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Abstract

We use data from a farmers’ survey in Malawi to compare two
agricultural technologies: monoculture maize and crop diversification
(maize-legume intercrop). We match farmers locations with data on
rainfall and air temperature to test whether more biodiverse agricul-
ture is better at absorbing weather shocks, and hence adaptation to
the climate change. The data make it possible to compare variation
not only over time, but also over different plots within the same time
period, which helps reduce omitted variable bias. The instrumen-
tal variable method is used to eliminate rainfall measurement error.
For a number of specifications, and controlling for fertilizer use, crop
diversification is both more productive than monoculture maize and
more resistant to weather shocks. Although I am not able to identify
the average population effect, I build a model to show that the effect I
identify is likely to prevail if the Malawian government decides to shift
the focus of its agricultural subsidy at the margin from fertilizer to
legume seeds and education. In particular, a reform that cuts fertilizer
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use by 10% (e.g. reducing the price subsidy) would be yield-neutral,
but more sustainable, if agricultural land used for maize-legume in-
tercrop is expanded by about nine percentage points.

Keywords: agricultural productivity, diversification, technology adop-
tion, biodiversity, sustainability, resilience, input subsidy, climate change

JEL-classification: O13, Q01, Q12, Q18, Q16, Q54

1 Introduction

People in Sub-Saharan Africa (SSA) are extremely food-insecure. In 2011-13
25% of the SSA population were undernourished, down only eight percentage
points from 1990. The region has been a laggard in meeting the Millennium
Development Goals (UN, 2014).

Improvements in food security in SSA have been pushed off track by fre-
quent and severe weather shocks. Because over 90% of the region’s cropland
is rain-fed, and insurance markets are underdeveloped, yields and hence food
security are highly dependent on rainfall. Droughts and dry spells during a
short growing season can have dreadful consequences. Sporadic rainfall in
the 2001-02 growing season in Malawi brought on a severe food crisis, which
caused as many as several thousand hunger-related deaths (ActionAid, 2006).

An additional risk is that agriculture in SSA relies on a supply of cheap
fertilizer, which is not always available. Many countries in the region offer
fertilizer subsidies, which are expensive for the government budget and the
country’s external position, and often require financial aid from international
donors. In 2012 about 10% of government spending went to Malawi’s Farm
Input Subsidy Program; of the total 12% was directly covered by foreign
aid (Chirwa and Dorwards, 2014). Fertilizer prices are extremely volatile:
annual swings of 20-30% are not uncommon. This undermines either the
sustainability of subsidy programs or adequate supply of fertilizer to the
field.

In many SSA countries monoculture maize has been the dominant tech-
nology used by smallholder farmers. In Malawi its share of agricultural land
increased from 27% in 2004 to 37% in 2009, despite slow long-run growth in
productivity and vulnerability to weather and fertilizer supply shocks. Many
scholars hail intensive monoculture as the only viable path to satisfy the ever-
growing demand for food (Borlaug, 2000; Morris et al., 2007; Tilman et al.,
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2011). Economists mainly deal with questions like effectiveness of subsidy
programs (Rickert-Gilbert et al., 2010; Dorwards and Chirwa, 2011), or why
smallholder farmers do not take up fertilizer or new hybrid seeds on a large
scale (Duflo et al., 2011; Suri, 2011).

Given Africa’s poor soils and dry climate, an often-proposed alternative
way to improve food security is crop diversification: growing different crops
together on one plot. In Malawi the often suggested technology is an intercrop
of maize and legumes. Farm trials and participatory farming demonstrate
that even with less fertilizer this technology can be as productive as mono-
culture maize (Searle et al., 1981; Snapp et al., 2010; Sileshi et al., 2010;
One Acre Fund, 2015). The technology now has the attention of the Gates
Foundation and the Malawian Government, which decided in 2013 to sub-
sidize legume seeds as well as maize seeds and fertilizer. The question that
remains is how crop diversification performs against monoculture maize in
real life conditions of smallholder farmers on a large scale, and whether crop
diversification is better at absorbing shocks confronting farmers.1 2

This paper uses data on Malawian rural households to test whether crop
diversification, in particular maize-legume intercropping, is indeed more pro-
ductive and resilient than monoculture maize. I match farmers’ locations
with multiple weather measures, which makes it possible to use the IV
method to reduce measurement error. Also, the unique structure of the
dataset allows me to observe not only farmers over time but also the perfor-
mance of both technologies managed by the same farmer at a single point in
time. This is important for reducing the omitted variable bias, though it is
still not possible to identify an average population effect. However, I build
a model of farmer’s optimal technology portfolio choice, and show that the
effect which I do identify is likely to prevail if the government decides to shift
the subsidy focus at the margin from maize seeds and fertilizer to legume
seeds and education about crop diversification.

Controlling for the use of fertilizer, I find crop diversification to be more
productive than monoculture maize. This result is robust to variety of es-
timation specifications and variable definitions, although for some of them
the result is not statistically significant. According to the preferred specifi-

1As shown by Duflo et al. (2016), controlled experiments are not always informative
about the policy implications in real life

2In few studies crop diversification is included as one of the regressors, and is shown
to improve yields. See Sheahan et al. (2013). The variable is, however, never the focus of
the study, and its interaction with weather and fertilizer shocks is not explored
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cation, a ten percentage points shift in land use from maize to maize-legume
intercrop is likely to raise average calorie yield by 2.4 percent. The better
performance of the maize-legume intercrop seems to be driven by high pro-
ductivity of legumes and the fact that they do not seem to interfere much
with the growth of maize even when planted densely together. At the same
time, on average the intercrop is not more productive than maize-legume
rotation.

I also find that Malawian farmers are highly vulnerable to fertilizer sup-
ply and weather shocks, and that more biodiverse agricultural technology
likely works as a shock absorber, although again the results lose significance
in some specifications. A half historical standard deviation negative shock
to rainfall is expected to reduce the average historical calorie yield by almost
four percent. It would cost government about 0.9 percent of GDP to compen-
sate the losses to farmers at 2013 maize price and the exchange rate. A ten
percentage points increase in land used for maize-legume intercrop is likely
to reduce the yield loss to 3.5 percent, which is equivalent to a reduction in
the compensation cost of 0.1 percent of GDP. A similar pattern is observed
for rainfall variance, temperature, and fertilizer supply shocks. Reforming
the subsidy program by reducing fertilizer use by 10 percent and increasing
use of maize-legume intercrop by nine percent would be yield-neutral but
would make Malawi’s agriculture more resilient and more sustainable. Fi-
nally, I find that maize-legume intercrop is also more weather-resistant than
maize-legume rotation or growing maize and legume separately.

2 Background

2.1 About Malawi

Malawi is a land-locked country in SSA. Despite sustained economic growth
of about 7% per year for the past five years, the country’s GDP per capita
in 2010 was only 925 PPP units, which was in the lowest 5% of the world’s
distribution. Malawi’s population is 13 million people, 40% of which were
living on less than USD 1.25 per day in 2010. Farmers represent 78% of the
population. According to Dorwards et al. (2010), only 10% of them are net
sellers, i.e. produce surplus over their own consumption. Maize is by far the
main staple crop in the country: it is grown by 97% of the farmers, and it
accounts for 60% of total calorie consumption in the country.

4



Figure 1: Usual cropping season of a Malawian household

Note Copied from MNVAC (2005)

2.2 A year in life of Malawian subsistence farmer

Maize is grown in Malawi without irrigation during the single rainy season
between October and April. The usual cropping season is depicted on Figure
1. Weather can cause significant fluctuations of maize harvest. The plant
has relatively shallow root system, which makes it dependent on soil moisture
and consequently regular rainfall. Low precipitation between January and
March is harmful to the harvest. High rainfall variation is damaging as well.
Especially dangerous are dry spells of more than a week in January to March
during maize’s flowering and early grain filling. For example, the Malawian
aggregate maize harvest decreased by about 40% in 2004/05 most likely as a
result of two weeks without rain in February. In addition, Lobell et al. (2011)
provides empirical evidence on negative impact of (too) high temperature on
maize productivity (up to 1.7% decrease for each day above 86F (30C)). At
the same time, moderate increases in temperature are expected to affect the
harvest favorably.
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2.3 Legumes and maize-legume intercrop

In addition to being vulnerable to rainfall shocks maize can deplete soils of
nutrients - in particular carbon and nitrogen - if grown continuously without
fallow periods. Nitrogen is an essential component of a plant’s nutrition.
Without sufficient quantity of nitrogen in the soil, yields can fall significantly.
One solution to this problem is to use inorganic fertilizer. An alternative is
to intercrop (grow at the same time) or rotate (grow one after another) maize
with nitrogen-fixing plants, such as legumes.

Even though the supply of nitrogen in nature is practically boundless,
most of it is contained in our atmosphere (70% of its volume). Most plants
are not able to fix nitrogen directly from the atmosphere. They use ammonia
(NH3) in the soil, which is being produced by bacteria using air. Legumes
are able to attract these bacteria on their roots by supplying them other
nutrients. In exchange the bacteria fix nitrogen from the atmosphere and
produce ammonia for the plant.

Growing legumes with maize in an intercrop can affect average yield in
several ways (see Figure 2 for a photo of a plot with maize-legume intercrop).
Since legumes fix nitrogen, it can increase nitrogen available for maize too
(so-called nitrogen sharing). It can also improve the soil quality over the long
term.3 Intercropping also allows for denser planting (f.e. a row of legume
between two regular rows of maize), and hence more efficient use of land,
nutrients and water. A field with more diversified agriculture is likely to
attract less insect pests (Wetzel et al., 2016). At the same time, planting
maize and legumes in close proximity to each other may lead to inter-species
competition (so called competition depression), but given that the plants
have different height, root systems and growing cycles, the impact of this
competition on yield is likely to be limited.

Additional potential benefit of growing maize and legumes together is that
the system may become more resistant to weather shocks. Legumes provide
more cover for the ground. They also shed leaves, which improves the organic
matter of the soil. Together these factors increase the capacity of soil to
store water. Most legumes also have deeper root systems than maize, which
makes them more weather-resistant. The usual risk diversification argument
is also at work here - since the plants have different growing cycles, weather
shocks are likely to have differential impact on the yields, and hence more
diversified system is likely to be more stable. Even though this argument

3This argument also works for the maize-legume rotation
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Figure 2: A plot with the maize-legume intercrop

Note Taken from www.cirad.fr. Accessed October 20, 2016.

works in general for growing more than one crop in one season (f.e. maize
and legume on different plots), intercropping gives an additional momentum
to it. In case of an adverse weather shock, a failure of one of the crops would
reduce inter-species competition on the plot and hence increase the yield of
the other crop.

2.4 Agricultural Input Subsidy Programs

Malawian agricultural input subsidy was first implemented in 2005/06 after
poor harvest season of 2004/05, and then every year afterward. It consisted
of distribution of vouchers to roughly 50% of farmers to receive fertilizers for
maize production at a 90% discount, and further distribution of vouchers for
improved maize seeds and fertilizer for tobacco.

According to the Malawian government, the main objectives of the input
subsidy are national and personal food self-sufficiency and food security, as
well as income increase among the poorest. Poverty and food insecurity are
seen as major market failures and causes for other negative externatilities,
thus warranting government intervention. An additional reason for input
subsidy is potential information externality. It is frequently argued that
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farmers do not realize the full payoff to the fertilizer, and therefore they need
to be encouraged to use it and learn.

Information externality argument also applies to maize-legume intercrop-
ping. While the technology is not new, 4 it has not been traditionally used in
all regions of the country, and it has been gradually crowded out by mono-
culture maize in recent decades, not least due to maize seed subsidy and
government extension. Besides with climate rapidly changing and becoming
more prone to droughts, farmers increasingly need to learn how to cope with
the weather shocks. Maize-legume intercrop is one of the strategies. At the
same time, some recent studies suggest that farmers likely do not fully realize
the potential benefits of this technology. For example, after on-farm trials by
the One Acre Fund in Kenya the adoption rate of the maize-legume intercrop
increased by up to 40 percentage points (One Acre Fund, 2015). Another
example, a so-called On-Farm Cropping Verification Trial - a 1998-2000 ex-
periment of planting and educating Malawian farmers about six different
technologies - demonstrated that of those who did not use the maize-pigeon
pea intercrop before, 67% decided to use it after being shown how to properly
use it.5

An additional potential obstacle to the wider spread of the maize-legume
intercropping is the absence of necessary infrastructure. For example, in 2009
pigeon pea was being sold only in 25% of the villages, the rest of the farmers
had to walk long distances to purchase the seeds.

At the same time, the technology could be more labor and seed intensive
than monocropped maize, which would also stall its dissemination, and it
would be the case against the subsidy. However, field trials suggest that the
labor requirements are not too different among the two technologies, at least
for legume species that are grown in Malawi (Snapp et al., 2003). Intercrop
may require more labor at seeding and harvesting, but then it may require less
weeding in between. Even if the intercrop is more seed and labor intensive,
but its yield is sufficiently high, the government might still be interested in
subsidizing it, since it would increase agricultural productivity per unit of
scarce arable land.

The input subsidy is costly, however. For example, 2008/09 subsidy pro-
gram accounted for 15% of country’s budget. Therefore, if it is to be con-

4Growing maize and legumes together has been practiced as early as 3000 years ago in
Americas - a system known as “the three sisters” along with squash.

5See Gilbert et al. (2002), and also Kerr et al. (2007)
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tinued, it is of utmost importance to maximize the program’s efficiency, i.e.
yielding maximum food security and minimizing the risks at the smallest
cost possible. This includes the choice of inputs to subsidize, as well as the
choice of extension activities.

3 Data

I use a panel of three surveys of Malawian households, which were imple-
mented and used to track the progress of agricultural input subsidy pro-
grams in 2006-2009. The first wave - Integrated Household Survey Round
2 (IHS2) - was conducted from March 2004 to March 2005, and served as a
baseline survey for the subsequent waves. A total of 9494 households were
asked about a wide variety of topics, such as health, expenditures, time use,
agricultural practices, etc. The next two waves - Agricultural Input Subsidy
Survey 2007 (AISS07) and AISS09 - were conducted in May-July 2007 and
February-July 2009 correspondingly. Due to the resource constraints these
surveys were of much smaller scale than IHS2: only 3169 and 1918 house-
holds were surveyed correspondingly, and the set of questions was restricted
mainly to such topics as agricultural practices, and in particular fertilizer
use. In all three waves, the households were randomly sampled by district
(tier 1 of Malawian local government), traditional authority of sub-chief unit
(tier 2), and enumeration area (local sampling unit - EA), and most of the
attrition between wave 1 and waves 2 and 3 comes from the random jettison-
ing of entire EA’s. The number of observations and the attrition rates are
given in Table 1. Note that the actual number of households participating in
the three surveys is higher than the one reported and used in this paper, as I
dropped those households, which did not participate in agricultural activity
during the last cropping season, and households, which did not report their
harvest.

A unique and useful feature of the data is that, where applicable, it
is disaggregated by plot for each household. Plot is an area in which a
uniform, consistent crop management system is used. The household-plot
disaggregated data includes inputs and outputs of farming: use of fertilizer,
seeds, number and timing of weeding, harvest by each crop grown on a plot.6

6Data on seeds and weeding are not available for all waves of surveys. Also data on
seeds are not reported by crop
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Table 1: Malawian households survey: Available observations and attrition

Indicator Wave 1 (IHS2) Wave 2 (AISS07) Wave 3 (AISS09)
N households, total 9753 3184 1918
N households, all waves 1242 1242 1242
N households, at least two waves 2752 2935 1489
N households, common with prev.
wave

n.a. 2720 1457

Attrition from previous wave n.a. 71% 54%
Exogenous attrition (due to sampling
design),% of attrition

n.a. 92% 81%

N households replaced/dropped n.a. 557 320
N plots, total 19703 5195 5022

Note Abbreviations: IHS2 - Integrated Household Survey Round 2 (1994-1995), AISS07 - Agricultural
Input Subsidy Survey Round 1 (2007), AISS09 - Agricultural Input Subsidy Survey Round 2 (2009).
Population of households is restricted to those engaged in agricultural activity (growing crops) and who
reported their harvests. Definitions of indicators: N households, total - total number of interviewed
households in a current wave of survey; N households, all waves - number of households, which were
interviewed in all three waves; N households, at least two waves - number of households in a current
wave, which were interviewed in at least one additional wave; N households, common with prev. wave -
number of households, which were interviewed in current and previous waves; difference with the
previous indicator is that some households were interviewed in Wave 1 and Wave 3 only; Attrition from
previous wave - households which were not interviewed in a current wave but were interviewed in a
previous wave, as a percentage of total number of interviewed households in a previous wave; Exogenous
attrition (due to sampling design) - households from enumeration areas, which were jettisoned in a
current wave, but were sampled in a previous wave, as a percentage of total number of households
subject to attrition; N households replaced/dropped - number of households from EAs, which were
sampled in both current and previous waves, but were subject to attrition in a current wave; N plots,
total - number of plots owned by households interviewed in a current wave
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General information about each household is also reported: demographic
structure, alternative sources of income, etc.

The final dataset represents a ”two-dimensional” panel of Malawian house-
holds. First, as in usual panel, I am able to observe farming households over
time, which allows me to control for time-constant characteristics of the
households. The second dimension is geographical - within one period I am
able to observe farmers using different technologies at different plots. This
allows me to control for all characteristics, including the time-changing ones,
which are common to plots cultivated by the same household. I am not able
to identify plots across years, as farmers numbered them differently during
each wave, but I do track the technology use over time.

3.1 Measuring crop diversification: agricultural tech-

nologies in Malawi

As much as 50 different crops were grown in Malawi in 2003-2009. They are
listed in Table 14 in Appendix. Some crops are allocated a separate plot,
some are grown together on the same plot. Farmers were asked to name up to
five most important crops for each plot. On average, 1.76 crops are reported
per each plot. Fifty two percent of plots in the sample grow only one crop,
25% grow two crops, 14% - three, 6% - four. Only 2.6% plots grow five crops,
so the upper boundary does not seem too binding. Altogether 2109 different
combinations of crops are grown.

