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Abstract

Given the growing availability of large datasets, we propose the spatio-
temporal autoregressive distributed lag (STARDL) model which allows
spatial and temporal coefficients to differ jointly across the spatial units.
Our model encompasses the widely used spatial dynamic panel data mod-
els as well as the heterogeneous spatial autoregressive model recently pro-
posed by Aquaro, Bailey and Pesaran (2015), the only paper in consider-
ing heterogeneous spatial parameters but without any dynamics. To deal
with a degree of simultaneity associated with the spatial-lagged depen-
dent variables, we develop the QML-based and the control function-based
STARDL estimators, which are shown to be consistent and asymptoti-
cally normally distributed when the time dimension is large, irrespective
of whether the number of the spatial units is large or not. Furthermore,
by deriving the system dynamic spatial panel data representation, we can
develop the dynamic and the diffusion multipliers that can capture dy-
namic adjustments as well as network connectedness from initial to new
equilibrium following an economic perturbation in a flexible manner. The
utility of our proposed STARDL models is demonstrated by Monte Carlo
studies as well as the empirical application to the Iraqi war casualties
during 2003-2010.
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1 Introduction

The ability of spatial econometric models to capture co-dependencies across a
known terrain or network at relatively low parametric cost has proved highly
attractive to economists and regional scientists. Following early work by Cliff
and Ord (1973), Upton and Fingleton (1985), Anselin (1988), Cressie (1993),
Kelejian and Robinson (1993) these models have been used in a wide range
of applications. The spatial lag or spatial autoregressive model, which captures
spatial correlation within the system through the dependent variable has proved
the most popular but can be restrictive. A more general form, the spatial Durbin
model, is also widely used and allows the explanatory variables of one unit to
impact the dependent variable of another directly as well as indirectly through
their impact on the original dependent variable. For example, an improvement
in school quality in one area will directly improve house prices in neighbouring
areas, whose residents may access those schools, as well as indirectly through the
transmission of increased house prices from one area to its neighbours. Investi-
gating identification in spatial Durbin models under both instrumental variable
and maximum likelihood estimation, Lee and Yu (2016) show that significant
biases can arise if relevant Durbin terms are omitted while their unnecessary
inclusion causes no material loss of efficiency. Our model is in the spirit of the
spatial Durbin model but generalises it to include time as well as spatial lags.

As the availability of spatial datasets with a large time dimension grows it
is of interest to explore time dynamics in greater detail. Much of the early work
on spatial models was done with large cross-section dimensions in mind. In data
with a time dimension, a static model is, in effect, assuming that the spatial
system is only observed on (or relatively close to) its equilibrium path. Because
many systems take some time to adjust fully to shocks, interest in dynamic
spatial models has grown recently, see Elhorst (2014) for an overview, with the
spatial panel data model, see Anselin et al. (2009), Baltagi et al. (2003), Lee
and Yu (2011), among others, now well established. Yu et al. (2008) study the
stable spatial dynamic panel data model, featuring individual time lags, spatial
time lags and contemporaneous spatial lags. Maximum likelihood estimation
requires bias correction when the time dimension is small but alternative ap-
proaches, using time lags as instrumental variables, are available. Elhorst (2010)
uses Monte Carlo studies to investigate small sample performances of various
estimators. While these endow the system with some temporal memory they are
incapable of capturing the dynamics seen in many economic series. We therefore
propose to generalise the spatial panel model to higher-order temporal dynamics
through the spatial-temporal autoregressive distributed lag (STARDL) model.
In time series econometrics, the autoregressive distributed lag (ARDL) model
has proved an extremely effective tool for both the estimation of dynamic pa-
rameters and for understanding the interaction of variables over time, becoming
widely used in particular to differentiate short-run and long-run behaviour and
the process of adjustment to new equilibria, see Pesaran and Shin (1998), Pe-
saran et al. (2001) and Shin et al. (2014). We adopt this approach in the novel
context of spatially correlated data.
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A significant drawback to spatial models is that the spatial weighting matrix
must be known a priori. A range of methods have been used to construct
weighting matrices in applied work, including contiguity, inverse distance or
measures of similarity, with the only restriction that no unit can be its own
neighbour. The researcher may also choose to normalise the rows of this matrix,
for example to sum to unity. When, as in the overwhelming majority of cases, a
common spatial parameter is used this matrix determines not only which units
are to be considered as neighbours and their relative importance but also the
relative intensity with which each unit is influenced by its neighbours. Only the
general intensity of transmission within the system is left to be estimated; the
relative degree of openness to transmission or susceptibility to external influence
of each unit is assumed known.

We follow a recent paper by Aquaro, Bailey and Pesaran (2015), which is
unusual in allowing heterogeneous spatial lag parameters, although our model
is more general in allowing for time dynamics and also encompasses the widely
used spatial Durbin model as a special case. This relaxation offers a number
of advantages. Firstly, the predictions of the model are invariant to any row-
normalisation of the spatial weighting matrix, in the sense that the residuals are
not affected by multiplying the spatial weights of the neighbours and dividing
the spatial coefficient of unit i by an arbitrary constant. Secondly it enables the
researcher to estimate the relative openness of each spatial unit. As is common
in spatial models, our set up assumes that the relative importance of different
neighbours is known while leaving the importance of the spatial effect relative
to other influences and relative to other spatial units to be estimated.

Allowing for parameter heterogeneity raises significant complications for es-
timation and interpretation that this paper addresses. As some simultaneity
is inevitable in spatial models, we propose to develop a quasi-maximum likeli-
hood (QML) estimator and one utilising internal instruments. QML techniques,
based around a transformation of the data, were developed by Ord (1975), Cliff
and Ord (1981) and Anselin (1980) among others and the asymptotic properties
studied rigorously in Lee (2004). The evaluation of the quasi-likelihood requires
calculation of a Jacobian of a matrix which grows with the cross-section dimen-
sion, typically by calculating the eigenvalues of the weighting matrix. As pointed
out by Kelejian and Prucha (1998), this becomes compuationally difficult for
large cross-sections and the problem is exacerbated by heterogeneity across the
spatial parameters, which prohibits the typical approach. In the light of these
difficulties we also develop an alternative control function approach, following
the instrumental variables/ method of moments approach that has been devel-
oped by Anselin (1980), Kelejian and Robinson (1993), Kelejian and Prucha
(1998, 1999, 2004), Lee and Liu (2010), Lee and Yu (2014) and Kuersteiner and
Prucha (2018). The choice of the optimal set of instruments are also discussed
in Anselin (1980), Land and Deane (1992) and Lee (2003). Importantly, the
presence of time and spatial correlation equips our model with a greater variety
of instruments, which we exploit in developing the estimator of the parameters.
We undertake an asymptotic analysis of both estimators, establishing condi-
tions for the stability of the model and the identification of the parameters and
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show that, under certain conditions they are consistent and normally distributed
asymptotically.

We explore the properties of both the QML and control function estimators
in a Monte Carlo simulation. Our results indicate that both methods provide
good estimates in finite samples, with both bias and root mean square error
falling as the time dimension increases. The results are largely unaffected by
increases in the cross-sections dimension, with the control function providing a
far easier algorithm to implement. The control function estimator is also shown
to be robust to heteroskedasticity and to time dependence in the regressor,
while the QML estimator has the lower root mean square error. We investigate
both methods using different row-normalised weighting matrices and find that
performance is maintained regardless of its sparsity.

While offering useful flexibility, allowing heterogeneity across a large num-
ber of units can make it difficult to interpret results in a meaningful way, once
estimated, and to analyse the influence of both spatial interactions and dif-
fusion dependence. Another contribution of the paper is to provide two such
measures, the individual spatio-temporal dynamic multipliers and the system
diffusion multipliers, based on work by Shin et al. (2014). We then illus-
trate their usefulness in an empirical application looking at casualty data from
the 2003 Iraq war and its aftermath. Although the conduct of the war itself
was initially quick and decisive, subsequent attempts by the coalition forces to
maintain the safety of the Iraqi population during the subsequent insurgency
required considerable efforts over a longer time horizon. Using novel (and fa-
mously unofficial) casualty data, we analyse the effect of insurgent deaths on
those of civilians in each of the 18 provinces of Iraq, modelling both time and
spatial contaminations. Our results highlight the contrasting experiences of the
most populous, the capital Baghdad, where the majority of civilian casualties
occurred but which, nevertheless, was largely a net propagator of civilian vio-
lence, and the Shia centre of Basrah, where the number of civilian casualties
were particularly sensitive to events in neighbouring provinces.

Spatial model are not the only way that cross-section dependence can be
modelled and interest in factor models has also grown, with recent efforts to
combine the two undertaken by Shi and Lee (2017), Bai and Li (2015) and
Kuersteiner and Prucha (2018). As an extension we incorporate observed and
then unobserved common factors within our framework, providing algorithms
based on the control function and QML approaches.

The structure of the paper is as follows. Section 2 presents the basic spec-
ification of the model and discusses in detail its underlying properties. Sec-
tion 3 presents a number of extensions and discusses their properties. Section
4 develops the spatio-temporal dynamic and diffusion multipliers. Section 5
presents Monte Carlo simulation evidence of the control function and the QML
estimators. Section 6 demonstrates the utility of our proposed models, provid-
ing an empirical illustration analysing the time and cross sectional dependence
between civilian and military casualties during the 2003 Iraq war and its af-
termath. Section 7 provides an important extension to the joint modelling of
spatial dependence and unobserved factors. Section 8 concludes.
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2 The STARDL Model

Consider the spatio-temporal autoregressive distributed lag model of order p
and q with the heterogeneous parameters (STARDL(p, q) for short):

yit =

p∑
`=1

φi`yi,t−` +

p∑
`=0

φ∗i`y
∗
i,t−` +

q∑
`=0

π′i`xi,t−` +

q∑
`=0

π′∗i`x
∗
i,t−` + αi + uit, (1)

for i = 1, . . . , N and t = 1, . . . , T , where yit is the scalar dependent variable of
the ith spatial unit at time t, xit = (x1

it, ..., x
K
it )′ is a K × 1 vector of exogenous

regressors with a K × 1 vector of parameters, π0 = (π1
0 , ..., π

K
0 )′. Similarly for

yi,t−` and xi,t−`. Spatial interactions between units, both contemporaneously
and with lags, are captured via the spatial variables, y∗it and x∗it, defined by

y∗it ≡
N∑
j=1

wijyjt = wiyt with yt
N×1

= (y1t, ..., yNt)
′
, (2)

x∗it
K×1

=
(
x1∗
it , ..., x

K∗
it

)′ ≡
 N∑
j=1

wijx
1
jt, ...,

N∑
j=1

wijx
K
jt

′ = (wi ⊗ IK)xt; xt
NK×1

=

 x1t

...
xNt


(3)

where wi = (wi1, ..., wiN ) denotes a 1 × N vector of (non-stochastic) spatial
weights determined a priori with wii = 0. Notice that the specification in (1)
is sufficiently general by controlling for fixed effects through individual-specific
intercepts, αi.

The STARDL(p, q) specification in (1) reveals some information. If φi`’s and
πi`’s are statistically significant, this points to the usual temporal dynamics
(e.g. the ARDL approach by Pesaran et al. (2001)). In addition, if φ∗i`’s (the
endogenous effect) and π∗i`’s (the contextual effect in terms of Manski (1993))
are statistically significant, this indicates an importance of spatial dependence
as well as spatio-temporal or diffusion dynamics.

Stacking the N individual STARDL(p, q) regressions (1), we have the fol-
lowing system spatial representation:

yt =

p∑
`=1

Φ`yt−`+

p∑
`=0

Φ∗`Wyt−`+

q∑
`=0

Π`xt−`+

q∑
`=0

Π∗` (W ⊗ IK)xt−`+α+ut

(4)
where W is the N ×N (non-stochastic) spatial weight or network matrix that
characterises all the connections given by

W =

 w11 · · · w1N

...
. . .

...
wN1 · · · wNN

 =

 w1

...
wN

 with wii = 0, (5)
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α = (α1, ..., αN )
′

and Φ`, Φ∗` , Π`, Π∗` are diagonal matrices consisting of the
heterogeneous parameters,

Φ`
N×N

=

 φ1` · · · 0
...

. . .
...

0 · · · φN`

 , ` = 1, ...p; Φ∗`
N×N

=

 φ∗1` · · · 0
...

. . .
...

0 · · · φ∗N`

 , ` = 0, 1, ..., p

Π`
N×NK

=

 π′1` · · · 0
...

. . .
...

0 · · · π′N`

 , Π∗`
N×NK

=

 π′∗1` · · · 0
...

. . .
...

0 · · · π′∗N`

 for ` = 0, 1, ..., q.

The representation in (4) is more general and nests a range of popular models
seen in the literature. Consider the special case with homogeneous parameters
and with p = q = 1, in which case we obtain the following dynamic spatial
Durbin model analysed by Lee and Yu (2009) and Elhorst (2012):

yt = φyt−1+φ∗0Wyt+φ
∗
1Wyt−1+π0xt+π1xt−1+π∗0 (W ⊗ IK)xt+π

∗
1 (W ⊗ IK)xt−1+ut.

(6)
In practice it is difficult to provide meaningful interpretation on the homoge-
neous spatial parameters, especially φ∗0 and φ∗1 as well as π∗0 and π∗1 . But our
proposed approach can deliver much more flexible and sensible interpretations
by allowing these parameters to be heterogeneous across spatial units. For ex-
ample, we can allow direct spillovers from neighbouring exogenous variables, e.g.
improved amenities increase house prices in neighbouring areas directly (close
to good amenities) and indirectly (close to an area of rising prices). See also
Elhorst (2012) for more discussions on the identification and estimation issues.

To date, only one paper, proposed by Aquaro, Bailey and Pesaran (2015,
hereafter ABP), examines the heterogeneous spatial autoregressive (HSAR)
panel data model where the spatial coefficients are allowed to be heterogeneous.
ABP consider the following model:

yit = φ∗0

N∑
j=1

wijyjt + π′ixit + αi + uit (7)

They derive conditions under which the heterogeneous spatial coefficients are
identified and develop a quasi maximum likelihood (QML) estimation procedure
when both the time and cross section dimensions are large. The STARDL model
encompasses the HSAR model, that does not consider temporal dynamics and
diffusion dependence explicitly.

2.1 Stability conditions and assumptions

We rewrite (1) compactly as

yit = φ∗i0y
∗
it + θ′iχit + uit (8)
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where χit =
(
yi,t−1, ..., yi,t−p, y

∗
i,t−1, ..., y

∗
i,t−p,x

′
it, ...,x

′
i,t−q,x

∗′
it , ...,x

∗′
i,t−q, 1

)′
and

θi =
(
φ′i,φ

∗′
i ,π

′
i,π
′∗
i , αi

)′
with φi = (φi1, ..., φip)

′
, φ∗i =

(
φ∗i1, ..., φ

∗
ip

)′
, πi =(

π′i0, ...,π
′
iq

)′
, π∗i =

(
π∗′i0, ...,π

∗′
iq

)′
. Stacking (8), we have

yt = Φ∗0Wyt + Θχt + ut (9)

where Φ∗0 = diag (φ∗10, ..., φ
∗
N0), Θ = diag

(
θ′1, ...,θ

′
N

)
, and χt = (χ′1t, ...χ

′
Nt)
′
.

We begin with the following assumptions:
Assumption 1: The disturbances {uit}, i = 1, . . . , N and t = 1, . . . , T , are

independent across i and t with zero mean, heterogeneous variance σ2
i > 0 but

without time dependence, E(uituis) = 0 ∀t 6= s. In addition, E |uit|4+ε
<∞ for

some ε > 0.
Assumption 2: The true parameter vector

(
φ∗′0 ,θ

′,σ′
)′

, where φ∗0 =

(φ∗10, . . . , φ
∗
N0)
′
, θ =

(
φ′1, . . . ,φ

′
p,φ

∗′
1 , . . . ,φ

∗′
p ,π

′
0, . . . ,π

′
q,π

∗′
0 , . . . ,π

∗′
q ,α

′)′, and

σ2 =
(
σ2

1 , . . . , σ
2
N

)′
, are in a compact set.

Assumption 3: The spatial weights matrix W is non-stochastic with zero
diagonals and uniformly bounded for all N with absolute row and column sums.

Assumption 4: Either : (a) as N → ∞, (IN −Φ∗0W )
−1

exists and is
uniformly bounded for all N with uniformly bounded absolute row and column
sums; or (b) for bounded N , the eigenvalues of Φ∗0W lie inside the unit circle
such that the matrix S (Φ∗0)) = IN−Φ∗0W is invertible for all Φ∗0 ∈ ΘΦ∗0

, where
ΘΦ∗0

is the compact parameter space.
As a result of Assumption 4, we rewrite equation (4) as

Φ̃ (L)yt = Π̃` (L)xt−` + ũt, (10)

where L denotes the lag operator, Φ̃ (z) = I −
∑p
`=1 Φ̃`z

`, and Π̃` (z) =∑q
`=0 Π̃`z

` are N ×N a matrix polynomials of order p and q respectively with

Φ̃` = (IN −Φ∗0W )
−1

(Φ` + Φ∗`W ), Π̃` = (IN −Φ∗0W )
−1

[Π`+Π∗` (W ⊗ IK)],

and ũt = (IN −Φ∗0W )
−1
ut.

Assumption 5 (Time stability): The roots of the characteristic equation∣∣∣Φ̃ (z)
∣∣∣ =

∣∣∣IN −∑p
`=1 Φ̃`z

`
∣∣∣ lie outside the unit circle.

Assumption 5 implies that we can rewrite (10) as an infinite order moving
average:

yt = Φ̃ (L)
−1

(
q∑
`=0

Π̃`xt−` + ũt

)
≡
∞∑
`=0

B̃`xt−` +

∞∑
`=0

B`ũt−`, (11)

where B̃ (L)
(

=
∑∞
`=0 B̃`

)
= Φ̃ (L)

−1
Π̃` (L). Then, it follows that the sums∑∞

`=0 ‖B`‖1 and
∑∞
`=0 ‖B`‖∞ are bounded by some constant C, see also Li

(2017) for more discussions.
Assumption 6: The explanatory variables xit are random variables such

that E(‖xit‖4) ≤ C for all i and t, and they are independent of the idiosyncratic
errors ujs for all (i, j, t, s).
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Under Assumptions 5 and 6, it is easily seen that E(‖χit‖
4
) ≤ C for all i and

t, and they are uncorrelated with the idiosyncratic errors ujs for all (i, j, t, s).
For (local) identification we require the following assumption:

Assumption 7: p limN,T→∞
1
T

∑T
t=1E (χ′itχit) is strictly positive definite

with the largest eigenvalue bounded by some constant C for i = 1, ..., N . At the
true parameter values of (φ∗0,θ,Σu) , the following matrix

lim
N,T→∞

 1

N(T − q)

 T∑
t=q

E
(
V ′tV t

)
−

T∑
t=q

E
(
V ′tχt

)( T∑
t=q

E (χ′tχt)

)−1 T∑
t=q

E (χ′tV t)


is positive definite, where V t = Gχtθ with G = WS−1 (Φ∗0).

