraction of daily trading volume for ETFs, and these trades involve less than 0.5%

percent of ETFs’ net assets (Investment Company Institute, 2015).
Instead, ETF trading volume primarily comes from rebalancing activity just prior to

8Bloomberg. 5/16/2017. Mutual Funds Ate the Stock Market. Now ETFs Are Doing It.
9New York Times. 06/22/2017. An Index-Fund Evangelist Is Straying From His Gospel.
10Financial Times. 11/21/2017. A ROSE by any other ticker symbol. . .
11Wall Street Journal. 03/14/2018. What’s the Biggest Trade on the NYSE? The Last One.
12Financial Times. 3/17/2017. Machines and Markets: 5 Areas To Watch.
13Goldman Sachs Equity Research. 04/10/2015. ETFs: The Rise of the Machines.
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market close. This end-of-day trading is how ETFs make sure that there is very little difference
between the market value of their end-of-day holdings and the market value of their stated
benchmark. It’s true that an ETF manager who does the bulk of his rebalancing activity at
market close will incur higher trading costs. But, the typical investor in a smart-beta ETF is
not looking for a cheap way to buy and hold a broad market portfolio. ETF investors traded
“$20 trillion worth of shares last year even though ETFs only have $2.5 trillion in assets.
That’s 800% asset turnover, which is about three-times more than stocks.”14 An investor
interested in holding a smart-beta ETF is looking for quick access to a very targeted position.
For a niche ETF, the additional trading costs incurred by end-of-day orders are nothing
compared to the costs associated with replicating an entire position from scratch.

Reason #3: End-of-Day Data. Third and finally, the model relies on the fact that demand
curves slope down (Shleifer, 1986). It’s essential that the trading activity of one index fund
can affect other index funds’ benchmark composition. To observe these distortions empirically,
we need to be able to see an index fund’s holdings on a daily basis. And, we can observe
end-of-day portfolio positions for ETFs. Note that other papers in the ETF literature, such as
Ben-David et al. (2017), impute each ETF’s daily portfolio position from its end-of-quarter
financial statements. This is a perfectly reasonable approach for answering some research
questions, but it won’t work in our setting. We are interested in how the rebalancing decisions
of different index funds interact with one another over the course of a few days. And, we can’t
study these interactions by imputing a fund’s daily holdings from end-of-quarter reports.

Variable Construction. For each ETF, f ∈ {1, . . . , F}, ETF Global provides data on
assets under management, AUMf,t, and relative portfolio weights in stock s, Ωf,s,t, at the end
of each trading day t from January 1st, 2011 to December 31st, 2017. Thus, if Ps,t is the price
of stock s on day t, the actual number of shares of stock s that the fth ETF holds on day t,
Qf,s,t, is:

Qf,s,t = 1
Ps,t
× (Ωf,s,t · AUMf,t)

Total ETF trading volume for stock s on day t is given by ETFvlms,t =
∑F

f=1 |Qf,s,t−Qf,s,t−1 |.
We restrict our sample to only include ETFs that rebalance more than once a quarter. So,
when viewing our results, you should have in mind the PowerShares S&P 500 Low-Volatility
ETF rather than the SPDR S&P 500 ETF. We also exclude leveraged ETFs from our sample.
We do this to emphasize that we are studying how rebalancing cascades can transmit an initial
shock to stock A to an unrelated stock Z in an unpredictable way and not how leveraged
ETFs predictably amplify initial shocks to stock A (Ivanov and Lenkey, 2018). We do not
otherwise restrict, winsorize, or filter the data.
14Bloomberg. 3/3/2017. 5 Ways ‘Passive’ Investing Is Actually Quite Active.
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We use this end-of-day ETF-holdings data to create two main variables of interest. The
first is ETF rebalancing volume. This requires a little bit of subtlety because, while most
ETF trading volume each day is due to rebalancing decisions, some ETF trading volume
isn’t. Here’s how we isolate ETF rebalancing volume. We start with a simple accounting
identity: the total amount of money that an ETF has invested in a stock must be equal to
the price of the stock times the number of shares the ETF holds, Ps,t ·Qf,s,t = Ωf,s,t · AUMf,t.
Rearranging this accounting identify yields an expression for the number of shares that the
ETF holds on a given day:

Qf,s,t = 1
Ps,t
× (Ωf,s,t · AUMf,t)

= 1
Ps,t
× (Ωf,s,t−1 + ∆Ωrebal

f,s,t + ∆Ωvw
f,s,t) · AUMf,t

And, in the second line, we’ve broken the ETF’s portfolio weight on stock s into three
components, Ωf,s,t = Ωf,s,t−1 + ∆Ωrebal

f,s,t + ∆Ωvw
f,s,t.

Here’s what each of these three components means. The first component, Ωf,s,t−1, is the
ETF’s portfolio weight on the previous day. The second component, ∆Ωrebal

f,s,t , is the change
in the ETF’s portfolio weight due to rebalancing decisions—e.g., due to the stock getting
added to or deleted from the ETF’s benchmark index. And, the third component, ∆Ωvw

f,s,t, is
the change due to value weighting. If Rs,t denotes the return of stock s and Rbmk,t denotes
the return on the ETF’s value-weighted benchmark on day t, then we can express this third
component as follows using observable data (see Appendix A for details):

∆Ωvw
f,s,t = (Rs,t/Rbmk,t − 1) · Ωf,s,t−1 (5)

We are only interested in changes in an ETF holdings due to rebalancing decisions.
Creations and redemptions will cause the size of the fund to change, AUMf,t 6= AUMf,t−1. But,
any resulting transactions will get executed as in-kind transfers for tax reasons, which would
mean that ∆Ωrebal

f,s,t = 0. Likewise, if a stock appreciates in value, then it will receive a higher
weight in an ETF’s portfolio, but the ETF won’t actually have to rebalance its position in
the stock. So, again we would have a situation where ∆Ωrebal

f,s,t = 0.
So, to compute the amount of a stock’s trading volume coming specifically from ETF

rebalancing decision, we first calculate each ETF’s predicted holdings for the stock on day t:

Q̄f,s,t = 1
Ps,t
× (Ωf,s,t−1 + ∆Ωvw

f,s,t) · AUMf,t
Then, for each stock, we sum up the difference between every ETF’s actual end-of-day holdings
and this predicted value:

ETFrebals,t =
∑F

f=1

∣∣Qf,s,t − Q̄f,s,t

∣∣
We use this as our daily measure of ETF rebalancing volume for each stock.
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To measure the direction of ETF order flow (buy? or sell?), we also compute a measure
of the order imbalance in each stock’s ETF rebalancing volume:

ETFimbals,t =


∑F

f=1
Qf,s,t−Q̄f,s,t

ETFrebals,t
if ETFrebals,t > 0

0 otherwise

This variable lies on the interval [−1, 1]. If ETFimbals,t = −1, then every share of stock s
traded by ETFs for rebalancing reasons resulted in a sell order. Whereas, if ETFimbals,t = +1,
then every single share of ETF rebalancing volume resulted in a buy order for stock s.

Summary Statistics. Table 1 provides summary statistics describing the ETF market.
Panel A presents aggregate statistics at the monthly level. There were, on average, 1073.3

ETFs in our sample each month with a total of $1.4 trillion in assets under management.
These ETFs tracked almost 900 different benchmark indexes in the average month, and each
ETF typically held positions in 263 different stocks. Panel B then presents cross-sectional
statistics showing how these monthly aggregates varied across funds. While the average ETF
in our sample had $859.6 million in assets under management and held positions in 247 stocks,
the median ETF only managed $30.8 million and held positions in 78 stocks. These numbers
confirm that the typical ETF in our sample is smaller than a large value-weighted market
fund, such as the SPDR S&P 500 ETF [SPY]. But, as discussed earlier, even a relatively small
ETF can have a large impact on the characteristics of one of its constituent stocks because
ETFs do the bulk of their trading during the final 20-to-30 minutes of the trading day.

Next, Table 2 provides summary statistics describing the stocks that ETFs trade. Panel
A describes ETF trading activity for each stock. The average stock in our sample is held by
476 different ETFs each month. The rebalancing activity of these ETFs typically resulted in
an additional e13.1 ≈ 500k shares of each stock being traded each month, which represented
e13.1−15.5 ≈ 10% of total trading volume for the average stock in our sample. To emphasize
the point that not all ETF trading volume is due to ETF rebalancing decisions, we also report
total ETF trading volume. We find, however, that non-rebalancing volume makes up less
than 1% of total ETF trading volume for the typical stock. Panel B then provides summary
statistics describing more general characteristics of these stocks.