Local maize and hybrid maize are the most popular crops. Either one
of them is grown on 62% of all plots in the sample. The group of legumes
includes groundnut, ground bean, bean, soybean, pigeon pea, peas, cow peas,
mucuna, and hyacinth bean. At least one of the legumes is grown on 44%
of the plots. Non-food crops, tobacco and cotton, which are primarily grown
to get cash, comprise 8% of the plots. Other popular crops are sorghum,
nkhwani, cassava, sweet potato.

The summary of the most popular agricultural technologies is presented
in Table 2. For each technology I list shares of plots used by it - total and
for each wave separately.

Two technologies that I compare in my main specifications are maize (M)
and maize-legume intercrop (ML). A technology is M if at least one of the
crops listed on the plot is local maize, hybrid maize or open pollinated variety
(OPV) maize, and no legumes are grown on the plot. A technology is ML
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if both maize and at least one of the legumes are grown on the plot. Thirty
percent of the plots use intercrop of maize with one of the legumes, maize
without legumes is cultivated on 32% of plots.

I chose to take the broadest definition for M and ML in my main specifi-
cations. In particular, other crops except maize and legumes are allowed to
grow on both M and ML plots. Also, even if very little legume or maize is
grown on a plot, it would still make it to the estimation.7 I opt for the broad-
est definition for two reasons. First, even though I am likely to pick up some
noise in the data, I am also sure not to dismiss any relevant observations.
As Table 3 shows, in absolute majority of ML plots harvest shares of maize
and legumes are dominant (average is 96%). However, if one goes too strict
and requires only maize and legumes grown on ML plots, one would loose
34% of observations. Second, even though one could base the definition on
certain thresholds of maize and legume harvest shares, any such definition
would be arbitrary and potentially could dismiss relevant observations. For
example, Table 3 shows that there are many plots with a small (less than
5%) harvest share of legumes. This could be because legumes are simply not
dominant crops on these plots, in which case the plots are not maize-legume
intercrops. But this could also be due to a failure of a dominant crop, and one
of the advantages of crop diversification is that it provides insurance against
such failure (harvest of the other dominant crop). Hence, one would want
to include these plots in the sample.8 Finally, even though M plots include
few intercrops of maize with non-legume plants, I do want to separate out
intercrops of maize and legumes for the reasons listed in Section 2.3.

As a robustness check, I also check other definitions of M and ML: maize
and intercrop when maize and legumes are listed among three most important
crops, maize and intercrop without any other crops on the plot, maize and
intercrop only on plots with significant harvest shares of both. I also check
specifications with dummies for plots with only maize or legumes to see
presence of other crops significantly affects my results. Finally, I also apply
a “X vs. 100-X” rule, which requires the harvest share of legumes on ML
plots to be at least X%, and the harvest share of maize on M plots to be at

7As a result, some of the ML plots could, in some sense, be “less intercropped” than
some M plots. For example, a plot with 96% maize and 4% cassava (non-legume plant)
would be considered M plot, while a plot with 97% maize and 3% pigeon pea would be
considered ML

8I do not observe seed input or area seeded by crop, so I cannot use these to define ML
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Table 2: Technology use by Malawian farmers, shares by plots

Technology Definition wave 1
(IHS2)

wave 2
(AISS07)

wave 3
(AISS09)

total

M maize, no legume 28.68 40.51 37.06 32.26
H hybrid maize, no legume 16.38 21.79 18.98 17.8
ML maize and legume 25.58 39.26 34.65 29.61
M13 maize - one of 3 most impor-

tant crops
28.68 40.51 37.06 32.26

ML13 maize and legume - one of 3
most important crops

23.52 38.23 33.87 27.96

M only maize - single crop on plot 21.61 31.07 21.35 23.26
ML only maize and legume - single crops

on plot
12.92 22.28 17.48 15.39

MPp maize and pigeon pea 12.51 21.11 15.43 14.56
MB maize and beans 9.21 8.56 11.64 9.52
MGn maize and ground nuts 6.63 13.29 9.63 8.35

Note Abbreviations: IHS2 - Integrated Household Survey Round 2 (1994-1995), AISS07 - Agricultural
Input Subsidy Survey Round 1 (2007), AISS09 - Agricultural Input Subsidy Survey Round 2 (2009).
Legumes include groundnut, ground bean, bean, soybean, pigeon pea, peas, cow peas, mucuna, hyacinth
bean. Maize include local maize, OPV and hybrid. The numbers in the table are shares of corresponding
plots in total.

least (100-X)%.9 Qualitatively the results are similar, although as expected
due to reduced number of observations, some of them become statistically
insignificant. 10

Figure 3 breaks down the M and ML plots by crops. Both local and
hybrid (supposedly more productive) maize are used to almost equal extent
on monoculture and intercropped plots. Quite a few plots mix the two, both
M and ML. Most popular legumes are pigeon pea, bean and ground nut.

An important feature of the agriculture technology use in Malawi is that
many farmers apply two and more technologies (on different plots) within
one growing season. Table 4 reports the distribution by wave. Most farmers
still use only one technology, but as much as 800 of them over three waves
use two. Low number for Wave 1 is because the harvests in the IHS2 survey

9This rule makes sure that in some sense M plots are not more “intercropped” than
ML plots. For example, under the broad definition, a plot with 95% maize and 5% cassava
(non-legume crop) would be defined as M plot. A plot with 97% maize and 3% legume
would be defined as ML plot. In this case, the M plot is actually more diversified than the
ML plot, which would be desirable to avoid, even though I do want to specifically test for
maize-legume intercrops because of their peculiar properties (see Section 2.3). I test the
rules with X=3 and X=5

10The results are reported in Tables 20 - 24
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Table 3: Maize (M) and maize-legume intercrop (ML): Harvest shares by
crops

crop mean sd p(10) p(25) p(50) p(75) p(90)
M plots, harvest shares of ...

Maize 0.97 0.12 0.96 1 1 1 1
ML plots, harvest shares of ...

Maize 0.73 0.24 0.36 0.6 0.79 0.92 0.98
Legumes 0.23 0.23 0.01 0.06 0.15 0.33 0.58
Maize + Legumes 0.96 0.1 0.85 0.97 1 1 1

Note Legumes include groundnut, ground bean, bean, soybean, pigeon pea, peas, cow peas, mucuna,
hyacinth bean. Maize include local maize, OPV and hybrid. Harvest shares are calculated based on the
caloric value of crops.

Figure 3: Composition of M and ML plots by crops

Note Main legumes: pigeon pea, bean, ground nut. Included are only the plots used in
the estimation.

14



Table 4: Technology use and diversification by Malawian farmers, number of
households

wave 1 (IHS2)

M ML
M 4183 208
ML 3656

wave 2 (AISS07)

M ML
M 1261 217
ML 1266

wave 3 (AISS09)

M ML
M 694 414
ML 707

Note Abbreviations of technologies: M - maize, ML - maize-legume intercrop. Diagonals are numbers of
households using only one corresponding technology at a given year. Above diagonals are numbers of
households using two corresponding technologies at a given year. Reported numbers are after all
adjustments (i.e numbers used in estimation).

are reported only as aggregates across all plots. So, even though types of
crops grown on each plot are reported, I cannot differentiate between the
two technologies in my estimation if they involve same crops.11 Plots, where
it is impossible to identify harvests, are dropped from the estimation.

3.2 Measuring output

My objective in this paper is to measure real agricultural output, as relates
to the food security. This is not straightforward when several crops are
harvested. Therefore I use several measures.

My main measure is the total energy output of the plot. The unit of
measurement is kilo calorie. The measure makes sense since both maize and
legumes are staple crops, and it is their nutritional value that the farmers
look up to. Besides food security is primarily defined as the access to a
minimum required number of calories per day (FAO, 2008). I use data from
Food Composition Tables of Food and Agriculture Organization of United
Nations (FAO) to transform multi-crop harvest into its energetic value. The
conversion rates are reported in Table 14.

I use four additional measures in my estimations. The first one is similar
to the real GDP of a country: it is cash value of harvests of all crops at
2007 (constant) national prices. National price of a crop is defined as the

11For example, if a farmer grows local maize on one plot, and local maize plus some
legume on another then harvests by plots are impossible to identify. At the same time,
some M and ML combinations are possible to identify, as I observe harvests by each variety
of maize, and I do observe types of crops grown by plot. For example, if a farmer grows
hybrid maize on one plot, and local maize plus some legume on another then I can identify
harvests by plots
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Table 5: Measures of harvest and fertilizer: Summary statistics
count mean sd p10 p50 p90

energy yield, mln kCal/ha 12606 2.89 2.65 0.55 2.05 6.28
cash yield, thousand MK/ha 12606 10.98 11.84 1.99 7.85 23.69
maize eqiuv. yield (Liu-Myers), tonnes/ha 12606 1.21 1.45 0.16 0.76 2.79
grain yield, tonnes/ha 12606 0.83 0.76 0.16 0.60 1.83
protein yield, kg/ha 12606 85.34 79.26 15.14 62.52 183.11
maize yield, tonnes/ha 12606 0.71 0.71 0.11 0.46 1.61
fertilizer applied, tonnes/ha 12606 0.08 0.11 0 0.04 0.25

Note: All summary statistics are calculated at a household level. Only farmers who use M or ML (or
both) are included. Exchange rate as of 2007 is 141MK per USD.

median of the crop’s price distribution over the whole country, as reported in
community surveys, which were conducted parallel to the household surveys
during each wave. The prices that I used are reported in Table 14. The
second measure is similar. It was proposed by Liu and Myers (2009) and
is defined as the cash value of the harvest in current prices divided by the
current price of maize. The measure takes into account the relative change
of maize price, but it is not clear why should it be used if maize productivity
is not sole focus of the research. The third measure is the amount of grain
produced - both maize and legume in case of intercrop. In other words,
this is just the weight of harvest. It is directly observable by farmers, and
probably best understood by them. Finally, the fourth measure is the total
protein output measured in grams. Again, I use FAO’s conversion rates for
transformation.

All measures of output are converted into yields per hectare. On house-
hold level (over all plots) yields are computed as geometrical averages of
yields by plots, where weights are the corresponding land shares. 12 Yields
summary statistics are reported in Table 5.

3.3 Measuring weather conditions

I match farmers’ locations on TA (traditional authority - third tier of gov-
ernment) level with the measurements of several weather conditions, which
are likely to affect maize and legumes harvest - rainfall, rainfall variation,
and temperature. All weather conditions are measured during the growing
season (January to March or April).

12The rationale for geometric average are explained in section on Identification
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Table 6: Weather indicators dataset: Descriptions
Name Full name Provider Measured in-

dicators
Method Cover. Resolution Start.

from
Freq.

CMAP Climate Prediction
Center Merged Anal-
ysis of Precipitation

NOAA/OAR/ESRL
PSD, Boulder,
Colorado, USA

Precipitation Satellite world 2.5x2.5
degrees

1979 5 days

RFE Rainfall Estimate FEWS NET
(Famine Early
Warning System
Network)

Precipitation Satellite SSA 8x8 km 1995 10 days

math Mathematica Weath-
erData

Wolfram’s Math-
ematica

Precipitation,
temperature

Weather
stations

world 17000
weather
stations

1949 0.1-10
days

Note: Web-addresses: CMAP - www.esrl.noaa.gov/psd/, RFE - earlywarning.usgs.gov/fews/index.php, math -
reference.wolfram.com/language/ref/WeatherData.html

Measurement of historical rainfall (and hence rainfall variation) in SSA is
not a trivial undertaking, as the weather stations are sparse and using out-
dated equipment, and so most measurements are proxies and interpolations.
To reduce the influence of a measurement error in my regressions, I collect
three rainfall measures: CMAP, RFE, and MATH. They are described in Ta-
ble 6. CMAP and RFE use satellite-based data and algorithms to derive the
precipitation data (see Xie and Arkin (1997) for more details), while MATH
uses the data from weather stations. To measure rainfall and rainfall vari-
ation at a traditional authority X I take the corresponding indicators from
the data point (point in the grid for CMAP and RFE, weather station for
MATH), which is the closest to the geographical center of X.13

The summary statistics for the weather indicators are reported in Table
7. The average rainfall in Malawi in 2003-09 is around 180 mm per month
from January to March, and the average temperature is around 23◦C. The
correlations between all three rainfall measures are positive, which is reas-
suring, but never greater than 0.4, which suggests non-trivial measurement
error. Indeed, CMAP and RFE rely on indirect rainfall measurement, and
their grid is relatively coarse. MATH relies on often untrustworthy data from
the weather stations, which are also very scarce in the region. For instance,
the mean distance from a TA to the closest weather station is 28 km (the
distance to the closest CMAP grid data point is 95 km). Combining several
weather indicators measures helps to reduce the effect of the measurement
error in the estimation, as one can see in the next sections.

13The coordinates of geographical center of X are derived as: lati-
tude=(max(latitude)+min(latitude))/2; longitude=(max(longitude)+min(longitude))/2
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Table 7: Weather indicators: Summary statistics
count mean sd p10 p50 p90

CMAP rainfall, January-March, mm per day 18293 5.75 0.91 4.44 5.68 6.76
CMAP rainfall variance, January-March 18293 4.56 1.17 3.41 4.55 6.36
RFE rainfall, January-March, mm per day 18293 6.44 1.13 4.78 6.70 7.76
RFE rainfall variance, January-March 18293 3.91 1.04 2.75 3.84 5.35
math rainfall, January-March, mm per day 18293 6.44 1.39 4.93 5.96 8.98
math rainfall variance, January-March 18293 3.07 1.26 1.65 2.84 4.92
math temperature, January-April, C 18293 22.38 2.48 20.18 21.38 27.46

Note: All summary statistics are calculated at a household level. For the rainfall and temperature - the
average over the indicated period; for the rainfall variance - the variance over the indicated period.

4 Identification strategy

4.1 General framework

Assume, the general production function of an average Malawian subsistence
farmer is Cobb-Douglas with two essential factors needed for non-zero output
- labor and (seeded) land:

Yixt = AixtL
γ1
ixtD

γ2
ixte

ǫixt , (1)

where Yixt is the output of household i using technology x at time t, L is
labor, and D is land. A is the total factor productivity, which includes
all the other factors that may affect output, including use of fertilizer and
weather conditions. eǫixt is the multiplicative productivity shock, which is
independent of other factors.

Dividing both sides of (1) by D we get the production function in per
unit of area terms. Taking logarithm and denoting per unit of area terms by
the corresponding small letters, and assuming that the production function
is constant returns to scale, we get:

log yixt = logAixt + γ1 log lixt + ǫixt (2)

Assume logAixt has the following form:

logAixt = β0 + β1Tix + β2V
(2)
ixt + β3V

(3)
it + β4V

(4)
ix + β5V

(5)
i , (3)

where T is the technology dummy - monoculture maize vs. crop diversifi-
cation. Technologies use varies by farmer. Also, farmers can use both tech-
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nologies at the same time (on different plots).14 V
(2)
ixt represents factors that

vary by time and by technology for each household: fertilizer use, farmer’s
experience and knowledge about the technology, etc. V

(2)
ixt can also include

interactions of Tixt with variables like weather or fertilizer. V
(3)
it represents a

wide group of factors that vary by household and by time, but not by tech-
nology: current farmer’s abilities and education, health, demography of a
household, preference for consumption and leisure, current wealth and credit
constraints, weather conditions, soil quality, geology, and in general any con-
temporary farmer’s or environment characteristics. V

(4)
ix and V

(5)
i represent

factors that are time-constant, and only vary by household and technology,
or only by household: for instance, technology’s labor or capital intensity, its
other time-constant characteristics (potential for drought resistance, needs
for certain composition of soil, etc.)

Many of the factors included in V ’s are not measured in the dataset,
or simply not observable, and can be correlated with the farmer’s choice of
technology. ”Two-dimension” panel structure of the dataset - the fact that I
observe farmers both over time and over multiple technologies - helps to put
many potential biases in check.

First, since we observe same farmers using different technologies at the
same time, we can include household-time fixed effects to effectively control
for V

(3)
it and V

(5)
i - a wide set of technology-constant but potentially time-

changing factors. In the household-time fixed effects regression the yields are
compared across plots using different technologies, within the same household
and year.

Second, we can also include household-technology fixed effects, which will
allow us to control for V

(4)
ix - the set of factors, which vary by household and

technology but constant over time. Note that the technology dummy Tix in
(3) is one of these factors, so β1 cannot be identified if we include household-
technology fixed effects. Only farmers who use both technologies at the same
time and for more than one period would be included in a regression with
both household-time and household-technology fixed effects.

An alternative way to control for V
(4)
ix , but not for V

(3)
it , is to use household

fixed effects in a traditional ”one-dimension” household-year panel, where all
plots of the household are assembled and analyzed as a single field.

14In the data there are cases when same technology is used on more than one plot. Since
I cannot identify plots over time, I simply join all plots that use the same technology into
a single plot-technology observation.
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4.2 Main specification and summary of identification

issues

The main specification that I use for (3) is the following:

log yixt = β0 + β1Tix + β31 ∗Wit + β21(Tix ∗Wit)+

+ β22 ∗ Fixt + β23(Tix ∗ Fixt) + ǫixt (4)

Here x is either maize (M) or maize-legume intercrop (ML), see definition in
Section 3.1. y is yield as defined in Section 3.2. T is one if x is ML, and zero
otherwise. W is a vector of weather indicators: rainfall, rainfall variation
within growing season, temperature, temperature squared, and temperature
cubed. All weather indicators are demeaned using the sample averages (re-
ported in Table 7).15 The latter two indicators are added to test possible
non-linearities in the response of maize yield to temperature, as recently ar-
gued in Lobell et al. (2011).1617 T ∗W is the interaction of the technology
dummy and weather indicator. F is a vector of fertilizer use indicators: fertil-
izer applied and fertilizer applied squared to reflect possibility of diminishing
returns. This variable is also demeaned using the sample average (reported
in Table 5).18 The demeaning of weather and fertilizer indicators is done to
provide for a reasonable interpretation of β1 - an effect of using ML versus M
when weather and fertilizer use are at the sample averages (because at the
sample averages W*T=F*T=0).