Assumption 1 both limits the probability of extreme values of the distur-
bance and rules out the possibility that uit is degenerate for any i = 1, . . . , N .
Time dependence is ruled out implicitly in the literature; here we model it
through time lags of the dependent and explanatory variables. The more com-
mon requirement that uit be i.i.d. has been weakened to allow heteroskedasticty.
Assumption 2 is standard in econometrics literature. Assumption 3 is common
within the spatial literature and contains the normalising convention that no
unit acts as its own neighbour, thereby ensuring that y∗it remains bounded for
all i = 1, . . . , N if yjt and xjt are bounded for all j = 1, . . . , N and t = 1, . . . , T .
The bounded absolute row sums of W follow naturally when the rows of W are
normalised to sum to unity, whereupon bounded absolute column sums amounts
to a restriction on the degree of influence of individual observations within the
system, which is only needed to accommodate the case with N → ∞; it is
satisfied automatically when N is bounded.

Assumption 4 limits the degree of contemporaneous spatial feedback within
the system, without which it would be possible that the elements of yt and
the variance of ut would not be finite. It ensures that the variance of the

disturbance in the equation (10), V ar (ũt) = (I −Φ∗0W )
−1

Σu

(
I −W ′Φ′∗0

)−1

is bounded where Σu = V ar (ut) = diag
(
σ2

1 , . . . , σ
2
N

)
. The conditions on Φ∗0W

given under 4(a) are sufficient for those given under 4(b), since under 4(a) we

may write (IN −Φ∗0W )
−1

= IN +Φ∗0W +(Φ∗0W )2 + . . ., and by the properties
that all norms are sub-additive and bounded below by the absolute value of the
largest eigenvalue, see Horn and Johnson (1985, 5.6). If N is bounded (while
T →∞), then the expression in 4(b) is equivalent to 4(a). This is not the same
as assuming that the (unconditional) variance of yt, is finite and does not depend
upon t, for which we make Assumption 5, which is a familiar condition from the
literature on dynamic systems (e.g. Hamilton, 1994). Assumption 5 generalises
Assumption 4 in Mutl (2009), who assumes that the largest eigenvalue of Φ̃1 is
strictly less than one when p = 1, and is the necessary condition for the stable
relationship existing between yt and xt.

1

Assumption 7 is a (local) identification condition for φ∗0 and Σu. Notice that
when we use Assumption 7 to identify φ∗0, we implicitly assume that θ 6= 0. See

1There has been a great deal of interest in stationarity of spatial dynamic panel data
models (e.g. Lee and Yu, 2010). Let ωi denote an eigenvalue of W , then, for the homogeneous
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Bai and Li (2015) for the global identification condition.

3 Estimation and Inference

Following the early work of Cliff and Ord (1973), it is well-known that the
endogeneity caused by contemporaneous spillovers across spatial units makes
estimation by ordinary least squares inconsistent. Quasi-Maximum Likelihood
(QML) techniques, based upon a data transformation removing the endogene-
ity, have proved popular, see Anselin (1988) and Lee (2004) establishing their
asymptotic properties. For applications in which the number of spatial units is
large, however, the computational cost to evaluating the effect of this transfor-
mation on the log likelihood can be prohibitive. An alternative approach based
on the use of moment conditions have been developed by Kelejian and Prucha
(1998, 1999) using instrumental variables (IV), then the generalised method of
moments (GMM) respectively, see Elhorst (2010) and Lee and Yu (2014) among
others. The growing availability of datasets with both spatial and time dimen-
sion has sparked interest in models for dynamic spatial panel data. Working
in a static framework, Baltagi et al. (2007) consider combined tests of spatial
correlation, serial correlation and random effects. Kapoor et al. (2007) estimate
panel data models with spatially correlated error components using GMM while
Yu et al. (2008) suggest QML methods for the estimation of dynamic spatial
panel models. Lee and Yu (2014) consider GMM methods on dynamic spatial
panel models with multiple spatial lags.

3.1 Quasi-Maximum Likelihood Estimation

Let T̄ = T − q denote the sample size after allowing for lags and let ξ =(
φ∗′0 ,θ

′,σ2′)′ with σ2 =
(
σ2
i , ..., σ

2
i

)′
denote the parameters. The true value

of the parameters are denoted ξ̃ =
(
φ̃
∗′
0 , θ̃

′
, σ̃2′

)′
and with, for example, σ̃2 =(

σ̃2
1 , ..., σ̃

2
N

)′
. Define χ = [χ′q+1, . . . ,χ

′
T ]′ and χi = [χ′i(q+1), . . . ,χ

′
iT ]′.

Under the specification in equation (9) alongside Assumptions 1 and 6, the
density of yt may be conditioned recursively for t = q + 1, . . . , T on χt, which
is to say the independent and pre-determined regressors. Following Lee (2004),
the QML estimator can be constructed using equation (9) as the optimiser of

parameter case with p = 1, Assumption 5 reduces to∣∣∣∣φ1 + φ∗1ωi

1− φ∗0ωi

∣∣∣∣ < 1, ∀i.

Lee and Yu (2009) consider row normalised weight matrix, for which maxωi = 1. When
other parameters are in the non-negative but stable region, this simplifies further to∣∣φ1 + φ∗0 + φ∗1

∣∣ < 1. See also Elhorst (2014) for a wider set of stability conditions in the
homogeneous spatial dynamic panel data models.
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the function:

LT̄ (ξ) = −nT̄
2

ln (2π)− T̄

2
ln |Σu|+ T̄ ln |S(Φ∗0)| − 1

2

T∑
t=q+1

u′tΣ
−1
u ut, (12)

where φ∗0 = (φ∗01, . . . , φ
∗
0N )
′

and θ =
(
θ′1, ...,θ

′
N

)′
.

It is easy to show, see the appendix, that the closed form solution for θ and
Σ given Φ∗ are

θ̂i(φ
∗
0i) =

(
1

T̄

T∑
t=q+1

χitχ
′
it

)−1(
1

T̄

T∑
t=q+1

χit [yit − φ∗0iy∗it]

)
,

σ̂2
i (φ∗0i) =

1

T̄

T∑
t=q+1

(
yit − φ∗0iy∗it − θ̂

′
iχit

)2

=
1

T̄

T∑
t=q+1

(yit − φ∗0iy∗it)
2

− 1

T̄

T∑
t=q+1

(yit − φ∗0iy∗it)χ′it

[(
1

T̄

T∑
t=q+1

χitχ
′
it

)]−1

1

T̄

T∑
t=q+1

χit (yit − φ∗0iy∗it) .

After substituting in, maximising (12) is equivalent to maximising the fol-
lowing concentrated log-likelihood function:

LcT̄ (φ∗0) = −nT̄
2

ln (2π + 1) + ln |S(Φ∗0)| − 1

2

N∑
i=1

ln σ̂2
i (φ∗0i). (13)

The heterogeneous spatial parameters φ∗0 = (φ∗i0, ..., φ
∗
N0)
′

can be estimated
more conveniently by

φ̂
∗
0 = arg max

φ∗0∈Θφ∗0

LC (φ∗0) .

Consider the following non-stochastic functions of the parameters, based on
the (conditional) expectation of the log-likelihood function.

QT̄ (ξ) = E [LT̄ (φ∗0,θ,Σu)] . (14)

In order to evaluate this expression, it will be very valuable to express S(Φ∗0)yt
in terms of χt and ut. Define G = WS−1 = [g1, . . . , gN ]′, with rows g′i =

[gi1, . . . , giN ], and with S = S
(
Φ̃
∗
0

)
. Note that I + Φ̃

∗
0G = S−1 so that the

relationship

S (Φ∗0)S−1 = S−1 −Φ∗0G = I +
(
Φ̃
∗
0 −Φ∗0

)
G.

Basic manipulation produces

S(Φ∗0)yt = S (Φ∗0)S−1 [Θχt + ut] =
[
I +

(
Φ̃
∗
0 −Φ∗0

)
G
]

Θχt+S (Φ∗0)S−1ut.
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Using s∗′i (φ∗0i) to denote the i’th row of S (Φ∗0), with its scalar argument re-
flecting that this does not depend on any φ∗0j for j 6= i, the i’th row of this
relationship is

yit − φ∗i0y∗it = s′i(φ
∗
0i)S

−1 [Θχt + ut] ≡ κit(φ∗i0) + s′i(φ
∗
0i)S

−1ut,

where κit(φ
∗
i0) is defined implicitly.

Then, for given Φ∗, the values of θ that maximises QT̄ (ξ) is given by

θ̄i(φ
∗
0i) =

(
E

T∑
t=q+1

1

T̄
χitχ

′
it

)−1(
E

1

T̄

T∑
t=q+1

χit [yit − φ∗0iy∗it]

)

=

(
E

1

T̄

T∑
t=q+1

χitχ
′
it

)−1(
E

1

T̄

T∑
t=q+1

χitκit(φ
∗
i0)

)
.

It then follows that and the value of σ2
i is given by

σ̄2
i (φ∗0i) = E

T∑
t=q+1

1

T̄

{[
yit − φ∗i0y∗it − θ̄

′
i(φ
∗
0i)χit

]′ [
yit − φ∗i0y∗it − θ̄

′
i(φ
∗
0i)χit

]}

= E

T∑
t=q+1

1

T̄


κit(φ∗i0) + s′i(φ

∗
i0)S−1ut −

(
E

1

T̄

T∑
t=q+1

χitκit(φ
∗
i0)

)′(
E

1

T̄

T∑
t=q+1

χitχ
′
it

)−1

χit

2


= E

(
1

T̄

T∑
t=q+1

κit(φ
∗
i0)2

)

−E

(
1

T̄

T∑
t=q+1

κit(φ
∗
i0)χ′it

)[
E

(
1

T̄

T∑
t=q+1

χitχ
′
it

)]−1

E

(
1

T̄

T∑
t=q+1

χitκit(φ
∗
i0)

)
+tr

{
S−1′si(φ

∗
0i)s

′
i(φ
∗
0i)S

−1Σ
}
.

Then we have

QcT̄ (φ∗0) ≡ max
θ,σ2

E
[
LT̄
(
φ∗0,θ,σ

2
)]

= −nT̄
2

ln (2π + 1)+ln |S(Φ∗0)|−1

2

N∑
i=1

ln σ̄2
i (φ∗0i),

(15)
The variable, κit(φ

∗
i0) represents the part of (yit − φ∗i0y∗it) that can be ‘ex-

plained’ by the pre-determined variables in the system. Note that as s′i(φ̃
∗
0i)S

−1 =
e′i, the i’th row of the N × N identity matrix, at the true parameter value
κit(φ̃

∗
i0) = χ′itθ̃i ensuring that θ̄i(φ̃

∗
0i) = θ̃i and σ̄2

i (φ̃∗0i) = σ̃2
i , as expected.

Away from the true parameter value, however, κit(φ̃
∗
i0) will be a weighted sum

of χjt. In order to identify φ∗i0, we require that some of the explanation comes
from χjt, for some j 6= i, that is to say which cannot equally be explained with

a different choice of θi, if φ∗i0 6= φ̃∗i0, which is encapsulated in the following
assumption.
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Assumption 7: For all φ∗i0 6= φ̃∗i0 and for all i

lim
T→∞

{
E

(
1

T̄

T∑
t=q+1

vit(φ
∗
0i)

2

)

−E

(
T∑

t=q+1

1

T̄
v(φ∗0i)itχ

′
it

)[
E

(
1

T̄

T∑
t=q+1

χitχ
′
it

)]−1

E

(
T∑

t=q+1

1

T̄
χitv(φ∗0i)it

) > 0.

Assumption 7 mirrors Assumption 8 in Lee (2004) and Assumption G2 in
Li (2017). It states that κit(φ

∗
i0) cannot be co-linear with χit for any value of

φ∗0i other than the true value. This is enough to locally identify the parameter
vector φ∗0, given χt, and hence, given that other parameters follow as closed
form expressions, ξ. Arguments similar to Lee (2004), see the appendix, may
be deployed to establish the following Theorem.

Theorem 1 (The QML estimator) Consider the STARDL model (8) and
suppose that (i) Assumptions 1-7 hold, andThen, as T →∞, we have:√
T̄
(
ξ̂ − ξ̃

)
→d N

(
0, AV ar

(
ξ̂
))

with AV ar
(
ξ̂
)

= H−1
T̄

(
ξ̂
)
J T̄

(
ξ̂
)
H−1

T̄

(
ξ̂
)

where

J T̄ (ξ) =
−1

T̄

(
∂L (ξ)

∂ξ

)(
∂L (ξ)

∂ξ

)′
;H T̄ (ξ) =

−1

T̄

∂2L (ξ)

∂ξ∂ξ′
,

the non-zero elements of which are given in the appendix.
Although, the parameters θ and Σ may be concentrated out of (12), follow-

ing Lee (2004), leaving an optimisation over Φ∗, the need for repeated evaluation
of the determinant N ×N matrix, IN −Φ∗0W , can make the maximisation of
(12) or (13) numerically burdensome for large N . In the homogenous case,
this is often done with using the technique proposed by Ord (1975), which is
straightforward once the eigenvalues of W have been found. 2 This may be
challenging if N is large and W asymmetric, both of which are typically true
in applied work, because the computation of the eigenvalues becomes numeri-
cally unstable. This technique is not applicable, however, when parameters are
heterogeneous and other methods must be found. With this in mind, we next
consider a computationally simpler method that exploits the naturally available
instruments to control the endogeneity within equation (8).

3.2 Control Function Estimation

The alternative approach to dealing with the endogeneity in (8) is to use instru-
ments. Here we do so via a control function (CF). 3 Let zit be the L× 1 vector

2In the homogeneous case with φ∗i0 = φ∗0, for all i |S(Φ∗0)| =
∏n
i=1(1 − φ∗0ωi), where the

ωi are eigenvalues of W .
3Most models that are linear in parameters are estimated using standard IV methods – two

stage least squares (2SLS). The CF approach relies on the same kinds of identification condi-
tions. However, in models with nonlinearities or random coefficients, the form of exogeneity
is stronger and more restrictions are imposed on the reduced forms.
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of exogenous/ pre-determined variables:

zit =
(
z1′
it , z

2′
it

)′
where the L1×1 vector, z1

it = χit contains all all exogenous and pre-determined
variables included in (8). The L2×1 vector z2

it contains additional pre-determined
variables related to y∗it but not to uit with L2 ≥ 1, such as higher orders of spa-
tial and time lagged variables in z1

it (see Section 3.2.1 below).
Assumption 7’: For each i = 1, . . . , N there exist a vector, z2′

it such that

(z2
ituit) is a stationary and ergodic martingale difference sequence, limT→∞

{
E
(

1
T̄

∑T
t=q+1 z

2
ity
∗
it

)}
6=

0 and for all L1 vectors γ 6= 0

lim
T→∞

{
E

(
1

T̄

T∑
t=q+1

γ′z2
itz

2′
itγ

)

−E

(
T∑

t=q+1

1

T̄
γ′z2

itχ
′
it

)[
E

(
1

T̄

T∑
t=q+1

χitχ
′
it

)]−1

E

(
T∑

t=q+1

1

T̄
χitz

2′
itγ

) > 0.

Assumption 7’ carries the usual condition that z2
it is not asymptotically

linearly dependent on χit but is asymptotically correlated with y∗it. The above
presentation makes clear that the identification does not rely on κ(φ∗i0) but
may utilise other relevant variables provided they are uncorrelated with the
disturbance process.

We now run the reduced form regression of y∗it on zit

y∗it = ϕ′izit + vit with E (z′itvit) = 0 (16)

Then, apply the linear projection of uit on vit as follows:

uit = ρivit + eit (17)

where ρi = E (vituit) /E
(
v2
it

)
. By construction, E (z′iteit) = 0 and E (viteit) =

0. The endogeneity is now fully reflected in E (vituit) since from (16) we have:

Cov (y∗it, uit) = Cov (ϕ′izit, uit) + Cov (vit, uit) = Cov (vit, uit) .

Replacing uit by (17), we obtain the following transformation of (1):

yit =

p∑
h=1

φihyi,t−h+

q∑
h=0

π′ihxi,t−h+

p∑
h=0

φ∗ihy
∗
i,t−h+

q∑
h=0

π′∗ihx
∗
i,t−h+αi+ρivit+eit

(18)
where vit is the control variable, rendering the new error terms, eit uncorre-
lated with y∗it as well as with vit and other regressors in (18). We rewrite (18)
compactly as

yit = β′iqit + eit, t = 1, ..., T, (19)
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where qit =
(
y∗it, z

1′
it , 1, vit

)′
denotes the tth row of the matrix of the regressors,

qi = (q′i1, ..., q
′
iT )
′
, and βi =

(
φ∗i0,θ

′
i, ρi

)′
.

Assumption 7’ ensures that T−1/2
∑T
t=1 qiteit →d N

(
0, σ2

ei (q′iqi)
−1
)

and

that T−1/2
∑T
t=1 zitvit →d N

(
0, σ2

vi (z′izi)
−1
)

, where zi = (z′i1, ...,z
′
iT )
′
. We

propose the two-step procedure: (i) obtain the reduced form residuals, v̂it =
y∗it − ϕ̂

′
izit from (16) and (ii) run the following regression:

yit =

p∑
h=1

φihyi,t−h+

q∑
h=0

π′ihxi,t−h+

p∑
h=0

φ∗ihy
∗
i,t−h+

q∑
h=0

π′∗ihx
∗
i,t−h+αi+ρiv̂it+e

∗
it

(20)
where e∗it = eit + ρi (ϕi − ϕ̂i)

′
zit depends on the sampling error in ϕ̂i unless

ρi = 0 (exogeneity test). Then, the OLS estimator from (20) will be consistent.
We refer this estimator to as the STARDL-CF estimator. We note in passing
that the practical advantage of the CF approach mainly lies in preserving the
structural parameters in (1), which will be used for conducting the dynamic
counterfactual analysis below.

The following Theorem shows that the STARDL estimator of the parameter
vector βi =

(
φ∗i0,θ

′
i

)′
in (19) is

√
T -consistent and follows the asymptotic normal

distribution.
Theorem 2 Under Assumptions 1-6 and 7’, as T →∞, the OLS estimator

from (20) is consistent and asymptotically normally distributed as√
T̄
(
β̂i − β̃i

)
)→d N

(
0, AV ar

(
β̂i

))
,

where

AV ar
(
β̂i

)
→p σ̂

2
i

(
X̃i
′
X̃i

)−1

,

where X̃
′
it =

(
y∗i,t − v̂it,χ′it

)
denotes the t’th row of the matrix X̃i =

(
X̃
′
i1, ..., X̃

′
iT

)′
,

and σ̂2
i = T−1

∑T
t=1 û

2
it, where ûit = êit + v̂itρ̂.

4

3.2.1 The selection of instrumental variables

By modelling the spatial and dynamic effects jointly, we can obtain the valid
IVs internally as follows: Under Assumption 4 we can express y∗t as

y∗t = G

[
p∑
`=1

Φ`yt−` +

p∑
`=1

Φ∗`Wyt−` +

q∑
`=0

Π`xt−` +

q∑
`=0

Π∗` (W ⊗ IK)xt−` +α+ ut

]
.