3.2 M&A Announcements
Having explained why we chose to study the ETF market, we now describe why we use M&A
announcements for our set of initial shocks. We refer to the target of an M&A announcement
as stock A. Our data on M&A deals comes from Thomson Financial. We use all deals that
involve publicly traded target firms with an announcement date between January 1st, 2011
and December 31st, 2017. There are 1119 such deals in our seven-year sample period, yielding
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an average of 14.3 announcements per month as shown in Table 3.

Effect on Rebalancing. M&A announcements are a natural choice for our initial shocks
because there is solid empirical evidence that the target of an M&A announcement realizes
a sharp change immediately following the announcement (Andrade et al., 2001). And, while
acquirers do not choose their M&A targets at random, the exact day that a deal is announced—
Wednesday vs. Thursday—can be taken as exogenous. Consistent with these findings, Table
4 shows that ETFs rebalance their position in stock A on the day that stock A gets revealed
as the target of an M&A deal. Let tA denote the day stock A is announced as an M&A target.
We create a panel dataset containing the ETF rebalancing volume for each stock A during
the 26-day window t ∈ {tA − 20, . . . , tA + 5}. Then, we regress stock A’s ETF rebalancing
volume on indicator variables for the number of days until the M&A announcement:

ETFrebalA,t = αA + αmmyy + β · 1{t=tA−1} + γ · 1{t=tA} + δ · 1{t=tA+1} + εA,t

In the equation above, αA and αmmyy denote stock-A and month-year fixed effects respectively.
The first column in Table 4 shows that ETF rebalancing volume for stock A rises by

139.69% on the exact day that stock A is announced as an M&A target. The second column
then shows results for the same regression specification after including controls for stock A’s
lagged total trading volume. The point estimate for the effect of an M&A announcement
on ETF rebalancing volume in stock A hardly changes when moving from the first to the
second column. The third column shows the results of a similar specification that also includes
additional indicator variables for the days (tA−2), (tA−3), (tA−4), and (tA−5) prior to stock
A’s announcement. This column reveals that there is no pre-trend in ETF managers’ reaction
to the M&A announcement. This timing is consistent with the fact that ETF managers don’t
have any discretion when it comes to deviating from their benchmark index overnight.

Placebo Test. The fifth and final column of Table 4 shows the results of the same regression
specification using placebo announcement dates for each stock A. We randomly re-assign
the announcement date tA to some other point in our sample period prior to each stock
A’s actual announcement. Consistent with the idea that it’s the M&A announcement itself
that’s causing the jump in ETF rebalancing volume, we find that there is no jump in ETF
rebalancing volume on these placebo dates. And, we find that the coefficients on each stockA’s
total trading volume remain unchanged, which suggests our result isn’t being driven by some
broader trading-volume anomaly that occurs around the time of each M&A announcement.

3.3 Experimental Design
The model predicts that, following an initial shock to stock A, i) stock Zs with more neighbors
in the ETF rebalancing network should be involved in ETF rebalancing cascades more often,
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but ii) it shouldn’t be possible to predict the direction of these cascades’ effect on a stock
Z’s demand. Here’s how we use our data on ETF rebalancing activity in the wake of M&A
announcements to test these two predictions.

Unrelated Stock Zs. To start with, we need to make sure that any ETF rebalancing activity
we measure is due to ETF rebalancing cascades and not some omitted variable affecting
both stock A and stock Z. So, we create a separate panel for each M&A announcement
containing the set of stock Zs that are unrelated to stock A during the 26-day window
t ∈ {tA − 20, . . . , tA − 1, tA, tA + 1, . . . , tA + 5} around stock A’s announcement. For a stock
Z to be unrelated to stock A, the target of an M&A announcement, these two stocks have
to be twice removed in the network of ETF rebalancing decisions. Stock Z can’t have been
rebalanced at any point during the last month by any ETF that also held stock A during the
last month. And, if stock B and stock A were both held at any point during the last month by
the same ETF, then stock Z can’t have been rebalanced during the last month by any ETF
that also held stock B during that time period. In other words, the chain of ETF rebalancing
decisions from stock A to stock Z has to be A → B → C → Z or longer. Because there
are smart-beta ETFs tracking things like large-cap, value, and industry, this twice-separated
criteria implies that stock A and stock Z don’t have any similar factor exposures and don’t
share any well-known firm characteristics. We then combine these separate datasets—one for
each of the 1119 M&A announcements in our sample—into a single panel dataset indexed
by M&A announcement, stock Z, and date. Because the same stock Z can be affected by
ETF rebalancing cascades starting with different initial stock As, we index the rows of this
dataset with the subscript Z,t|A.

Diff-in-Diff Approach.We study this panel dataset using a diff-in-diff approach. The model
looks at index-fund rebalancing cascades following an initial shock to stock A. So, the first
difference will capture whether or not this initial shock to stock A—i.e., the announcement
that stock A is the target of an M&A deal—has occurred yet. We define afterAncmtt|A as
an indicator variable for the five days immediately after the announcement about stock A:

afterAncmtt|A =

1 if t ∈ {tA + 1, . . . , tA + 5}
0 otherwise

We write afterAncmtt|A rather than afterAncmtZ,t|A because the post-announcement period
is the same for all stock Zs that are unrelated to the target stock A.

The model then makes predictions about the differential effect of an index-fund rebalancing
cascade on stock Zs depending on their number of neighbors in the ETF rebalancing network.
So, the second difference will capture whether or not a particular stock Z has lots of neighbors
in the ETF rebalancing network. We say that stock s is a neighbor to stock Z if an ETF
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that currently holds stock s also rebalanced its position in stock Z at some point during
the previous month. For each M&A announcement, we use this definition to split the set of
stock Zs into two subsets: those on the cusp of an above-median number of ETF rebalancing
thresholds (i.e., stock Zs with lots of neighbors in the ETF rebalancing network) and those
on the cusp of a below-median number of ETF rebalancing thresholds. Let manyNhbrZ|A be
an indicator variable for whether or not stock Z has an above-median number of neighbors
relative to all other stocks which are unrelated to stock A:

manyNhbrZ|A =

1 if stock Z has an above-median number of neighbors

0 otherwise

We calculate the number of neighbors for each stock Z using data from the month prior
to stock A’s M&A announcement. So, this indicator variable does not vary over the 26-
day window surrounding each target stock’s M&A announcement, which is why we write
manyNhbrZ|A rather than manyNhbrZ,t|A. However, because we calculate the median number
of stock-Z neighbors separately for each M&A announcement, this indicator variable can
vary across M&A announcements. The same stock Z can have an above-median number
of neighbors in the ETF rebalancing network relative to one M&A announcement but a
below-median number of neighbors relative to another. This is why we write manyNhbrZ|A
rather than just manyNhbrZ .

Proposition 2.2b predicts that stock Zs with more neighbors in the ETF rebalancing
network will be more likely to be hit by an ETF rebalancing cascade. We use the following
regression specification to test this prediction:

ETFrebalZ,t|A = α#nhbr|A + αZ + β · afterAncmtZ|A
+ γ · {afterAncmtt|A × manyNhbrZ|A}

+ εZ,t|A

(6)

Here’s what each of the resulting coefficients means. First, consider the two fixed effects:
α#nhbr|A and αZ . We include announcement×#nhbr fixed effects because the same initial
announcement about stock A might result in either a large or a small ETF rebalancing
cascade depending on subtleties of how the ETF rebalancing network is wired up. The fact
that we are using announcement×#nhbr fixed effects rather than just announcement fixed
effects means that we are including separate coefficients for the average level of rebalancing
volume among stock Zs with one neighbor in the days around stock A’s announcement,
the average level of rebalancing volume among stock Zs with two neighbors in the days
around stock A’s announcement, the average level of rebalancing volume among stock Zs
with three neighbors in the days around stock A’s announcement, and so on. . . In addition
to the announcement×#nhbr fixed effects, we include stock-Z fixed effects to account for the
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fact that ETFs might always be more likely to trade some stocks than others, regardless of
how many neighbors they have.