The coefficients of interest are β1, β21, and β23. If β1 > 0 then it means
that, everything else equal, maize-legume intercrop is more productive than
maize. If ML is also more weather shocks-absorbing than M then I expect
that β21 and β31 would have the opposite signs, and β21 < β31.

19 For example,
rainfall is likely to affect yield positively. For M the effect is β31 > 0, while

15Sample averages are very close to historical average in 2001-2010
16Temperature indicator is first demeaned and then squared and cubed, so that tem-

perature squared and temperature cubed are both zero at sample average
17As a robustness check, I also try non-linear (quadratic and cubic) specifications of

rainfall and rainfall variance. The results are qualitatively similar to the main specification,
even though I do find statistically significant non-linear effects of rainfall and its variance
on the yields. In this paper I decided to stick to conventional specifications from the
literature, while exploring the non-linearities in more detail is left for further research

18Like with the temperature, fertilizer indicator is first demeaned and then squared, so
that F 2 = 0 at the sample average

19Generally speaking, β21 and β31 are (1x5) vectors. The conjecture is that this rela-
tionship between the coefficients holds element by element
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for ML the effect is β31 + β21. It is also positive but smaller than β31, which
means that ML is less responsive to the weather shocks. The interpretation
is similar in case of fertilizer use.

I run (4) using three different estimation techniques. The first one is
pooled OLS: the unit of observation is household-technology, and no fixed
effects are included. It means that household X growing maize and the same
household growing maize-legume intercrop are considered two independent
observations. The next two techniques are household-time FE and household-
time and household-technology FE as described in the section above. There
again the unit of observation is household-technology (i.e. up to two ob-
servations per household per year), but with the corresponding fixed effects
included. 20

I also use an auxiliary specification in a traditional “one-dimensional”
household-year panel, where the observations are identified over household
and year, and technologies (plots) are lumped together:

log yit = α0 + α1θit + α31 ∗Wit + α21(θit ∗Wit)+

+ α22 ∗ Fit + α23(θit ∗ Fi1t) + ǫit (5)

The specification is similar to (4), but instead of technology dummy Tix there
is a land share of ML - θit. yit is a total yield of a household i at year t.
To make α’s in (5) be directly comparable with the β’s in (4) y should be a
geometric average of yields by the two technologies, and the weights are the
corresponding land shares. 21

Specification (5) is run using two estimation techniques. The first is
traditional household FE. Now the unit of observation is household-year,
all plots within the same household-year are lumped together. Household
FE allow comparing same households over time. The second estimation

20Household-time FE are run the following way. The dataset is declared a panel with
cross-section dimension identified by household-year i.d., and “time” dimension identified
by technology. Then a simple FE regression is run. The household-time and household-
technology FE are more complicated to run. First, I demean each variable by technology,
i.e. I manually remove household-time fixed effects. For any variable a, denote ä its
demeaned value, where mean is taken by technology for each household and year. Then
äixt = aixt −

∑

x

aixt. Households at any given year are dropped if they used only one

technology at that year. Second, I declare the dataset of the demeaned variables to be a
household-technology/year panel, and then run the FE regression. The standard errors
are correct since I cluster them by household in every regression

21For details, see Section A.2 in Appendix
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method is Arellano-Bond GMM,22 is added to reduce the bias in case the
strict exogeneity assumption is violated in the household FE. The chances
are that this assumption is indeed violated as most farmers in Malawi are
credit constraint and the harvest they collect likely affects the next year’s
harvest through health, productivity, and ability to buy inputs.23 Note that
these factors are taken care of in household-time FE as they are common to
all technologies used by the farmer within one year.

Table 8 summarizes the possible factors that affect yield and how various
estimation methods cope with controlling for these factors. There are two
threats to the identification of betas in (4) and (5). First, even though some
estimation methods, especially household-time FE and household-technology
FE, allow to control for plenitude of factors, none of the methods does it
all. Factors like (potentially time changing) technology-specific education,
experience, labor and seed input are likely to be correlated both with the yield
and with the choice of technology. The second threat is that the household-
time FE and household-technology FE, the two most robust methods, are by
definition applied only to a sample of farmers, which use both technologies
at the same time. The number of such farmers in the sample is quite large,
but they are still minority and they could be a special crowd, which raises
concerns about the sample selection bias.

In what follows I provide few remedies to the issues above. First, the
five estimators that I use allow to control for different sets of factors, and
hence potentially yield different magnitudes and directions of biases. So if all
estimators produce similar results then the biases are likely to be small-scale.

Second, in the next section I build a model of farmers choosing which
technologies to use. The model disentangles the sample selection bias and
how it links to the technology-specific factors, which I do not control for in
my regressions - education, experience, labor, seeds. None of the methods
I use consistently estimates the average treatment effect. But the model
shows that, even if I do not control for some technology-specific factors,
household-time fixed effects regression consistently estimates the likely effect
of government policy changes (e.g. technology-specific education or input
subsidy) if the changes are small. This is because the likely compliers to
such policy are those who already use both technologies (e.g. the sample for
household-time fixed effects regression) or those who are “close” to using the

22See Arellano and Bond (1991) for more details
23See Foster and Rosenzweig (2010)
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Table 8: Summary of estimation techniques: Identification and potential
biases

Est. method: pooled hhold-time hhold-time hhold GMM
OLS FE & techn. FE FE

Identification comes from comparing...

plots
plots over
hholds

plots over
hholds

and time

hholds
over time

hholds
over time

Factors (potential biases):
Technology + + + + +
Weather + + + + +
Fertilizer + + + + +
Geology -/+a +b + + +
General abilities, educa-
tion

- + + -/+c -/+c

Technology-specific edu-
cation, experience

- - -/+c -/+c -/+c

Labor - -/+d -/+c,d -/+c -/+c

Seede - -/+d -/+c,d -/+c -/+c

Credit constraints - + + - +
Selection bias no yes yes no no
“+” - controlled for; “-” - not controlled for; “-/+” - partially controlled for
a To the extent geology is similar within region (when regional dummies are included)
b To the extent that farmers do not systematically subject one of the technologies to better
local conditions. The (sparse) evidence from the surveys is that they are not. See
Table 17 in Appendix
c Only time-constant factors are controlled for
d Only factors common to both technologies: preference for leisure, labor supply
e I do have data on seed input by plot, but this data is likely unreliable. See
Section 7 for details
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two.
For large policy changes my results are less reliable. The actual effect

will depend on specific policies, and on systemic difference in labor and seeds
requirements between the two technologies. In Section 2.4 I argue that the
requirements are not too different. In addition, I control for the seed input
as one of the robustness checks, and I find no qualitative change in results.24

The time-constant labor and seed technology requirements are also controlled
for in household-time and technology fixed effects, but this specification is
not the main, because it does not allow to estimate β1, and the estimation
sample is too small to yield any statistically significant results.

4.3 Technology choice by farmers: A model

The objectives of the model are threefold. The first objective is to show
in which direction the technology-specific omitted variables, in particular
education and experience, but also labor and seed input (further - TSE),
affect the estimates of β1 in (4). The second objective is to check whether
the sample selection bias introduced by the household-time FE mitigates
the TSE bias or exacerbates it. Finally, the third objective is to show how
the choice of technology is likely to be affected if the government alters its
policies, e.g. cost of agricultural inputs and provision of technology-specific
education.

The main results are the following. First, the TSE bias can tilt β1 in
either direction, or it can also be zero. This is true both for pooled OLS
and household-time FE, so β1 is likely to be an inconsistent estimate of the
average population effect. Second, under a plausible assumption about the
TSE distribution, the TSE bias is smaller in household-time FE compared to
pooled OLS. Third, if the government reduces cost of one of the technologies
or provides more TSE the likely compliers with such a reform would be the
farmers, which are similar to those selected by the household-time FE. So the
effect of the reform is likely to be the effect estimated by the household-time
FE.

24Seed input is not used in the main specification as the data is incomplete and likely
unreliable. See Section 7
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4.3.1 Optimal portfolio of technologies

There are N farmers, each owns one unit of land. Each farmer chooses shares
of his/her land to be used for certain agricultural technologies. There is only
one period in the model, and the choice is between two technologies, e.g.
maize and maize-legume intercrop. The first technology gives an average
yield of f1i for farmer i, and costs c1i, the yield and cost of the second
technology are f2i and c2i correspondingly. For simplicity, I assume that
both technologies are take-it-or-leave-it - there is no choice on how much
fertilizer or seeds to use, the farmer either buys the necessary inputs and
uses the technology or does not buy the inputs and gets a return of 0. First
technology is subject to weather (or other kinds of) risks. When the weather
is bad, with probability 0.5, the yield is f1i − ǫ. With probability 0.5 the
weather can also be good, and the yield is f1i + ǫ. The cost does not depend
on the weather. The second technology is assumed to be riskless.25

The farmer i chooses αi - a share of his/her land to be used for the
technology 1. The rest of the land, 1 − αi, would go for the technology 2.
The farmer is risk-averse. He/she maximizes the following utility function
with respect to αi:

max
αi

0.5U(L) + 0.5U(H), (6)

where L = αi(f1i − ǫ− c1i) + (1− αi)(f2i − c2i), H = αi(f1i + ǫ− c1i) + (1−
αi)(f2i − c2i); and U ′ > 0, U ′′ < 0. The choice of optimal αi is no different
from the choice of optimal portfolio of two risky assets in finance.

The optimal αi should satisfy the following first-order condition:

U ′(H)

U ′(L)
≥ −

f1i − ǫ− c1i − f2i + c2i
f1i + ǫ− c1i − f2i + c2i

(7)

For farmer i if f1i − ǫ − c1i > f2i − c2i - i.e. technology 1 is more profitable
than technology 1 even in the bad state - then αi = 1. If f1i− c1i < f2i− c2i -
i.e. technology 1 is less profitable than technology 1 on average - then αi = 0.
This follows from the fact that in (7) U ′(H)

U ′(L)
is always smaller than one, because

U ′′ < 0, and H > L. The right hand side of (7) is smaller than one if and only
if f1i− c1i > f2i− c2i. Risk-averse users would always prefer less risky asset if

25The fact that only one technology is risky is a simplification without the loss of gen-
erality. I can assume both technologies to be risky, it will just introduce extra parameters
and lengthier calculations without any benefits
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the expected return is the same. Finally, if f1i − ǫ− c1i < f2i − c2i < f1i − c1i
then αi is between 0 and 1.

We can sort farmers by f1i−c1i−f2i+c2i, from the largest to the smallest.
Then there are two thresholds, k1 and k2, such that:

∀ i = 1, .., k1 αi = 1 (8)

∀ i = k1 + 1, .., k2 0 < αi < 1 (9)

∀ i = k2 + 1, .., N αi = 0. (10)

The punchline is that it is natural to hedge productivity risks by diversifying
if two or more technologies are available. The reason why it often does not
happen is that for some farmers the difference in net returns between the
technologies is too large - either they know very little how to use one of the
technologies, or its cost is prohibitively high. Such situation is not uncommon
in Malawi. See Section 2.4.

4.3.2 TSE bias: Arbitrary direction

In the sample of N farmers, k1 of them use only technology 1, N − k2 use
only technology 2, and k2−k1 use both technologies. Besides the technology
use, we only observe their yields f1i or f2i, or both if farmer i uses both
technologies - a total of N +k2−k1 observations. We want to find out which
technology is more productive, and so we run a regression:26

fi = c+ γTi + ξi, (11)

where fi is the yield , Ti is one if technology 2 is used, and zero otherwise.
Since Ti is a dummy, the OLS estimate of γ is simply: γ̂ = f̄2− f̄1, where

f̄j is a corresponding average over all those who use technology j.27 If the
true data generating process for f ’s were fj = c + γTj + ξ, where ξ is a
random error with zero mean, then γ̂ were a consistent estimator of true γ:

plimγ̂ = plim
(

f̄2 − f̄1
)

= γ(T2 − T1) = γ. (12)

Now suppose that the true data generating process for f ’s depends not only
on Tj but also on general abilities/education (E) and technology-specific ed-

26In this model, for simplicity, I concentrate only on β1 from (4), not the other coeffi-
cients of interest. The reasoning for these coefficients is similar

27See the proof in Appendix, Section A.3.1
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ucation/experience (TSE):28

fji = c+ γTji + λ1Ei + λ2TSEji + ξji, (13)

where, to remind, j is the technology index, i is the farmers’ index.
With (13), γ̂ is no longer, in general, a consistent estimator of the true γ:

γ̂ = f̄2 − f̄1 = γ + λ1(Ē2 − Ē1) + λ2( ¯TSE2 − ¯TSE1). (14)

The last two terms constitute a bias, the last term is a TSE bias. The
sign and the magnitude of these biases are arbitrary. They depend on the
distribution of the education and experience among the technology users.
For example, if technology 1 users have more education and experience then
γ̂ underestimates γ. If the education levels are approximately equal then the
bias is zero. Note that the general education bias is reduced due to the fact
that parts of Ē2 and Ē1, those of the farmers who use both technologies,
cancel out.

The next question is whether the bias changes if instead of pooled OLS
we restrict the sample to only those farmers who use both technologies.

4.3.3 TSE bias: Smaller for household-time FE

Suppose now instead of pooling all farmers together we restrict our sample
only to those who use both technologies - 2(k2 − k1) observations. The
relationship between γ̂ and γ is still (14), but the averages are taken over
(k1, k2) farmers. This procedure with our simple specification is equivalent
to running the household-time FE in (11).29

The general education bias - the second term in (14) - is zero if we restrict
the sample. This is because Ē2 and Ē1 are taken over the same sample, and
the general education does not depend on technology.

The technology-specific education bias - the third term in (14) - is not zero
even if we restrict the sample. Even though they all use both technologies,

28There could be more factors, and the factors could be different. The main distinction
here is between the factors that are “common” to both technologies (e.g. E), and the
factors that are ”‘technology-specific”’ (e.g. TSE)

29By definition, household-time FE estimator is OLS on demeaned values of variables
from (11), where the demeaning is performed by technology. The demeaned value of f1i is
(f1i − f2i)/2, that of f2i is (f2i − f1i)/2, that of T1i is -0.5, and that of T2i is 0.5. So OLS
on these demeaned values means regressing (f2i − f1i)/2 on 0.5, which yields γ̂ = f̄2 − f̄1
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farmers can still have systematically different experience or education related
to these technologies. Intuitively though the difference between TSE2i and
TSE1i should not be too large for those who use both technologies. Otherwise
farmers would specialize in only one of them.

Whether the technology-specific education bias in the household-time FE
is always smaller in absolute value than the one in pooled OLS depends on
the distribution of TSE. The following proposition shows that this is the
case if TSE is normally distributed.

Proposition 4.1 Let TSE1 ∼ N(µ1, σ1) and TSE2 ∼ N(µ2, σ2). Then

|E(TSE2 − TSE1)|pooled OLS > |E(TSE2 − TSE1)|hhold−time FE (15)

Proof See Appendix, Section A.3.2.

4.3.4 Effect of government subsidy

The previous two sections show that neither pooled OLS nor household-
time FE consistently identify the average population effect of technology on
yield. Sample selection and technology-specific biases are not removed. A
question one may ask though is whether we actually need to identify the
average population effect if our goal is to analyze government policies that
intend to affect the current state of technology use. To assess the results of
such government policy we need to identify the effect only on compliers with
this policy rather then on the whole population. Unless the government can
directly force particular farmers to use this or other technology, the set of
compliers will also be subject to selection bias.

Suppose the government wants to induce farmers to use more of tech-
nology 2, and it has two types of reforms in its mind. First, it can re-
duce/subsidize the cost of the second technology, which will automatically
increase its net returns (f2 − c2) for each farmer. Second, the government
can provide technical assistance/education on the second technology. This
reform raises TSE2 for each farmer and thus f2. Both reforms will affect
(increase) share of land used for the technology 2 for those farmers who al-
ready use both technologies. Moreover, they can also affect k1 and k2 - the
thresholds at the technology selection: some farmers, who used only technol-
ogy 1 before, may join the group of diversifiers; other farmers may switch to
specializing only in technology 2.
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Suppose government provides the cost subsidy for technology 2, such
that the aggregate share of land used for the technology increases by δ. Such
subsidy affects the selection of farmers into technologies, but it does not
affect farmers’ productivity in each particular technology (e.g. f1i and f2i).

Denote the new land share of technology 1 by α∗

i , and the new technology
use thresholds by k∗

1 and k∗

2. Then:

∀i = 1, .., k∗

1 α∗

i = αi = 1 (16)

∀i = k∗

1, .., k1 0 < α∗

i < 1 and αi = 1 (17)

∀i = k1, .., k
∗

2 0 < α∗

i < 1 and 0 < αi < 1 (18)

∀i = k∗

2, .., k2 α∗

i = 0 and 0 < αi < 1 (19)

∀i = k2, .., N α∗

i = αi = 0 (20)

The change in f - average aggregate agricultural productivity of the country
- as a result of the subsidy is the following:

∆f =
1

N

N
∑

i=1

(f2i + α∗

i (f1i − f2i))−
1

N

N
∑

i=1

(f2i + αi (f1i − f2i)) =

=
1

N

N
∑

i=1

(αi − α∗

i ) (f2i − f1i) =
1

N

k2
∑

i=k∗1

(αi − α∗

i ) (f2i − f1i) . (21)

Using (13), equation (21) can be rewritten:

∆f = γ
1

N

k2
∑

i=k∗1

(αi − α∗

i ) + λ2
1

N

k2
∑

i=k∗1

(αi − α∗

i ) (TSE2i − TSE1i) (22)

Further assume ∆α and ∆TSE are not correlated, which is not unreasonable:
∆α = 0 for small ∆TSE, at k∗

1 it starts to increase, reaches its maximum
and goes back to zero at k1, when ∆TSE is large.30 Then (22) turns into:31

∆f = (ᾱ− ᾱ∗)
(

γ + λ2( ¯TSE2 − ¯TSE1)
)

, (23)

30In general, the correlation depends on the risk-aversion of the farmers and their utility.
Theoretically, it can be non-zero, but it is likely to be small. See below the discussion on
the model simulation

31Equation 23 follows from the fact that for any two random variables x and y E(xy) =
cov(x, y) + E(x)E(y)
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where in ¯TSEj the average is taken over i ∈ (k∗

1, k2). By assumption, ᾱ−ᾱ∗ =
δ. The second multiplier of (23) - name it the effect of the cost subsidy -
looks very similar to γ̂ - the estimator of γ that we obtain in household-time
FE regression. The difference is that the TSE bias in (23) is over i ∈ (k∗

1, k2)
rather than over i ∈ (k1, k2). The compliers of the cost subsidy are those,
for whom the change in technology cost matters. These are the farmers
with moderate ∆TSE - those that already use both technologies or those
that were on the margin before the subsidy was introduced. That is why
it is their productivity rather than productivity of an average farmer in the
population that is important at identifying the effect of the reform.