(21)

4The above allows for heterogeneity in the parameters and depends only on large T . Homo-
geneity (or indeed clustering) are nested within the model, but these are not treated asymp-
totically. With homogenous parameters it would be possible to get a faster

√
NT rate of

convergence.
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This suggests that[
p∑
`=1

W 2yt−`,

p∑
`=1

W 3yt−`, ...,

q∑
`=0

W 2xt−`,

q∑
`=0

W 3xt−`, ...

]
(22)

can be used as the IV for y∗t .
5 Hence, we employ the following set of IVs for

y∗it in the individual STARDL regression, (1):

zit =

(
p∑
`=1

y∗∗i,t−`,

p∑
`=1

y∗∗∗i,t−`, ...,

q∑
`=0

x∗∗i,t−`,

q∑
`=0

x∗∗∗i,t−`, ...

)

where y∗∗i,t−` =
∑N
j=1 w

(2)
ij yj,t−`, y

∗∗∗
i,t−` =

∑N
j=1 w

(3)
ij yj,t−`, x

∗∗
i,t−` =

∑N
j=1 w

(2)
ij xj,t−`

and x∗∗∗i,t−` =
∑N
j=1 w

(3)
ij xj,t−` with w

(2)
ij and w

(3)
ij being the (i, j)th element of

W 2 and W 3, respectively.
Next, we can derive the IVs from the higher time lags by rewriting (4) as

Φ (L)yt = Φ∗ (L)Wyt + Π (L)xt + Π∗ (L) (W ⊗ IK)xt +α+ ut (23)

where Φ (L) = IN −
∑p
`=1 Φ`L

`, Φ∗ (L) =
∑p
`=0 Φ∗`L

`, Π (L) =
∑q
`=0 Π`L

`,
Π∗ (L) =

∑q
`=0 Π∗`L

`, and

yt = Ψ (L)yt + Ξ (L)xt + [Φ (L)]
−1

[α+ ut]

where Ψ (L) = [Φ (L)]
−1

Φ∗ (L)W and Ξ (L) = [Φ (L)]
−1

[Π (L) + Π∗ (L) (W ⊗ IK)].
As Ψ0 = Φ∗0W , we have:

y∗t = G
{

Ψ1 (L)yt + Ξ (L)xt + [Φ (L)]
−1

[α+ ut]
}

(24)

where Ψ1 (L) =
∑∞
`=1 Ψ`L

`. This suggests that the following additional IVs[
W 2yt−p−1,W

2yt−p−2, ...,Wxt−p−1,Wxt−p−2, ...
]

(25)

could be used for y∗t . See also Kelejian and Prucha (1999), and Lee and Yu
(2014) for discussion of an optimal set of instruments.

4 The Spatio-Temporal Multipliers

Another important issue is how best to present the STARDL estimation results
as these involve the large dimensional spatial interactions and diffusion depen-
dence. In this Section we provide two such measures, the individual spatio-
temporal dynamic multipliers and the system diffusion multipliers, respectively.
Given the availability of large spatial datasets with a large time dimension these
counterfactural analyses will provide the applied researchers the valuable tools.

5In practice we can apply the different weight matrices to construct y∗t = Wyt and
x∗t = Qxt. In this case we can also use

∑q
`=0Wxt−` as an Internal IVs.
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4.1 The Spatio-Temporal Dynamic Multipliers

Following Shin et al. (2014), it is straightforward to derive dynamic multipliers
associated with unit changes in y∗it, xit, x

∗
it and gt respectively, on yi,t+h for

h = 0, 1, 2... We rewrite the STARDL(p, q) model, (1) as6

φi (L) yit = φ∗i (L) y∗it + πi (L)xit + π∗i (L)x∗it + uit (26)

where

φi (L) = 1−
p∑
`=1

φi`L
`;φ∗i (L) = 1−

p∑
`=0

φ∗i`L
`;πi (L) =

q∑
`=0

π′i`L
`;π∗i (L) =

q∑
`=0

π∗′i`L
`.

Premultiplying (26) by the inverse of φi (L), we obtain:

yit = φ̃∗i (L) y∗it + π̃i (L)xit + π̃∗i (L)x∗it + ũit (27)

where φ̃∗i (L)
(

=
∑∞
j=0 φ̃

∗
ijL

j
)

= [φi (L)]
−1
φ∗i (L), π̃i (L)

(
=
∑∞
j=0 π̃

′
ijL

j
)

=

[φi (L)]
−1
πi (L), π̃∗i (L)

(
=
∑∞
j=0 π̃

∗′
ijL

j
)

= [φi (L)]
−1
π∗i (L) and ũit = [φi (L)]

−1
uit.

The φ̃∗ij , π̃
′
ij and π̃∗′ij for j = 0, 1, ..., can be evaluated using the following recur-

sive relationships:

φ̃∗ij = φi1φ̃
∗
i,j−1 + φi2φ̃

∗
i,j−2 + · · ·+ φi,j−1φ̃

∗
i1 + φij φ̃

∗
i0 + φ∗ij , j = 1, 2, ... (28)

where φij = 0 for j < 1 and φ̃∗i0 = φ∗i0, φ̃
∗
ij = 0 for j < 0 by construction,

π̃′ij = φi1π̃
′
i,j−1 + φi2π̃

′
i,j−2 + · · ·+ φi,j−1π̃

′
i,1 + φijπ̃

′
i0 + π′ij , j = 1, 2, ... (29)

where π̃′i0 = π′i0, π̃
′
ij = 0 for j < 0, and

π̃∗′ij = φi1π̃
∗′
i,j−1 + φi2π̃

∗′
i,j−2 + · · ·+ φi,j−1π̃

∗′
i,1 + φijπ̃

∗′
i0 + π′ij , j = 1, 2, ... (30)

where π̃∗′i0 = π∗′i0, π̃
∗′
ij = 0 for j < 0.

The cumulative dynamic multipliers of y∗it, xit and xit on yi,t+h for h =
0, ...,H, can be evaluated as follows:

mH
y∗i

=

H∑
h=0

∂yi,t+h
∂y∗it

=

H∑
h=0

φ̃∗ih;mH
xi =

H∑
h=0

π̃′ih;mH
x∗i

=

H∑
h=0

π̃∗′ih. (31)

By construction, as H → ∞, mH
y∗i
→ βy∗i ;mH

xi → β′xi ;m
H
x∗i
→ β′x∗i , where

βy∗i , βxi and βx∗i are the associated long-run multipliers. In particular, the

cumulative dynamic multiplier effects of the k-th regressors, xkit and x∗kit on
yi,t+H are the kth element of the 1×K vectors, mH

xi and mH
x∗i

:

mH
xki

=

H∑
h=0

∂yi,t+h
∂xkit

=

H∑
h=0

π̃kih;mH
x∗ki

=

H∑
h=0

∂yi,t+h
∂x∗kit

=

H∑
h=0

π̃∗kih for k = 1, ...,K.

6To construct the dynamic multipliers, we should use the structural parameters in (1) which
are consistently estimated by the STARDL estimator from (20). Without loss of generality
we drop the intercept, αi.
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The STARDL model can be treated as an extended ARDL model for each
spatial unit. Suppose that yit is the domestic policy variable. An important
feature of the STARDL model is to capture three different forms of dynamic ad-
justment from initial equilibrium to the new equilibrium following an economic
perturbation with respect to domestic conditions (xit), overseas conditions (x∗it)
and the overseas policy decisions (y∗it). A careful investigation of the dynamic
multipliers enables us to categorise the group of countries, say countries that
focus on domestic conditions only (e.g. the US), and those that pay attention
to both domestic and overseas conditions (e.g. the small open economies), in
the short-run and the long-run.

We may apply the mean group estimation of the dynamic multipliers to
investigate the overall average pattern of mH

y∗i
, mH

xi and mH
xi provided with the

bootstrap-based confidence intervals.

4.2 The System Diffusion Multipliers

We now develop the system diffusion multipliers which measure the joint impacts
of xt on yt+h in space and time for h = 0, 1, 2... We rewrite (10) as

Φ̃ (L)yt = Π̃ (L)xt + ũt, (32)

where Φ̃ (L) = IN −
∑p
`=1 Φ̃`L

` and Π̃ (L) =
∑q
`=0 Π̃`L

`. Premultiplying (32)

by the inverse of Φ̃ (L), we obtain:

yt = B (L)xt +
[
Φ̃ (L)

]−1

ũt, B (L)

=

∞∑
j=0

BjL
j

 =
[
Φ̃ (L)

]−1

Π̃ (L) (33)

The diffusion multipliers, Bj for j = 0, 1, ..., can be evaluated as follows:

Bj = Φ̃1Bj−1 + Φ̃2Bj−2 + · · ·+ Φ̃j−1B1 + Φ̃jB0 + Π̃j , j = 1, 2, ... (34)

where B0 = Π̃0 and Bj = 0 for j < 0 by construction.
Then, the N × NK matrix of the cumulative diffusion multipliers can be

evaluated as follows:

dHx =

H∑
h=0

∂yt+h
∂x′t

=

H∑
h=0

Bh, H = 0, 1, 2, ... (35)

The cumulative diffusion multipliers of xhjt on yi,t+h are given by the (i, (j − 1) k + h)th

element of dHx . Let Sk be the NK ×N selection matrix given by

Sk =
[
ik, iK+k, ..., i(N−1)K+k

]
where ij is the NK × 1 selection vector with unity on jth row and zeros other-
wise. Then, the N ×N matrix of total diffusion multiplier effects with respect
to the kth regressor, xkt =

(
xk1t, x

k
2t, ..., x

k
Nt

)′
is obtained by

dHxk =

H∑
h=0

∂yt+h
∂xk′t

=

H∑
h=0

BhS
k, k = 1, ...,K (36)
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In the case of homogeneous spatial panel models (e.g. (6)), LeSage and
Pace (2009) propose using the average of the main diagonal elements of the
N ×N matrix as a summary measure of the own-partial derivatives that they
label a direct effect. The direct effect for region i includes some feedback loop
effects that arise as a result of impacts passing through neighboring regions j
and back to region i. They also propose an average of the (cumulative) off
diagonal elements over all rows to produce a summary that corresponds to
the indirect (other-region) effect associated with changes in the explanatory
variable. Debarsy et al. (2012) extend it to the case of dynamic space-time
panel data. This allows us to compute own- and cross-partial derivatives that
trace the effects through time and space. Space-time dynamic models produce
a situation where a change in the ith observation of the explanatory variable
at time t will produce contemporaneous and future responses in all regions’
dependent variables as well as other-region future responses. This is due to
the presence of an individual time lag (time dependence), a spatial lag (spatial
dependence) and a cross-product term reflecting the space-time diffusion. The
main diagonal elements of the N ×N matrix sums represent (cumulative) own-
region impacts that arise from both time and spatial dependence. The sum of
off-diagonal elements reflects both spillovers measuring contemporaneous cross-
partial derivatives and diffusion measuring cross-partial derivatives that involve
different time periods. We note that it is not possible to separate out the time
dependence from spillover and diffusion effects. In the case with heterogeneous
spatial coefficients, LeSage and Chin (2016) propose use of the N diagonal
elements to produce observation-level direct effects for each of the N regions.
As estimates of region specific indirect spill-in and spill-out effects, they propose
use of the sum of off-diagonal elements in each row and column. Indeed, this
approach is qualitatively similar to the Diebold and Yilmaz (2014) network
measures such as in-degree or out-degree effects.

4.3 Network Analysis

To provide the informative summary output measure of the impacts of {xjt}Nj=1

on {yit}Ni=1, we now apply the network approach to an analysis of the N × N
matrix of the diffusion multiplier effects of each regressor in xt. Here we follow
Diebold and Yilmaz (2014) and Greenwood-Nimmo, Nguyen and Shin (2015,
GNS) and apply the generalised connectedness measures to the N ×N matrix
of the diffusion multipliers.

At any horizon, h, one cross-tabulates the impacts of the single regressor,
xkjt on the N ×1 vector of endogenous variables, yt. We now rewrite the N ×N
matrices, dHxk in (36) in terms of the following N × N connectedness matrix
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across the spatial units:

C =


φ1←1 φ1←2 · · · φ1←N
φ2←1 φ2←2 · · · φ21←N

...
...

. . .
...

φN←1 φN←2 · · · φN←N

 (37)

We suppress the horizon index to avoid cluttering our notation.
The main diagonal elements of the N × N matrix of dynamic multipliers, C

represent (cumulative) own-region impacts that arise from both time and spatial
dependence. The off-diagonal elements of this matrix reflect both spillovers
measuring contemporaneous cross-partial derivatives and diffusion measuring
cross-partial derivatives that involve different time periods (and also through
WX). The use of an arrow indicates the direction of the feedback or spillover
effect. We also note that it is not possible to separate out the time dependence
and spatial spillover from diffusion effects.

Example. Suppose that y is the policy rate and x is the inflation or output
gap, and consider the ith row of C.

∑N
j=1 φi←j is the total impact of global eco-

nomic activity on domestic policy rate, in which φi←i represents the own direct
contribution to the total impact, and φi←j the indirect spillover contribution
with respect to economic activities in other country, j.

We start with the (cumulative) own-region (price) impacts that arise from
both time and spatial dependence

(
HV
j←j

)
, defined as

Hj←j = φj←j (38)

which lie on the prime diagonal of C. These are defined as from or spill-in
contributions. We may write the cross-from contribution as

Fj←• =

N∑
i=1,i6=j

φj←i (39)

where the subscript j ← • indicates that the directional effect is from all other
countries to country j. Diebold and Yilmaz (2014) refer to this measure as the
spillover index in the context of individual returns or volatilities across multiple
stock markets. The following is true by construction:

Hj←j + Fj←• = TOTj←• =

N∑
i=1

φj←i. (40)

where TOTj←• denotes the total impacts of the regressor in country j at-
tributable to all sources. Similarly, we define the total contributions to all
other countries (or spill-out contributions) as the j-th column sum minus the
own-region contribution, φj←j , yielding:

T•←j =

N∑
i=1,i6=j

φi←j (41)
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which measures the total directional connectedness from country j to the other
countries in the system. The net directional connectedness is then defined simply
as

N•←j = T•←j − Fj←•. (42)

It is straightforward to develop the following aggregate (non-directional)
connectedness measures for the N × 1 vector of endogenous variables, y:

H =

N∑
j=1

Hj←j (43)

S =

N∑
j=1

Fj←• =

N∑
j=1

T•←j (44)

H + S = TOT•←• =

N∑
j=1

TOTj←• (45)

N∑
j=1

N•←j = 0 (46)

We refer to H and S as the aggregate heatwave index (direct own-region
impacts) and the aggregate cross-spillover contribution (indirect cross-partial
and diffusion impacts). (45) states that the sum of the aggregate heatwave and
spillover measures accounts for all of the (price) impacts in the entire system at
any given horizon, denoted TOT•←•. Similarly, (46) notes that the aggregate
net connectedness among all the N countries in the system is equal to zero.7

Finally, we define a pair of indices to succinctly address two questions of
particular interest when measuring connectedness: (i) ‘how dependent is the
j-th country on external conditions?’ and (ii) ‘to what extent does the j-th
country influence/is the j-th country influenced by the system as a whole?’.
These measures are especially relevant when evaluating connectedness among
geo-political units such as countries and economic blocs within the global econ-
omy. In response to the first question, we propose the following dependence
index :

Oj =
Fj←•

Wj←• + Fj←•
, j = 1, ..., N

where 0 ≤ Oj ≤ 1 expresses the relative importance of external shocks for the
j-th country. Specifically, as Oj → 1, then conditions in group j are dominated
by external shocks while group j is unaffected by external shocks if Oj → 0. In
a similar vein, we develop the influence index:

Ij =
Nj←•

Tj←• + Fj←•
, j = 1, ..., N

7Following GNS, we can develop the more parsimonious block-based connectedness table.
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where −1 ≤ Ij ≤ 1. For any horizon h, the j-th group is a net shock recipient
if −1 ≤ Ij ≤ 0, a net shock transmitter if 0 ≤ Ij ≤ 1. As such, the influence
index measures the extent to which the j-th group influences or is influenced by
conditions in the system.

When studying connectedness among countries, the coordinate pair (Oj , Ij)
in dependence-influence space provides an elegant representation of country i’s
role in the global system. A classic small open economy would be located close
to the point (1,−1) while, by contrast, an overwhelmingly dominant economy
would exist in the locale of (0, 1). In this way, we are able to measure the
extent to which the different economies of the world correspond to these stylised
concepts.

5 Monte Carlo Simulations

We investigate the small sample properties of the proposed STARDL estimator
via a Monte Carlo simulation study. We use the following data generating
process based on the heterogeneous STARDL(1,1) model with one exogenous
variable:

yit = φiyi,t−1+πi0xit+πi1xi,t−1+φ∗i0y
∗
it+φ

∗
i1y
∗
i,t−1+π∗i0x

∗
it+π

∗
i1x
∗
i,t−1+uit (47)

where yit is the scalar dependent variable and xit is a single exogenous regressor
related to the of the ith spatial unit at time t. Their spatially lagged values,
are given by y∗it =

∑N
j=1 wijyjt and x∗it =

∑N
j=1 wijxjt.

The row-normalised spatial weights matrix, W is based on a b-nearest neigh-
bours specification, with null elements apart from the b/2 either side of the
principle diagonal (with neighbours wrapping round to the start or end of the
row as necessary), which are 1/b. The symmetry of this matrix means that the
column sums are also normalised to unity. We explore differing levels of spatial
dependence by allowing b = (2, 10), 8 within a system of N = (25, 50, 75, 100)
cross-section units over T = (50, 100, 200) time periods. The individual scalar
parameters involving time and spatial lags of yi,t (φi, φ

∗
i0, φ

∗
i1) are independent

draws from a U(0, 0.4) distribution while the parameters for time and spatial
lags of xi,t (πi0, πi1, π

∗
i0, π

∗
i1) are independent draws from a U(0, 1) distribution.

For this first order case, Assumption 5 determining the stationarity of yt
depends upon the eigenvalues of

[IN −Φ∗0W ]
−1

[Φ1 + Φ∗1W ]

lying within the unit circle. In our specification the largest of these eigenvalues
ranges between 0.5 and 0.65 depending on N and on b, which affects the relative
importance of each unit within the system. Each specification is explored over
R = 1, 000 repetitions.