Next, let’s consider the coefficients on the first difference, β. This coefficient captures the
rise in ETF rebalancing volume for all stock Zs in the five days immediately after an M&A
announcement about an unrelated stock A. Because an ETF rebalancing cascade has the
potential to affect the demand for all stocks—i.e., even stock Zs with few neighbors—we
should expect the average ETF rebalancing volume of all stock Zs to rise in five days after
the M&A announcement. In other words, we should expect to estimate β > 0 in Equation
(6). After all, there are more benchmark indexes than stocks in modern financial markets.
This means that most stocks in the market will be connected to one another by at least one
direct neighbor (Erdos and Rényi, 1960), and it’s possible for these stocks Zs to be affected
by an ETF rebalancing cascade. The key prediction of the model is that it’s more likely for
stock Zs with many neighbors to be hit.

The coefficient γ then captures how much more the ETF rebalancing volume increases
for stock Zs with many neighbors than for stock Zs with few neighbors in the five days
immediately after stock A’s M&A announcement. The first key prediction of the model is
that we should estimate γ > 0 in Equation (6). By contrast, Proposition 2.3b suggests that it
shouldn’t be possible to predict the direction (buy? or sell?) of the resulting demand shocks.
So, the second key prediction of the model is that, if we replace ETF rebalancing volume
with ETF order imbalance on the left-hand side of Equation (6),

ETFimbalZ,t|A = α#nhbr|A + αZ + β · afterAncmtZ|A
+ γ · {afterAncmtt|A × manyNhbrZ|A}

+ εZ,t|A,

(7)

then we should estimate γ = 0. We don’t include the level effect for manyNhbrZ|A in our
regression specification because it gets subsumed by the announcement×#nhbr fixed effects.

Source of Identification. At this point, it’s important to pause and spell out the source
of our identification in these regressions. We want to emphasize that we’re not making an
assumption that stock Zs with many neighbors are similar stock Zs with few neighbors in
the ETF rebalancing network. In fact, there are good reasons to expect these stocks to be
different. M&A announcements are just one kind of initial shock that might trigger an ETF
rebalancing cascade. So, if you really believe that ETF rebalancing cascades generate demand
noise, then you should expect stock Zs with an above-median number of neighbors to always
have more ETF rebalancing volume than below-median stock Zs since these stocks will be
hit by more ETF rebalancing cascades. And, the summary statistics in Table 5 bear this out.

Instead, our identification is coming from the timing of the M&A announcements. We’re
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Figure 5. No Pre-Trends. Average ETF activity and characteristics of stock Zs
during the 20 days prior to an M&A announcement about stock A. x-axis: event time
with M&A announcement occurring on day 0. Red, Dashed: average value for stock
Zs with an above-median number of neighbors; right y-axis. Black, Solid: average for
stock Zs with a below-median number of neighbors; left y-axis. ETFrebalZ,t|A: ETF re-
balancing volume reported on a base-e logarithmic scale. ETFimbalZ,t|A: ratio of signed
ETF rebalancing volume to total ETF rebalancing volume in percent. returnZ,t|A:
return in percent per month. mcapZ,t|A: market capitalization in billions of dollars.
vlmZ,t|A: number of shares traded per month reported on a base-e logarithmic scale.
amihudZ,t|A: Amihud (2002) illiquidity measure over previous 20 days in basis points
per $1 million order. spreadZ,t|A: bid-ask spread as a fraction of the daily midpoint
in basis points.
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Figure 6. Time-Varying Comparison Groups. Each panel depicts the the same
set of stocks during 3 different M&A announcements: Owens & Minor’s purchase
of Medical Action Industries [MAI] announced on Jul. 21, 2014; Sonus Networks’
purchase of Network Equip Technologies [NET] announced on Jun. 19, 2012; and,
Old National Bancorp’s purchase of Indiana Community Bancorp [INCB] announced
on Jan. 25, 2012. The target of each M&A announcement, stock A, is denoted by a
blue star. Each black circle denotes a stock that’s related to stock A at the time of
the announcement. Each white square denotes a stock that’s unrelated to stock A
at the time of the announcement. This is the set of stock Zs. Unrelated stocks that
are neighbors with an above-median number of other stocks are labeled with an “H”;
whereas, those that are neighbors with a below-median number are labeled with an
“L”. Oracle Corp. is a related stock in the left panel, a below-median stock Z in the
middle panel, and an above-median stock Z in the right panel.

starting out with an initial M&A announcement about stock A and then looking at the set of
stock Zs that are totally unrelated to stock A. We’re going to show that, even though these
stock Zs are totally unrelated to stock A, i) ETF rebalancing volume immediately after stock
A’s announcement increases more for above-median stock Zs since these stocks are more
likely to be hit by a rebalancing cascade, and ii) this increase in ETF rebalancing volume is
just as likely to consist of buy orders as of sell orders. We recognize that above-median stock
Zs are different than below-median stock Zs on average, but there’s no reason to expect
the size of this difference to increase immediately after an M&A announcement about an
unrelated stock A in the absence of ETF rebalancing cascades.

This identification strategy raises two kinds of concerns. First, you might be worried
that something else about the set of unrelated stock Zs is changing at the time of the M&A
announcements. This is something we can test in the data. Figure 5 shows that, although
above- and below-median stock Zs tend to have different amounts of ETF trading activity,
this difference is constant in the run up to each M&A announcement. The figure also shows
that the same statement holds for other stock Z characteristics, such as realized returns,
market capitalization, trading volume, and liquidity. Again, we should expect to observe
differences between above- and below-median stock Zs since above-median stock Zs are
always more likely to be hit by ETF rebalancing cascades. It’s the fact that these differences
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suddenly change in the wake of an M&A announcement about an unrelated stock which
provides evidence of ETF rebalancing cascades.

The other concern you might have is about an omitted variables problem. Perhaps some-
thing else is happening at the same time as each M&A announcement, and it’s this omitted
variable that’s causing ETFs to trade above-median stock Zs differently. This omitted-
variables problem would be a major concern if our data contained a small number of M&A
announcements and the number of neighbors for each stock Z remained constant over time.
If this were this case, then there might plausibly be some alternative story for why ETFs hap-
pened to trade a particular group of stock Zs differently at a few particular moments in time.
But, this is not at all what our data looks like. We have lots of M&A announcements. And,
the exact same stock can be an above-median stock Z relative to one M&A announcement
while simultaneously being a below-median stock Z relative to another as shown in Figure 6.

What’s more, because we are including stock-Z fixed effects in Equations (6) and (7), any
stock Z that always has either an above- or below-median number of neighbors in the ETF
rebalancing network will not contribute to our coefficient estimates. For example, the ETF
rebalancing volume of Apple, Inc. is not reflected in our analysis because Apple always has an
above-median number of neighbors in the ETF rebalancing network. Thus, our findings can’t
be explained by ETFs always trading some stock Zs differently than others. Any omitted
variable would have to account for why ETFs suddenly change their rebalancing behavior for
only the stock Zs that have an above-median number of neighbors relative to a particular
stock A in the five days immediately after that stock A’s M&A announcement.

Why Not Track Each Step? Finally, among economists, it’s taken almost as an article of
faith that empirical analysis is best run using the most micro-level data possible. So, you
might be surprised that we haven’t just traced out the precise buy-sell-buy-sell sequence
involved in each ETF rebalancing cascade. However, there is a good reason why we haven’t
done this: it would fundamentally ignore a central insight of our theoretical analysis—namely,
that it’s computationally infeasible to make predictions about how an index-fund rebalancing
cascade will affect each stock’s demand. As illustrated in Figure 4, overlooking even a single
link in the ETF rebalancing network has the potential to reverse a cascade’s effect on the
demand for stock Z. While our data on the end-of-day holdings of each ETF is good, it isn’t
perfect. No data is. It would be a miracle if our data weren’t missing at least a few links.

If we take this insight to heart, then it’s clear that we need to run our empirical analysis
using well-chosen macro-level variables rather than the most micro-level data possible. Even if
it isn’t practical to track the precise buy-sell-buy-sell sequence of ETF rebalancing decisions,
it’s relatively easy to measure how many ETF rebalancing thresholds each stock Z is on the
cusp of. By analogy, even if it isn’t possible to keep track of the location and momentum of
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every single gas molecule in a 1m3 box, it’s relatively easy to measure macro-level variables
like the pressure and temperature inside the container. We focus our empirical analysis on a
particular kind of index fund—exchange-traded funds (ETFs)—following a particular kind of
initial shock—M&A announcements—because this setting provides a nice laboratory where
we can measure these well-chosen macro-level variables.