How large is the difference between the TSE bias in (23) and the TSE bias
at household-time FE? For a small subsidy most of the compliers, and hence
most of the land use change, are in the group (k1, k2), and so the difference
is small. For instance, if the subsidy is so small that it only induces land
use change among existing users of technology 2, and no new users, then the
difference is zero, and household-time FE consistently estimates the effect
of the subsidy. If the new users of technology 2 do appear, then household-
time FE would generally overestimate the true effect of the subsidy, but the
bias would be small for small subsidies. For instance, if the distribution of
TSE is uniform, and the number of new compliers is proportional to the
subsidy-induced land use change then the bias is a quadratic function of δ.32

To support the above considerations I numerically compute the model
and demonstrate the difference between the actual effect of the cost subsidy
and the effect, which is estimated by household-time FE and pooled OLS. In
the main calibration the farmers’ utility is logarithmic, and the technology-
specific education is distributed uniformly. The values for the parameters are
chosen so that the simulated technology use pattern resembles the actual one
in Malawi: around 50-60% of farmers use M, 50-60% use ML, and 10-15%
use both M and ML.

Figure 4 shows results of the main calibration. The left panel demon-
strates the yield increase as a result of ∆ percent reduction in c2 for each
farmer. Blue line is the actual yield as implied by the model, green line is
the estimate of the yield according to household-time FE, and red line is the

32Suppose k1−k∗1 = δ(k2−k1) - share of newcomers is proportional to the induced land
use change. Then the difference between household-time FE TSE bias and subsidy-induced
TSE bias is ¯∆TSE(k1,k2)−

¯∆TSE(k∗

1
,k2) = δ

(

¯∆TSE(k1,k2) −∆TSEk1

)

. Therefore, ∆f =

δγ̂ − δ2
(

¯∆TSE(k1,k2) −∆TSEk1

)

.
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Figure 4: Model simulation: Main calibration

Note: Specification of the model is outlined in Section 4.3. The following assumptions
and values for parameters are used: farmers’ utility is logarithmic, TSE1 is fixed at 5, c1
is fixed at 2, TSE2 is distributed uniformly between 3 and 6.5, c2 is fixed at 3, ǫ=1.2,
ξ N(0, 0.5), γ = 1, λ1 = 0, λ2 = 1. Parameters are selected so that the simulated
technology use pattern resembles the one observed in Malawi: around 50-60% of farmers
use M, 50-60% use ML, and 10-15% use both M and ML. ∆ is the assumed percent
reduction in c2 - the cost of ML. CI means confidence interval. At each datapoint the
sample comprises 1000 farmers, and 500 simulations are run to account for weather (ǫ)
and general (ξ) uncertainty .

estimate according to pooled OLS. The right panel shows the α semielasticity
of yield33 for each ∆ - the one implied by household-time FE (green line) and
the one implied by pooled OLS (red line). Both semielasticities are expressed
as ratios to the actual semielasticity as implied by the model. Hence, the
closer is their value to one the more accurate is the estimate. Both panels
show that household-time FE performs better than pooled OLS for any ∆.
Consistent with the discussions above, for small ∆’s household-time FE pro-
duces estimates, which are very close to the actual. When ∆ is less than 5%,
the projected and the actual effects are practically identical. The difference
starts to appear at ∆ = 10%, but becomes statistically significant only when
∆ is 20-25%.

Appendix A.4 shows various robustness checks to the main calibration of
the model. I first relax assumption of the uniform distribution of TSE2, and
use normal instead. Then instead of log-utility I apply general constant rel-
ative risk aversion (CRRA) utility, and check different values of risk aversion
coefficient. I also check what happens if I use different values for γ, TSE1,

33Defined as percent change in average yield divided by the change in α - the land share
of M

31



and ǫ. For small ∆’s, the conclusion is consistent throughout all specifica-
tions: when household-time FE is used, the implied projections are very close
to the actual.

Considerations for the education subsidy are similar. The difference with
the cost subsidy is that the improved technology-specific education affects not
only the choice of technology but also farmers’ productivity, so ∆f is likely
to be larger. The main conclusion holds. The effect, which is identified by
the household-time FE, is likely to prevail in case the government engages in
cost or education subsidy. This happens because farmers who are affected by
the subsidy are the ones, which are already (or close to) using the subsidized
technology. These are the farmers, which are targeted by the household-time
FE as well.

5 Estimation results

The main estimation results are summarized in Table 9. For all nine columns
the variables specification is always as in (4). My main dependent variable
is log energy yield (see Table 5). The technologies I compare are M (maize)
and ML (maize-legume intecrop) - see Table 2 for the definition. I use five
main estimation methods, which are described in Section 4.2. In columns
(1), (3), (5), and (7) the rainfall and rainfall variance measures are taken
from CMAP (see Table 6 for more information). The possibility of a large
measurement error in weather indicators was discussed above. I deal with this
problem using the instrumental variable approach. In columns (2), (4), (6),
(8), and (9) CMAPmeasures of rainfall and rainfall variance are instrumented
by the equivalent measures from RFE and MATH (see Table 6 for more
information). The measurement error did prove to have a significant role in
a number of specifications, especially for the household-time FE, so in what
follows I stick to the results from IV estimations. As a robustness check,
Table 15 in Appendix reports the results when variables are added one by
one.

The magnitudes and significance of the coefficients differ by the spec-
ification, but the overall results seem to be in favor of the maize-legume
intercrop: everything else equal, ML seems to be more productive, and it
seems to absorb shocks better. The consistency of the results throughout
the estimation methods and specifications is reassuring, as each method uses
different sample of farmers and potentially insulates against (or vulnerable
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Table 9: Estimation results: Energy yield
pooled OLS hhold-time FE hhold-time & techn. FE hhold FE

(1) (2) (3) (4) (5) (6) (7) (8) (9)
no IV IV no IV IV no IV IV no IV IV GMM

ML technology 0.18∗∗∗ 0.18∗∗∗ 0.31∗∗∗ 0.27∗∗∗ 0.15∗∗∗ 0.05 0.26∗∗∗

(dummy or landshare) (0.02) (0.02) (0.05) (0.05) (0.05) (0.06) (0.07)
rainfall, cm 0.36∗∗∗ 0.40∗∗ 0.82∗∗∗ 2.30∗∗∗ 2.07∗∗∗

per day (0.13) (0.20) (0.27) (0.40) (0.32)
ML X rainfall -0.69∗∗∗ -0.80∗∗∗ -0.05 -1.25∗ -1.95 -2.33 -1.11∗∗∗ -2.42∗∗∗ -2.04∗∗∗

(0.19) (0.30) (0.39) (0.70) (1.73) (2.51) (0.41) (0.69) (0.53)
rainfall 6.03∗∗∗ 5.87∗∗ 1.50 -30.60∗∗∗ -4.58
variance, daily (1.19) (2.39) (2.79) (8.02) (3.07)
ML X rainvar 9.45∗∗∗ 10.33∗∗∗ 0.47 8.69∗ 28.89∗∗ 20.57 20.58∗∗∗ 42.51∗∗∗ 14.69∗∗∗

(1.46) (2.39) (3.10) (4.63) (14.07) (24.07) (3.19) (5.11) (4.45)
temperature, C 2.35∗∗ 2.36∗∗ 11.10∗∗∗ 16.68∗∗∗ 23.55∗∗∗

/100 (1.02) (1.02) (2.87) (3.35) (3.15)
temperature 1.46∗∗∗ 1.47∗∗∗ 0.75 -2.08∗ 3.86∗∗∗

ˆ2 /100 (0.29) (0.32) (0.75) (1.14) (0.60)
temperature -0.33∗∗∗ -0.33∗∗∗ -0.60∗∗∗ -0.57∗∗∗ -1.15∗∗∗

ˆ3 /100 (0.07) (0.07) (0.18) (0.19) (0.17)
ML X temp -1.97 -2.00 -5.59∗∗ -7.41∗∗∗ -24.99∗∗∗ -23.25∗∗ -9.77∗∗∗ -14.55∗∗∗ -16.63∗∗∗

(1.25) (1.25) (2.66) (2.84) (8.81) (9.15) (3.18) (3.37) (4.18)
ML X temp sq -0.68∗ -0.66 -1.32∗∗ -1.06 3.08 2.15 -1.66∗∗ 0.02 -3.80∗∗∗

(0.39) (0.42) (0.66) (0.72) (3.15) (4.21) (0.81) (0.90) (0.99)
ML X temp cub 0.12 0.12 0.33∗∗ 0.31∗ 1.34∗∗ 1.19∗∗ 0.69∗∗∗ 0.53∗∗ 1.06∗∗∗

(0.09) (0.09) (0.15) (0.17) (0.58) (0.59) (0.20) (0.21) (0.23)
fertilizer, 3.37∗∗∗ 3.38∗∗∗ 2.93∗∗∗ 2.86∗∗∗ 0.28 0.32 3.00∗∗∗ 2.98∗∗∗ 2.80∗∗∗

tonnes per ha (0.14) (0.14) (0.44) (0.45) (0.63) (0.63) (0.28) (0.29) (0.37)
fertilizer -2.50∗∗∗ -2.50∗∗∗ -1.34∗ -1.22 0.47 0.41 -3.57∗∗∗ -3.52∗∗∗ -2.93∗∗∗

ˆ2 (0.35) (0.35) (0.75) (0.85) (1.36) (1.37) (0.69) (0.70) (0.76)
ML X Txfert 1.06∗∗∗ 1.05∗∗∗ -0.99∗∗ -1.05∗∗ -1.61 -0.99 0.91∗∗ 0.97∗∗ 0.29

(0.19) (0.19) (0.47) (0.49) (1.80) (1.97) (0.39) (0.41) (0.57)
ML X Txfert sq -1.57∗∗∗ -1.56∗∗∗ 2.90∗∗ 3.12∗ 3.62 1.58 -0.98 -1.01 0.35

(0.48) (0.48) (1.41) (1.67) (7.14) (7.72) (1.12) (1.15) (1.56)
L.log energy yield 0.08∗∗

(0.03)
Constant 14.60∗∗∗ 14.60∗∗∗ 14.30∗∗∗ 14.30∗∗∗ -0.02 -0.02 14.69∗∗∗ 14.81∗∗∗ 13.14∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.04) (0.04) (0.05) (0.06) (0.46)
Observations 13305 13305 1676 1676 196 196 5696 5696 3095
R-squared 0.17 0.17 0.17 0.16 0.18
R-squared overall 0.13 0.13 0.03 0.03 0.16 0.10

Note: Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Dependent variable
in each regression - log energy yield. Technologies - M (maize) vs. ML (maize-legume intercrop). OLS, household FE,
and GMM all include time fixed effects, which are also effectively controlled for in household-time FE. The results
without time fixed effects are similar. GMM regression assumes all variables except time fixed effects potentially violate
strict exogeneity assumption (so all variables are instrumented).
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to) different kinds of biases. Importantly, household-time FE, which is the
preferred method according to the reasoning and the model above, is consis-
tent with the rest of the results. Household-time and technology FE, which
is even more robust,34 produces similar signs and magnitudes of the coeffi-
cients, but very few of them are significant. The effective sample for this
method is very small, while the weight of a measurement error (in yield in
particular) soars after ”‘double demeaning”’.35

The coefficient on ML - dummy in columns (1)-(6) and land share in
columns (7)-(9) - is positive and statistically significant, except for the house-
hold FE.36 This is, in particular, true for the househodel-time FE, which is
the preferred estimation method. The estimates in IV regressions - columns
(2), (4), and (9) - tell that calorie yields on plots with ML are around 15-
30% higher than the yields of M.37 Note that the coefficient on ML cannot
be identified in household-time and technology FE, because the technology
dummy does not change with time.

The results on the fertilizer use and its interaction with ML are also
suggestive, but with a couple of caveats. Even though the coefficients on
fertilizer and fertilizerˆ2 are of the opposite signs, the overall response of
the yield to the fertilizer is positive for both technologies in all specifications
and for reasonable quantities of the fertilizer. 38 Even though the coeffi-
cient on fertilizer is positive, the response to the fertilizer seems to flatten
out with more fertilizer applied, as can be seen from negative coefficients
on fertilizerˆ2. The results of different estimation methods diverge on the
interaction of ML and the fertilizer. Household-time FE says that ML is less
responsive to the fertilizer - the coefficient on ML X fert is negative, while in
OLS and GMM the coefficient is positive. In case of household-time FE the
difference in the responsiveness is not large though - ML remains significantly
more productive than M at any reasonable quantity of fertilizer applied, as
shown in Figure 5.39 The gap between the two technologies narrows down

34In particular, household-time and technology FE controls for time-constant
technology-specific labor and seed inputs

35See Griliches and Hausman (1986) for details on measurement error in FE regressions
36It is also not statistically significant in some specifications of the GMM regression.

See Table 27
37All other variables in the regressions are demeaned, so the coefficient on ML means

the effect of using ML at sample average fertilizer use and weather
38500-600 kg per ha in most specifications, 200-300 kg per ha in case of ML in GMM

specification
39In GMM specification the difference is also positive at reasonable quantity of fertilizer,
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Figure 5: Estimated response to fertilizer in M vs. ML (left); Difference
between ML and M with confidence interval (right)

Note: Based on the estimation in Table 1, column 4 - household-time FE. Figures 12 and
13 in Appendix use other estimates and yield measures. Standard errors for the
confidence interval are bootstrapped.

to around 15% at 200 kg of fertilizer per hectare, but then starts to widen
again. Starting from a sample average of around 80 kg per hectare, the gap
between ML and M gets wider if fertilizer is used less, so according to the
household-time FE ML would be more effective at absorbing adverse fertil-
izer use shocks for most of the farmers. The efficiency of the fertilizer for
both technologies is around 13.7-14 thousand kCal per kg of nitrogen.40 The
flip side of being more resistant to the fertilizer use shocks, the efficiency
of fertilizer for ML is generally lower than for M - 4% lower at the sample
average of 80 kg per tonne.

Rainfall and rainfall variance, as expected, are important determinants of
harvest in Malawi, and ML seems to be an effective absorbent of the weather
shocks. Coefficient on rainfall is positive and significant in OLS and GMM (in
household-time FE it is not identified). Controlling for the average rainfall,
rainfall variance affects the yield negatively. The coefficients on ML interac-
tions with rainfall and rainfall variance have the opposite signs, which means
that ML likely smooths the weather’s effect on yields.41 Note that, as men-

but not always statistically significant. See Figure 12
40A calorie equivalent of around 3.8-3.9 kg of maize. Assuming 30% of nitrogen in a kg

of fertilizer. The efficiency is calculated at the average fertilizer use among all farmers -
80 kg per hectare.

41For example, using the results from column 9, a decrease in rainfall of 0.1cm per day
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tioned above, coefficients on rainfall and rainfall variance are not identified in
household-time FE (my preferred specification), so the implicit assumption
here is that their signs and magnitudes are similar to those in OLS or GMM;
otherwise the interpretation of the coefficients on ML interactions can be
different. 42 This result is consistent across all specifications, although the
magnitudes of the coefficients differ, and in some specifications the result is
not significant.43 For the household-time FE it proved to be crucial to use
IV for my rainfall measures. This result means that ML is less responsive to
the weather shocks, droughts and sporadic rainfall in particular.

The relationship between the yield and the temperature is more complex.
At the current range of observed temperatures in Malawi, the relationship is
positive both for M and ML, but becomes negative after a threshold of around
26◦C for M and 29◦C for ML. This result should be taken with caution as the
maximal average temperature observed in Malawi over the estimation period
is 28.5◦C, but it is consistent with Lobell et al. (2011). As with rainfall and
rainfall variance, ML seems to be better than M at absorbing the temper-
ature shocks, although it is harder to see just looking at the coefficients.
Figure 6, which is based on the estimation in column (9), demonstrates this
result. ML’s response to the temperature follows a similar path to M: it
first decreases, then starts to increase, and then decreases again. But ML’s
response curve is much smoother than M’s curve.44

would decrease average M yield by about 2.07*0.1=20%, but will reduce average ML yield
by only (2.07-2.04)*0.1=0.3%. In some specifications the absolute value of the coefficient
on ML interaction with the rainfall is actually larger than the coefficient on rainfall. Taken
at a face value, this means that ML responds negatively to rainfall. This result is never
statistically different from zero, and it is hardly plausible, but even if it is true, ML still
smooths the weather effects, because the absolute value of the coefficient on ML interaction
is never twice as high as the coefficient on rainfall

42OLS and (especially) household FE and GMM are frequently used in the literature to
estimate the effect of random weather shocks on yield, which adds to plausibility of the
assumption. See Section 6 for details. Important caveat here is that the coefficients are
effectively estimated together with the technology use, which is endogenous

43Household-time and technology FE. Also some specifications of the GMM regression
(see Table 27)

44Note that yield-depressing effect of extremely high temperature does not show up in
OLS
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Figure 6: Estimated effect of temperature on yield: M vs. ML (left); Differ-
ence between ML and M with confidence interval (right)

Note: Based on the estimation in Table 1, column 9 - GMM. Using household-time FE
estimates where possible yields similar results (see Figure 14 in Appendix). The maximal
average temperature observed in Malawi over the estimation period is 28.5◦C. For higher
temperatures the predictions are out of sample. Standard errors for the confidence
interval are bootstrapped.