We consider two particular experiments, exploring the effects of dependence
in the exogenous variables and heteroskedasticity in the disturbances. Experi-
ment 1 uses a set of independent exogenous variables as draws from a standard

8The cases of b = 4 and b = 20 were also considered but are not reported.
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normal distribution and disturbances, uit, is made up of draws from an inde-
pendent standard normal distribution. The more general experiment 2 uses a
set of serially correlated exogenous variables, generated according to

xi,t = ρixi,t−1 + vi,t, vi,t ∼ N
(
0, 1− ρ2

i

)
, (48)

where ρi ∼ U [0.4, 0.6], alongside heteroskedastic disturbances with uit ∼ N(0, σ2
i ),

where σ2
i = 0.5 + 0.25× ηi and ηi ∼ χ2

2.
Let αi0 denote the value of a parameter αi used to simulate the data and

let α̂ij denote its estimate in the jth repetition, then we report the following
statistics:

Average bias = N−1
∑N
i=1R

−1
∑R
j=1 (α̂ij − αi0), in Tables 1 and 2;

Average RMSE = N−1
∑N
i=1

√
R−1

∑R
j=1 (α̂ij − αi0)

2
, in Tables 3 and 4;

Average Size = N−1
∑N
i=1R

−1
∑R
j=1 I

(∣∣∣ α̂ij−αi0σα

∣∣∣ > t0.975

)
, where I(.) de-

notes the indicator function and σα is an estimate of the standard deviation for
the parameter, in Tables 5 and 6.

We consider both control function and QML estimation methods. Our con-
trol function estimates are based on the an instrument set of time and spa-
tial lags of exogenous variables, y∗∗i,t−1 and x∗∗it , where y∗∗i,t−1 = wiWyt−1 and
x∗∗it = wiWxt are the second spatial lags. The b-nearest neighbour weighting
matrix guarantees that these will not be collinear with y∗i,t−1 or x∗it. In fact
this choice of instrument set has the intuitive interpretation that we are using
that the next b neighbours’ neighbours as our instruments. This is not the
only possible instrument set, with higher spatial and/or time lags also valid and
generated internally,

IV =
[
W 2yt−1,W

3yt−1, ...,W
2xt,W

2xt−1, ...,W
2yt−2,Wxt−2,W

2xt−2, ...
]

(49)
The price for including extra instruments is potential multi-collinearity and we
found that two instruments was often the best choice in this particular set-up.

The initial values for each iteration were provided by the (inconsistent) or-
dinary least squares estimates of (47). The exogenous variables were then con-
centrated out and leaving an iteration over the N vector φ∗ as in (13), with
estimates of the other parameters recovered by least squares regression condi-
tional on φ̂∗. 9

Table 1 show that both the CF and the QML estimates of the STARDL
model perform reasonably well. This is very reassuring given the range of time
and spatial dependence possible in (47). In both cases bias falls as T increases
and is not greatly affected by N , supporting our theoretical prediction. The
repeated uptick in bias between the cases N = 25, 50 and N = 75, 100 is likely to
be due to the values appended into the parameter vectors in the latter cases. For
small T the QML estimator has noticeably lower bias, but as T becomes large the
results of the two estimators a comparable with the control function estimator

9Despite this concentration procedure this was a far more computationally intensive esti-
mation procedure even for moderately sized N .
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having a strong computational advantage. The estimates of all parameters have
biases of similar magnitude with the coefficients on the contemporaneous terms,
φ∗, π and π∗, exhibiting the lower biases than their equivalents on lagged terms
and φ1. This is not too surprising as the time dynamics in (47) open more
channels through which a time lagged variable may potentially impact on a yi,t.
Interestingly, there is no noticeable deterioration in the bias of either estimator
improves as b rises.

Table 2 indicates that both methods are reasonably robust to both to het-
eroskedasticity in the disturbances and to time dependence in the exogenous
variables. Indeed the estimation of contemporaneous spatial effects, φ∗, shows
some improvement in performance at the expense of parameters on lagged ex-
ogenous variables, π1 for control function estimation. This is probably due to
the fact that correlation between xit and xi,t−1 causes our chosen instrument
set approaches the optimal. At the same time, this rise in regressor collinearity
causes the latter.

Comparing Tables 3 and 4 it is clear that QML is by far the more efficient
estimator. This is not surprising. It should be remembered, however, that these
experiments are being played on MLE’s home pitch and a comparison of the
estimators under different distributional assumptions would be of considerable
interest.

A number of interesting patters appear in Tables 5 and 6. Firstly it is clear
that, the control function estimates tend to be under-sized, particularly for φ∗

and φ∗1, although this improves towards 5 per cent as T increases. The size
for the QML estimates of these parameters is much closer to 5 per cent but
the others are slightly over-sized. Secondly performance deteriorates with the
number of connections, with the control function becoming more under-sized
while QML becomes over-sized. The QML estimator recovers more successfully
as T increases and is always within a percentage point for the longest time span
of T = 200
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Table 1: Average Bias - time independent X, homoskedastic errors
Control Function

2 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0164 0.0023 −0.0001 0.0182 0.0045 0.0001 0.0291 0.0024 0.0038 0.0269 0.0062 0.0018
φ∗1 0.0072 0.0050 0.0026 0.0040 0.0033 0.0021 0.0020 0.0036 0.0014 0.0008 0.0029 0.0019
φ1 −0.0187 −0.0094 −0.0039 −0.0184 −0.0087 −0.0045 −0.0205 −0.0102 −0.0053 −0.0204 −0.0094 −0.0049
π −0.0034 −0.0017 0.0008 −0.0022 −0.0017 0.0001 −0.0080 −0.0004 −0.0004 −0.0055 −0.0012 −0.0003
π1 −0.0002 0.0020 0.0018 0.0015 0.0013 0.0022 −0.0007 0.0035 0.0014 −0.0003 0.0027 0.0018
π∗ −0.0062 0.0005 −0.0004 −0.0091 −0.0018 0.0001 −0.0187 −0.0003 −0.0029 −0.0124 −0.0032 −0.0006
π∗1 −0.0070 0.0010 0.0015 −0.0036 0.0002 0.0012 −0.0157 0.0019 −0.0015 −0.0137 −0.0019 0.0008

4 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0142 0.0025 −0.0005 0.0193 0.0030 −0.0028 0.0261 −0.0050 0.0043 0.0316 0.0008 0.0011
φ∗1 0.0005 0.0049 0.0032 0.0031 0.0050 0.0039 0.0016 0.0079 0.0010 −0.0019 0.0045 0.0034
φ1 −0.0160 −0.0107 −0.0047 −0.0207 −0.0101 −0.0052 −0.0214 −0.0110 −0.0054 −0.0209 −0.0102 −0.0055
π −0.0009 −0.0006 0.0004 −0.0026 −0.0005 0.0003 −0.0025 0.0012 −0.0004 −0.0033 −0.0005 −0.0003
π1 0.0029 0.0034 0.0021 0.0046 0.0048 0.0025 0.0060 0.0057 0.0016 0.0025 0.0040 0.0020
π∗ −0.0116 −0.0006 0.0013 −0.0147 −0.0046 0.0018 −0.0202 0.0029 −0.0037 −0.0232 −0.0012 −0.0010
π∗1 −0.0082 −0.0019 −0.0006 −0.0099 −0.0003 0.0032 −0.0167 0.0036 −0.0026 −0.0192 0.0011 −0.0012

QML
2 connections

N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ −0.0037 −0.0020 −0.0014 −0.0029 −0.0010 −0.0008 −0.0025 −0.0015 −0.0004 −0.0030 −0.0013 −0.0005
φ∗1 0.0075 0.0042 0.0023 0.0068 0.0031 0.0019 0.0076 0.0032 0.0013 0.0072 0.0028 0.0019
φ1 −0.0122 −0.0057 −0.0030 −0.0116 −0.0055 −0.0029 −0.0125 −0.0054 −0.0031 −0.0118 −0.0055 −0.0030
π 0.0026 −0.0003 0.0005 0.0011 0.0000 0.0011 0.0008 0.0007 −0.0002 0.0016 0.0001 0.0002
π1 0.0060 0.0029 0.0012 0.0043 0.0024 0.0014 0.0054 0.0023 0.0015 0.0053 0.0032 0.0009
π∗ 0.0067 0.0024 0.0015 0.0053 0.0019 0.0009 0.0051 0.0021 0.0009 0.0055 0.0029 0.0018
π∗1 0.0067 0.0030 0.0024 0.0094 0.0036 0.0006 0.0067 0.0045 0.0015 0.0087 0.0036 0.0015

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0046 0.0045 0.0004 0.0068 0.0027 0.0011 0.0046 0.0015 0.0021 0.0050 0.0032 0.0014
φ∗1 0.0046 0.0014 0.0009 0.0055 0.0012 0.0013 0.0055 0.0024 0.0007 0.0021 0.0028 0.0011
φ1 −0.0109 −0.0052 −0.0026 −0.0123 −0.0059 −0.0028 −0.0131 −0.0058 −0.0036 −0.0122 −0.0059 −0.0032
π 0.0012 0.0003 −0.0003 −0.0020 −0.0003 0.0002 −0.0001 0.0003 0.0002 0.0003 −0.0001 0.0000
π1 0.0046 0.0018 0.0013 0.0050 0.0025 0.0015 0.0063 0.0031 0.0018 0.0058 0.0026 0.0008
π∗ −0.0022 −0.0029 −0.0029 −0.0048 −0.0004 −0.0008 −0.0001 −0.0007 −0.0017 −0.0037 −0.0022 −0.0006
π∗1 −0.0078 −0.0043 0.0016 −0.0063 −0.0020 −0.0008 −0.0011 −0.0003 −0.0006 0.0021 −0.0027 −0.0022
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Table 2: Average Bias - time dependent X, heteroskedastic errors
Control Function

2 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0110 −0.0002 −0.0016 0.0060 −0.0021 −0.0008 0.0081 0.0048 0.0004 0.0067 0.0033 −0.0003
φ∗1 0.0161 0.0094 0.0064 0.0173 0.0099 0.0053 0.0188 0.0081 0.0049 0.0183 0.0090 0.0050
φ1 −0.0361 −0.0180 −0.0094 −0.0396 −0.0172 −0.0087 −0.0376 −0.0188 −0.0091 −0.0374 −0.0183 −0.0090
π −0.0034 −0.0010 0.0011 −0.0039 0.0004 0.0009 −0.0010 −0.0007 0.0001 −0.0013 −0.0013 0.0002
π1 0.0209 0.0131 0.0067 0.0236 0.0131 0.0058 0.0230 0.0123 0.0062 0.0236 0.0116 0.0069
π∗ −0.0124 0.0011 −0.0004 −0.0039 0.0016 −0.0008 −0.0053 −0.0025 −0.0002 −0.0047 −0.0004 0.0002
π∗1 0.0100 0.0079 0.0065 0.0164 0.0106 0.0053 0.0125 0.0060 0.0040 0.0130 0.0061 0.0042

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ −0.0151 0.0004 0.0026 −0.0056 −0.0001 0.0019 0.0057 −0.0031 0.0001 0.0279 0.0077 −0.0014
φ∗1 0.0306 0.0117 0.0051 0.0272 0.0114 0.0048 0.0240 0.0148 0.0068 0.0085 0.0068 0.0068
φ1 −0.0397 −0.0205 −0.0099 −0.0408 −0.0203 −0.0104 −0.0419 −0.0215 −0.0110 −0.0407 −0.0204 −0.0105
π 0.0005 −0.0011 0.0003 −0.0008 −0.0002 −0.0006 −0.0002 −0.0011 0.0004 −0.0010 −0.0006 −0.0009
π1 0.0316 0.0158 0.0073 0.0308 0.0156 0.0082 0.0309 0.0169 0.0079 0.0293 0.0149 0.0088
π∗ 0.0155 −0.0035 −0.0020 0.0013 −0.0035 −0.0001 −0.0002 0.0022 0.0002 −0.0188 −0.0071 0.0031
π∗1 0.0206 0.0021 −0.0026 0.0125 0.0097 0.0036 −0.0008 0.0057 0.0029 −0.0225 0.0011 0.0020

QML
2 connections

N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ −0.0037 −0.0011 −0.0004 −0.0049 −0.0020 −0.0003 −0.0045 −0.0023 −0.0010 −0.0039 −0.0015 −0.0008
φ∗1 0.0171 0.0077 0.0036 0.0162 0.0082 0.0041 0.0189 0.0091 0.0043 0.0177 0.0089 0.0040
φ1 −0.0289 −0.0146 −0.0071 −0.0293 −0.0146 −0.0069 −0.0303 −0.0149 −0.0069 −0.0295 −0.0146 −0.0073
π 0.0001 0.0004 0.0003 0.0005 0.0000 0.0000 0.0001 −0.0004 0.0004 0.0004 0.0001 0.0004
π1 0.0207 0.0096 0.0054 0.0225 0.0099 0.0052 0.0205 0.0106 0.0049 0.0201 0.0110 0.0049
π∗ 0.0023 0.0016 0.0003 0.0032 0.0020 0.0005 0.0039 0.0023 0.0018 0.0041 0.0014 0.0013
π∗1 0.0157 0.0073 0.0047 0.0213 0.0106 0.0050 0.0181 0.0097 0.0041 0.0188 0.0081 0.0042

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0039 0.0004 0.0012 0.0037 0.0017 0.0015 0.0018 0.0020 0.0014 0.0053 0.0019 0.0008
φ∗1 0.0167 0.0062 0.0036 0.0150 0.0075 0.0031 0.0164 0.0080 0.0043 0.0156 0.0077 0.0038
φ1 −0.0326 −0.0135 −0.0076 −0.0298 −0.0144 −0.0073 −0.0310 −0.0156 −0.0078 −0.0308 −0.0149 −0.0074
π 0.0018 0.0014 0.0007 −0.0017 0.0000 −0.0007 −0.0006 −0.0006 −0.0009 −0.0004 0.0009 0.0002
π1 0.0228 0.0106 0.0055 0.0231 0.0109 0.0055 0.0234 0.0112 0.0064 0.0211 0.0104 0.0055
π∗ 0.0007 −0.0025 −0.0017 −0.0072 −0.0011 0.0005 −0.0045 −0.0025 0.0003 −0.0045 −0.0006 −0.0006
π∗1 0.0044 0.0034 0.0008 0.0047 0.0067 −0.0005 0.0094 0.0046 −0.0014 0.0029 0.0010 0.0021
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Table 3: Average RMSE - time independent X, homoskedastic errors
Control Function

2 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 1.2446 0.6317 0.3436 1.3854 0.5339 0.3089 1.1537 0.6646 0.4148 1.5754 0.7015 0.3917
φ∗1 0.6155 0.2147 0.1324 0.3967 0.1986 0.1239 0.4201 0.2380 0.1537 0.5384 0.2312 0.1445
φ1 0.2158 0.1194 0.0669 0.2643 0.1026 0.0663 0.2018 0.1155 0.0736 0.2769 0.1201 0.0708
π 0.3705 0.1937 0.1150 0.4318 0.1763 0.1094 0.3708 0.1870 0.1219 0.4309 0.1896 0.1137
π1 0.4002 0.2373 0.1351 0.5320 0.2019 0.1233 0.4086 0.2187 0.1303 0.6272 0.2222 0.1323
π∗ 0.9958 0.4426 0.2495 0.7710 0.3975 0.2142 0.7038 0.3957 0.2402 0.9681 0.4143 0.2413
π∗1 0.8734 0.4395 0.2536 0.9454 0.3759 0.2267 0.7971 0.4558 0.3077 1.0468 0.4788 0.2804

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 3.0142 1.4441 0.9624 2.9305 1.7517 0.8196 3.3261 1.7719 0.8246 3.8326 1.9139 0.8826
φ∗1 1.1884 0.5812 0.3835 1.2450 0.6925 0.3487 1.3931 0.7154 0.3733 1.5438 0.8121 0.3836
φ1 0.1983 0.1003 0.0657 0.2008 0.1147 0.0650 0.2549 0.1109 0.0661 0.2720 0.1174 0.0670
π 0.2785 0.1472 0.0927 0.2812 0.1612 0.0916 0.3357 0.1798 0.0919 0.4010 0.1651 0.0924
π1 0.3403 0.1682 0.1095 0.3041 0.1948 0.1024 0.3411 0.2167 0.1017 0.3831 0.1877 0.1022
π∗ 2.9307 1.3650 0.8985 2.7138 1.6716 0.7715 3.0674 1.7163 0.7984 3.5273 1.6812 0.7942
π∗1 2.9973 1.4096 0.9646 2.8104 1.6205 0.8313 3.1273 1.8086 0.8125 3.3936 1.7584 0.8334

QML
2 connections

N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.3506 0.2242 0.1500 0.3431 0.2167 0.1478 0.3454 0.2178 0.1470 0.3510 0.2245 0.1506
φ∗1 0.2529 0.1693 0.1158 0.2543 0.1694 0.1164 0.2577 0.1706 0.1177 0.2566 0.1714 0.1174
φ1 0.1807 0.1217 0.0835 0.1806 0.1226 0.0846 0.1835 0.1236 0.0859 0.1826 0.1230 0.0850
π 0.2427 0.1617 0.1098 0.2420 0.1611 0.1108 0.2461 0.1615 0.1108 0.2445 0.1610 0.1105
π1 0.2669 0.1767 0.1226 0.2634 0.1737 0.1206 0.2665 0.1743 0.1202 0.2638 0.1745 0.1198
π∗ 0.3734 0.2484 0.1691 0.3722 0.2463 0.1687 0.3765 0.2499 0.1695 0.3775 0.2494 0.1711
π∗1 0.3999 0.2642 0.1832 0.4059 0.2648 0.1827 0.4026 0.2627 0.1794 0.4052 0.2656 0.1820

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.5562 0.3724 0.2575 0.5446 0.3647 0.2506 0.5380 0.3598 0.2491 0.5504 0.3675 0.2514
φ∗1 0.4352 0.2875 0.1976 0.4355 0.2879 0.1968 0.4334 0.2902 0.1983 0.4444 0.2961 0.2017
φ1 0.1767 0.1189 0.0831 0.1782 0.1216 0.0841 0.1799 0.1222 0.0850 0.1787 0.1219 0.0850
π 0.2238 0.1504 0.1043 0.2226 0.1490 0.1040 0.2251 0.1499 0.1030 0.2261 0.1503 0.1034
π1 0.2459 0.1647 0.1145 0.2415 0.1639 0.1138 0.2442 0.1655 0.1141 0.2427 0.1636 0.1132
π∗ 0.8344 0.5691 0.3884 0.8597 0.5811 0.3939 0.8474 0.5734 0.3948 0.8444 0.5724 0.3899
π∗1 0.8923 0.6116 0.4272 0.9173 0.6188 0.4306 0.9005 0.6050 0.4223 0.9092 0.6047 0.4187
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Table 4: Average RMSE - time dependent X, heteroskedastic errors
Control Function

2 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.7353 0.3960 0.2524 0.9734 0.4078 0.2518 0.9932 0.4594 0.2686 0.9706 0.4740 0.2703
φ∗1 0.2989 0.1863 0.1238 0.3648 0.1926 0.1276 0.3767 0.2084 0.1313 0.3708 0.2071 0.1285
φ1 0.1562 0.0937 0.0625 0.1795 0.0961 0.0636 0.2868 0.0999 0.0650 0.2046 0.1018 0.0652
π 0.3238 0.1752 0.1151 0.3529 0.1854 0.1210 0.4021 0.1869 0.1200 0.3937 0.1857 0.1183
π1 0.3306 0.1911 0.1275 0.4077 0.2021 0.1330 0.3957 0.2071 0.1333 0.3939 0.2056 0.1310
π∗ 0.5939 0.3330 0.2118 0.6127 0.3184 0.2014 0.5847 0.3287 0.2059 0.6196 0.3324 0.2031
π∗1 0.5823 0.3145 0.1992 0.8693 0.3277 0.2118 0.7870 0.3579 0.2164 0.7613 0.3596 0.2173