3.4 Estimation Results
We now provide empirical evidence supporting the hypotheses that i) while an unrelated
stock Z with many neighbors in the ETF rebalancing network is more likely to be hit by a
rebalancing cascade, ii) the resulting demand shock is just as likely to be composed of buy
orders as of sell orders.

ETF Rebalancing Volume. Table 6 describes how cascades affect ETF rebalancing volume
by reporting the estimated coefficients for the regression specification in Equation (6). The
first column shows that ETF rebalancing volume for all stock Zs tends to rise by β = 2.64%

on average in the five days immediately after an M&A announcement about an unrelated
stock A. But, the third column shows that this growth is concentrated among stock Zs that
have many neighboring stocks in the network defined by ETF rebalancing rules. Consistent
with the model, we find that ETF rebalancing volume is γ = 2.06% higher for above-median
stock Zs than for below-median stock Zs in the five days immediately following an M&A
announcement about an unrelated stock A. The second and fourth columns of Table 6 confirm
that the sudden spike in the ETF rebalancing volume isn’t due to a general run-up in trading
volume. When we include stock Z’s total trading volume in our regression specification, our
point estimate for γ remains largely unchanged.

We run two different kinds of placebo tests to make sure that our estimate of γ ≈ 2%

is due to ETF rebalancing cascades and not some omitted variable. The results of the first
placebo test can be found in the fifth column of Table 6. For this column, we re-estimated the
regression specification in Equation (6) using data during the 26-day window surrounding
tA − 30 rather than tA. If we shift stock A’s announcement date forward by 30 days, then
we can be certain that there was no initial M&A announcement and thus no subsequent
ETF rebalancing cascade. And, when we do this, our point estimate for γ shrinks by a factor
of ten, from 2.06% to 0.20%, and becomes statistically indistinguishable from zero. What’s
more, this lack of statistical significance is being completely driven by the smaller coefficient
estimate. The lack of statistical significance isn’t due to a lack of power. Our standard error
on γ is roughly the same, 0.35 vs. 0.32, in both the true and the placebo samples.

We report the results of the second placebo test in Table 7. The idea behind this test
is a little different. Before we checked to make sure that there was no difference between
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the ETF rebalancing volume of above- and below-median stock Zs following alternative
announcement dates when no initial shock to stock A took place. Now, we’re going to use the
right announcement date and instead restrict our attention to the rebalancing volume coming
from the 30% of ETFs in our sample that are the least likely to rebalance each day. All of the
ETFs in our sample rebalance more than once a quarter. But, some of the ETFs rebalance
much more than others—once a day vs. twice a quarter. And, the ETFs that rebalance the
least should also be the least likely to transmit the effects of an ETF rebalancing cascade.
Consistent with this prediction, when we restrict our attention to these infrequent rebalancers,
above-median stock Zs have ETF rebalancing volume that’s statistically indistinguishable
from below-median stock Zs in the five days after an M&A announcement. These two placebo
tests provide strong evidence that γ ≈ 2% is due to ETF rebalancing cascades.

ETF Order Imbalance. Next, in Table 8, we give evidence that the extra ETF rebalancing
volume experienced by above-median stock Zs following an unrelated M&A announcement
is no more likely to be made up of buy orders than of sell orders. This table reports the
estimated coefficients for the regression specification in Equation (7). The point estimate of
γ = 0.74% with a standard error of 0.51% in second column reveals that there’s no statistically
measurable difference between the ETF order imbalance of above- and below-median stock
Zs following an M&A announcement. Taken together, this evidence suggests that, while it’s
possible to predict which stock Zs are likely to be affected by a ETF rebalancing cascade, it’s
much harder to predict how these stock Zs will be affected by the resulting demand shock.

Price Impact. Although ETF rebalancing demand is no more likely to be positive than
negative on average, Table 9 reveals that it still has a significant effect on prices. The first
two columns in this table show the results of replacing the dependent variable in Equation (6)
with the daily returns of each stock Z. On average, the prices of above-median stock Zs look
just like the prices of below-median stock Zs following an initial shock to an unrelated stock
A. The third and fourth columns of Table 9 then show the differential effect of very positive or
very negative demand from ETF rebalancing on the prices of these same subgroups. Because
above-median stock Zs tend to realize larger demand shocks, their prices rise by 14bps per
day more than those of below-median stock Zs in response to order flow composed of a larger
fraction of buy orders. And, their prices shrink by an extra 21bps per day in response of
order flow with a higher proportion of sell orders.

Economic Magnitude. We’ve just seen evidence that ETF rebalancing cascades generate
unpredictable demand shocks by focusing on the effects of ETF rebalancing cascades in the
wake of M&A announcements. Thus, since not all ETF rebalancing cascades start with an
initial M&A announcement, these results represent a lower bound for the total amount of
demand noise generated by ETF rebalancing cascades. We use a collection of panel regressions
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to get a better sense of the total amount of demand noise produced by ETF rebalancing
cascades irrespective of the initial shock. We regress each stock’s log ETF rebalancing volume
normalized by its standard deviation over the past twelve months, σ̂s,t, on the number of
neighbors this stock has in the ETF rebalancing network in thousands:

ETFrebals,t/σ̂s,t = α + β · #nbrss,t + εs,t (8)

The first column of Table 10 reports that β = 0.40, which implies that a 1σ increase in the
number of neighbors a stock has is associated with a 0.4σ increase in a stock’s log ETF
rebalancing volume. Moreover, the second column of Table 10 shows that this point estimate
remains statistically significant even if we include fixed effects for the number of ETFs that
hold the stock, suggesting that the effect is operating through a stock’s position in the ETF
rebalancing network and not merely through the number of ETFs that directly hold the stock.

4 Conclusion

“To generate randomness, we humans flip coins, roll dice, shuffle cards, or spin a
roulette wheel. All these operations follow direct physical laws, yet casinos are in
no risk of losing money. The complex interaction of a roulette ball with the wheel
makes it computationally impossible to predict the outcome of any one spin, and
each result is indistinguishable from random.” —Fortnow (2017)

This paper proposes an analogous explanation for where seemingly random demand
shocks come from in financial markets. A stock’s demand might appear random, not because
individual investors are actually behaving randomly, but because it’s too computationally
complex to predict how a wide variety of simple deterministic trading rules will interact with
one another. We show theoretically how computational complexity can generate noise by
modeling a particular kind of trading-rule interaction: index-fund rebalancing cascades. Then,
we give empirical evidence that index-fund rebalancing cascades actually generate noise in
real-world financial markets using data on the end-of-day holdings of ETFs.

A natural next question is: ‘What should a researcher or trader do with this information
about where demand noise comes from?’ First, it’s useful for researchers to know that com-
plexity generates noise in financial markets because this mechanism makes predictions about
where demand noise will be loudest. This insight offers news ways to test existing asset-pricing
models. Consider your favorite limits-to-arbitrage model. In the past, if you wanted to test
this model, then you would just look for situations where arbitrageurs were most constrained.
But, this is only half of the battle. In order for the limits of arbitrage to bind, there must
also be a non-fundamental shock (Chinco, 2018). And, our noise-generating mechanism says
that stocks with more neighbors in the ETF rebalancing network will realize more of these
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shocks. So, you can now check whether the implications of the limits-to-arbitrage model are
strongest for the constrained stocks with the most noise.

The practical implication is a bit different for traders. The way to use the insights in this
paper isn’t to directly buy or sell stocks with many or few neighbors. Instead, these results
suggest a way of amplifying the returns to any existing cross-sectional trading strategy. Market
participants can see whether each unrelated stock Z has many or few neighbors. And, because
the stock Zs with many neighbors are more likely to be hit by an ETF rebalancing cascade,
market participants will realize that they are more likely to see erratic non-fundamental
demand shocks for these stocks. So, the stock Zs with many neighbors should have higher
liquidity. And, the remaining columns in Table 10 bear out this prediction. Our results suggest
that you could implement any long-short strategy more efficiently by focusing each leg on
the stocks with the most neighbors in the ETF rebalancing network.
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A Proofs
Definition (Binary String). Let {0, 1}? = ∪n=0,1,2,...{0, 1}n denote the set of binary strings.

Definition (Problem Solving). Let Prob ∈ {0, 1}? denote a decision problem. An algorithm
F : {0, 1}? 7→ {0, 1} solves Prob (a.k.a., decides membership in Prob) if for every instance
i ∈ {0, 1}? we have that

i ∈ Prob ⇔ F(i) = 1

Problem A (stCon).
• Instance: A directed graph G, and two vertices (s, t).
• Question: Is there a path from s to t?