6 Economic significance of results: Macroe-

conomic scenarios

The previous section discusses the economic rationale and statistical signifi-
cance of the results, but how economically significant are they? Are plausible
weather or fertilizer use shocks macroeconomically important for Malawi, and
how effective is ML in smoothing them? I build a range of shock scenarios for
Malawian agriculture to answer these questions. For each scenario I consider
three stances of reform. The first stance is a baseline - the land used by M
and ML remains as it is was in 2009. The second stance is a program - the
government implements a subsidy or education program that increases land
used for ML by 10 percentage points. The third stance is a hypothetical
situation, when all land is used for ML. Note that the coefficients I identify
in Table 9 are likely to be close to the true coefficients only in the case of the
second stance (program), when changes in the land use are not that large.
The results for the third stance are less robust and for demonstration only.

In each scenario I look at two main indicators. The first is the average
change in yields as a result of the shock. The energy (or grain) loss of the
yield can further be expressed in terms of GDP in case of a hypothetical
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situation that the government decides to compensate the loss by importing
an equivalent amount of maize from abroad. As of 2013, 84% of Malawian
households are rural, and of them around 86% grow either maize or maize-
legume intercrop. So for example, at the 2013 Malawian kwacha to US dollar
exchange rate, and the price of maize at 35 US cents per kg, a 5% average
drop in yield translates into 1.15% of GDP of compensation cost.45

The second indicator that I look at is the change in the share of self-
sufficient households, i.e. households that produce enough calories to cover
their own energy needs throughout the year. At the FAO’s recommended
minimal dietary requirement of 1700 kCal per day,46 an average self-sufficient
Malawian household is supposed to harvest about 6.2 mln kCal per year.
In 2009 only 17% of households reached self-sufficiency. Many households
have alternative sources of revenue: growing other crops (e.g. tobacco), ani-
mal farming, or supplying labor (”‘ganyu”’) to richer households. However,
changes in food self-sufficiency are likely to be correlated with the changes
in food security.47 The results on the self-sufficiency must be taken with
caution, as the implicit assumption that I make here is that the impact of
the shock is similar for all households, i.e. the shock does not affect the form
of the distribution curve, it only shifts it.

I consider four medium-term and three long-term scenarios. Medium-
term scenarios model the effect of four large but plausible adverse shocks,
one shock per scenario: negative shocks to fertilizer use, rainfall, and tem-
perature, positive shock to rainfall variance. The size of the fertilizer use
shock is 10% decline from the current use. This shock can result from a
corresponding increase in fertilizer price, which is not uncommon at all in
the last two decades,48 given that the overwhelming majority of Malawian
farmers are credit-constraint.49 The shock can also be the result of a change
in the government fertilizer subsidy, which is subject to various fiscal risks
(e.g. political instability and hence volatile foreign aid, relatively high level

45A cost which carves into already shaky external position of the country
46FAO (2008)
47Besides most of the alternative sources of revenue for Malawian households are likely

to be pro-cyclical, i.e. move together with the staple crop yield. For example, adverse
weather shock impacts not only the particular farmer, but the whole village, which likely
reduces demand for ganyu labor.

48According to National Agricultural Statistics Service, USDA, the average absolute
annual change in the price of Urea fertilizer in 1994-2013 is 24%

49In 2009 only 6% of them used loans to buy agricultural inputs
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of external debt). The weather shocks are equal to half average standard
deviation from the historical (2004-2009) mean, where average is taken over
traditional authorities. This is roughly 30th percentile of the corresponding
historical distribution.50

The long term scenarios involve only weather shocks, and are based on
the long-term climate projections for Malawi summarized in IPCC (2007).
I consider two standard scenarios: a ”‘mild”’ optimistic B1, median of the
nine climate models reported, and less optimistic A2, 10th percentile of the
nine models (ensemble low). I also consider the same A2, supplemented by
an assumption of severe positive temperature and negative rainfall shocks
(which are, however, not that unrealistic in this scenario),51 to test the effect
of extreme weather conditions.

I first construct the baseline, i.e. when the technology use is the same as
in 2009 (columns 1 and 4 of Table 11). To do this I estimate the effect of
weather on yield in the baseline, by employing the framework used in Desch-
enes and Greenstone (2007), Deschenes and Greenstone (2011), Fisher et al.
(forthcoming), and Burke et al. (2011). I simply fit the log of household
yield to the weather indicators - rainfall, rainfall variance, and temperature.
52 As in my main estimation results, I instrument rainfall and rainfall vari-
ance by alternative measures to get rid of the measurement error. In Table
10 I report the results using OLS, FE, and GMM, but in my projections
I rely on GMM. As argued by the papers above, OLS does not control for
various long-term factors such as ability of farmers to adapt to slow changes
in the weather, whereas FE supposedly provides the reaction of yield to a
short-term weather shock. At the same time, and as discussed above, it is
important in case of Malawi to take previous period’s harvest into account,
since many farmers are credit-constraint. GMM should take care of this.
The results are as expected. They repeat the pattern of Table 9, and the
magnitudes of the coefficients are mostly between those of M and ML users

50If the distribution is close to normal
51The exact shock (temperature or rainfall) is two standard deviations of the 90th

percentile of TAs distributions. In other words, the shock has a 5% chance to materialize
in at least 10% of TAs

52I am reluctant to use the GMM estimates from Table 9 because they are likely to
be inconsistent. At the same time, the household-time FE, my preferred specification,
does not identify the coefficients on weather for M users. Therefore, the most reliable
option in this case is likely to estimate the regression of yield on weather variables without
controlling for the technology choice
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Table 10: Energy yield and weather shocks: Mixed technologies
pooled OLS hhold FE

(1) (2) (3) (4) (5)
no IV IV no IV IV GMM
b/se b/se b/se b/se b/se

rainfall, cm 0.55∗∗∗ 0.18 0.63∗∗∗ 1.77∗∗∗ 1.72∗∗∗

per day (0.10) (0.16) (0.22) (0.32) (0.31)
rainfall 0.32 -14.51∗∗∗ -6.62∗∗∗ -43.75∗∗∗ -4.22∗

variance, daily (0.77) (1.34) (1.75) (3.31) (2.48)
temperature, C 2.67∗∗∗ 3.16∗∗∗ 6.67∗∗∗ 10.33∗∗∗ 16.06∗∗∗

/100 (0.66) (0.67) (1.85) (2.05) (1.93)
temperature -0.24 -1.37∗∗∗ -2.08∗∗∗ -7.13∗∗∗ 2.02∗∗∗

ˆ2 /100 (0.22) (0.23) (0.58) (0.73) (0.54)
temperature -0.06 0.13∗∗∗ 0.02 -0.29∗∗ -0.57∗∗∗

ˆ3 /100 (0.05) (0.05) (0.12) (0.14) (0.11)
fertilizer, 3.42∗∗∗ 3.51∗∗∗ 2.87∗∗∗ 3.77∗∗∗ 4.89∗∗∗

tonnes per ha (0.10) (0.10) (0.22) (0.25) (1.09)
fertilizer -2.65∗∗∗ -2.87∗∗∗ -3.17∗∗∗ -4.41∗∗∗ -13.84∗∗

ˆ2 (0.26) (0.25) (0.58) (0.63) (6.50)
L.log energy yield -0.04

(0.06)
Constant 14.55∗∗∗ 14.59∗∗∗ 14.59∗∗∗ 15.08∗∗∗ 14.93∗∗∗

(0.01) (0.01) (0.04) (0.06) (0.89)
Observations 13305 13305 5696 5696 3095
R-squared 0.12 0.07 0.06
R-squared overall 0.08 0.00

Note: Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Dependent variable
in each regression - log energy yield .

in Table 9.
The coefficients from Table 10, column 5 are then used to construct the

baseline (columns 1 and 4 of Table 11), where shocks are departures from
the historical averages or current 2009 use in case of fertilizer. The baseline
for the fertilizer shock scenario is constructed using coefficients from Table 9,
household-time FE, since this (preferred) specification allows estimation of
coefficients on both fertilizer and its interaction with the technology dummy.

The program (columns 2,3,5,6 of Table 11) is then constructed in the
following way:

log yprog = log ybas+0.1 ∗ (β1∆Tixt+β21(∆Tixt ∗Wit)+β23(∆Tixt ∗Fixt)),
(24)

where β’s are taken from Table 9, household-time FE. ybas is the corre-
sponding baseline value, ∆Tixt is the change in the use of ML intercrop:
∆Tixt = 0.1 in the second stance of reform (columns 2 and 5 of Table 11),
and ∆Tixt = 0.52 in the third stance of reform (columns 3 and 6 of Table
11).

The results are reported in Table 11. The first line compares the baseline
and the program without shocks. A 10 percentage points increase in ML
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land share is likely to increase average energy yield by 2.4%, and increase
the share of self-sufficient households by 0.66 percentage points (around 3.8%
increase). ML smooths fertilizer shocks, although not so effectively as it does
with the weather shocks. A 10% fertilizer use shock reduces yield by 2.17% in
the program, and 2.18% in the baseline. Note that the program’s yield with
the fertilizer shock is higher than the baseline’s yield without the shock. This
means, for example, that a cut to the government fertilizer subsidy program,
which causes a 10% drop in fertilizer use, would be yield-neutral if simultane-
ously a land share of ML increases by around nine percentage points. At the
same time, the agricultural system would become more resistant to weather
and fertilizer shocks.

Looking at the difference between the baseline and the program, ML is
more effective at absorbing weather shocks rather than fertilizer shocks. The
rainfall shock, which is particularly harmful,53 reduces the baseline’s average
yield by 3.84%, which would cost 0.9% of GDP to compensate. Using more
ML, as in program, does not eliminate the shock completely, but reduces
its impact by 0.4 percentage points, which saves government around 0.1% of
GDP.

The long-term climate projections are actually quite favorable for Malawi,
though not in all aspects. The mild scenario B1 predicts a moderate increase
in rainfall (8mm per month), substantial increase in temperature (+2.1◦C),
but also high rainfall variance. The less favorable scenario A2 foresees even
bigger increase in temperature, which is still likely to be favorable for the
yield, but lower rainfall and much higher rainfall variation. With these pro-
jections, yields are likely to go up both in the baseline and the program.
However, the increase is larger in case of the program - a better ability to
withstand adverse shocks in rainfall and increased rainfall variation allows
better harnessing the potential of increased temperatures. Although the aver-
age predictions are favorable, and the median projected temperature increase
is still within the range where the yield responds positively, there is now a
non-zero probability of an extreme event (e.g. increase in temperature of 8◦C
from the current average level), which is likely to devastate the agricultural
sector, as demonstrated in the last two lines of Table 11. As before, more
use of ML helps to mitigate the catastrophe.54

53Note that the shocks are of the same magnitude if measured in standard deviations
from the mean

54Note that this result relies on extrapolation of the temperature outside of historically
observed data, so it shouls be taken with caution
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Table 11: Effect of shocks on energy yield under different scenarios
Scenario %∆ average yield ∆ self-sufficiency

Baseline ∆ ML +10p.p. all use ML Baseline ∆ ML +10p.p. all use ML
No shocks . 2.428 13.711 . 0.661 4.187
Medium term scenario

Fertilizer use: -10% -2.181 -2.172 -2.316 -0.331 -0.275 -0.165
Rainfall: -0.228 mm per
day

-3.840 -3.480 -2.042 -1.212 -0.826 -0.331

Rainfall variance: + 0.314 -1.316 -0.958 0.464 -0.441 -0.496 0.661
Temperature: -0.307 de-
grees

-0.958 -0.873 -0.585 -0.220 -0.110 0.110

Long term scenario

Scenario B1, median 14.205 14.232 14.366 4.959 5.289 4.077
Scenario A2, ensemble low 3.160 4.432 10.149 2.314 2.755 3.030
Scenario A2, ensemble low,
ext. temperature

-23.924 -22.289 -14.603 -5.014 -4.738 -4.463

Scenario A2, ensemble low,
ext. drought

-31.302 -28.362 -14.418 -7.934 -6.777 -3.140

Note: Three states of reform considered: Baseline - land shares of M and ML remain as they were in 2009; ∆ ML +10p.p.
- land share of ML increases by 10 p.p.; all use ML - land share of ML is 1. No shocks - computed are changes with
respect to the baseline; in the rest of scenarios changes are with respect to the corresponding cell in the No shocks line.
Seven shock scenarios considered. Medium term scenarios: negative shocks on fertilizer use, rainfall and temperature,
positive shock on rainfall variance. The size of the latter three is equal to half standard deviation - mean by TAs over
2004-2009. Long term scenarios are described in IPCC (2000), data from the World Bank Climate Change Data Portal.
Scenario B1, median - median of nine climate models used in IPCC (2007) - rainfall +8mm per month, temperature
+2.1◦C, rainfall variation +20% from current. Scenario A2, ensemble low - 10th percentile of the nine climate models -
rainfall -16mm per month, temperature +2.9◦C, rainfall variance +37% from current. Scenario A2, ensemble low, ext.
temperature - rainfall and rainfall variation as in scenario above, extreme scenario for temperature +8.1◦C. Temperature
shock is formed as the sum of projected expected increase (+4.5◦C) and two projected standard deviations (90th
percentile over TAs) (3.6◦C). Scenario A2, ensemble low, ext. drought - temperature and rainfall variation are as in
scenario A2, ensemble low, extreme scenario for rainfall (-87mm per month) - formed as the sum of projected expected
fall (-16mm per month) and two projected standard deviations (90th percentile over TAs) (-53mm per month).

7 Robustness checks

I provide several robustness checks of my main results. First, as mentioned in
Section 5, I check the results using alternative measures of yield: cash yield,
maize equivalent yield (Liu-Myers), grain or protein yield. The results are
similar when it comes to the signs of coefficients, although the magnitudes
differ for some specifications (Table 16).

Second, I check different definitions of technologies, and various modi-
fications of the sample or specification. In particular, I check how hybrid
maize performs against the maize-legume intercrop. I also repeat estimation
in case maize and legumes are the only crops grown on a plot, in case they
are recorded as one of three most important crops on a plot, and in case
their harvest share is significant (50, 75, 95, or 100%). I also test other defi-
nitions of M and ML. See Tables 20 - 24. To reduce measurement error I then
drop 1st and 99th percentiles of farmers’ distribution by yield. I also check
what happens if I use only plots with conventional units of measurement, i.e.
whether errors in transformation rates affect my results. I also drop farms,
which are larger than 2 ha, as they are less likely to belong to subsistence
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farmers. I check if the results are robust when I control for total seed input
or land size, and when I add quadratic and cubic terms of rainfall and rainfall
variance.55 Qualitatively the results do not change: ML intercrop does seem
to be more productive and more weather-resistant than monoculture maize,
although in some specifications the results lose statistical significance. 56

Another robustness check concerns the properties of the plots. It could
be the case that farmers use the ML intercrop, which requires less fertilizer,
at plots with a better soil quality and other properties, and then use fertil-
ized maize at worse plots to make the most of them. This would bias the
results on ML technology upwards. Note that the argument could go the
other way around: farmers could use ML intercrop on the worse plots given
the technology is productive anyway. In this case the bias would be down-
wards, which only reinforces my results.57 My data on plot properties is very
sparse, and therefore I cannot use it in my main specification. However, I
can provide several arguments in the defense of my results. First, household-
time FE effectively control for the soil quality at a region or district level,
so what is uncontrolled for is the local variation, which is not likely to be
high. Second, as Table 15 reports, even without controlling for fertilizer, ML
performs better than M. In case of household-time FE, the coefficients on
ML technology in columns (7) and (8) are identical, which leaves no room for
the “plot properties bias” as implied by the argument above. Third, I use an
auxilliary regression, where the dependent variable is the choice of technol-
ogy (0 - M, 1 - ML) and independent variables are various plot properties, for
which the data are available: distance from dwelling, slope, texture, number
of weedings performed.58 The results are reported in Table 17. They are
inconclusive. If anything, I find that ML intercrop is used on plots with
more adverse conditions - further away from a dwelling, and on plots with

55For the rainfall and rainfall variance I do find a non-linear pattern similar to the one
of temperature - significant and large coefficients on the cubic terms, which makes extreme
weather events especially harmfull for the yield. I also do find that, like with temperature,
using the ML technology significantly reduces the impact of these extreme events. To
conform with the existing literature, and to make the analysis more tractable, I decided
to go with the linear specification for the rainfall and its variance in main specification.
The non-linearity of the weather-yield relationship is left for further research

56Some of the results, including other robustness checks, are reported in Section A.6
57None of the strategies is consistent with the linear specification of the yield as in (4)

- farmers should be indifferent on where to use ML intercrop
58The number of weedings can be considered both as a labor input and as a property of

a plot - its propensity to produce weeds
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larger slope. The results are often economically insignificant. For example,
increasing the distance of a plot from dwelling by 1 km increases the change
of using ML intercrop by only 1 to 6%.

7.1 What drives the performance of ML intercrop?

What drives the superior performance of the ML intercrop over M? Is it due
to higher productivity of legumes, in which case the policy recommendation
would be to encourage growing this crop regardless whether it is intercropped
with maize, rotated or grown separately. Or are there also efficiency gains
from growing maize and legume together, due to nitrogen sharing or denser
planting (and despite competition depression)? I cannot answer these ques-
tions definitively because my data lacks critical inputs - seed input and area
by crop.59 The available evidence though suggests that the better perfor-
mance of ML is both due to the productivity of legumes and the efficiency
gains. The evidence is presented in Tables 12 and 13.

First, on average legumes do seem to have higher yield than maize, and
hence productivity of ML intercrop could be driven by their presence in
the mix of crops. Table 13, column 1 shows that in the cross-section of
farmers (OLS), and controlling for weather and fertilizer use, legume yields
are around 25% higher than those of maize. Table 12, columns 3 and 5 show
that increased harvest share of legumes is associated with higher average
yield.60

Second, as suggested by the indirect evidence, ML performance is also
likely driven by the efficiency gains. Table 12, column 4 shows that ML is on
average as productive as L, so the performance of ML cannot be only driven
by the presence of legumes. Table 12, columns (1)-(3) demonstrate how ML
performs compared to other technologies, which combine growing of maize
and legume - M-L rotation and growing M and L separately (M+L). M-L

59The data on seed input per plot is available for waves 2 and 3 of the survey, however
it is not clear whether farmers reported seeds only for maize or for all crops on plot. Total
seed input is included as an explanatory variable in one of the robustness checks. The
coefficient on it is positive, but the rest of the results are generally unchanged.