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 2.0820 1.1969 0.6574 1.9941 1.1746 0.6363 2.7413 1.1986 0.6176 7.4793 1.3384 0.6585
φ∗1 1.0373 0.5560 0.3309 0.9541 0.5688 0.3171 1.3004 0.5899 0.3242 3.3241 0.6351 0.3365
φ1 0.1777 0.0993 0.0634 0.1821 0.0992 0.0645 0.2415 0.1034 0.0650 0.2515 0.1075 0.0648
π 0.2907 0.1670 0.1056 0.3154 0.1776 0.1089 0.3633 0.1704 0.1075 0.3576 0.1734 0.1073
π1 0.3282 0.1915 0.1202 0.3351 0.1876 0.1211 0.3914 0.2021 0.1209 0.3965 0.1912 0.1196
π∗ 2.1892 1.2238 0.6787 2.0797 1.1830 0.6572 2.7036 1.1504 0.6386 5.4662 1.2393 0.6391
π∗1 2.1857 1.2063 0.6748 2.0632 1.1846 0.6518 2.7402 1.1615 0.6225 7.9759 1.2665 0.6326

QML
2 connections

N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.2514 0.1599 0.1072 0.2586 0.1611 0.1091 0.2628 0.1659 0.1099 0.2677 0.1685 0.1122
φ∗1 0.1850 0.1236 0.0851 0.1909 0.1258 0.0870 0.1947 0.1281 0.0883 0.1940 0.1279 0.0881
φ1 0.1292 0.0869 0.0594 0.1314 0.0876 0.0599 0.1329 0.0885 0.0604 0.1333 0.0884 0.0608
π 0.2244 0.1463 0.0997 0.2280 0.1493 0.1013 0.2260 0.1486 0.1016 0.2251 0.1487 0.1016
π1 0.2443 0.1623 0.1120 0.2473 0.1630 0.1117 0.2481 0.1640 0.1127 0.2488 0.1643 0.1126
π∗ 0.3278 0.2215 0.1478 0.3292 0.2189 0.1485 0.3329 0.2191 0.1497 0.3341 0.2200 0.1501
π∗1 0.3545 0.2406 0.1621 0.3615 0.2385 0.1623 0.3608 0.2374 0.1620 0.3618 0.2388 0.1637

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.3836 0.2661 0.1820 0.3888 0.2641 0.1811 0.3868 0.2603 0.1796 0.3961 0.2645 0.1834
φ∗1 0.3022 0.2108 0.1450 0.3099 0.2124 0.1460 0.3128 0.2126 0.1462 0.3176 0.2151 0.1485
φ1 0.1308 0.0875 0.0609 0.1309 0.0887 0.0611 0.1323 0.0887 0.0611 0.1315 0.0886 0.0614
π 0.2019 0.1387 0.0951 0.2068 0.1404 0.0965 0.2091 0.1398 0.0966 0.2074 0.1397 0.0965
π1 0.2317 0.1583 0.1099 0.2316 0.1586 0.1094 0.2341 0.1575 0.1096 0.2323 0.1568 0.1096
π∗ 0.7333 0.5144 0.3421 0.7411 0.5039 0.3384 0.7358 0.4973 0.3391 0.7262 0.4921 0.3350
π∗1 0.8358 0.5857 0.3919 0.8349 0.5613 0.3822 0.8353 0.5609 0.3801 0.8229 0.5514 0.3759
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Table 5: Average size - time independent X, homoskedastic errors
Control Function

2 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0272 0.0304 0.0360 0.0289 0.0321 0.0378 0.0304 0.0319 0.0364 0.0288 0.0308 0.0341
φ∗1 0.0440 0.0410 0.0435 0.0448 0.0418 0.0424 0.0428 0.0406 0.0424 0.0424 0.0406 0.0411
φ1 0.0565 0.0482 0.0486 0.0550 0.0490 0.0498 0.0548 0.0500 0.0488 0.0516 0.0479 0.0476
π 0.0443 0.0389 0.0432 0.0458 0.0441 0.0425 0.0475 0.0419 0.0449 0.0452 0.0429 0.0434
π1 0.0454 0.0412 0.0432 0.0459 0.0427 0.0449 0.0458 0.0416 0.0441 0.0449 0.0410 0.0425
π∗ 0.0388 0.0386 0.0394 0.0411 0.0405 0.0423 0.0434 0.0383 0.0409 0.0405 0.0383 0.0404
π∗1 0.0409 0.0366 0.0415 0.0419 0.0387 0.0409 0.0436 0.0394 0.0424 0.0404 0.0388 0.0399

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0178 0.0206 0.0269 0.0192 0.0228 0.0268 0.0183 0.0204 0.0283 0.0168 0.0192 0.0257
φ∗1 0.0275 0.0240 0.0318 0.0278 0.0274 0.0298 0.0271 0.0253 0.0312 0.0246 0.0241 0.0289
φ1 0.0511 0.0475 0.0458 0.0485 0.0475 0.0470 0.0487 0.0457 0.0484 0.0446 0.0452 0.0451
π 0.0451 0.0421 0.0426 0.0441 0.0434 0.0440 0.0459 0.0423 0.0436 0.0418 0.0404 0.0428
π1 0.0459 0.0423 0.0414 0.0450 0.0447 0.0433 0.0448 0.0410 0.0435 0.0428 0.0403 0.0421
π∗ 0.0244 0.0248 0.0298 0.0251 0.0278 0.0299 0.0249 0.0250 0.0318 0.0225 0.0227 0.0296
π∗1 0.0244 0.0254 0.0286 0.0273 0.0272 0.0309 0.0255 0.0257 0.0320 0.0244 0.0240 0.0289

QML
2 connections

N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0356 0.0368 0.0386 0.0376 0.0375 0.0409 0.0385 0.0383 0.0402 0.0368 0.0374 0.0381
φ∗1 0.0656 0.0568 0.0540 0.0694 0.0582 0.0552 0.0680 0.0575 0.0540 0.0660 0.0583 0.0539
φ1 0.0798 0.0670 0.0566 0.0767 0.0650 0.0579 0.0767 0.0641 0.0586 0.0770 0.0642 0.0569
π 0.0701 0.0639 0.0542 0.0715 0.0599 0.0542 0.0706 0.0607 0.0558 0.0716 0.0605 0.0551
π1 0.0706 0.0627 0.0569 0.0723 0.0599 0.0552 0.0712 0.0594 0.0558 0.0707 0.0606 0.0543
π∗ 0.0638 0.0569 0.0511 0.0670 0.0572 0.0530 0.0652 0.0586 0.0534 0.0655 0.0578 0.0544
π∗1 0.0626 0.0574 0.0544 0.0662 0.0564 0.0524 0.0656 0.0572 0.0536 0.0645 0.0568 0.0517

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0816 0.0658 0.0556 0.0801 0.0646 0.0558 0.0795 0.0653 0.0577 0.0796 0.0651 0.0553
φ∗1 0.0822 0.0645 0.0566 0.0820 0.0644 0.0558 0.0824 0.0671 0.0586 0.0827 0.0657 0.0561
φ1 0.0826 0.0635 0.0562 0.0825 0.0668 0.0558 0.0849 0.0656 0.0588 0.0824 0.0651 0.0582
π 0.0835 0.0670 0.0596 0.0799 0.0638 0.0598 0.0826 0.0641 0.0577 0.0827 0.0660 0.0562
π1 0.0818 0.0638 0.0596 0.0809 0.0651 0.0579 0.0812 0.0666 0.0582 0.0806 0.0664 0.0576
π∗ 0.0804 0.0660 0.0586 0.0837 0.0667 0.0570 0.0821 0.0676 0.0579 0.0828 0.0675 0.0567
π∗1 0.0812 0.0664 0.0588 0.0822 0.0651 0.0563 0.0825 0.0658 0.0570 0.0836 0.0666 0.0574
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Table 6: Average size - time dependent X, heteroskedastic errors
Control Function

2 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0368 0.0386 0.0454 0.0422 0.0413 0.0447 0.0398 0.0415 0.0450 0.0381 0.0397 0.0436
φ∗1 0.0486 0.0452 0.0479 0.0531 0.0472 0.0489 0.0489 0.0460 0.0484 0.0478 0.0458 0.0465
φ1 0.0667 0.0592 0.0555 0.0679 0.0600 0.0567 0.0670 0.0586 0.0551 0.0646 0.0575 0.0543
π 0.0566 0.0530 0.0512 0.0581 0.0530 0.0509 0.0573 0.0514 0.0513 0.0557 0.0507 0.0498
π1 0.0569 0.0504 0.0523 0.0568 0.0536 0.0523 0.0582 0.0515 0.0509 0.0559 0.0505 0.0511
π∗ 0.0544 0.0486 0.0497 0.0557 0.0497 0.0512 0.0544 0.0491 0.0503 0.0523 0.0482 0.0479
π∗1 0.0527 0.0488 0.0512 0.0566 0.0510 0.0508 0.0538 0.0505 0.0488 0.0524 0.0489 0.0494

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0296 0.0283 0.0368 0.0291 0.0296 0.0365 0.0283 0.0294 0.0375 0.0279 0.0284 0.0359
φ∗1 0.0361 0.0341 0.0395 0.0351 0.0339 0.0388 0.0353 0.0343 0.0400 0.0343 0.0326 0.0380
φ1 0.0616 0.0529 0.0526 0.0642 0.0542 0.0542 0.0619 0.0573 0.0542 0.0593 0.0531 0.0538
π 0.0583 0.0508 0.0493 0.0573 0.0492 0.0504 0.0561 0.0496 0.0499 0.0535 0.0493 0.0493
π1 0.0528 0.0502 0.0490 0.0562 0.0513 0.0506 0.0559 0.0505 0.0498 0.0522 0.0483 0.0489
π∗ 0.0418 0.0357 0.0407 0.0389 0.0385 0.0421 0.0390 0.0360 0.0403 0.0390 0.0360 0.0400
π∗1 0.0434 0.0374 0.0433 0.0434 0.0390 0.0429 0.0416 0.0388 0.0429 0.0411 0.0375 0.0419

QML
2 connections

N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0451 0.0400 0.0431 0.0433 0.0406 0.0398 0.0419 0.0413 0.0421 0.0404 0.0379 0.0392
φ∗1 0.0672 0.0574 0.0521 0.0676 0.0573 0.0518 0.0669 0.0557 0.0535 0.0655 0.0564 0.0522
φ1 0.0832 0.0682 0.0579 0.0811 0.0673 0.0582 0.0808 0.0676 0.0573 0.0830 0.0666 0.0582
π 0.0787 0.0634 0.0570 0.0752 0.0633 0.0534 0.0735 0.0622 0.0565 0.0737 0.0625 0.0549
π1 0.0772 0.0636 0.0562 0.0729 0.0631 0.0557 0.0754 0.0630 0.0566 0.0744 0.0624 0.0569
π∗ 0.0722 0.0631 0.0532 0.0744 0.0627 0.0539 0.0697 0.0592 0.0541 0.0708 0.0602 0.0545
π∗1 0.0706 0.0634 0.0553 0.0719 0.0588 0.0536 0.0710 0.0600 0.0542 0.0692 0.0591 0.0544

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0798 0.0664 0.0580 0.0822 0.0651 0.0579 0.0812 0.0654 0.0584 0.0818 0.0632 0.0573
φ∗1 0.0794 0.0648 0.0563 0.0823 0.0678 0.0579 0.0804 0.0649 0.0585 0.0829 0.0657 0.0588
φ1 0.0882 0.0674 0.0616 0.0874 0.0700 0.0599 0.0904 0.0679 0.0598 0.0868 0.0682 0.0602
π 0.0834 0.0653 0.0552 0.0845 0.0663 0.0586 0.0840 0.0669 0.0585 0.0839 0.0661 0.0560
π1 0.0840 0.0678 0.0598 0.0831 0.0675 0.0582 0.0842 0.0639 0.0579 0.0825 0.0646 0.0580
π∗ 0.0812 0.0628 0.0536 0.0835 0.0663 0.0576 0.0821 0.0655 0.0572 0.0836 0.0663 0.0564
π∗1 0.0856 0.0642 0.0563 0.0833 0.0643 0.0587 0.0829 0.0669 0.0585 0.0828 0.0666 0.0573
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6 Empirical Application to Spatio-temporal Dif-
fusion of Armed Violence against Civilians in
the Iraqi War

We demonstrate the usefulness of our model in an application to fatalities dur-
ing the Iraq war. Since 2003, the Pentagon has compiled data on the deaths
of civilians, insurgents and Iraqi security forces killed by armed violence with
exact location and the time, which was released comparatively recently and
notoriously. 10 Despite the lack of transparency surrounding classification of
deaths due to armed violence and in distinguishing civilians from combatants,
the data present a rare opportunity to infer the intensity of armed violence and
its spatio-temporal diffusion through the different regions of the country, if any,
during the war period.

The data cover monthly war deaths between 2004 and 2009 with two miss-
ing months (May 2004 and March 2009) across 18 governorates of Iraq. The
period was characterised by an insurgency from March 2004, which begin in
the cities of Fallujah, in Anbar governorate, and Najf, in Basrah governorate,
before spreading more widely, and sectarian violence initiated by a bomb attack
in Samarra, in Saladin governorate, in February 2006. Both types of conflict
are typically fuelled by a cycle of atrocity, clampdown and reprisal and it is of
interest to investigate the diffusion of violence across the country.

Table 7 presents the descriptive statistics of the Civilian and the Enemy
categories. Although the Civilian category includes foreign security contractors,
the vast majority of recorded deaths are of Iraqis. Enemy is the category for
insurgents or anti-coalition forces.

Table 7: Descriptive statistics of war casualties (2004-2009)
Categories Civilian Enemy
Number of deaths 66,081 23,984
Number of deaths in Baghdad (% in total) 36,998 (55%) 6,526 (27%)
Number of incidents∗ 34,009 9,417
Deaths per incident 1.94 2.55
Monthly average deaths (95% confidence interval) 944.0 (711.3 to 1176.7) 342.6 (268.7 to 416.5)
Standard deviation 975.84 309.97
Median 483.5 283
∗The incidents indicate the events involving at least 1 death from armed vio-
lence.

Table 8 presents the number of civilian deaths across each governorate,
absolutely and per 1,000 inhabitants, and the number of enemy deaths. It is

noteworthy that the majority of civilian deaths occurred in Baghdad, the

10The data were part of the Iraq War Logs, leaked by a whistle-blowing NGO WikiLeaks
in October 2010.
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capital governorate where a quarter of population reside. 11 The civilian death
toll per 1,000 inhabitants was more than five times that in any other

governorate. Despite this concentration, 73% of insurgent deaths occurred
outside of Baghdad, with Anbar governorate providing the highest toll of

insurgent casualties with less than 6 % of the civilian casualties suffered in
Baghdad.

Table 8: Civilian and Insurgent casualties across governorates (2004-2009)

Governorate Deaths % Per 1000∗ Governorate Deaths %
1 Baghdad 36,998 55.99 1.410 Anbar 6,602 27.53
2 Diyala 7,142 10.81 0.272 Baghdad 6,526 27.21
3 Ninewa 6,009 9.09 0.229 Diyala 3,211 13.39
4 Salah al-Din 3,197 4.84 0.122 Ninewa 2,615 10.90
5 Basrah 2,635 3.99 0.100 Salah al-Din 1,760 7.34
6 Babylon 2,251 3.41 0.086 Najaf 1,064 4.44
7 Anbar 2,191 3.32 0.084 Basrah 467 1.95
8 Kirkuk (Tamim) 1,780 2.69 0.068 Babylon 417 1.74
9 Wassit 887 1.34 0.034 Kirkuk (Tamim) 394 1.64
10 Kerbala 819 1.24 0.031 Wassit 265 1.10
11 Qadissiya 468 0.71 0.018 Qadissiya 160 0.67
12 Najaf 335 0.51 0.013 Thi-qar 142 0.59
13 Thi-qar 280 0.42 0.011 Kerbala 120 0.50
14 Erbil 235 0.36 0.009 Missan 51 0.21
15 Missan 135 0.20 0.005 Erbil 28 0.12
16 Sulaymaniyah 125 0.19 0.005 Muthanna 14 0.06
17 Muthanna 64 0.10 0.002 Sulaymaniyah 8 0.03
18 Dahuk 40 0.06 0.002 Dahuk 5 0.02

Others 490 0.74 Others 135 0.56
Sum 66,081 100 23,984 100
∗Deaths scaled by 1000 in the population based on the 2003 World Bank esti-
mates (World Bank 2013).

Empirical results We estimate the STARDL(1,1) estimation, employing y
= civilian casualties and x = enemy casualties with N = 18 (governorate level)
and T = 70 (monthly data). A row standardised inverse distance has been
employed to construct the weight matrix W .12

The system is stable with the largest eigenvalue of time stability matrix
being 0.86, indicating a high level of persistence, and the largest eigenvalue of
spatial stability matrix being -0.086+0.252i. Values for the short-run dynamic

11The estimated number of population in Baghdad is 7,145,470 in 2007 (UN Joint Analysis
Policy Unit, 2011). The estimated number of population in Iraq is 29,682,000 in 2007.

12We obtain the qualitatively similar results when using different W matrices (e.g. a con-
tiguity matrix with and without row standardising).
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and diffusion multipliers are reported in Table 9, while those for the long-run
dynamic and diffusion multipliers are reported in Table 10. It is not surprising
that the long-run spill-over effects (i.e. y∗ on y) are positive for all 18 provinces:
a rise in civilian casualties in neighbours leads, over time, to a cumulative in-
crease in civilian deaths in any province. The long-run effects of x on y are
more diverse, however, and are positive for only 13 of the 18 provinces. In the
remaining five an increase in enemy combatant deaths serves to reduce, over
time, civilian casualties in that province. Two reasons for this may be: the
degradation over time of insurgent capabilities; alongside, the strategic decision
to target resources/ retribution at other provinces where that is thought to be
more effective, perhaps due to a lower level of security infrastructure or a lower
density of patrolling. This latter reason shows up as the long-run impact of x∗

on y, which is positive for 10 provinces.
Of those 10, the most striking is Basrah, which appears the most open to

the impact of insurgent deaths outside its locality. A test of the significance of
these affects cannot be rejected at the 5% level, strongly implying that armed
violence against civilians in the neighbouring provinces lead to an increase in
civilian casualties in Basrah. Together with Baghdad, the Basrah governorate
was an important military posting during the period of the war, with British
forces stationed there from the initiation of the Iraq war until control of Bas-
rah International Airport was handed to Iraqis in January 2009. Our model
highlights an interesting comparison between Basrah and the capital, Bagh-
dad. Contrary to Basrah where spatial diffusion was prevalent, Baghdad shows
strong and significant temporal diffusion (i.e., yt−1 on yt) of armed violence
against civilians. Baghdad was the major military post for the US forces in
wartime, and was heavily armoured due to severe insurgency against military
personnel, civilians and foreign contractors.