Theorem A (Wigderson, 1992). stCon is solvable in polynomial time.

Definition (Reduction). Let Prob1 and Prob2 denote two decision problems. We say that
Prob2 is (Karp, 1972) reducible to Prob1 if there exists a polynomial-time algorithm F :
{0, 1}? 7→ {0, 1}? such that

i ∈ Prob2 ⇔ F(i) ∈ Prob1

Proof (Proposition 2.2a). If Ŝ contains a single stock, then If and stCon are the same
problem—there is a trivial reduction from If to stCon. Both involve finding a path from
one node in a directed network to another. What’s more, each K-path to stock Z is eval-
uated separately. For example, in the market described by Figure 2, the path described in
Equation (2) exists with or without the path described by Equation (3). This means that if
(Z,M, T, {s}) ∈ If and (Z,M, T, {s′}) ∈ If, then (Z,M, T, {s, s′}) ∈ If. Thus, we don’t need to
check every single subset Ŝ ⊆ S separately. To see which subsets of stocks are connected to
stock Z, we can just check which stocks are connected to stock Z. This is reducible to solving
(S − 1) separate instances of stCon, which is doable in polynomial time because stCon itself
if solvable in polynomial time (Wigderson, 1992).

Remark (Time Complexity). Let Prob1 and Prob2 denote decision problems with instances
of size S. Prob1 is solvable in polynomial time if there’s a solution algorithm that runs in O[Sk]
steps for some k > 0. Whereas, Prob2 requires exponential time if every solution algorithm
requires 2`·S steps on at least one instance for some ` > 0.

Decision problems with polynomial-time solutions are considered tractable while those
that require exponential time are not. However, a polynomial-time solution for Prob1 could
require a k = 10000, and an exponential-time solution for Prob2 could use an ` = 0.00001.
For these values of k and `, Prob2 would be easier to solve than Prob1 on more reasonable
instance sizes.

“If cases like this regularly arose in practice, then it would’ve turned out that we were
using the wrong abstraction. But so far, it seems like we’re using the right abstraction. Of the
big problems solvable in polynomial time—matching, linear programming, primality testing,
etc. . .—most of them really do have practical algorithms. And of the big problems that we
think take exponential time—theorem-proving, circuit minimization, etc. . .—most of them
really don’t have practical algorithms. (Aaronson, 2013)” In short, when seen in this context,
your first guess for both k and ` should be something like 1, 2, or 3.
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Remark (Random Networks). To make predictions about the likelihood of being affected
by an index-fund rebalancing cascade, we assume a data-generating process for the market
structure. A standard way to do this is to use a random-networks model (Jackson, 2010). The
particular random-networks model we use dates back to Erdos and Rényi (1960). We chose
this model because it is the simplest. Our main economic insight is about complexity not
networks. Proposition 2.2b can be extended to other models with power-law and exponential
edge distributions. See Newman et al. (2001) for more details.

Remark (Percolation Threshold). The largest connected component of a directed graph is
the largest set of nodes that are each connected to one another by a path. There’s a sharp
phase transition in the size of the largest connected component in an Erdös-Rényi random-
networks model (Bollobás, 2001). When κ < 1, the size of the largest connected component
remains finite as S →∞; whereas, when κ > 1, the largest connected component is infinitely
large as S →∞. i.e., the largest connected component includes a finite fraction of infinitely
many nodes. When κ > 1, the largest connected component is called the ‘Giant Component’.
For our purposes, this percolation threshold implies that the probability of stock Z being
affected by an index-fund rebalancing cascade starting somewhere else in the market is
vanishingly small when κ < 1.

Remark (Connectivity Threshold). There’s a similar phase transition in the existence of
small connected components for the Erdös-Rényi random-networks model (Bollobás, 2001).
When κ < log(S), the typical random network will contain many small connected components;
whereas, when κ > log(S), the typical random network will contain only the giant component
and nodes without any edges whatsoever. For our purposes, this connectivity threshold
implies that the probability stock Z isn’t affected by an index-fund rebalancing cascade
starting somewhere else in the market is vanishingly small when κ > log(S).

Proof (Equation 4). Suppose M contains S stocks and was generated using connectivity
parameter κ > 0. If (s, s′) ∈ S2, then stock s′ will be a positive neighbor to stock s with
probability κ/S. Because the outcome is determined independently for each stock s′ ∈ S, the
probability that stock s has exactly n positive neighbors is

Pr(N+
s = n |S) =

(
S
n

)
· (κ/S)n · (1− κ/S)S−n

This is the probability of n successes in S independent Bernoulli trials, which implies

N+
s ∼ Binomial(κ/S, S)

So, given the additional restriction that κ = O[log(S)], we know that as S →∞
N+
s ∼ Poisson(κ, S)

since the Binomial distribution converges to Poisson as S →∞ for small values of κ.

Proof (Proposition 2.2b). Let Cs ∈ {True, False} be an indicator variable for whether or
not a stock s is connected to the giant component of the random graph induced by M. We
can write

Pr[(Z,M, T, {s}) ∈ If |NZ = n] = Pr[(Cs = True) ∧ (CZ = True) |NZ = n]

= Pr[Cs = True] · Pr[CZ = True |NZ = n]
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The second line implies that E[Ŝmax(Z,M, T )] will be increasing inNZ if and only if E[CZ |NZ =
n] is increasing in n since the path connecting each stock s ∈ S to stock Z can be evaluated
independently. Bayes’ rule implies

E[CZ |NZ = n] =

(
Pr[NZ = n|CZ = True]

Pr[NZ = n]

)
× E[CZ ]

And, Pr[NZ = n|CZ = True]/Pr[NZ = n] is increasing in n. So, we can conclude that
E[C|N = n] is increasing in n.

Definition (Complexity Class NP). Let Prob denote a decision problem, and let |i| denote
the size of instance i. We say that Prob ∈ NP if there exists a polynomial-time Turing machine
M such that

i ∈ Prob ⇔ ∃ w ∈ {0, 1}Poly(|i|) s.t. M(i, w) = 1

The string w is known as the ‘witness’ or ‘proof’ that i ∈ Prob.

Definition (Hardness). Let CC denote an arbitrary complexity class, such as NP. We say
that Prob is hard with respect to CC if every decision problem in CC can be reduced to Prob.

Definition (Completeness). Let CC denote an arbitrary complexity class. We say that Prob
is complete with respect to CC if both i) Prob ∈ CC and ii) Prob is CC hard.

Problem B (3Sat).
• Instance: A Boolean formula defined over N input variables

F : {True, False}N 7→ {0, 1}
where some clauses contain 3 variables.

• Question: Is there an assignment x ∈ {True, False}N such that F(x) = 1?

Theorem B (Cook, 1971). 3Sat is an NP-complete problem.

Corollary. Let Prob denote any decision problem. If Prob is reducible to 3Sat, then Prob is
NP complete.

Proof (Proposition 2.3a). We show that How is NP complete by reducing it to 3Sat. There
are two steps to the proof.

Step 1: First, create variables to track of the state of the rebalancing cascade:
• For each possible value of (xs,t,∆xs,t),

k ∈ {(0,0), (1,1), (1,0), (0,− 1), (−1,− 1), (−1,0), (0,1)}
define for each stock s ∈ S

α(k)s,t = 1{(xs,t,∆xs,t)=k}

• For each pair of stocks (s, s′) ∈ S2 such that s 6= s′ define

β+
s,s′,t = 1{s′∈Out+s,t}

β−s,s′,t = 1{s′∈Out−s,t}
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• For each pair of stocks (s, s′) ∈ S2 such that s 6= s′ define

γ+
s′,s,t+1 = 1{s∈In+

s′,t+1
}

γ−s′,s,t+1 = 1{s∈In−
s′,t+1

}

• For each stock s ∈ S define
δ+
s,t+1 = 1{us,t+1=1}

δ−s,t+1 = 1{us,t+1=−1}

Total number of new variables is polynomial in S.
Step 2: Encode constraints on variables in conjunctive-normal form clauses. There are

two kinds of constraints to consider.
• First, there are constraints that impose variable consistency. e.g., we can’t have both
α(0,0)s,t = 1 and α(1,1)s,t = 1 at the same time:

(α(0,0)s,t ∨ α(1,1)s,t)

• Second, there are constraints that encode the rebalancing cascade updating rules. e.g., if
stock s has one negative neighbor, s′, and one positive neighbor, s′′, then the rebalancing-
cascade rules are encoded in four different clauses:

δ+
s λ+

s′,s λ−s′′,s Violated Clause
0 0 0 X
0 0 1 X
0 1 0 ⊗ (δ+

s ∨ λ̄+
s′,s ∨ λ−s′′,s)

0 1 1 X
1 0 0 ⊗ (δ̄+

s ∨ λ+
s′,s ∨ λ−s′′,s)

1 0 1 ⊗ (δ̄+
s ∨ λ+

s′,s ∨ λ̄−s′′,s)
1 1 0 X
1 1 1 ⊗ (δ̄+

s ∨ λ̄+
s′,s ∨ λ̄−s′′,s)

Again, the total number of new clauses is polynomial in S.
Whenever stock s has both positive and negative neighbors, some of these clauses involve

3 variables. Thus, we have a polynomial reduction of How to 3Sat.