60Note that controlling for the harvest share of legumes in ML intercrops makes the co-
efficient on ML intercrop dummy insignificant. This is expected because the interpretation
of the dummy is the average productivity differential when the harvest share of legumes
approaches zero, at which point ML intercrop ceases to be intercrop (with an exception of
intercrop plots, where legumes harvest completely failed, but the number of such plots is
unlikely to be high)
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Table 12: Estimation results: ML intercrop vs. other technologies
(1) (2) (3) (4) (5)

ML rotation M+L M+L, legume share L M, legume share
b/se b/se b/se b/se b/se

ML X rainfall -3.06∗∗ -4.91∗∗ -4.83∗∗ -2.02∗∗ -1.28∗

(1.39) (2.11) (2.06) (0.92) (0.68)
ML X rainvar 50.38∗∗∗ 40.21∗ 40.76∗ 7.34 5.57

(16.43) (22.25) (21.70) (11.41) (4.52)
=1 if ML -0.00 -0.28 -0.06 0.06 0.06
technology (0.12) (0.19) (0.20) (0.20) (0.06)
ML X temp 5.99 9.60 8.17 2.28 -4.98∗

(8.41) (11.95) (11.71) (6.04) (2.80)
ML X temp sq 3.11∗∗ 3.86∗∗ 3.78∗∗ 2.80∗∗ -0.79

(1.30) (1.80) (1.76) (1.18) (0.71)
ML X temp cub -0.96∗ -0.95 -0.89 -0.43 0.24

(0.55) (0.76) (0.74) (0.38) (0.16)
fertilizer, -0.69 0.80 1.86 -8.45∗∗∗ 2.86∗∗∗

tonnes per ha (0.95) (1.92) (1.92) (3.06) (0.44)
fertilizer 4.21∗∗ 4.01 1.50 14.06∗∗ -1.39∗

ˆ2 (2.14) (6.51) (6.42) (5.97) (0.83)
ML X fert -1.12 -1.62 -2.03 9.29∗∗∗ -0.70

(1.13) (1.78) (1.74) (3.10) (0.48)
ML X fert sq 8.01∗∗ 4.99 5.15 -8.98 2.58

(3.55) (7.25) (7.08) (6.35) (1.64)
harvest share 0.79∗∗∗ 0.80∗∗∗

of L (0.30) (0.13)
Constant 14.58∗∗∗ 14.72∗∗∗ 14.32∗∗∗ 14.53∗∗∗ 14.31∗∗∗

(0.06) (0.07) (0.17) (0.19) (0.02)
Observations 809 284 284 1599 1676
R-squared overall 0.01 0.05 0.03 0.04 0.10

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Estimation method
for all columns: household-time FE, IV used for rainfall. Dependent variable in all columns - log of energy yield. ML
intercrop is compared with: column (1) - M-L rotation; (2) - M+L (growing M and L on separate plots); (3) - M+L,
controlling for the harvest share of L; (4) - L (growing only L); (5) - M, controlling for the harvest share of L in ML.

45



Table 13: Estimation results: Maize and legume productivity for different
technologies

M vs. L M only vs. M in M-L rotation M yield, ML vs. M L yield, ML vs. L
(1) (2) (3) (4) (5)
OLS hhold-time FE OLS hhold-time FE hhold-time FE
b/se b/se b/se b/se b/se

rainfall, cm 1.07∗∗∗ 2.31∗∗∗

per day (0.35) (0.36)
ML X rainfall -0.04 0.86 -1.80∗∗∗ -1.10 -0.80

(0.39) (0.57) (0.42) (0.70) (1.12)
rainfall 0.51 -63.81∗∗∗

variance, daily (4.59) (5.15)
ML X rainvar -20.57∗∗∗ -42.44∗∗∗ 51.49∗∗∗ -0.18 80.23∗∗∗

(4.87) (7.55) (5.54) (4.66) (14.31)
=1 if -0.25∗∗ -0.08 -0.11∗∗ -0.10∗∗ -1.78∗∗∗

technology in bold (0.10) (0.23) (0.04) (0.05) (0.24)
temperature, C -0.08 1.74
/100 (2.27) (2.16)
temperature -3.19∗∗∗ -3.39∗∗∗

ˆ2 /100 (0.49) (0.45)
temperature 0.23 0.59∗∗∗

ˆ3 /100 (0.16) (0.16)
ML X temp 3.61 4.03 -1.81 -0.91 23.00∗∗∗

(2.44) (3.61) (2.46) (2.85) (7.62)
ML X temp sq 2.10∗∗∗ 1.39∗ 2.47∗∗∗ -0.57 9.41∗∗∗

(0.55) (0.80) (0.60) (0.72) (1.44)
ML X temp cub -0.13 -0.09 -0.44∗∗ 0.15 -1.90∗∗∗

(0.17) (0.26) (0.18) (0.17) (0.48)
fertilizer, -7.09∗∗∗ -10.25∗∗∗ 1.43∗∗∗ 3.06∗∗∗ -13.12∗∗∗

tonnes per ha (1.40) (3.03) (0.28) (0.45) (3.71)
fertilizer 12.38∗∗∗ 27.90∗∗ -0.78 -1.80∗∗ 18.20∗∗

ˆ2 (2.74) (11.76) (0.60) (0.85) (7.29)
ML X fert 10.17∗∗∗ 12.38∗∗∗ 2.10∗∗∗ -0.16 12.34∗∗∗

(1.41) (3.04) (0.33) (0.49) (3.77)
ML X fert sq -14.36∗∗∗ -29.24∗∗ -1.98∗∗∗ 1.44 -12.77∗

(2.77) (11.76) (0.75) (1.67) (7.74)
Constant 14.65∗∗∗ 14.29∗∗∗ 14.60∗∗∗ 14.25∗∗∗ 14.24∗∗∗

(0.10) (0.23) (0.04) (0.02) (0.23)
Observations 9533 3718 7058 1667 1558
R-squared 0.13 0.04
R-squared overall 0.07 0.12 0.58

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. In all columns, IV
used for rainfall. Maize and legume productivity for different technologies (technology dummy is one for technologies in
bold): columns (1) and (2) - M vs. L, log of energy yield, OLS and hhold-time FE; (3) - log of energy yield, maize only
(no rotation or intercrop) vs. maize in M-L rotation; (4) - M only yield in M vs. ML; (5) - L only yield in L vs. ML.
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rotation means that growing M is followed by growing L on the same plot
next season, and so on. As I do not observe plots over time, and I do not
observe farmers in consecutive years, I am not able to identify M-L rotators
in the data. What I can do is to come up with a proxy. In particular, I
define a farmer to be M-L rotator if she/he has a record of growing both M
(and no L) and L (and no M) on separate plots in at least one of the three
waves of the survey. M+L is then a special case of M-L rotation, when M
and L are grown on separate plots within the same season (and then likely
rotated). As the proxy for M-L rotation is likely to be very noisy, the results
must be taken with caution. The results suggest, however, that ML intercrop
is on average as productive as M-L rotation or M+L (after controlling for
the legume share of harvest). At the same time, I am able to estimate the
maize yield for farmers who rotate maize with legumes versus those who do
not rotate, even though it is only possible in the cross-section of farmers,
e.g. via OLS.61 The results in Table 13, column 3 suggest that maize is
significantly more productive when it is rotated with legumes. Likewise,
Table 13, column 2 shows that maize is only slightly less productive than
legumes when comparing among farmers who grow both (e.g. M+L - a
subset of M-L rotators).62 These results suggest that performance of M-L
rotation is not only due to performance of legumes, maize becomes more
productive too, and since ML intercrop is as productive as M-L rotation,
there have to be efficiency gains there too.

It is not clear whether the efficiency gains stem from the nitrogen sharing,
possibility of denser planting without too much of competition depression,
or the combination of the two. To answer we need to know areas under
maize and legumes, as well as the seed inputs by each crop. The answer
probably also depends on the structure of the intercrop.63 These data are
not available. Table 13, columns 4 and 5 suggests though that it is probably
the combination of the two. The columns report the yields of only maize and
only legumes on plots with ML intercrop versus plots where these crops are
grown separately. In both cases the yields at ML intercrop plots are lower - by
about 10% for maize, and much more (about 73%) for legumes. This could be

61For M-L rotation, unlike ML intercrop, I directly observe areas under M and L, as
they are grown on separate plots (possibly during different periods of time). However,
by definition of my M-L rotation proxy, I cannot have farmers growing maize with and
without rotation, i.e. no household-time fixed effect is possible

62This is what household-time FE imply
63F.e. one can grow M and L in separate rows or in the same row, etc.
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the result of less denser planting when compared to monocropped plots (e.g.
smaller area under each crop at ML intercrop plots), but it can also reflect
the competition depression, e.g crops crowding out each other. Combining
the two yields though gives the land equivalency ratio of more than one,
which means that growing the same harvest, in the same proportions of M
and L, would take more land if we use monocropped plots instead of ML
intercrop.64 This means that either the competition depression is not strong
enough, and hence denser planting of maize and legumes is possible, or there
is nitrogen sharing (or a combination of the two).

While on average ML intercrop is not the most productive technology
(although still more productive than monocroped maize), it seems to per-
form best when it comes to weather-resistance. Table 12 shows that ML
intercrop likely withstands rainfall shocks better than either M-L rotation or
monocropped legumes, in addition to monocropped maize (as in my main
specification). All coefficients on ML intercrop interaction with rainfall are
negative and significant.65 What drives this performance? Partly it might be
due to the improved resilience of maize and/or legumes on the ML intercrop
plots - Table 13, columns 3 and 4 show the negative coefficients on ML x

rainfall, although they are both statistically insignificant.
Another possible part of the explanation is that growing the two crops

together serves as an insurance - similar to the portfolio diversification in
finance. A negative shock to one crop’s yield is (partly) mitigated by the less
affected yield of the other crop. This point is consistent with the evidence in
Table 18. The left panel shows summary statistics of total, maize and legume
grain yields on the ML intercrop plots. The mean total yield is higher than
either maize or legume, but its standard deviation is the lowest. The right
panel shows a simple regression of log maize yield on a ML intercrop plot on
log legume yield. The two are positively correlated, which is expected, but
as demonstrated by low R2 in both specifications, the correlation is very low.

The portfolio diversification does not seem to explain the whole story

64Land equivalency ratio (LER) is defined as follows: LER =
∑

I=M,L
I yield on ML intercrop

I yield on monocrop
. From Table 13, columns 4 and 5, in our case LER=exp(-

0.1)+exp(-1.78)=1.07. This is not necessarily different from 1 in a statistical sense, but
LER is generally larger for other specifications (f.e. when M and L are the only crops
grown on plot)

65Some coefficients seem implausibly large in absolute value, which is probably driven
by smaller samples. All estimates are very imprecise, upper bounds of 95% confidence
intervals almost reach zero in most specifications
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though. If it did then ML intercrop were not more resilient than M+L, i.e.
growing M and L separately within the same season. Table 12, columns 2 and
3 suggest that ML intercrop does perform better. The explanation could be
that the insurance works more intensively at ML intercrop plots: one crop’s
failure due to an adverse weather shock means less inter-species competition
for the other crop.

8 Conclusions

Using more biodiverse agricultural technologies is a viable way to improve
food security in Sub-Saharan Africa. Using the evidence from Malawi I show
that maize-legume intrecrop is both more productive and better at absorb-
ing weather and fertilizer shocks. I do not identify the average population
effect. The estimated coefficients are subject to technology-specific factors
bias. However, I show that if the government implements a cost or education
subsidy to induce the maize-legume intercrop usage the effect is likely to be
the one I identify. This is because the complying farmers will be the group,
which is very similar to my estimation sample.

According to my results, a reform that induces a nine percentage point
increase in land used for the intercrop can be yield-neutral even if the fertilizer
used drops by 10%. At the same time, a system like this is likely to be more
resilient to weather and fertilizer use shocks.

This paper has its limitations, either due to data unavailability or due
to a risk of turning into a book. First, I do not specify what kind of re-
forms would induce farmers to use more intercrop, and what their potential
cost and effectiveness are. The space for reforms is clearly large though.
Infrastructure for the legume markets and education are probably the most
important reform directions, as demonstrated by few examples in Section
2.4.

The second limitation of the paper is that I do not take into account
potential systematic differences between the labor and seed requirements of
the two technologies, which may stall ML’s take off despite higher yield. If
the ML generally requires more labor or seed inputs then its net benefit may
turn out to be lower than that of M. However, as mentioned in Section 2.4,
field trials suggest that the labor requirements are not too different, so the
potential ”‘excess”’ labor could stem purely from the lack of education. The
scarce evidence on seed inputs in Section 7 suggests that the seed require-
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ments are not likely to be the binding constraint either. In Section 4.3 I
show that, even if we do not control for labor and seed inputs, for small
policy changes household-time fixed effects regression still consistently esti-
mates the effect of the policy on agricultural productivity. For larger policy
changes this limitation has to be further investigated.

There are also factors, which I did not analyze in this paper, and which
can add to the benefits of the intercrop. First, growing legumes can improve
long-term quality of the soil, because of nitrogen fixation and legume biomass
incorporation after the growing season. Second, consuming more biodiverse
diet, e.g. maize vs. maize and legumes, improves nutrition, food security, and
hence long-term health and productivity of the farmers (Kerr et al., 2011).

A Appendix

A.1 Summary of Malawian crops
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Table 14: Malawian Crops: Cash, Energy, and Protein Value

crop national price
in 2007,
MK/kg

energy,
kCal/kg

proteins,
gr/Kg

legume

Local maize 10.72 3560 95 0
Composite/OPV maize 12.5 3560 95 0
Hybrid maize 11.49 3560 95 0
Cassava 17.4 1090 9 0
Sweet potatoes 15.87 920 7 0
Irish potatoes 34.14 670 16 0
G/Nuts 15 5670 257 1
Ground bean/Nzama 16.16 3650 177 1
Rice 26.69 3570 75 0
Finger millet 34.65 3400 97 0
Sorghum 18.15 3430 101 0
Pearl millet 19.9 3400 97 0
Beans 54.01 3410 221 1
Soyabean 20.49 3350 380 1
Pigeonpea (Nandolo) 24.7 3430 209 1
Burley tobacco 156 0 0 0
Tobacco-other n/a 0 0 0
Cotton n/a 0 0 0
Sugar cane n/a 300 20 0
Cabbage n/a 190 10 0
Tanaposi - Chinese cabbage n/a 190 10 0
Nkhwani - pumpkin leaves n/a 0 0 0
Okra n/a 310 16 0
Tomato n/a 170 8 0
Onion n/a 310 11 0
Peas - Nsawawa n/a 3460 225 1
Other n/a 0 0 0
Sunflower n/a 3080 123 0
Pepper - piri piri n/a 2760 107 0
Coffee n/a 560 80 0
Rape - mpiri wotuwa n/a 4940 196 0
Paprika n/a 220 14 0
Cowpeas - Khobwe - Nseula n/a 3420 234 1
Mucuna (Kalongonda) -
legume

n/a 3430 234 1

Bonongwe - leafy greens n/a 0 0 0
Watermelon n/a 170 3 0
Mpoza - fruit n/a 450 50 0
Pumpkin n/a 190 9 0
Buffalo bean (Mucuna variety)
- legume

n/a 3430 234 1

Cucumber n/a 130 5 0
Kabaifa - nut n/a 2620 70 0
Hyacinth Bean - Nkhungudzu n/a 3430 234 1

Note Datasource: national price - community surveys in all three waves, median in the country’s
distribution of crop’s prices; energy, proteins - Food Composition Tables, FAO. legume indicates
whether the crop is nitrogen-fixing legume. MK - Malawian kwacha. Exchange rate as of September,
2011 - 165 MK for 1 USD.
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A.2 Household-time-technology panel vs. household-

time panel

By definition of geometric average, the total household yield at time t (yit)
is:

yit = y1−θit
i0t yθiti1t ⇒ log yit = log yi0t + θit(log yi1t − log yi0t), (25)

where θit is the land share of ML (technology 1). Expand (25) using (4) and
the fact that Ti0 = 0 and Ti1 = 1:

log yit = β0 + β31 ∗Wit + β22 ∗ Fi0t+

+ θit (β1 + β21 ∗Wit + β22 ∗ (Fi1t − Fi0t) + β23 ∗ Fi1t) =

= β0 + β1θit + β31 ∗Wit + β21(θit ∗Wit)+

+ β22 ∗ Fit + β23(θit ∗ Fi1t), (26)

where Fit = Fi0t + θit(Fi1t − Fi0t) - an arithmetic average of fertilizer use
indicators over both technologies.

Therefore, the coefficient on θit in (5) is equal to the coefficient on Tix in
(4) in the probability limit, in case both are consistent. Similarly equal are
the coefficients on the other variables and their interactions.
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A.3 Auxilliary proofs for the model

A.3.1 OLS estimator of γ

Let K be the number of observations in our OLS regression: K = (N−k1)+
(N − k2). Then the OLS estimator of γ is:

γ̂ =

∑K

i=1 Tifi −Kf̄T̄
∑K

i=1 Ti −KT̄ 2
, (27)

where f̄ and T̄ are the corresponding sample averages. Now, since T = 1 if
technology 2 is used, and zero otherwise:

K
∑

i=1

Ti = 0 ∗ (N − k2) + 1 ∗ (N − k1) = N − k1; (28)

K
∑

i=1

Tifi = (N − k1)f̄2; (29)

f̄ = 1/K
(

(N − k2)f̄1 + (N − k1)f̄2
)

; (30)

T̄ = 1/K
K
∑

i=1

Ti = 1/K(N − k1). (31)

Inserting these in (27) we get:

γ̂ =
(N − k1)f̄2 − 1/K

(

(N − k2)f̄1 + (N − k1)f̄2
)

∗ (N − k1)

N − k1 − 1/K(N − k1)2
=

=
Kf̄2 − (N − k2)f̄1 − (N − k1)f̄2

K − (N − k1)
=

= f̄2 − f̄1. (32)

A.3.2 Proof of Proposition 4.1

Proposition. Let TSE1 ∼ N(µ1, σ1) and TSE2 ∼ N(µ2, σ2). Then

|E(TSE2 − TSE1)|pooled OLS > |E(TSE2 − TSE1)|hhold−time FE (33)
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Proof. Combine the technology selection criteria (8) with the data generat-
ing process (13) for f . Then for each household:

∀ i = 1, .., k1 (αi = 1) if λ2(TSE2i − TSE1i) < −γ − ǫ+ (c2i − c1i) (34)

∀ i = k2 + 1, .., N (αi = 0) if λ2(TSE2i − TSE1i) > −γ + (c2i − c1i) (35)

∀ i = k1 + 1, .., k2 (0 < αi < 1) if otherwise. (36)

(37)

The TSE bias in pooled OLS is λ2 times the difference between the ex-
pected TSE2, taken over farmers k1 + 1 to N - all those who use technology
2, and the expected TSE1, taken over farmers 1 to k2 - all those who use
technology 1. The TSE bias in household-time FE is the same expected dif-
ference TSE2 − TSE1, but taken only over farmers k1 + 1 to k2 - those who
use both technologies.