Cumulative dynamic and diffusion multipliers The cumulative dy-
namic multipliers (CDMs) for Basrah and Baghdad are shown alongside the
mean group (MGE) for the country in Figure 4. The two provinces show strong
opposite patterns with respect to y, x and x∗. The CDMs of y with respect to
y∗ in Basrah are strongly positive and reach the long-run elasticity, 2.5 within
2-3 months, reflecting an openness to the effects of casualties elsewhere, while
those of Baghdad are initially negative, converging to the small positive value
gradually. It is not too surprising that, as the largest city and the centre of the
coalition government, the security situation in Baghdad was largely determined
there. This is supported by the CDMs with respect to x∗, which show a similar
pattern except the long-run CDM for Baghdad is negative: insurgent deaths
in other provinces making Baghdad safer. The two provinces show contrasting
pictures when insurgents are killed in that particular province. For Basrah the
CDMs of y with respect to x are negative, but again reach the long-run elastic-
ity, -0.4, quickly while those of Baghdad are positive, again converging to the
long-run value of 0.6 gradually. MGE CDMs always tend to the intermediate
figures, reaching the long-run estimates at 0.73, 0.18 and 0.04, respectively.

Alongside these CDMs, we are able to calculate Spill-in and Spill-out dif-
fusion multipliers with respect to the explanatory variable x, figure 5. The
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spill-in diffusion multipliers of x in Basrah are substantially positive while those
of Baghdad are slightly negative. Spill-out diffusion multipliers of x in Basrah
are slightly negative while those of Baghdad are large and positive. It is no-
ticeable that the net effects show nearly a mirror image (around the MGE line
which is 0 by construction), displaying that net effects of Baghdad are large and
positive while those of Basrah are large and negative .

The UK and the US had been the major political stakeholders which in-
vaded Iraq in spite of strong disagreement with the UN and the international
communities. The military forces of the two countries however appear to have
faced substantially different challenges while they stationed in Iraq, with the
UK forces being tested by spatial diffusion of armed violence, and the US forces
challenged by self-generated temporal persistency in violence. Our analysis in-
dicates that much of the climate for the insurgency was made in Baghdad but
that its greatest effects were felt, with relatively little delay, in Basrah.

7 Extension to Joint Modelling of Spatial De-
pendence and Factors

Recently, a few studies have attempted to develop a combined approach that can
accommodate both weak and strong CSD. Bailey et al. (2016) develop multi-
step estimation procedure that can distinguish the relationship between spatial
units that is purely spatial from that which is due to common factors. Mas-
tromarco et al. (2015) propose the technique in modelling technical efficiency
of stochastic frontier panels by combining the exogenously driven factor-based
approach and an endogenous threshold regime selection advanced by Kapetan-
ios et al. (2014). Shi and Lee (2017), Bai and Li (2015) and Kuersteiner and
Prucha (2018) have developed the framework for jointly modelling spatial effects
and unobserved factors. Following this trend we now propose two extensions,
one with observed factors and another with unobserved factors.

7.1 STARDL models with observed common factors

Consider the STARDL(p, q) model with the G × 1 vector of observed global

factors, gt =
(
g1
t , ..., g

G
t

)′
(e.g. oil prices, commodity prices or the common

currency such as the Euro):13

yit =

p∑
`=1

φi`yi,t−`+

q∑
`=0

π′i`xi,t−`+

p∑
`=0

φ∗i`y
∗
i,t−`+

q∑
`=0

π′∗i`x
∗
i,t−`+

q∑
`=0

ψ′i`gt−`+αi+uit

(50)
where yit is the scalar dependent variable, xit = (x1

it, ..., x
K
it )′ is a K × 1 vector

of exogenous regressors, y∗it =
∑N
j=1 wijyjt and x∗it =

∑N
j=1 wijxjt are spatially

lagged values, with their conformable parameters, φi`, φ
∗
i`, πi` = (π1

i`, ..., π
K
i` )′,

π∗i` = (π∗1i` , ..., π
∗K
i` )′ and ψi` =

(
ψ1
i`, ..., ψ

G
i`

)′
.

13For notational simplicity we use the same lag order q for the global factors.
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To deal with the endogeneity of y∗it in (50) we can also apply the QML or
the CF approach. Here, we run the following CF-augmented regression:

yit =

p∑
h=1

φihyi,t−h+

q∑
h=0

π′ihxi,t−h+

p∑
h=0

φ∗ihy
∗
i,t−h+

q∑
h=0

π′∗ihx
∗
i,t−h+

q∑
h=0

ψ′ihgt−h+αi+ρv̂it+e
∗
it

(51)
where v̂it = y∗it − ϕ̂

′
izit and e∗it = e∗it + ρ (ϕ̂i −ϕi)

′
zit. As before, we employ

the internal IVs as derived in (22) and (25).
Next, we rewrite the STARDL-F(p, q) model, (50) as

φi (L) yit = φ∗i (L) y∗it + πi (L)xit + π∗i (L)x∗it +ψi (L) gt + αi + uit (52)

where φi (L) = 1−
∑p
`=1 φi`L

`, φ∗i (L) = 1−
∑p
`=0 φ

∗
i`L

`, πi (L) =
∑q
`=0 π

′
i`L

`,
π∗i (L) =

∑q
`=0 π

∗′
i`L

`, and ψi (L) =
∑q
`=0ψ

′
i`L

`. Premultiplying (52) by

[φi (L)]
−1

, we obtain:

yit = φ̃∗i (L) y∗it + π̃i (L)xit + π̃∗i (L)x∗it + ψ̃i (L) gt + ũit (53)

where ũit = [φi (L)]
−1
uit, φ̃

∗
i (L) = [φi (L)]

−1
φ̃∗i (L), π̃i (L) = [φi (L)]

−1
πi (L),

π̃∗i (L) = [φi (L)]
−1
π∗i (L), and ψ̃i (L)

(
=
∑∞
h=0ψ

′
ihL

h
)

= [φi (L)]
−1
i ψi (L).

The cumulative dynamic multiplier effects of y∗it, xit, x
∗
it and gt on yi,t+h

for h = 0, 1, ...,H, can be evaluated as follows:

mH
y∗i

=

H∑
h=0

φ̃∗ih;mH
xi =

H∑
h=0

π̃′ih;mH
x∗i

=

H∑
h=0

π̃∗′ih;mH
g =

H∑
h=0

∂yi,t+h
∂g′t

=

H∑
h=0

ψ̃
′
ih

where φ̃∗ih, π̃
′
ih, and π̃∗′ih for h = 0, 1, ..., are evaluated using the recursive rela-

tionships, (28)-(30), and ψ̃
′
ih for h = 0, 1, ..., are evaluated as follows:

ψ̃
′
ih = φi1ψ̃

′
i,h−1 + φi2ψ̃

′
i,h−2 + · · ·+ φi,h−1ψ̃

′
i,1 + φihψ̃

′
i0 + π′ih, h = 1, 2, ...

where ψ̃
′
i0 = π′i0, ψ̃

′
ih = 0 for h < 0. By construction, as H → ∞, mH

y∗i
→

βy∗i ;mH
xi → β′xi ;m

H
x∗i
→ β′x∗i ;mH

i,g → β′i,g, where βy∗i , βxi , βx∗i and βi,g are the
long-run multipliers. In particular, the cumulative dynamic multiplier effects of
the k-th global factor, gkt on yi,t+h are the kth element of mH

i,g given by

mH
i,gk =

H∑
h=0

∂yi,t+h
∂gkt

=

H∑
`=0

ψki` for k = 1, ..., G

Next, to derive the diffusion multipliers of yt with respect to xt and gt,
we derive the following system spatial representation by stacking the individual
STARDL-F(p, q) regressions, (50):

yt =

p∑
`=1

Φ`yt−`+

q∑
`=0

Π`xt−`+

p∑
`=0

Φ∗`Wyt−`+

q∑
`=0

Π∗` (W ⊗ IK)xt−`+

q∑
`=0

Ψ`gt−`+α+ut

(54)
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whereα = (α1, ..., αN )
′
, Φ` = diag (φ1`, ..., φN`) for ` = 1, ...p, Φ∗` = diag (φ∗1`, ..., φ

∗
N`)

for ` = 0, ...p, and Π` = diag (π′1`, ...,π
′
N`), Π∗` = diag (π∗′1`, ...,π

∗′
N`), Ψ` =

(ψ1`, ...,ψN`)
′

for ` = 0, ...q. We then rewrite (54) as

Φ̃ (L)yt = Π̃ (L)xt + Ψ̃ (L) gt + α̃+ ũt, (55)

where Φ̃ (L) = IN −
∑p
`=1 Φ̃`L

` with Φ̃` = (IN −Φ∗0W )
−1

(Φ` + Φ∗`W ),

Π̃ (L) =
∑q
`=0 Π̃`L

` with Π̃` = (IN −Φ∗0W )
−1

[Π` + Π∗` (W ⊗ IK)], Ψ̃ (L) =∑q
`=0 Ψ̃`L

` with Ψ̃` = (IN −Φ∗0W )
−1

Ψ`, α̃ = (IN −Φ∗0W )
−1
α and ũt =

(IN −Φ∗0W )
−1
ut. Premultiplying (55) by

[
Φ̃ (L)

]−1

, we obtain:

yt = B (L)xt +C (L) gt +
[
Φ̃ (L)

]−1

(α̃+ ũt) (56)

where B (L) =
[
Φ̃ (L)

]−1

Π̃ (L) and C (L) =
[
Φ̃ (L)

]−1

Ψ̃ (L). The Bj and

Cj for j = 0, 1, ..., are evaluated as follows:

Bj = Φ̃1Bj−1 + Φ̃2Bj−2 + · · ·+ Φ̃j−1B1 + Φ̃jB0 + Π̃j , j = 1, 2, ... (57)

Cj = Φ̃1Cj−1 + Φ̃2Cj−2 + · · ·+ Φ̃j−1C1 + Φ̃jC0 + Ψ̃j , j = 1, 2, ... (58)

where B0 = Π̃0 and Bj = 0 for j < 0, and C0 = Ψ̃0 and Cj = 0 for j < 0.
Then, the cumulative diffusion multiplier effects are evaluated as follows:

dHx =

H∑
h=0

∂yt+h
∂x′t

=

H∑
h=0

Bh;dHg =

H∑
h=0

∂yt+h
∂g′t

=

H∑
h=0

Ch, H = 0, 1, 2, ... (59)

The cumulative diffusion multiplier effects of xkjt on yi,t+h are given by the

(i, (j − 1)K + k)th element of the N × NK matrix, mH
x while those of gkt on

yi,t+h are given by the (i, k)th element of the N ×G matrix, mH
g .

mH
g measures the individual dynamic multipliers while dHg captures the sys-

tem diffusion multiplier effects with respect to gt. Thus, the difference between
dHg and mH

g may indicate the additional spatial impacts of gt at each forecast
horizon, though it is not possible to separate out the spatial and time depen-
dence from the diffusion multipliers with respect to xt.

7.2 STARDL Models with unobserved common factors

Consider the STARDL(p, q) model with an r× 1 vector of unobserved common
factors, f t = (f1t, ..., frt)

′
:

yit =

p∑
`=1

φi`yi,t−`+

p∑
`=0

φ∗i`y
∗
i,t−`+

q∑
`=0

π′i`xi,t−`+

q∑
`=0

π′∗i`x
∗
i,t−`+αi+λ

′
if t+uit,

(60)
for i = 1, . . . , N and t = 1, . . . , T , where yit is the scalar dependent variable of
the ith spatial unit at time t, xit = (x1

it, ..., x
K
it )′ is a K × 1 vector of exogenous
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regressors, y∗it =
∑N
j=1 wijyjt and x∗it =

∑N
j=1 wijxjt are spatially lagged values

with conformable parameters, λi = (λ1,i, ..., λr,i)
′
is the heterogenous loadings

and uit is the idiosyncratic errors. In the homogenous spatial model the QML
and GMM approach have been developed together with unobserved factors (e.g.
Bai and Li (2015), Shi and Lee (2017), and Kuersteiner and Prucha (2018)). By
contrast no unified approach has been developed yet in the heterogenous case.

We develop the two estimation procedures, depending on whether we impose
the specific data generating condition on xit’s or not. In the first approach we
allow xit’s to be correlated arbitrarily with the common factors and/or the
factor loadings. We then estimate f t directly and develop an iterative principal
components analysis. In the second approach, we assume that xit’s follow the
VAR processes but also share the unobserved common factors. Then, we propose
the QML-EM method in which case we only estimate the sample variance of
the common factor f t, not f t.

For convenience we write (60) compactly as

yit = φ∗i0y
∗
it + θ′iχit + λ′if t + uit (61)

where θi =
(
φ′i,φ

∗′
i ,π

′
i,π
′∗
i

)′
and χit =

(
y′i,−`,y

∗′
i,−`,x

′
i,−`,x

∗′
i,−`, 1

)′
with φi =

(φi1, ..., φip)
′
, φ∗i =

(
φ∗i1, ..., φ

∗
ip

)′
, πi =

(
π′i0, ...,π

′
iq

)′
, π∗i =

(
π∗′i0, ...,π

∗′
iq

)′
, and

yi,−p = (yi,t−1, ..., yi,t−p)
′
, y∗i,−p =

(
y∗i,t−1, ..., y

∗
i,t−p

)′
, xi,−q =

(
x′it, ...,x

′
i,t−q

)′
,

x∗i,−q =
(
x∗′it , ...,x

∗′
i,t−q

)′
. Stacking (61), we have14

yt = Φ∗0Wyt + Θχt + Λf t + ut (62)

where Φ∗0 = diag (φ∗10, ..., φ
∗
N0), Θ = diag

(
θ′1, ...,θ

′
N

)
, χt = (χ′1t, ...χ

′
Nt)
′

and

Λ = (λ1, ...,λN )
′
.

The IPC-QML estimator We allow the explanatory variables xit to be
arbitrarily correlated with λi and f t, and estimate both λi and f t together as
parameters. We make the following additional assumptions.

Assumption F1: The f t are random and independent of uis for all t and
s.

Assumption F2: The factor loadings λi are random such that E
(
‖Γi‖4

)
≤

C for all i and N−1Λ′ΣuΛ →p Ωr, where Σu = diag
(
σ2
u1, ..., σ

2
uN

)
, and Ωr is

some positive definite matrix. Further, λis are independent of the idiosyncratic
errors ujt for all i and j.

14Notice that (62) can also be written as

yi = φ∗i0y
∗
i + χiθi + Fλi + ui

where yi = (yi1, ..., yiT )′, y∗i =
(
y∗i1, ..., y

∗
iT

)′
, χi =

(
χ′i1, ...,χ

′
iT

)′
, F = (f1, ...,fT )′, and

ui = (ui1, ..., uiT )′.
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The (quasi) log-likelihood function of (62) can be derived as

L (Φ∗0,Θ,F ) = −NT
2

ln 2π − T

2

N∑
i=1

lnσ2
i + T ln |IN −Φ∗0W | (63)

−1

2

T∑
t=1

[(IN −Φ∗0W )yt −Θχt −Λf t]
′
Σ−1
u [(IN −Φ∗0W )yt −Θχt −Λf t]

Given Φ∗0, Θ, and Λ, it is easily seen that f t maximize L (Φ∗0,Θ,F ) at

f t =
(
Λ′Σ−1

u Λ
)−1

Λ′Σ−1
u [(IN −Φ∗0W )yt −Θχt] . (64)

Substituting (64) in (63), we obtain the concentrated likelihood function:

L (Φ∗0,Θ) = −NT
2

ln 2π − T

2

N∑
i=1

lnσ2
i + T ln |IN −Φ∗0W | (65)

−1

2

T∑
t=1

[(IN −Φ∗0W )yt −Θχt]
′
Mu [(IN −Φ∗0W )yt −Θχt]

where

Mu = Σ−1
u −Σ−1

u Λ
(
Λ′Σ−1

u Λ
)−1

Λ′Σ−1
u = Σ−1

u −
1

N
Σ−1
u ΛΛ′Σ−1

u

with 1
NΛ′Σ−1

u Λ = Ir. The QML estimator of (Φ∗0,Θ) is defined by

θ̂ = arg max
θ∈Θ
L (Φ∗0,Θ)

where Θ is the compact parameters space.
The IPC-QML estimator is updated via the following iterative procedure.

Denote the estimates of Φ∗0, Θ and Σu at the sth iteration by Φ̂
∗(s)
0 , Θ̂

(s)
and

Σ̂
(s)

u , respectively.

Step 1: Given Φ̂
∗(s)
0 , Θ̂

(s)
and Σ̂

(s)

u , we estimate Λ̂
(s+1)

as the first r
eigenvectors associated with the first r largest eigenvalues of the N ×N matrix,

Ĝ =

[
1

NT

T∑
t=1

(
yt − Φ̂

∗(s)
0 Wyt − Θ̂

(s)
χt

)(
yt − Φ̂

∗(s)
0 Wyt − Θ̂

(s)
χt

)′](
Σ̂

(s)

u

)−1

and f̂
(s+1)

t by

f̂
(s+1)

t =
1

N
Λ̂

(s+1)′ (
Σ̂

(s)

u

)−1 (
yt − Φ̂

∗(s)
0 Wyt − Θ̂

(s)
χt

)
, t = 1, ..., T.

We then construct

Ĉ
(s+1)
it = λ̂

(s+1)′
i f̂

(s+1)

t and Ĉ
(s+1)

i =
(
Ĉ

(s+1)
i1 , ..., Ĉ

(s+1)
iT

)′
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Step 2: Given Ĉ
(s+1)
it and Ĉ

(s+1)

i , we update update Σ̂
(s+1)

u by

(
σ̂

2)
i

)(s+1)

=
1

T

T∑
t=1

((
yit − Ĉ(s+1)

it

)
− φ̂∗(s)i0 y∗it − θ̂

(s)′
i χit

)2

, i = 1, ..., N

and θ̂
(s+1)

i by

θ̂
(s+1)

i = (χ′iχi)
−1

(χ′iχi)
{(
yi − Ĉ

(s+1)

i

)
− φ̂∗(s)i0 y∗i

}
, i = 1, ..., N.

Finally, we update Φ̂
∗(s+1)

0 by maximizing L (Φ∗0,Θ) in (65) directly with re-

spect to Φ∗0 at Λ = Λ̂
(s+1)

,Σu = Σ̂
(s+1)

u , and Θ = Θ̂
(s+1)

. We repeat Steps
1 and 2 until convergence at a preset tolerance. We may use the within-group
estimator as the starting value for Φ∗0, Θ and Σ(s)

u .
Notice that there is a bias term of order Op

(
N−1

)
, see also Lu (2017).