(0, 0)

(+, +)

(+, 0)

(0, −) (−, −)

(−, 0)

(0, +)

Figure 7. State Diagram. All possible
ways that a single stock could move between
the 7 possible values of (xs,t,∆xs,t) in suc-
cessive rounds of an index-fund rebalancing
cascade. Arrows denote transitions. Loops de-
note unchanged values in successive rounds.

Definition (Complexity Class PP). Let Prob denote a decision problem, and let r ∈ {0, 1}?
denote an arbitrarily long sequence of random bits. We say that Prob ∈ PP if there exists a
polynomial-time randomized algorithm F such that

i ∈ Prob ⇔ Pr
r

[ F(i, r) = 1 | i /∈ Prob ] > 1/2
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Problem C (Majority).
• Instance: A Boolean formula defined over N input variables

F : {True, False}N 7→ {0, 1}
• Question: Is

∑
x∈{True, False}N F(x) > 2N−1?

Theorem C (Gill, 1977). NP ⊆ PP, and Majority is a PP-complete problem.

Corollary. Let Prob denote any decision problem. If Prob is reducible to Majority, then Prob
is PP hard.

Proof (Proposition 2.3b). The proof of Proposition 2.3a showed how to reduce instances
of How into Boolean formulas. So, since Majority is defined in terms of Boolean functions,
the same reduction converts instances of MajorityHow into instances of Majority. Hence,
because MajorityHow is a PP-complete problem (Gill, 1977), the corollary above implies that
MajorityHow is an NP-hard problem.

Problem D (2Sat).
• Instance: A Boolean formula defined over N input variables

F : {True, False}N 7→ {0, 1}
where no clause contains more than 2 variables.

• Question: Is there an assignment x ∈ {True, False}N such that F(x) = 1?

Theorem D (Cook, 1971). 2Sat is solvable in polynomial time.

Proof (Proposition 2.4a). If there is no alternation, then stocks only have positive neighbors.
So, a stock Z will be affected by an initial shock to the stocks in A if and only if there is a
path from stock s ∈ A connecting to stock Z. Without alternation, there is no way for two
different paths in an index-fund rebalancing cascade to interfere with one another. And, since
within a single path, each stock has only O (stock A) or 1 (all other stocks) incoming links
at any point in time, there would be no need to create clauses with more than two variables
in the proof of Proposition 2.3a. Thus, without alternation, How is reducible to 2Sat. And,
this reduction implies it’s solvable in polynomial time (Cook, 1971).

Proof (Proposition 2.4b). If there are no loops, then there is either a single path from any
stock s to stock Z or no such path. After all, if there is more than one path, then these two
paths would define a closed loop. As a result, no stock can have more than 1 incoming link.
And so, the rebalancing cascade rules can be encoded using clauses with no more than 2
variables as in the proof of Proposition 2.4a. Thus, without loops, How is reducible to 2Sat.
And, this reduction implies that it’s solvable in polynomial time (Cook, 1971).

Problem E (SmoothHow). Suppose that the updating rule in Equation (1) was changed to
the following for some θ ∈ (0, 1):

us,t+1 = 1
|In+s,t+1|+|In−s,t+1|

·
(∑

s′∈In−s,t+1
xs′,t −

∑
s′′∈In+s,t+1

xs′′,t

)
xs,t+1 = θ · (xs,t + us,t+1)
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• Instance: A choice for stock Z; a market structure M; a time T = Poly[S]; a positive
constant ε > 0; and, the power set Â ⊆ 2S of all ε-small sets A ⊆ S.

• Question: Does there exist a A ∈ Â such that EffectM,T (A, Z) < 0?

Proposition 2.4c (Necessity of Thresholds, Restated). Let i denote an instance of SmoothHow.
There’s a polynomial-time algorithm, F, such that for any δ > 0∑

|i|=N, i/∈Prob1{F(i)=1} < δ

Proof (Proposition 2.4c). Because θ < 1, the effect of a long direct path connecting to stock
Z (i.e., where each stock in the path has exactly one incoming neighbor) will decay at an
exponential rate. A direct path from stock A to stock Z that involves (K − 1) intermediary
stocks will have an affect on stock Z proportional to θK . And, the effects of any indirect paths
(i.e., where each stock in the path has more than one incoming neighbor) will decay even fast
due to averaging. Having more than one incoming neighbor presents that possibility that a
stock will be hit by both a positive and a negative shock at the same time. So, to get an
approximate solution to SmoothHow, just compute the effect of all direct paths connecting
to stock Z of length K = Poly[S]. If there exists a path with a negative effect, then answer
‘Yes’; otherwise, answer ‘No’.

Proof (Equation 5). Let Rs,t denote the day-t return on stock s, and let Rb,t denote the
day-t return on the fth ETF’s value-weighted benchmark index. Similarly, let sizes,t denote
the market capitalization of stock s on day t, and let sizeb,t denote the market capitalization of
the fth ETF’s benchmark index on day t. Then, the change in the fth ETF’s value-weighted
portfolio weight for stock s, Ωvw

f,s,t = sizes,t/sizeb,t, is given by:

∆Ωvw
f,s,t =

sizes,t
sizeb,t

− sizes,t−1

sizeb,t−1

=
Rs,t · sizes,t−1

Rb,t · sizeb,t−1

− sizes,t−1

sizeb,t−1

=
Rs,t

Rb,t

· sizes,t−1

sizeb,t−1

− sizes,t−1

sizeb,t−1

=

(
Rs,t

Rb,t

− 1

)
× sizes,t−1

sizeb,t−1

=

(
Rs,t

Rb,t

− 1

)
× Ωf,s,t−1
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B Tables

Summary Statistics, ETF Market

Panel A. Time Series
Avg Sd 25% 50% 75%

countt 1073.3 168.2 914 1017 1249

#benchmarkt 896.9 141.7 769 836 1045

#stockt 263.4 15.6 256.7 269.5 274.6

AUMt 1390.0 651.8 1060.9 1485.4 1701.0

Panel B. Cross-Section
Avg Sd 25% 50% 75%

#stockf,t 247.0 499.2 30 78 254

AUMf,t 859.6 5381.3 4.8 30.8 217.6

Table 1. Summary statistics for the ETF market using data from ETF Global. Sample:
January 2011 to December 2017. Panel A. Aggregate statistics for the entire ETF
market each month. countt: number of ETFs in sample. #benchmarkt: number of
different benchmarks used by these ETFs. #stockt: average number of stocks held
by each ETF in a given month. AUMt: total assets under management for all ETFs in
billions of dollars. Panel B. Cross-sectional statistics of the ETF market computed
using fund×month observations. #stockf,t: number of stocks held by an ETF. AUMf,t:
assets under management in millions of dollars.
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Summary Statistics, All Stocks