Denote s1 = 1/λ2 ∗ (−γ − ǫ+ (c2 − c1) and s2 = 1/λ2 ∗ (−γ + (c2 − c1)),
also denote µ = µ2 − µ1 and σ = σ1 + σ2.

Expected TSE2, taken over those who use the second technology (farmers
k1 + 1 to N):

E (TSE2|α < 1) =

= E (TSE2|TSE2 − TSE1 > s1) =

= E (E (TSE2|TSE2 − TSE1 > s1, c1, c2)) (38)

The last line follows from the law of iterated expectations. Now:

E (TSE2|TSE2 − TSE1 > s1, c1, c2) =

= E (TSE2 − TSE1|TSE2 − TSE1 > s1, c1, c2) + E(TSE1) =

= µ1 +
σφ( s1−µ

σ
)

1− Φ( s1−µ

σ
)
, (39)

where φ is a p.d.f. of the standard normal distribution, and Φ is a c.d.f. of
the standard normal distribution. The last line follows from the fact that the
difference of two normally distributed variables is also normally distributed,
and hence the standard result about the expectation of truncated normal
distribution.
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Similarly, conditional expectaion of TSE1, subject to using the first tech-
nology:

E (TSE1|TSE2 − TSE1 < s2, c1, c2) =

= µ1 +
σφ( s2−µ

σ
)

Φ( s2−µ

σ
)

(40)

And expectation of TSE2 − TSE1, given both technologies are used:

E (TSE2 − TSE1|s1 < TSE2 − TSE1 < s2, c1, c2) =

= µ2 − µ1 + σ
φ(φ( s1−µ

σ
)− s2−µ

σ
)

Φ( s2−µ

σ
)− Φ( s1−µ

σ
)

(41)

Given c1 and c2, the difference between |E(TSE2 − TSE1)|pooled OLS and
|E(TSE2 − TSE1)|hhold−time FE is:

∣

∣

∣

∣

φ( s1−µ

σ
)

1− Φ( s1−µ

σ
)
−

φ( s2−µ

σ
)

Φ( s2−µ

σ
)

∣

∣

∣

∣

−

∣

∣

∣

∣

φ( s1−µ

σ
)− φ( s2−µ

σ
)

Φ( s2−µ

σ
)− Φ( s1−µ

σ
)

∣

∣

∣

∣

(42)

To prove the proposition it is left to show that difference (42) is larger
than zero. Since s1 < s2, we have Φ( s1−µ

σ
) < Φ( s2−µ

σ
). Now consider two

cases: (1) -
∣

∣

s1−µ

σ

∣

∣ >
∣

∣

s2−µ

σ

∣

∣, and (2) -
∣

∣

s1−µ

σ

∣

∣ <
∣

∣

s2−µ

σ

∣

∣.
Consider case (1):
∣

∣

∣

∣

s1 − µ

σ

∣

∣

∣

∣

>

∣

∣

∣

∣

s2 − µ

σ

∣

∣

∣

∣

⇒
φ( s1−µ

σ
)

1− Φ( s1−µ

σ
)

=
φ(− s1−µ

σ
)

Φ(− s1−µ

σ
)

>
φ( s2−µ

σ
)

Φ( s2−µ

σ
)

(43)

This follows from the fact that the Inverse Mill’s Ratio of the standard
normal distribution is monotonically increasing, and that the case (1) implies
that − s1−µ

σ
> s2−µ

σ
.

Given (43):
∣

∣

∣

∣

φ( s1−µ

σ
)

1− Φ( s1−µ

σ
)
−

φ( s2−µ

σ
)

Φ( s2−µ

σ
)

∣

∣

∣

∣

−

∣

∣

∣

∣

φ( s1−µ

σ
)− φ( s2−µ

σ
)

Φ( s2−µ

σ
)− Φ( s1−µ

σ
)

∣

∣

∣

∣

=

=
φ( s1−µ

σ
)

1− Φ( s2−µ

σ
)
−

φ( s2−µ

σ
)

Φ( s2−µ

σ
)
−

φ( s2−µ

σ
)− φ( s1−µ

σ
)

Φ( s2−µ

σ
)− Φ( s1−µ

σ
)
=

=
φ( s1−µ

σ
)

1− Φ( s1−µ

σ
)

Φ( s2−µ

σ
) + 1− 2Φ( s1−µ

σ
)

Φ( s2−µ

σ
)− Φ( s1−µ

σ
)

−
φ( s2−µ

σ
)

Φ( s2−µ

σ
)

2Φ( s2−µ

σ
)− Φ( s1−µ

σ
)

Φ( s2−µ

σ
)− Φ( s1−µ

σ
)

>

>
φ( s2−µ

σ
)

Φ( s2−µ

σ
)

1− Φ( s1−µ

σ
)− Φ( s2−µ

σ
)

Φ( s2−µ

σ
)− Φ( s1−µ

σ
)

> 0, (44)
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since 1− Φ( s1−µ

σ
) = Φ(− s1−µ

σ
) > Φ( s2−µ

σ
).

Now consider case (2). In this case, the inequality (43) reverses the order,
and then the proof is analogous to the case (1):

∣

∣

∣

∣

s1 − µ

σ

∣

∣

∣

∣

<

∣

∣

∣

∣

s2 − µ

σ

∣

∣

∣

∣

⇒
φ( s1−µ

σ
)

1− Φ( s1−µ

σ
)

=
φ(− s1−µ

σ
)

Φ(− s1−µ

σ
)

<
φ( s2−µ

σ
)

Φ( s2−µ

σ
)

(45)

Therefore in both cases (1) and (2) |E(TSE2−TSE1)|pooled OLS > |E(TSE2−
TSE1)|hhold−time FE. Since this result holds conditional on any c1 and c2, the
unconditional expectation must hold too. Q.E.D.
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A.4 Model simulation: Robustness checks

Figure 7: Model simulation: TSE2 normally distributed

Sources: See notes for Figure 4 for the details on the model simulation. The only
difference with the main calibration is that the TSE2 is now normally distributed with
mean 4.75 and standard deviation 0.875.
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Figure 8: Model simulation: General CRRA utility function, yield increase
in %

Sources: See notes for Figure 4 for the details on the model simulation. The only
difference with the main calibration is that the farmers’ utility is general constant
relative risk aversion function (CRRA): U(x) = 1

1−θ
x1−θ, where θ is the risk aversion

coefficient. Note that the logarithmic function is the special case with θ = 1.

Figure 9: Model simulation: Different γ, yield increase in %

Sources: See notes for Figure 4 for the details on the model simulation. The only
difference with the main calibration is γ - the coefficient on the ML dummy. Note that in
the main calibration γ = 1.
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Figure 10: Model simulation: Different TSE1, yield increase in %

Sources: See notes for Figure 4 for the details on the model simulation. The only
difference with the main calibration is TSE1 - technology-specific education/experience
for M (assumed constant for all farmers). Note that in the main calibration TSE1 = 5.

Figure 11: Model simulation: Different ǫ, yield increase in %

Sources: See notes for Figure 4 for the details on the model simulation. The only
difference with the main calibration is ǫ - the riskiness of M. Note that in the main
calibration ǫ = 1.2.
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A.5 Additional estimation results

Table 15: Estimation results: Specific to general
pooled OLS hhold-time FE

(1) (2) (3) (4) (5) (6) (7) (8)
no IV IV IV IV no IV IV IV IV
b/se b/se b/se b/se b/se b/se b/se b/se

ML technology 0.14∗∗∗ 0.19∗∗∗ 0.19∗∗∗ 0.25∗∗∗ 0.28∗∗∗ 0.25∗∗∗ 0.28∗∗∗ 0.27∗∗∗

(dummy or landshare) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.05) (0.05)
rainfall, cm 1.02∗∗∗ 0.99∗∗∗ 1.03∗∗∗

per day (0.21) (0.22) (0.20)
ML X rainfall -1.26∗∗∗ -1.61∗∗∗ -1.36∗∗∗ -0.68 -1.31∗ -1.25∗

(0.32) (0.32) (0.30) (0.69) (0.73) (0.70)
rainfall -19.64∗∗∗ -21.25∗∗∗ -20.07∗∗∗

variance, daily (1.96) (2.14) (2.00)
ML X rainvar 13.18∗∗∗ 14.13∗∗∗ 7.70∗∗∗ 9.88∗∗ 12.55∗∗∗ 8.69∗

(2.42) (2.65) (2.48) (4.06) (4.83) (4.63)
temperature, C 3.80∗∗∗ 3.53∗∗∗

/100 (1.14) (1.03)
temperature -0.40 -1.09∗∗∗

ˆ2 /100 (0.31) (0.29)
temperature -0.07 0.09
ˆ3 /100 (0.08) (0.07)
ML X temp -5.23∗∗∗ -2.43∗ -7.75∗∗∗ -7.41∗∗∗

(1.40) (1.28) (2.97) (2.84)
ML X temp sq -0.44 -0.74∗ -1.36∗ -1.06

(0.45) (0.42) (0.75) (0.72)
ML X temp cub 0.20∗∗ 0.14 0.38∗∗ 0.31∗

(0.10) (0.09) (0.17) (0.17)
fertilizer, 3.00∗∗∗ 2.86∗∗∗

tonnes per ha (0.15) (0.45)
fertilizer -1.98∗∗∗ -1.22
ˆ2 (0.36) (0.85)
ML X Txfert 1.07∗∗∗ -1.05∗∗

(0.20) (0.49)
ML X Txfert sq -1.58∗∗∗ 3.12∗

(0.49) (1.67)
Constant 14.42∗∗∗ 14.39∗∗∗ 14.43∗∗∗ 14.47∗∗∗ 14.35∗∗∗ 14.35∗∗∗ 14.35∗∗∗ 14.30∗∗∗

(0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Observations 13445 13305 13305 13305 1678 1676 1676 1676
R-squared 0.01 . . 0.09 0.08
R-squared overall 0.02 0.03 0.02 0.13

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Dependent variable
in each regression - log energy yield.

A.6 Additional estimation results and figures
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Table 16: Estimation results: Alternative yield measures
(1) (2) (3) (4) (5)

energy grain cash protein maize equiv.
b/se b/se b/se b/se b/se

ML X rainfall -1.25∗ -1.42∗∗ -1.69∗∗ -1.14 -3.13∗∗∗

(0.70) (0.69) (0.79) (0.74) (0.83)
ML X rainvar 8.69∗ 11.96∗∗∗ 14.08∗∗∗ 9.29∗ 32.98∗∗∗

(4.63) (4.58) (5.22) (4.89) (5.25)
ML technology 0.27∗∗∗ 0.19∗∗∗ 0.36∗∗∗ 0.53∗∗∗ 0.10∗

(dummy or landshare) (0.05) (0.05) (0.06) (0.06) (0.06)
ML X temp -7.41∗∗∗ -6.86∗∗ -8.07∗∗ -9.01∗∗∗ -15.21∗∗∗

(2.84) (2.81) (3.20) (3.00) (3.69)
ML X temp sq -1.06 -1.03 -0.73 -1.46∗ -1.18

(0.72) (0.71) (0.81) (0.76) (0.85)
ML X temp cub 0.31∗ 0.24 0.16 0.38∗∗ 0.39∗

(0.17) (0.17) (0.19) (0.18) (0.22)
fertilizer, 2.86∗∗∗ 2.46∗∗∗ 2.44∗∗∗ 2.91∗∗∗ 2.64∗∗∗

tonnes per ha (0.45) (0.44) (0.50) (0.47) (0.54)
fertilizer -1.22 -0.63 -0.30 -1.16 -1.08
ˆ2 (0.85) (0.84) (0.95) (0.89) (0.99)
ML X fert -1.05∗∗ -0.65 -0.58 -1.25∗∗ -0.45

(0.49) (0.48) (0.55) (0.51) (0.58)
ML X fert sq 3.12∗ 2.75∗ 2.88 3.30∗ 1.97

(1.67) (1.65) (1.88) (1.76) (2.01)
Constant 14.30∗∗∗ 6.20∗∗∗ 8.68∗∗∗ 10.66∗∗∗ 2.20∗∗∗

(0.02) (0.02) (0.03) (0.03) (0.03)
Observations 1676 1676 1676 1676 1480
R-squared overall 0.13 0.11 0.12 0.17 0.10

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Estimation method
for all columns: household-time FE, IV used for rainfall. Dependent variables: column (1) - log of energy yield (main
measure, for comparison purposes); (2) - log of grain yield; (3) - log of cash yield; (4) - log of protein yield; (5) - log of
maize equivalent yield (Liu-Myers).

Table 17: Choice of technology: Role of plot properties
pooled OLS hhold-time FE

(1) (2) (3) (4) (5) (6) (7) (8)
b/se b/se b/se b/se b/se b/se b/se b/se

Distance from 0.01∗∗ 0.02∗∗ 0.06∗∗ 0.06∗∗

dwelling, km (0.01) (0.01) (0.03) (0.03)
Texture of soil 0.02∗ -0.24∗∗

(1 - sand to 3 - clay) (0.01) (0.11)
Slope (1 - flat 0.09∗∗∗ 0.19∗∗

to 4 - steep hilly) (0.01) (0.09)
Number of 0.00 -0.01 0.11 0.01
weedings (0.01) (0.02) (0.08) (0.13)
Constant 0.49∗∗∗ 0.28∗∗∗ 0.50∗∗∗ 0.51∗∗∗ 0.44∗∗∗ 0.66∗∗ 0.31∗∗ 0.42∗

(0.01) (0.02) (0.02) (0.03) (0.02) (0.29) (0.15) (0.24)
Observations 2200 8237 5188 2198 822 416 1261 821
R-squared 0.00 0.02 0.00 0.00 0.01 0.03 0.00 0.01
R-squared overall 0.00 0.00 0.00 0.00

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Dependent variable
in each regression - tM ML (0 if M, 1 if ML).
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Table 18: Maize and legume yields in intercrop: Summary statistics

mean sd
log total yield 6.41 0.87
log maize yield 6.00 1.06
log legume yield 4.79 1.22

(1) (2)
pooled OLS hhold FE

b/se b/se
log legume 0.13∗∗∗ 0.22∗∗∗

yield (0.01) (0.02)
Constant 5.40∗∗∗ 4.95∗∗∗

(0.05) (0.12)
Observations 6117 6117
R-squared 0.02 0.06
R-squared overall 0.02

Note Left panel: Summary statistics: total, maize, and legume yields in tonnes of grain per hectare. Only ML intercrop
plots included. Right panel: Regressions of log maize yield on log legume yield. * p < 0.1, ** p < 0.05, *** p < 0.01.
Only ML intercrop plots are included.