This bias comes from the incidental parameters involved when estimating f t
directly as parameters. Similarly, the extra Op(N

−2) term included in the
average convergence rates for Σe and Λi occurs for the same reason. Because
these extra terms depend only on N , the IPC-QML estimator is no longer
consistent under fixed N .

Alternatively, it is often more convenient to write the above concentrated
log-likelihood function L (Φ∗0,Θ) in (65) as

L (Φ∗0,Θ) = −NT
2

ln 2π − T

2

N∑
i=1

lnσ2
i + T ln |IN −Φ∗0W | (66)

−1

2

N∑
i=1

(yi − φ∗i0y∗i − χiθi)
′
(yi − φ∗i0y∗i − χiθi)

σ̃2
i

where σ̃2
i is the ith diagonal element of the N × N matrix, M−1

u . Then, fol-

lowing ABP, we update Φ̂
∗(s+1)

0 by maximising the following concentrated log-
likelihood function:

LC (Φ∗0) ∝ T ln
∣∣∣IN − Φ̂

∗(s+1)

0 W
∣∣∣ (67)

− 1

2T

N∑
i=1

((
yi − Ĉ

(s+1)

i

)
− φ̂∗(s+1)

i0 y∗i

)′
Mχi

((
yi − Ĉ

(s+1)

i

)
− φ̂∗(s+1)

i0 y∗i

)
where Mχi = IT −χi (χ′iχi)

−1
χ′i and χi = (χ′i1, ...χ

′
iT )
′
. Then, we can update

other parameters, θ̂
(s+1)

i by least squares applied to the individual equations

(61) conditional on φ̂
∗(s+1)
i0 and Ĉ

(s+1)

i , and similarly for
(
σ̂

2)
i

)(s+1)

, i = 1, ..., N .

We may apply the STARDL-CF estimator as follows: Given the consistent
estimate of Ĉit, we update all other parameters including φ∗i0 by running the
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following augmented regression:(
yit − Ĉit

)
=

p∑
`=1

φi`yi,t−`+

p∑
`=0

φ∗i`y
∗
i,t−`+

q∑
`=0

π′i`xi,t−`+

q∑
`=0

π′∗i`x
∗
i,t−`+αi+ρv̂it+e

∗
it,

(68)

where v̂it = y∗it − ϕ̂
′
izit and e∗it = eit + ρ (ϕ̂i −ϕi)

′
zit +

(
Cit − Ĉit

)
.

The QML-EM estimator Next, we develop the QML-EM algorithms. To
this end we assume that xit follows the VAR(p) process and shares the same
unobserved factors, f t:

15

xit =

p∑
`=1

Ψixi,t−` + bi + γ′if t + vit (69)

Then, (60) and (69) can be written as[
yit −

∑p
`=1 φi`yi,t−` −

∑p
`=0 φ

∗
i`y
∗
i,t−` −

∑p
`=0 π

′
i`xi,t−` −

∑p
`=0 π

′∗
i`x
∗
i,t−`

xit −
∑p
`=1 Ψixi,t−`

]
= µi + Φ′if t + εit (70)

where

µi =

[
αi
vi

]
; Φ′i =

[
λ′i
γ′i

]
; εit =

[
uit
vit

]
Let zt = (z′1t, z

′
2t, ...,z

′
Nt)
′

with zit = (yit,x
′
it)
′
. Then, we can write (70)

compactly as
D (L) zt

N(k+1)×1
= µ+ Φ

N(k+1)×r
f t
r×1

+ εt (71)

where µ = (µ′1, ...,µ
′
N )
′
, Φ = (Φ1, ...,ΦN )

′
, εt = (ε′1t, ..., ε

′
Nt)
′
, and D (L) =

D0 −
p∑̀
=1

D`L
` with D0 and D` being the N(k + 1)×N(k + 1) matrices with

the (i, j) sub-blocks respectively given by

D0,ij
(k+1)×(k+1)

=


[

1 −π′i0
0 Ik

]
, if i = j[

φ∗i0wij π∗′i0wij
0 0

]
, if i 6= j


D`,ij

(k+1)×(k+1)

=


[
φi` π′i`
0 Ψi`

]
, if i = j[

φ∗i`wij π∗′i`wij
0 0

]
, if i 6= j

 , ` = 1, ..., p

To analyse model (71), we make the following assumptions (e.g. Bai and Li,
2104).

15For convenience we set p = q in (60) without of loss of generality.
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Assumption Q1: The idiosyncratic errors εit = (uit,v
′
it)
′

are such that
(i) uit is independent and identically distributed over t and uncorrelated over i
with E(uit) = 0 and E(u4

it) ≤ ∞ for all i = 1, ..., N and t = 1, ... , T . (ii) vit
is also independent and identically distributed over t and uncorrelated over i
with E(vit) = 0 and E(‖vit‖4) ≤ ∞ for all i = 1, ..., N and t = 1, ... , T . (iii)
uit is independent of vjs for all (i, j, t, s). Let Σii = diag

(
σ2
i ,Σiiv

)
denote the

variance matrix εit, where σ2
i is the variance of eit and Σiiv denotes the variance

matrix of vit.
Assumption Q2: There exists a C > 0 sufficiently large such that (i)

‖Φi‖ ≤ C for all i = 1, ..., N ; (ii) C−1 ≤ τmin (Σjj) ≤ τmax (Σjj) ≤ C for all
j = 1, ..., N , where τmin (Σjj) and τmax (Σjj) denote the smallest and largest
eigenvalues of Σjj ; (iii) There exists an r × r positive matrix Q such that
Q = limN→∞N−1Φ′Σ−1

εε Φ, and Σεε = diag (Σ11, ...,ΣNN ).
Assumption Q3: The variances Σii for all i and Mff are estimated in a

compact set, i.e. all the eigenvalues of Σ̂ii and M̂ff are in an interval
[
C−1, C

]
.

Assumption Q4: Identification conditions.16 To remove the rotational
indeterminacy, we impose the normalization restrictions: (i) f̄ = T−1

∑T
t=1 f t =

0; (ii) Mff = T−1
∑T
t=1

(
f t − f̄

) (
f t − f̄

)′
= Ir; and (iii) N−1Φ′ΣεεΦ is di-

agonal with the diagonal elements being distinct and arranged in descending
order.

The objective function for the model (71) is given by

L (ξ) = − 1

2N
ln |Σzz|+

1

N
ln |IN −Φ∗0W | (72)

− 1

2NT

T∑
t=1

(
D0zt −

p∑
`=1

D`zt−`

)′
Σ−1
zz

(
D0zt −

p∑
`=1

D`zt−`

)

where ξ = (φ∗0,θ,Φ,Σεε) with φ∗0 = (φ∗10, ..., φ
∗
N0)
′
, θ =

(
θ′1, ...,θ

′
N

)′
and Σzz =

ΦΦ′ + Σεε.
Following Bai and Li (2014) we develop the QML-EM algorithms as fol-

lows: The algorithm combines the usual maximisation procedure with the EM

algorithm. Let ξ(s) =
(
φ
∗(s)
0 ,θ(s),Φ(s),Σ(s)

εε

)
denote the estimates at the sth

iteration. Our updating procedures consist of two steps.
Step 1: We update Φ(s),Σ(s)

εε and θ(s) according to the EM algorithm:

Φ(s+1) =

[
1

T

T∑
t=1

E

((
D

(s)
0 zt −

p∑
`=1

D
(s)
` zt−`

)
f ′t|θs

)][
1

T

T∑
t=1

E
(
f tf

′
t|θs
)]−1

Σ(s+1)
εε = Dg


1
T

∑T
t=1

(
D

(s)
0 zt −

p∑̀
=1

D
(s)
` zt−`

)(
D

(s)
0 zt −

p∑̀
=1

D
(s)
` zt−`

)′
−Φ(s+1)Φ(s)′

(
Σ(s)
zz

)−1
1
T

∑T
t=1

(
D

(s)
0 zt −

p∑̀
=1

D
(s)
` zt−`

)(
D

(s)
0 zt −

p∑̀
=1

D
(s)
` zt−`

)′


(73)

16The estimation of key parameters ω = (φ∗′0 ,θ
′)′ and Σεε is invariant to the different

normalization restrictions.
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and

θ
(s+1)
i =

 T∑
t=1

1(
σ

(s+1)
i

)2χitχ
′
it


−1  T∑

t=1

1(
σ

(s+1)
i

)2χit

(
yit − φ∗(s)i0 y∗it − λ

(s+1)′
i f

(s)
t

)
=

[
T∑
t=1

χitχ
′
it

]−1 [ T∑
t=1

χit

(
yit − φ∗(s)i0 y∗it − λ

(s+1)′
i f

(s)
t

)]
for i = 1, ..., N, where Dg is the operator which sets the entries of its argument to

zeros if the counterparts of E (εtε
′
t) are zeros;

(
σ

(s+1)
i

)2

is the [(i−1)(k+1)+1]th

diagonal element of Σ(s+1)
εε and λ

(s+1)′
i is the transpose of the [(i−1)(k+1)+1]th

row of Φ(s+1). In addition,

1

T

T∑
t=1

E

((
D0zt −

p∑
`=1

D`zt−`

)
f ′t|θs

)

=
1

T

T∑
t=1

(
D0zt −

p∑
`=1

D`zt−`

)(
D0zt −

p∑
`=1

D`zt−`

)′ (
Σ(s)
zz

)−1

Φ(s)

1

T

T∑
t=1

E
(
f tf

′
t|θs
)

= Ir −Φ(s)′
(
Σ(s)
zz

)−1

Φ(s)

+Φ(s)′
(
Σ(s)
zz

)−1 1

T

T∑
t=1

(
D0zt −

p∑
`=1

D`zt−`

)(
D0zt −

p∑
`=1

D`zt−`

)′ (
Σ(s)
zz

)−1

Φ(s)

and

f
(s)
t = Φ(s)′

(
Σ(s)
zz

)−1
(
D0zt −

p∑
`=1

D`zt−`

)
.

Step 2: We update φ∗0 by maximising (72) with respect to φ∗0 at θi = θ̂
(s+1)

i ,

Φ = Φ̂
(s+1)

and Σεε = Σ̂
(s+1)

εε with an initial value of φ∗0 at φ̂
∗(s)
0 .

This iterative procedure guarantees that the value of likelihood function does
not decrease in each iteration. This is because

L
(
ρ(s), β(s+1),Φ(s+1),Σ(s+1)

εε

)
≥ L

(
ρ(s), β(s),Φ(s),Σ(s)

εε

)
L
(
ρ(s+1), β(s+1),Φ(s+1),Σ(s+1)

εε

)
≥ L

(
ρ(s), β(s+1),Φ(s+1),Σ(s+1)

εε

)
We show that the limit of the iterated solution satisfies the first order conditions
and therefore possesses the local optimality property. For the initial estimates,

ξ(0) =
(
φ
∗(0)
0 ,θ(0),Φ(0),Σ(0)

εε

)
, φ
∗(0)
0 and θ(0) can be set to the within group

estimator, ignoring the endogeneity issue. And Φ(0) and Σ(0)
εε are then the

maximizer of (72) at φ
∗(0)
0 and θ(0).
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Remark: Notice that Σεε is the N (k + 1)×N (k + 1) block-diagonal matrix
given by

Σεε
N(k+1)×N(k+1)

=


Σ11 0 · · · 0
0 Σ22 · · · 0
...

...
. . .

...
0 0 · · · ΣNN

 , Σii
(k+1)×(k+1)

=

[
σ2
i 0

0 Σiiv

]

Then, σ2
i is estimated by

σ̂2
i =

1

T

T∑
t=1

û2
it, i = 1, ..., N

where
ûit =

(
yit −

(
λ̂
′
if̂ t

))
− φ̂∗i0y∗it − θ̂

′
iχit,

Next, Σiiv can be estimated by

Σ̂iiv =
1

T

T∑
t=1

v̂itv̂
′
it, i = 1, ..., N

where

v̂it =
(
xit − γ̂′if̂ t

)
−

p∑
`=1

Ψ̂ixi,t−` − b̂i

where Ψ̂i and b̂i are the OLS estimator obtained from the following modified
VAR model: (

xit − γ̂′if̂ t
)

=

p∑
`=1

Ψixi,t−` + bi + vit.

Then, update Σεε by

Σ̂εε
N(k+1)×N(k+1)

=

 Σ̂11 0
. . .

0 Σ̂NN

 , Σ̂ii
(k+1)×(k+1)

=

[
σ̂2
i 0

0 Σ̂iiv

]
(74)

The results in (73) and (74) are equivalent.
Remark: Alternatively, we may combine the (concentrated) QML estimator

with E-algorithm: Suppose that we obtain the estimate of

Φ′if t =

[
λ′if t
γ′if t

]
by E-algorithm. Then we construct

Ĉ
(1)

i = λ̂
′
if̂ t
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Then, we may maximise the following concentrated LF to obtain the estimate
of φ∗0 = (φ∗10, ..., φ

∗
N0)
′
:

LC (φ∗0) ∝ T ln |S(Φ∗0)| − 1

2T

N∑
i=1

(
yi − Ĉ

(1)

i − φ∗i0y∗i
)′
M i

(
yi − Ĉ

(1)

i − φ∗i0y∗i
)

(75)

Then, we can estimate other parameters, θ̂
(1)

i by least squares applied to the

individual equations (61) conditional on φ̂
∗(1)
i0 and Ĉ

(1)

i .
Remark: Alternatively, we may combine the STARDL-CF estimator with

the EM algorithm. Given the consistent estimate of Ĉit, we update all other
parameters including φ∗i0 by running the following augmented regression:

(
yit − Ĉit

)
=

p∑
`=1

φi`yi,t−`+

p∑
`=0

φ∗i`y
∗
i,t−`+

q∑
`=0

π′i`xi,t−`+

q∑
`=0

π′∗i`x
∗
i,t−`+αi+ρv̂it+e

∗
it,

(76)

where v̂it = y∗it − ϕ̂
′
izit and e∗it = eit + ρ (ϕ̂i −ϕi)

′
zit +

(
Cit − Ĉit

)
.

8 Concluding Remarks

The issue of cross-sectional dependence is developing very rapidly, with increas-
ing interest being taken in modelling growing number of datasets with both
cross-section and time dimension. The STARDL model provides a simple way
of capturing dependence along both dimensions, based on the popular ARDL
model in time series. We adopt the convention of allowing parameters to be
heterogeneous across cross-section units and discuss the conditions under which
these models are stable. Under widely held conditions, we show that both the
QML and the control function estimator are

√
T consistent and asymptotically

normally distributed. Monte Carlo evidence supports the validity of both meth-
ods in finite samples. The counter-weight to the degree of sophistication in any
model is the subsequent difficultly in interpreting the results they give. We
propose two methods for analysing the patterns produced, and illustrate their
use in analysing casualty data for the 2003 Iraq war and its aftermath. As
an extension of the basic model we consider estimation under the presence of
observed and unobserved common factors.

There remains a number of interesting challenges to be addressed. We have,
throughout, assumed our spatial weighting matrix to be not only known but de-
termined exogenously, ruling out a number of exciting areas of research in social
networks and team formation. Although our control function approach has the
potential, under certain conditions, to control for this source of endogeneity fur-
ther work is required to determine how it may be applied. Our current approach
built upon internally generated instruments is unlikely to be valid. We have also
restricted ourselves to linear effects, both in time and across space, and to mod-
elling conditional means rather than other parts of the conditional distribution
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such as medians or quantiles. These remain topic of ongoing research. Even-
tually, this project aims to develop the general econometrics models that can
accommodate spatial and factor dependence, spatial heterogeneity, endogenous
spatial weight matrix as well as spatial nonlinearity in a unified framework by
combining all the recent advances. These works will be of great applicability to
a variety of the big dataset.
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Figure 1: Dynamic Multipliers: y∗ (dotted); x (solid) and x∗ (dashed).
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Figure 3: Difference between dynamic and diffusion multipliers.
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Table 9: Summary of Dynamic Multipliers and Diffusion Multipliers for Short Run Horizon h = 0

ARDL STARDL System Difference
MX1 MYS MX2 MXS DX SI SO DX-MX MX2-MX1 S-net

Anbar 0.064 1.382 0.143 −0.651 0.144 −0.428 0.023 0.002 0.078 0.451
Basrah 0.084 2.142 −0.207 0.452 −0.185 0.674 0.059 0.021 −0.290 −0.615
Muthannia −0.056 −0.894 −0.073 0.141 −0.076 0.005 0.032 −0.004 −0.017 0.027
Al-Qadisiyah 0.250 −1.014 0.229 0.075 0.231 −0.055 0.017 0.002 −0.021 0.072
An-Najaf 0.051 1.243 0.173 −0.340 0.174 −0.156 0.015 0.001 0.123 0.171
Arbil 0.598 1.231 0.509 0.110 0.503 0.222 −0.030 −0.005 −0.089 −0.252
Sulaymaniyah 0.799 −0.242 0.754 −0.050 0.753 −0.073 0.056 −0.001 −0.045 0.129
At-Ta’mim 0.264 0.584 0.172 −0.605 0.176 −0.474 0.059 0.004 −0.093 0.532
Babil 0.323 0.363 0.318 −0.477 0.315 −0.414 −0.030 −0.003 −0.006 0.385
Baghdad −0.004 −1.231 0.113 −0.089 0.119 −0.256 −0.006 0.006 0.117 0.251
Dhi-Qar 0.009 −0.277 −0.100 0.155 −0.104 0.111 0.106 −0.004 −0.109 −0.005
Dihok −0.061 0.492 −0.218 0.081 −0.223 0.183 −0.056 −0.005 −0.157 −0.239
Diyala 0.057 −0.132 −0.100 −0.193 −0.100 −0.214 0.041 0.000 −0.156 0.255
Karbala’ 0.365 −0.914 0.234 0.525 0.247 0.471 −0.089 0.013 −0.131 −0.560
Maysan 0.090 −0.742 0.089 0.286 0.082 0.188 0.069 −0.007 0.000 −0.119
Ninawa 0.206 0.618 0.169 −0.164 0.171 −0.081 0.017 0.002 −0.037 0.097
Sala ad-Din 0.076 −1.906 −0.054 0.515 −0.022 0.317 −0.147 0.032 −0.130 −0.465
Wasif 0.333 −0.445 0.219 0.159 0.221 0.111 −0.006 0.002 −0.114 −0.117
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Table 10: Summary of Dynamic Multipliers and Diffusion Multipliers for Long Run Horizon h = 40

ARDL STARDL System Difference
MX1 MYS MX2 MXS DX SI SO DX-MX MX2-MX1 S-net

Anbar 0.345 0.927 0.299 −0.645 0.333 0.273 0.667 0.035 −0.046 0.394
Basrah 0.636 2.480 −0.412 0.836 −0.479 3.038 −0.474 −0.067 −1.047 −3.512
Muthannia 0.407 0.006 0.300 0.212 0.301 0.218 0.978 0.000 −0.106 0.760
Al-Qadisiyah 0.679 0.955 0.265 0.157 0.321 1.044 0.938 0.056 −0.414 −0.106
An-Najaf 0.025 1.365 0.224 −0.578 0.283 0.721 0.723 0.059 0.199 0.002
Arbil 0.459 0.149 0.501 0.310 0.511 0.453 1.206 0.011 0.041 0.753
Sulaymaniyah 1.182 0.668 0.972 0.242 1.062 0.814 2.265 0.090 −0.210 1.450
At-Ta’mim 0.780 0.933 0.268 −0.348 0.340 0.602 1.188 0.072 −0.511 0.586
Babil 0.502 1.039 0.195 −0.343 0.248 0.654 0.887 0.053 −0.307 0.233
Baghdad 0.549 0.354 0.624 −0.505 0.687 −0.179 2.682 0.063 0.075 2.861
Dhi-Qar 0.062 0.596 −0.117 0.189 −0.112 0.826 0.035 0.004 −0.179 −0.791
Dihok 0.143 0.243 −0.033 −0.061 −0.031 0.200 0.121 0.002 −0.177 −0.079
Diyala 0.568 1.643 −0.177 0.096 −0.213 1.778 −0.320 −0.036 −0.744 −2.098
Karbala’ 0.418 0.087 0.286 0.358 0.289 0.443 0.723 0.003 −0.132 0.280
Maysan −0.214 0.246 −0.050 −0.038 −0.043 0.241 0.310 0.007 0.164 0.070
Ninawa 0.641 0.806 0.398 −0.133 0.435 0.599 0.839 0.037 −0.243 0.241
Sala ad-Din 0.743 0.084 0.353 0.960 0.357 1.041 0.777 0.004 −0.390 −0.264
Wasif 0.508 1.098 0.130 0.233 0.164 1.298 0.517 0.035 −0.378 −0.781
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Figure 4: Dynamic Multipliers for Basrah and Baghdad

Appendix
Appendix 1: Lemmas
Lemma 1 The process yt and y∗t have finite fourth moments.
Proof In (11) the vector process yt has been written using the lags of two

independent processes with finite fourth moments. We can re-write (11) as

yt =
∞∑
`=0

B̄`x̄t−`, (77)

where B̄` =
[
B̃`, B`

]
, with typical element b̄`,ij , and x̄t−` =

[
x′t−`, ũt−`′

]′
with typical element x̄t−`,j . By applying Hölders inequality twice,

E |x̄i,rx̄h,sx̄k,tx̄l,u| ≤ max
i,t

Ex̄4
i,t ≤ C1 <∞.