Panel A. ETF Activity
Avg Sd 25% 50% 75%

#ETFholdings,t 476.1 453.7 88 366 713

#nhbrs,t 3.4 1.1 3.3 3.8 4.0

ETFvlms,t 13.2 3.4 11.7 13.4 14.7

ETFrebals,t 13.1 3.5 11.5 13.2 14.6

ETFimbals,t −1.2 35.6 −19.9 0.0 19.4

Panel B. Characteristics
Avg Sd 25% 50% 75%

returns,t 1.1 11.5 −4.2 1.1 6.4

mcaps,t 5.9 23.0 0.2 0.8 3.2

vlms,t 15.5 2.0 14.3 15.7 16.9

amihuds,t 45.6 253.8 0.1 0.2 2.8

spreads,t 46.3 89.3 4.2 10.2 38.1

Table 2. Summary statistics using stock×month level observations. Sample: Jan-
uary 2011 to December 2017. Panel A. ETF activity for each stock. #ETFholdings,t:
number of ETFs that hold a stock. #nhbrs,t: number of neighboring stocks in the
ETF rebalancing network in thousands. ETFvlms,t: ETF trading volume each month
on a base-e logarithmic scale. ETFrebals,t: ETF rebalancing volume each month on
a base-e logarithmic scale. ETFimbals,t: signed ETF rebalancing volume divided by
total ETF rebalancing volume reported in percent. Panel B. Characteristics of each
stock. returns,t: return in percent per month. mcaps,t: market capitalization in bil-
lions of dollars. vlms,t: total trading volume each month on a base-e logarithmic scale.
amihuds,t: Amihud (2002) illiquidity measure computed daily within a given month
in basis points per $1 million order. spreads,t: average bid-ask spread as a fraction of
midpoint during month in basis points.
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M&A Announcements

Avg Sd 25% 50% 75%

#ancmtt 14.3 6.2 10 14 18

#stockZt 1.2 1.3 0.5 0.6 1.2

Table 3. Number of M&A announcements about a publicly traded target firm each
month. Data comes from Thompson Financial. Sample: January 2011 to December
2017. There are 1199 total M&A announcements in our sample. #ancmtt: number of
M&A announcements per month. #stockZt: number of unrelated stock Zs for M&A
announcements in a given month in thousands.
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ETF Rebalancing Volume, Stock A

Dependent Variable: ETFrebalA,t
Actual Announcements Placebo

(1) (2) (3) (4) (5)

1{t=tA+1} 76.24??? 27.27??? 76.24??? 27.27??? −9.30
(9.35) (9.71) (9.37) (9.73) (11.88)

1{t=tA} 139.69??? 137.35??? 139.70??? 137.36??? 9.75
(8.09) (8.14) (8.11) (8.16) (11.91)

1{t=tA−1} 2.79 1.27 2.80 1.28 21.27
(9.64) (9.62) (9.65) (9.63) (13.82)

1{t=tA−2} 9.24 9.51 −8.31
(10.11) (9.98) (17.62)

1{t=tA−3} 8.34 7.98 0.40
(10.80) (10.75) (13.48)

1{t=tA−4} 0.81 1.13 8.06
(11.39) (11.31) (11.86)

1{t=tA−5} −11.79 −10.16 8.08
(9.77) (9.73) (14.29)

vlmA,t−1 17.28??? 17.28??? 17.30???
(0.42) (0.42) (0.42)

vlmA,t−2 5.56??? 5.56??? 5.55???
(0.24) (0.24) (0.24)

vlmA,t−3 2.92??? 2.92??? 2.92???
(0.28) (0.28) (0.28)

Month-Year FE Y Y Y Y Y
Stock-A FE Y Y Y Y Y

R2 67.0% 67.4% 67.0% 67.4% 67.4%
Observations 7,206,116 7,187,021 7,206,116 7,187,021 7,187,021

Table 4. Effect of initial M&A announcement about stock A on ETF rebalancing
volume for the same stock A. Sample: January 1st, 2011 to December 31st, 2017.
Each column represents results from a separate regression using daily data on the
26-day window surrounding each M&A announcement, {tA − 20, . . . , tA − 1, tA, tA +
1, . . . , tA + 5}. Columns (1)-(4) report results for actual announcements. Column (5)
reports results using a randomly assigned announcement date for each M&A target in
our sample. ETFrebalA,t: dependent variable is the ETF rebalancing volume for stock
A on date t reported on a base-e logarithmic scale. Coefficient estimate of 1 indicates
a 1% increase in a stock’s daily ETF rebalancing volume. 1{t=tA−h}: indicator variable
that is one if an observation was made h days prior to stock A’s announcement date.
vlmA,t: total trading volume for stock A on day t reported on a base-e logarithmic scale.
Numbers in parentheses are standard errors clustered by stock. Statistical significance:
? = 10%, ?? = 5%, and ??? = 1%. Reads: “Stock A has 139.69% more ETF rebalancing
volume on the day it is announced as an M&A target.”
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Summary Statistics, Stock Z

Panel A. ETF Activity

All
Number of Neighbors
Many Few

Avg Sd Avg Sd Avg Sd

#ETFholdingZ|A 16.2 18.9 24.4 21.3 8.7 12.4

#nhbrZ|A 2.5 1.5 3.1 1.2 1.9 1.5

ETFvlmZ|A 7.8 4.0 9.3 3.6 6.5 3.9

ETFrebalZ|A 7.9 3.7 9.2 3.4 6.7 3.6

ETFimbalZ|A 3.3 26.4 2.5 24.4 4.0 28.2

Panel B. Characteristics

All
Number of Neighbors

Many Few
Avg Sd Avg Sd Avg Sd

returnZ|A 4.4 89.1 5.4 87.1 3.4 90.8

mcapZ|A 5.7 19.9 7.9 24.9 3.6 13.1

vlmZ|A 12.2 2.3 12.7 2.1 11.8 2.5

amihudZ|A 73.9 636.6 41.3 599.7 103.9 667.4

spreadZ|A 9.6 54.3 7.7 52.1 11.3 56.1

Table 5. Summary statistics for the set of stock Zs unrelated to each M&A an-
nouncement. An observation is the average value for a stock Z during the 20 days
leading up at an M&A announcement. Data on M&A announcements with publicly
traded target firms comes from Thompson Financial. Stock-market data comes from
CRSP. Sample: January 1st, 2011 to December 31st, 2017. All: all stock Zs that are
unrelated to each M&A announcement. Many Neighbors: stock Zs with an above-
median number of neighbors for a particular M&A announcement. Few Neighbors:
stock Zs with a below-median number of neighbors for a particular M&A announce-
ment. Panel A. ETF activity for each stock. #ETFholdingZ|A: number of ETFs that
hold a stock. #nhbrZ|A: number of neighboring stocks in the ETF rebalancing network
in thousands. ETFvlmZ|A: ETF trading volume each month on a base-e logarithmic
scale. ETFrebalZ|A: ETF rebalancing volume each month on a base-e logarithmic
scale. ETFimbalZ|A: signed ETF rebalancing volume divided by total ETF rebalancing
volume reported in percent. Panel B. Characteristics of each stock. returnZ|A: return
in percent per month. mcapZ|A: market capitalization in billions of dollars. vlmZ|A:
total trading volume each month on a base-e logarithmic scale. amihudZ|A: Amihud
(2002) illiquidity measure computed daily within a given month in basis points per
$1 million order. spreadZ|A: average bid-ask spread as a fraction of midpoint during
month in basis points.
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ETF Rebalancing Volume, Stock Z

Dependent Variable: ETFrebalZ,t|A
Actual Announcements Placebo

(1) (2) (3) (4) (5)

afterAncmtt|A × manyNhbrZ|A 2.06??? 1.99??? 0.20
(0.35) (0.35) (0.32)

afterAncmtt|A 2.64??? 2.30??? 1.63??? 1.32??? 1.57???
(0.15) (0.15) (0.24) (0.24) (0.25)

vlmZ,t|A 24.13??? 24.13??? 24.99???
(0.50) (0.50) (0.50)

Announcement×#nhbr FE Y Y Y Y Y
Stock-Z FE Y Y Y Y Y

R2 76.2% 76.4% 76.2% 76.4% 75.9%
Observations 23,256,554 23,574,154

Table 6. Effect of an initial M&A announcement about stock A on the ETF rebal-
ancing volume for an unrelated stock Z. Sample: January 1st, 2011 to December 31st,
2017. Each column presents the results of a separate regression using daily data on the
26-day window surrounding each M&A announcement, {tA − 20, . . . , tA − 1, tA, tA +
1, . . . , tA + 5}. Columns (1)-(4) report results for actual announcements. Column (5)
reports results using a placebo sample where each M&A announcement is re-assigned
to date tA−30. ETFrebalZ,t|A: dependent variable is ETF rebalancing volume for stock
Z on date t following M&A announcement about stock A on a base-e logarithmic
scale; coefficient of +1 indicates a 1% per day increase in a stock’s ETF rebalancing
volume. afterAncmtt|A: indicator variable that is one during the five days following
an M&A announcement about stock A. manyNhbrZ|A: indicator variable that is one if
stock Z has an above-median number of neighbors in the ETF rebalancing network
relative to the M&A announcement about stock A. vlmZ,t|A: total trading volume for
stock Z on a given day reported on a base-e logarithmic scale. Numbers in parentheses
are standard errors clustered by stock Z. Statistical significance: ? = 10%, ?? = 5%,
and ??? = 1%. Reads: “In the five days after an M&A announcement about stock A,
unrelated stock Zs with an above-median number of neighbors in the ETF rebalancing
network realize 2.06% per day more ETF rebalancing volume than unrelated stock Zs
with a below-median number of neighbors.”
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ETF Rebalancing Volume, Stock Z
Least-Active ETFs