Under Assumption 5 the boundedness on q and of the elements of Π̃` the coef-
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Figure 5: Spill-in and Spill-out for Basrah and Baghdad

ficients of the lag polynomial in B̄` are absolutely summable and so,

E |yi,ryj,syk,tyl,u| = E

∣∣∣∣∣
( ∞∑
`=0

∑
h

b̄`,ihx̄r−`,h

)( ∞∑
`=0

∑
h

b̄`,jhx̄s−`,h

)

×

( ∞∑
`=0

∑
h

b̄`,khx̄t−`,h

)( ∞∑
`=0

∑
h

b̄`,lhx̄u−`,h

)∣∣∣∣∣
≤

∞∑
`=0

∑
h

∣∣b̄`,ih∣∣ ∞∑
`=0

∑
h

∣∣b̄`,jh∣∣ ∞∑
`=0

∑
h

∣∣b̄`,kh∣∣ ∞∑
`=0

∑
h

∣∣b̄`,lh∣∣C1 ≤ C2 <∞.

The above argument may then be repeated to show

E
∣∣y∗i,ry∗j,sy∗k,ty∗l,u∣∣ = E

∣∣∣∣∣
n∑
h=1

wihyh,r

n∑
h=1

wjhyh,s

n∑
h=1

wkhyh,s

n∑
h=1

wlhyh,u

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
h=1

wih

∣∣∣∣∣
∣∣∣∣∣
n∑
h=1

wjh

∣∣∣∣∣
∣∣∣∣∣
n∑
h=1

wkh

∣∣∣∣∣
∣∣∣∣∣
n∑
h=1

wlh

∣∣∣∣∣C2 <∞

as the rows of W are bounded in absolute row sums under Assumption 3. �
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Lemma 2 The process χit has finite fourth moments for all i.
Proof The proof results from the application of the arguments used in Lemma

1 to establish the boundedness of any four elements chosen from yt, y
∗
t and Xt

and X∗t at any lead and lag. �
Appendix 2: Derrivatives of (12) The first derivatives of (12) are

∂LT̄
∂φ∗0i

= −T̄ gii +
1

σ2
i

T∑
t=q+1

y∗it
(
yit − φ∗0iy∗it − θ

′
iχit

)
, so that

∂LT̄
∂φ∗0

= −T̄vecd(G0) + y∗y � (yt −Φ∗0Wyt −Θχt)� σ−2,

∂LT̄
∂θi

=
1

σ2
i

T∑
t=q+1

χit
(
[yit − φ∗0iy∗it − θ

′
iχit

)
,

∂LT̄
∂σ2

i

= − T̄

2σ2
i

+
1

2σ4
i

T∑
t=q+1

(
yit − φ∗0iy∗it − θ

′
iχit

)2
,

where gij is i, j’th element of the matrix G, where the operator vecd(A) ≡
[a11, . . . aNN ]′ extracts the principal diagonal from a square matrix as a column
vector and σ−2 = [σ−2

1 , . . . , σ−2
n ].

The individual components of the Hessian are then

∂2LT̄
∂φ∗0i∂φ

∗
0j

= −T̄ g2
ii −

1

σ2
i

T∑
t=q+1

(y∗it)
2, i = j,

= −T̄ gijgji, i 6= j, so that

∂2LT̄
∂φ∗0∂φ

∗′
0

= −T̄G�G′ −
T∑

t=q+1

diag
{
y∗t � y∗t � σ−2

}
,

∂2LT̄
∂φ∗0iθ

′
j

= − 1

σ2
i

T∑
t=q+1

y∗itχ
′
it, i = j, 0 otherwise,

∂2LT̄
∂φ∗0i∂σ

2
j

= − 1

σ4
i

T∑
t=q+1

y∗it
(
yit − φ∗0iy∗it − θ

′
iχit

)
, i = j, 0 otherwise,

∂2LT̄
∂θi∂θ

′
j

= − 1

σ2
i

T∑
t=q+1

χitχ
′
it, i = j, 0 otherwise,

∂2LT̄
∂θi∂σ2

j

= − 1

σ4
i

T∑
t=q+1

χit[yit − φ∗0iy∗it − θ
′
iχit], i = j, 0 otherwise,

∂2LT̄
∂σ2

i ∂σ
2
j

=
T̄

2σ4
i

− 1

σ6
i

T∑
t=q+1

[yit − φ∗0iy∗it − θ
′
iχit]

2 i = j, 0 otherwise,
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where the operator diag places its vector argument along the principal diagonal
of a null, square matrix.

Appendix 3: Proof of Theorem 1
Consistency
Consistency of the QML estimator follows Lee (2004) and Theorem 3.4 of

White (1994). It rests on establishing: (i) the stochastic equicontinuity of
1
T̄
Lc
T̄

(φ∗0) (ii) that 1
T̄
Lc
T̄

(φ∗0) →p
1
T̄
Qc(φ∗0), uniformly in φ∗0; and, (iii) that

1
T̄
Qc(φ∗0) is uniquely maximised at the true value φ̃

∗
0. Point (i) is easily estab-

lished by considering the two terms of Lc
T̄

(φ∗0) that depend on φ∗0, ln |S(Φ∗0)|
and

∑N
i=1 ln 1

T̄
(yi − φ∗i0y∗i )

′
M i (yi − φ∗i0y∗i ). The latter is clearly quadratic in

φ∗i0 while the former is a continuous function of a sum of polynomials containing
powers of minimum order 0 and maximum order 1 in any φ∗i0.

Next consider that

1

T̄
LcT̄ (φ∗0)− 1

T̄
Qc(φ∗0) =

1

2

N∑
i=1

[
ln
(
σ̄2
i (φ∗i0)

)
− ln

(
σ̂2
i (φ∗i0)

)]
,

and so (ii) follows if σ̂2
i (φ∗i0) →p σ̄

2
i (φ∗i0), uniformly in φ∗i0. Defining, for i =

1, . . . , N , wit(φ
∗
i0) ≡ s′i(φ∗0i)S

−1ut we can write

σ̂2
i (φ∗i0) =

1

T̄

T∑
t=q+1

(κit(φ
∗
i0) + wit(φ

∗
i0))

2

− 1

T̄

T∑
t=q+1

(κit(φ
∗
i0) + wit(φ

∗
i0))χ′it

[
T∑

t=q+1

χitχ
′
it

]−1 T∑
t=q+1

χit (κit(φ
∗
i0) + wit(φ

∗
i0))

=

{
1

T̄

T∑
t=q+1

κit(φ
∗
i0)2

}
−

{
1

T̄

T∑
t=q+1

κit(φ
∗
i0)χ′it

}[{
1

T̄

T∑
t=q+1

χitχ
′
it

}]−1{
1

T̄

T∑
t=q+1

χitκit(φ
∗
i0)

}

+

{
1

T̄

T∑
t=q+1

wit(φ
∗
i0)2

}
+ 2

{
1

T̄

T∑
t=q+1

κit(φ
∗
i0)wit(φ

∗
i0)

}

−2

{
1

T̄

T∑
t=q+1

κit(φ
∗
i0)χ′it

}[{
1

T̄

T∑
t=q+1

χitχ
′
it

}]−1{
1

T̄

T∑
t=q+1

χitwit(φ
∗
i0)

}

−

{
1

T̄

T∑
t=q+1

wit(φ
∗
i0)χ′it

}[{
1

T̄

T∑
t=q+1

χitχ
′
it

}]−1{
1

T̄

T∑
t=q+1

χitwit(φ
∗
i0)

}
.

The sums of χitwit and χitκit are weighted (linearly in φ∗0) sums of sample
estimates of cross-correlations between χitut and χitχt, respectively. As T →
∞, under our assumptions these sample correlations converge in probability
to their expectation and so the terms in {.} converge in probability to their
expectation uniformly in φ∗i0, which means that the first three terms together
converge in probability to σ̄2

i while the remainder are op(1).
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Finally, to establish (iii) we express Qc
T̄

(φ∗0) = Qc1
T̄

(φ∗0) +Qc2
T̄ (φ∗0)

, where

Qc1T̄ (φ∗0) ≡ −nT̄
2

ln (2π + 1) + T̄ ln |S(Φ∗0)| − T̄

2

N∑
i=1

ln ς(φ∗0i)
2
i ,

Qc2T̄ (φ∗0) ≡ − T̄
2

N∑
i=1

[
ln σ̄2

i (φ∗0i)− ln ς2i (φ∗0i)
]
,

with ς2i (φ∗0i) ≡ tr
{
S−1′si(φ

∗
0i)s

′
i(φ
∗
0i)S

−1Σ
}

. Noting that Qc2
T̄

(φ̃
∗
0) = 0, we may

write

1

T̄

[
QcT̄ (φ∗0)−QcT̄ (φ∗0)

]
=

1

T̄

[
Qc1T̄ (φ∗0)−Qc1T̄ (φ̃

∗
0)
]

+
1

T̄
Q2c
T̄ (φ∗0).

The function Qc1
T̄

(φ∗0) is the expected value of the exact log likelihood func-
tion for a heterogeneous spatial autoregressive model with normally distributed

disturbances hence, by Jenson’s inequality, 1
T̄

[
Qc1
T̄

(φ∗0)−Qc1
T̄

(φ̃
∗
0)
]
≤ 0. As-

sumption 7 ensures that σ̄2
i (φ∗0i) > ς2i (φ∗0i) for all i = 1, . . . , N and hence

1
T̄
Q2c
T̄

(φ∗0) < 0.
Asymptotic Normality
Having shown identifiability and consistency, we define ξ ≡

[
φ∗′0 ,θ

′,σ2′]′,
with ξ̃ denoting the true parameter values. Since the vector function ∂LT̄

∂ξ con-
tinuous and differentiable, we may write

0 =
1√
T̄

∂LT̄ (ξ̂)

∂ξ
=
∂LT̄ (ξ̃)

∂ξ
+

1√
T̄

∂2LT̄ (ξ̄)

∂ξ∂ξ′

(
ξ̂ − ξ̃

)
,

for some ξ̄ ∈ [ξ̂, ξ̃] such that ξ̄ →p ξ̃. The asymptotic distribution of the QMLE
estimator then follows from normalising and rearranging

√
T̄
(
ξ̂ − ξ̃

)
=

[
1

T̄

∂2LT̄ (ξ̄)

∂ξ∂ξ′

]−1
1√
T̄

∂LT̄ (ξ̃)

∂ξ
.

As, following Assumption 1, ut is stationary with finite fourth moments so
is, under Assumptions 4, 5 and 6, χt and hence a central limit theorem for

stationary and ergodic processes can be applied to 1√
T̄

∂LT̄ (ξ̃)
∂ξ .

For ease of notation, we introduce two standardised variables. Define ζt =
[ζ1t, . . . ζNt]

′, such that ζt � σ2 ≡ ut, and denote Eζ3
it = µ3

i and Eζ4
it = µ4

i .
Define Ξt = [Ξ′1t, . . . ,Ξ

′
Nt]
′ such that Ξt � σ2 ≡ χt. We note that E(ζt) = 0

and E(ζtζ
′
t) = I. Let ℵ = E 1

T̄

T∑
t=q+1

ΞtΞ
′
t partitioned in such a way that ℵij =

E 1
T̄

T∑
t=q+1

ΞitΞ
′
jt and with block columns ℵi = E 1

T̄

T∑
t=q+1

[Ξ1t′, . . .ΞNt′]′Ξ′it Eval-

uating at the true parameter value, ξ̃ and making used of the relation y∗t =
G (ΘΞt + ζt)� σ2, produces the following expressions
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1√
T̄

∂LT̄ (ξ̃)

∂φ∗i0
=

1√
T̄

T∑
t=q+1

{gi[ΘΞt + ζt]ζit − gii} , so that

1√
T̄

∂LT̄ (ξ̃)

∂φ∗0
=

1√
T̄

T∑
t=q+1

{G0[ΘΞt + ζt]� ζt − vecd(G0)}

1√
T̄

∂LT̄
∂θi

= − 1√
T̄

T∑
t=q+1

Ξitζit,

1√
T̄

∂LT̄
∂σ2

i

=
1√
T̄

1

2σ2
i

T∑
t=q+1

(ζ2
it − 1).

The assumptions relating to Xt and the absence of serial correlation in

ut ensure that EΞtζ
′
t = 0 that, as expected, E 1√

T̄

∂LT̄ (ξ̃)
∂ξ = 0. By then de-

ploying the law of iterated expecations, Davidson and Mackinnon (1993, p292)

E

{
T∑

t=q+1

∂Lt
∂ξ

T∑
s=q+1

∂Ls
∂ξ′

}
= 0 for t 6= s.

The covariance matrix for 1√
T̄

∂LT̄ (ξ̃)
∂ξ is based on taking the expectation of

outer products, using the result that, for i 6= j, Eζritζjt = 0, for r = 1, 2, 3.

E

{
1√
T̄

∂LT̄
∂φ∗i0

1√
T̄

∂LT̄
∂φ∗i0

}
= g2

ii + g′igi + g′iΘℵΘ′gi + g2
iiµ

4
i + 2µ3

i giig
′
iΘE

{
1

T̄

T∑
t=q+1

Ξit

}
,

E

{
1√
T̄

∂LT̄
∂φ∗i0

1√
T̄

∂LT̄
∂φ∗′j0

}
= gijgji,

E

{
1√
T̄

∂LT̄
∂φ∗i0

1√
T̄

∂LT̄
∂θ′i

}
= g′iΘℵi + µ3

i giiE

{
1

T̄

T∑
t=q+1

Ξ′it

}
,

E

{
1√
T̄

∂LT̄
∂φ∗i0

1√
T̄

∂LT̄
∂σ2

i

}
=

1

2σ2
i

[
µ3
i g
′
iΘE

{
1

T̄

T∑
t=q+1

Ξt

}
+ gii(µ

4
i − 1)

]
,

E

{
1√
T̄

∂LT̄
∂θi

1√
T̄

∂LT̄
∂θ′i

}
= ℵii,

E

{
1√
T̄

∂LT̄
∂θi

1√
T̄

∂LT̄
∂σ2

i

}
=

µ3
i

2σ2
i

E

{
1

T̄

T∑
t=q+1

Ξit

}
, and finally

E

{
1√
T̄

∂LT̄
∂σ2

i

1√
T̄

∂LT̄
∂σ2

i

}
=

1

4σ2
i

(µ4
i − 1).

59



At the same time the non-zero elements of H ≡ − 1
T̄
E ∂2LT̄
∂ξ∂ξ′ are

− 1

T̄
E

∂2LT̄
∂φ∗0i∂φ

∗
0i

= gijgji + g′igi + g′iΘℵΘ′gi, i = j,

− 1

T̄
E

∂2LT̄
∂φ∗0i∂φ

∗
0j

= gijgji,

− 1

T̄
E
∂2LT̄
∂φ∗0iθ

′
i

= g′iΘℵi,

− 1

T̄
E

∂2LT̄
∂φ∗0i∂σ

2
i

=
gii
σ2
i

,

− 1

T̄
E
∂2LT̄
∂θi∂θ

′
i

= ℵii, and finally

− 1

T̄
E

∂2LT̄
∂σ2

i ∂σ
2
i

=
1

2σ4
i

.

The result follows from It can be seen that when ut is normally distributed so
that µ3

i = 0 and Eµ4
i = 3, ∀i then QML estimation become exact maximum

likelihood estimation and the information equality holds. �
Appendix 4: Proof of Theorem 2
In the linear case, it can be shown using the Frisch-Waugh Lovell theorem

that control function estimation becomes two stage least squares estimation.
This results from multiplying both sides of equation (20) by the annihilation
matrix for v̂it, [M v̂i ] = [I−Mziy

∗
i (y
∗′
i Mziy

∗
i )
−1y∗′i Mzi], where for any matrix

A of full column rank we define MA ≡ I −PA and PA ≡ A(A′A)−1A as the
projection matrix into the column space of A. Since z1

i lies in the column space
of zi, [M v̂i ]z

1
i = z1

i , whereas

[M v̂i ]y
∗
i = [I −Mziy

∗
i (y
∗′
i Mziy

∗
i )
−1y∗′i Mzi]y

∗
i = P ziy

∗
i ,

the fitted values from regression (16), the t’the element of which is y∗it − v̂it.
Since is the projection of the endogenous variable y∗it on the instruments zit, it
follows that the two stage least squares residuals are given by ûit = êit + v̂itρ̂,
the part of yit that is not explained by these exogenous regressors and fitted
values.

Then, also following Assumptions 1, 6 and 7’ and Lemma 2 the sequence
zi,tui,t is a stationary, ergodic martingale difference sequence with finite fourth
moments. The consistency and asymptotic normality of the instrumental vari-
ables estimator then follow from White (1984, 5.27). �
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