Dependent Variable: ETFrebalZ,t|A
(1) (2)

afterAncmtt|A × manyNhbrZ|A 0.24 0.11
(0.37) (0.37)

afterAncmtt|A 1.92??? 1.51???
(0.27) (0.26)

vlmZ,t|A 26.60???
(0.55)

Announcement×#nhbr FE Y Y
Stock-Z FE Y Y

R2 80.0% 80.2%
Observations 20,312,414

Table 7. Effect of initial M&A announcement about stock A on the ETF rebalancing
volume of an unrelated stock Z when looking only at ETF rebalancing volume for the
30% of ETFs that rebalance their positions the least frequently. Sample: January 1st,
2011 to December 31st, 2017. Each column presents the results of a separate regres-
sion using daily data on the 26-day window surrounding each M&A announcement,
{tA − 20, . . . , tA − 1, tA, tA + 1, . . . , tA + 5}. ETFrebalZ,t|A: dependent variable is ETF
rebalancing volume for stock Z on date t following M&A announcement about stock
A on a base-e logarithmic scale; coefficient of +1 indicates a 1% per day increase
in a stock’s ETF rebalancing volume. afterAncmtt|A: indicator variable that is one
during the five days following an M&A announcement about stock A. manyNhbrZ|A:
indicator variable that is one if stock Z has an above-median number of neighbors
in the ETF rebalancing network relative to the M&A announcement about stock
A. vlmZ,t|A: total trading volume for stock Z on a given day reported on a base-e
logarithmic scale. Numbers in parentheses are standard errors clustered by stock Z.
Statistical significance: ? = 10%, ?? = 5%, and ??? = 1%. Reads: “When we restrict our
attention to the 30% of ETFs that are the least likely to rebalance each day, stock Zs
with many neighbors have ETF rebalancing volume that’s statistically indistinguishable
from stock Zs with few neighbors in the five days after an M&A announcement.”
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ETF Order Imbalance, Stock Z

Dependent Variable: ETFimbalZ,t|A
(1) (2)

afterAncmtt|A × manyNhbrZ|A 0.73 0.74
(0.51) (0.51)

afterAncmtt|A 0.00 0.02
(0.78) (0.78)

vlmZ,t|A −1.58???
(0.21)

Announcement×#nhbr FE Y Y
Stock-Z FE Y Y

R2 2.4% 2.4%
Observations 23,264,687

Table 8. Effect of initial M&A announcement about stock A on the ETF order
imbalance for an unrelated stock Z. Sample: January 1st, 2011 to December 31st,
2017. Each column presents the results of a separate regression using daily data on the
26-day window surrounding each M&A announcement, {tA − 20, . . . , tA − 1, tA, tA +
1, . . . , tA + 5}. ETFimbalZ,t|A: dependent variable is ETF order imbalance for stock
Z on date t following M&A announcement about stock A; coefficient estimate of +1
indicates a 1% per day increase in a stock’s ETF order imbalance. afterAncmtt|A:
indicator variable that is one during the five days following an M&A announcement
about stock A. manyNhbrZ|A: indicator variable that is one if stock Z has an above-
median number of neighbors in the ETF rebalancing network relative to the M&A
announcement about stock A. vlmZ,t|A: total trading volume for stock Z on a given day
reported on a base-e logarithmic scale. Numbers in parentheses are standard errors
clustered by stock Z. Statistical significance: ? = 10%, ?? = 5%, and ??? = 1%. Reads:
“Although ETF rebalancing volume is higher for stocks Zs with many neighbors than
for stock Zs with few neighbors in the five days after an M&A announcement about
stock A, this ETF rebalancing volume is no more likely to consist of buy orders than
of sell orders.”
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Price Impact, Stock Z

Dependent Variable: returnZ,t|A
(1) (2) (3) (4)

posETFimbalZ,t|A × afterAncmtt|A × manyNhbrZ|A 14.17??? 14.29???
(1.21) (1.21)

afterAncmtt|A × manyNhbrZ|A −0.45 −0.47 1.13??? 1.07???
(0.32) (0.32) (0.42) (0.42)

negETFimbalZ,t|A × afterAncmtt|A × manyNhbrZ|A −21.12??? −20.92???
(1.29) (1.28)

afterAncmtt|A −1.05??? −1.16??? −2.66??? −2.63???
(0.23) (0.23) (0.30) (0.30)

posETFimbalZ,t|A 0.71? 0.23
(0.40) (0.40)

negETFimbalZ,t|A −3.19??? −3.49???
(0.39) (0.39)

vlmZ,t|A 8.36??? 8.27???
(0.34) (0.34)

Announcement×#nhbr FE Y Y Y Y
Stock-Z FE Y Y Y Y

Additional Interactions N N Y Y

R2 2.2% 2.3% 2.6% 2.6%
Observations 23,632,529

Table 9. Effect of ETF order imbalance on stock Z’s returns in the days after an M&A
announcement about an unrelated stock A. Sample: January 1st, 2011 to December
31st, 2017. Each column presents the results of a separate regression using daily
data on the 26-day window surrounding each M&A announcement, {tA− 20, . . . , tA−
1, tA, tA+1, . . . , tA+5}. returnZ,t|A: dependent variable is the return of stock Z on date
t; coefficient of +1 indicates a 1bps increase in a stock’s daily return. afterAncmtt|A:
indicator variable that is one during the five days following an M&A announcement
about stock A. manyNhbrZ|A: indicator variable that is one if stock Z has an above-
median number of neighbors in the ETF rebalancing network relative to the M&A
announcement about stock A. posETFimbalZ,t|A: indicator variable that is one if stock
Z has an above-75%tile ETF order imbalance on day t. negETFimbalZ,t|A: indicator
variable that is one if stock Z has a below-25%tile ETF order imbalance on day t.
vlmZ,t|A: total trading volume for stock Z each day reported on a base-e logarithmic
scale. Numbers in parentheses are standard errors clustered by stock Z. Statistical
significance: ? = 10%, ?? = 5%, and ??? = 1%. Reads: “While ETF demand does not
affect a stock’s price on average, buy orders due to ETF rebalancing decisions have
a strong positive effect on a stock’s returns, and sell orders due to ETF rebalancing
decisions have a strong negative effect on a stock’s returns.”
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Monthly Panel Regressions, All Stocks

Dependent Variable: ETFrebals,t amihuds,t spreads,t
(1) (2) (3) (4) (5) (6)

#nhbrs,t 0.40??? 0.12??? −0.15??? −0.03??? −0.12??? −0.07???
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

#ETFholding FE N Y N Y N Y
Month-Year FE Y Y Y Y Y Y

Stock FE Y Y Y Y Y Y

R2 85.5% 87.7% 79.0% 80.1% 54.7% 55.0%
Observations 309,853 311,033 311,023

Table 10. Relationship between the number of neighbors that a stock has in the ETF
rebalancing network and its liquidity. Sample: January 2012 to December 2017. Each
column represents results from a separate regression using stock×month observations.
ETFrebals,t: log ETF rebalancing volume for stock s in month t divided by its standard
deviation in the previous 12 months; coefficient of +1 represents a 1sd increase in
ETF rebalancing volume. amihuds,t: Amihud (2002) illiquidity measure for stock s in
month t divided by its standard deviation in the previous 12 months; coefficient of −1
represents a 1sd reduction in price impact. spreads,t: average bid-ask spread for stock
s in month t divided by its standard deviation in the previous 12 months; coefficient
of −1 represents a 1sd reduction in a stock’s bid-ask spread. #nhbrs,t: number of
neighbors to stock s in month t in thousands. Numbers in parentheses are standard
errors clustered by stock. Statistical significance: ? = 10%, ?? = 5%, and ??? = 1%.
Reads: “Stocks that have more neighbors in the ETF rebalancing network tend to realize
more unpredictable ETF rebalancing demand and be more liquid as a result.”
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