Table 19: Estimation results: Disaggregate Household Fixed Effects
(1) (2) (3) (4) (5) (6)

pooled OLS hhold-time FE
hhold-time &
techn. FE

hhold FE,

disaggregated

hhold FE,

aggregated hhold FE GMM
ML technology 0.25∗∗∗ 0.27∗∗∗ 0.09∗∗ 0.01 0.30∗∗

(dummy or landshare) (0.02) (0.05) (0.04) (0.06) (0.12)
rainfall, cm 1.03∗∗∗ 2.92∗∗∗ 3.48∗∗∗ 2.83∗∗∗

per day (0.20) (0.36) (0.39) (0.38)
ML X rainfall -1.36∗∗∗ -1.25∗ -1.60 -2.28∗∗∗ -3.26∗∗∗ -2.22∗∗∗

(0.30) (0.70) (2.47) (0.55) (0.77) (0.68)
rainfall -20.07∗∗∗ -62.17∗∗∗ -69.72∗∗∗ -14.27∗∗∗

variance, daily (2.00) (4.29) (4.64) (3.63)
ML X rainvar 7.70∗∗∗ 8.69∗ 12.52 36.58∗∗∗ 50.38∗∗∗ 15.74∗∗∗

(2.48) (4.63) (24.16) (4.01) (5.53) (5.49)
temperature, C 3.53∗∗∗ 19.32∗∗∗ 23.09∗∗∗ 21.80∗∗∗

/100 (1.03) (2.56) (3.31) (3.39)
temperature -1.09∗∗∗ -6.14∗∗∗ -6.16∗∗∗ 2.58∗∗∗

ˆ2 /100 (0.29) (0.77) (0.83) (0.69)
temperature 0.09 -0.51∗∗∗ -0.64∗∗∗ -0.90∗∗∗

ˆ3 /100 (0.07) (0.16) (0.21) (0.20)
ML X temp -2.43∗ -7.41∗∗∗ -21.24∗∗ -13.37∗∗∗ -17.93∗∗∗ -12.44∗∗∗

(1.28) (2.84) (8.88) (2.39) (3.66) (4.72)
ML X temp sq -0.74∗ -1.06 3.29 0.71 1.30 -1.53

(0.42) (0.72) (4.04) (0.63) (0.98) (1.15)
ML X temp cub 0.14 0.31∗ 0.83 0.25∗ 0.39∗ 0.69∗∗∗

(0.09) (0.17) (0.60) (0.14) (0.23) (0.26)
fertilizer, 3.00∗∗∗ 2.86∗∗∗ 2.82∗∗ 3.00∗∗∗ 2.88∗∗∗ 2.72∗

tonnes per ha (0.15) (0.45) (1.39) (0.26) (0.31) (1.59)
fertilizer -1.98∗∗∗ -1.22 -1.00 -2.70∗∗∗ -3.35∗∗∗ -3.91
ˆ2 (0.36) (0.85) (2.38) (0.51) (0.77) (4.36)
ML X Txfert 1.07∗∗∗ -1.05∗∗ -2.40 0.77∗∗ 1.29∗∗∗ 2.41

(0.20) (0.49) (2.01) (0.34) (0.44) (2.47)
ML X Txfert sq -1.58∗∗∗ 3.12∗ 4.40 -1.22 -1.36 -9.63

(0.49) (1.67) (7.48) (0.93) (1.27) (9.15)
L.log energy yield -0.09

(0.06)
Constant 14.47∗∗∗ 14.30∗∗∗ -0.00 14.45∗∗∗ 14.95∗∗∗ 15.47∗∗∗

(0.02) (0.02) (0.03) (0.01) (0.06) (0.89)
Observations 13305 1676 196 6818 5696 3095
R-squared 0.09 .
R-squared overall 0.13 0.09 0.01

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Estimation method:
column 1 - pooled OLS, column 2 - household-time FE, column 3 - household-time and technology FE, column 4 -
household FE, disaggregated (e.g. no aggregation of harvest over household), column 5 - household FE, aggregated,
column 6 - household FE GMM. For all columns, IV used for rainfall. Dependent variable for all columns - log of energy
yield.
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Table 20: Estimation results: Alternative Definitions of M and ML - Part 1
ML ML13 ML only

(1) (2) (3) (4) (5) (6)
OLS hhold-time FE OLS hhold-time FE OLS hhold-time FE

=1 if ML 0.25∗∗∗ 0.27∗∗∗ 0.24∗∗∗ 0.26∗∗∗ 0.21∗∗∗ 0.26∗∗∗

technology (0.02) (0.05) (0.02) (0.05) (0.03) (0.09)
rainfall, cm 1.03∗∗∗ 1.03∗∗∗ 0.93∗∗∗

per day (0.20) (0.20) (0.24)
ML X rainfall -1.36∗∗∗ -1.25∗ -1.42∗∗∗ -1.19∗ -1.35∗∗∗ -1.48

(0.30) (0.70) (0.30) (0.70) (0.37) (1.10)
rainfall -20.07∗∗∗ -20.07∗∗∗ -21.33∗∗∗

variance, daily (2.00) (2.00) (2.40)
ML X rainvar 7.70∗∗∗ 8.69∗ 7.68∗∗∗ 9.87∗∗ -0.11 7.72

(2.48) (4.63) (2.52) (4.73) (3.55) (8.98)
temperature, C 3.53∗∗∗ 3.53∗∗∗ 3.91∗∗∗

/100 (1.03) (1.03) (1.19)
temperature -1.09∗∗∗ -1.09∗∗∗ -0.91∗∗∗

ˆ2 /100 (0.29) (0.29) (0.33)
temperature 0.09 0.09 0.10
ˆ3 /100 (0.07) (0.07) (0.08)
ML X temp -2.43∗ -7.41∗∗∗ -2.11 -7.60∗∗∗ -2.27 -14.47∗∗∗

(1.28) (2.84) (1.31) (2.89) (1.77) (4.64)
ML X temp sq -0.74∗ -1.06 -0.64 -1.02 -0.38 -2.48∗∗

(0.42) (0.72) (0.43) (0.72) (0.51) (1.03)
ML X temp cub 0.14 0.31∗ 0.12 0.31∗ 0.11 0.74∗∗∗

(0.09) (0.17) (0.09) (0.17) (0.12) (0.26)
fertilizer, 3.00∗∗∗ 2.86∗∗∗ 2.99∗∗∗ 2.75∗∗∗ 2.88∗∗∗ 2.70∗∗∗

tonnes per ha (0.15) (0.45) (0.14) (0.45) (0.16) (0.70)
fertilizer -1.98∗∗∗ -1.22 -1.98∗∗∗ -1.07 -1.58∗∗∗ -0.32
ˆ2 (0.36) (0.85) (0.36) (0.85) (0.38) (1.28)
ML X fert 1.07∗∗∗ -1.05∗∗ 0.95∗∗∗ -0.97∗∗ 0.47∗∗ -0.70

(0.20) (0.49) (0.20) (0.49) (0.24) (0.72)
ML X fert sq -1.58∗∗∗ 3.12∗ -1.41∗∗∗ 3.11∗ -0.96∗ 3.65

(0.49) (1.67) (0.49) (1.69) (0.53) (2.80)
Constant 14.47∗∗∗ 14.30∗∗∗ 14.47∗∗∗ 14.31∗∗∗ 14.48∗∗∗ 14.32∗∗∗

(0.02) (0.02) (0.02) (0.03) (0.02) (0.04)
Observations 13305 1676 12927 1636 8534 740
R-squared overall 0.13 0.12 0.12

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. For all columns, IV
used for rainfall. Dependent variable for all columns - log of energy yield. Definitions of M and ML intercrop: ML - M
and L grown on the same plot vs. M grown without L (other crops permitted); ML13 - both M and L are listed among
three most important crops grown on a plot; ML only - M and L are the only crops grown on a plot.
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Table 21: Estimation results: Alternative Definitions of M and ML - Part 2
ML share>50% ML share>75% ML share>95% ML share=100%

(1) (2) (3) (4) (5) (6) (7) (8)
OLS hhold-time FE OLS hhold-time FE OLS hhold-time FE OLS hhold-time FE

=1 if ML 0.18∗∗∗ 0.27∗∗∗ 0.16∗∗∗ 0.27∗∗∗ 0.11∗∗∗ 0.23∗∗∗ 0.16∗∗∗ 0.05
technology (0.03) (0.07) (0.03) (0.07) (0.03) (0.08) (0.05) (0.16)
rainfall, cm 1.01∗∗∗ 1.00∗∗∗ 1.06∗∗∗ 1.08∗∗∗

per day (0.21) (0.21) (0.22) (0.22)
ML X rainfall -1.65∗∗∗ -1.52∗ -1.71∗∗∗ -1.88∗∗ -2.18∗∗∗ -2.22∗∗ -2.60∗∗∗ -3.89∗

(0.35) (0.87) (0.35) (0.94) (0.38) (1.11) (0.59) (2.09)
rainfall -20.50∗∗∗ -20.34∗∗∗ -22.18∗∗∗ -22.75∗∗∗

variance, daily (2.04) (2.09) (2.23) (2.26)
ML X rainvar 13.12∗∗∗ 9.71 13.30∗∗∗ 10.93∗ 15.69∗∗∗ 12.72 18.32∗∗∗ 20.49

(2.80) (6.23) (2.87) (6.61) (3.30) (8.18) (4.89) (12.54)
temperature, C 3.61∗∗∗ 3.69∗∗∗ 3.43∗∗∗ 3.59∗∗∗

/100 (1.04) (1.05) (1.08) (1.10)
temperature -1.17∗∗∗ -1.17∗∗∗ -1.22∗∗∗ -1.17∗∗∗

ˆ2 /100 (0.30) (0.30) (0.31) (0.31)
temperature 0.11 0.11 0.14∗ 0.13∗

ˆ3 /100 (0.07) (0.07) (0.07) (0.07)
ML X temp -0.45 -12.29∗∗∗ -0.93 -13.19∗∗∗ -0.74 -17.43∗∗∗ -1.90 -18.50∗∗

(1.43) (3.71) (1.46) (3.97) (1.60) (4.56) (2.34) (8.16)
ML X temp sq -0.42 -1.61∗ -0.26 -1.58 0.58 -2.11∗ 0.38 -0.13

(0.53) (0.98) (0.53) (1.03) (0.56) (1.13) (0.89) (2.04)
ML X temp cub 0.01 0.54∗∗ 0.03 0.57∗∗ -0.09 0.80∗∗∗ 0.03 0.55

(0.11) (0.23) (0.11) (0.25) (0.12) (0.28) (0.18) (0.47)
fertilizer, 3.01∗∗∗ 2.85∗∗∗ 3.03∗∗∗ 3.08∗∗∗ 2.98∗∗∗ 2.70∗∗∗ 2.94∗∗∗ 3.15∗∗

tonnes per ha (0.15) (0.62) (0.15) (0.65) (0.15) (0.72) (0.15) (1.37)
fertilizer -2.01∗∗∗ -0.42 -2.07∗∗∗ -0.79 -1.98∗∗∗ -0.64 -1.93∗∗∗ -1.94
ˆ2 (0.36) (1.56) (0.36) (1.62) (0.36) (1.75) (0.37) (2.85)
ML X fert 0.73∗∗∗ -0.40 0.55∗∗ -0.42 0.09 -0.27 0.26 -1.88

(0.26) (0.70) (0.26) (0.73) (0.27) (0.81) (0.41) (1.35)
ML X fert sq -2.37∗∗ 0.04 -1.76∗ -0.28 -0.47 -0.44 0.28 4.61

(1.02) (2.81) (1.02) (2.99) (1.06) (3.26) (1.55) (6.11)
Constant 14.46∗∗∗ 14.22∗∗∗ 14.47∗∗∗ 14.23∗∗∗ 14.46∗∗∗ 14.20∗∗∗ 14.46∗∗∗ 14.31∗∗∗

(0.02) (0.03) (0.02) (0.04) (0.02) (0.04) (0.02) (0.07)
Observations 10720 1032 10374 968 9319 798 7001 274
R-squared overall 0.08 0.08 0.08 0.12

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. For all columns, IV
used for rainfall. Dependent variable for all columns - log of energy yield. Definitions of M and ML intercrop: ML
share¿X% - for ML, harvest shares of both M and L are larger than 10%, sum of the shares larger than X%; for M, its
harvest share is larger than X%. X is either 50, 75, 95, or 100.
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Table 22: Estimation results: Alternative Definitions of M and ML - Part 3
(1) (2) (3) (4)

with M only &

dummy

with ML only &

dummy
3 vs. 100-3 &

rule
5 vs. 100-5 &

rule
ML technology 0.30∗∗∗ 0.26∗∗∗ 0.28∗∗∗ 0.29∗∗∗

(dummy or landshare) (0.07) (0.06) (0.06) (0.07)
ML X rainfall -1.29∗ -1.26∗ -2.09∗∗ -2.29∗∗∗

(0.70) (0.70) (0.84) (0.86)
ML X rainvar 8.65∗ 8.63∗ 17.20∗∗∗ 17.56∗∗∗

(4.64) (4.62) (6.30) (6.42)
ML X temp -7.55∗∗∗ -7.35∗∗ -12.67∗∗∗ -13.55∗∗∗

(2.85) (2.86) (3.53) (3.58)
ML X temp sq -1.08 -1.07 -1.37 -1.61∗

(0.72) (0.72) (0.87) (0.90)
ML X temp cub 0.31∗ 0.31∗ 0.53∗∗ 0.58∗∗∗

(0.17) (0.17) (0.21) (0.22)
fertilizer, 2.84∗∗∗ 2.86∗∗∗ 3.14∗∗∗ 2.95∗∗∗

tonnes per ha (0.45) (0.45) (0.55) (0.56)
fertilizer -1.22 -1.22 -1.82∗ -1.54
ˆ2 (0.85) (0.85) (1.07) (1.08)
ML X fert -1.06∗∗ -1.05∗∗ -1.06∗ -0.88

(0.49) (0.49) (0.62) (0.64)
ML X fert sq 3.21∗ 3.14∗ 2.94 2.45

(1.68) (1.67) (2.33) (2.44)
=1 if M only 0.05

(0.07)
=1 if ML only 0.02

(0.07)
Constant 14.27∗∗∗ 14.30∗∗∗ 14.26∗∗∗ 14.23∗∗∗

(0.05) (0.02) (0.03) (0.03)
Observations 1676 1676 1200 1150
R-squared
R-squared overall 0.13 0.13 0.13 0.12

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. For all columns, IV
used for rainfall. Dependent variable for all columns - log of energy yield. Definitions of M and ML intercrop: column
(1) - as in the main specification, but regression includes “M only” dummy; (2) - as in the main specification, but
regression includes “ML only” dummy; (3) - “3 vs. 100-3” rule: harvest share of M on M plots is at least 97%, harvest
share of legumes on ML plots is at least 3%; (4) - “5 vs. 100-5” rule: harvest share of M on M plots is at least 95%,
harvest share of legumes on ML plots is at least 5%.
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Table 23: Alternative definition of ML intercrop (ML shares > 75%) vs.
other technologies (Analog of Table 12)

(1) (2) (3) (4) (5)
ML rotation M+L M+L, legume share L M, legume share

=1 if ML -0.04 -0.39 -0.15 -0.39∗∗ -0.09
technology (0.18) (0.28) (0.28) (0.20) (0.10)
rainfall, cm
per day
ML X rainfall -4.75∗∗ -4.37 -5.04∗ -1.52 -1.65∗

(2.16) (3.00) (2.96) (1.37) (0.84)
rainfall
variance, daily
ML X rainvar 52.98∗∗ 38.89 52.99∗ 29.44∗ 7.17

(21.26) (30.13) (28.86) (16.68) (6.05)
temperature, C
/100
temperature
ˆ2 /100
temperature
ˆ3 /100
ML X temp 7.85 14.84 13.19 18.15∗∗ -10.50∗∗∗

(11.48) (16.41) (16.12) (8.24) (3.69)
ML X temp sq 3.23∗ 4.23 4.67∗ 4.89∗∗∗ -1.30

(1.82) (2.65) (2.59) (1.70) (0.97)
ML X temp cub -0.95 -1.14 -1.18 -1.23∗∗ 0.49∗∗

(0.75) (0.99) (0.97) (0.53) (0.23)
fertilizer, -4.38∗∗∗ 1.87 3.49 -5.89 3.24∗∗∗

tonnes per ha (1.57) (2.96) (2.96) (3.93) (0.61)
fertilizer 18.04∗∗∗ 4.29 1.23 9.96 -1.23
ˆ2 (6.98) (11.01) (10.85) (6.82) (1.54)
ML X fert 2.24 -1.89 -2.04 6.48 -0.16

(1.89) (2.93) (2.86) (3.98) (0.69)
ML X fert sq -10.08 -1.44 -3.41 -5.23 -0.90

(8.79) (12.84) (12.53) (7.82) (2.77)
harvest share 1.01∗∗ 1.00∗∗∗

of L (0.43) (0.20)
Constant 14.36∗∗∗ 14.67∗∗∗ 14.11∗∗∗ 14.71∗∗∗ 14.23∗∗∗

(0.08) (0.10) (0.26) (0.17) (0.03)
Observations 426 164 164 726 1032
R-squared overall 0.04 0.08 0.07 0.12 0.07

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Estimation method
for all columns: household-time FE, IV used for rainfall. Dependent variable in all columns - log of energy yield. ML
intercrop is defined as all plots with harvest shares of both M and L larger than 10%, sum of the shares larger than 75%.
ML intercrop is compared with: column (1) - M-L rotation; (2) - M+L (growing M and L on separate plots); (3) - M+L,
controlling for the harvest share of L; (4) - L (growing only L); (5) - M, controlling for the harvest share of L in ML.
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Table 24: Maize and legume productivity for different technologies (with
alternative definition of ML intercrop, ML shares >75%, analog of Table 13)

M vs. L M only vs. M in M-L rotation M yield, ML vs. M L yield, ML vs. L
(1) (2) (3) (4) (5)
OLS hhold-time FE OLS hhold-time FE hhold-time FE

=1 if -0.23∗∗ -0.32 -0.09∗∗ -0.24∗∗∗ -1.46∗∗∗

technology in bold (0.10) (0.25) (0.04) (0.07) (0.21)
rainfall, cm 1.07∗∗∗ 2.31∗∗∗

per day (0.35) (0.36)
ML X rainfall -0.07 0.90 -1.77∗∗∗ -1.80∗∗ -0.84

(0.39) (0.58) (0.43) (0.86) (1.48)
rainfall 0.51 -63.81∗∗∗

variance, daily (4.59) (5.15)
ML X rainvar -20.85∗∗∗ -44.75∗∗∗ 51.30∗∗∗ 5.31 39.90∗∗

(4.91) (7.76) (5.57) (6.26) (17.98)
temperature, C -0.08 1.74
/100 (2.27) (2.16)
temperature -3.19∗∗∗ -3.39∗∗∗

ˆ2 /100 (0.49) (0.45)
temperature 0.23 0.59∗∗∗

ˆ3 /100 (0.16) (0.16)
ML X temp 3.77 3.41 -1.45 -7.97∗∗ 19.57∗∗

(2.44) (3.64) (2.47) (3.77) (8.98)
ML X temp sq 2.03∗∗∗ 1.37∗ 2.36∗∗∗ -0.86 5.67∗∗∗

(0.55) (0.80) (0.61) (0.99) (1.82)
ML X temp cub -0.12 -0.05 -0.42∗∗ 0.39 -1.29∗∗

(0.17) (0.26) (0.18) (0.24) (0.59)
fertilizer, -7.08∗∗∗ -7.03∗∗ 1.43∗∗∗ 3.32∗∗∗ -11.61∗∗∗

tonnes per ha (1.39) (3.27) (0.28) (0.63) (4.36)
fertilizer 12.38∗∗∗ 17.63 -0.78 -1.26 18.25∗∗

ˆ2 (2.74) (12.30) (0.60) (1.57) (7.36)
ML X fert 10.18∗∗∗ 9.12∗∗∗ 2.12∗∗∗ -0.17 11.71∗∗∗

(1.40) (3.27) (0.33) (0.71) (4.41)
ML X fert sq -14.45∗∗∗ -19.08 -2.04∗∗∗ -1.10 -13.68

(2.77) (12.30) (0.75) (2.84) (8.41)
Constant 14.65∗∗∗ 14.52∗∗∗ 14.60∗∗∗ 14.17∗∗∗ 14.42∗∗∗

(0.10) (0.25) (0.04) (0.03) (0.19)
Observations 9229 3668 6804 1029 723
R-squared 0.13 0.04
R-squared overall 0.07 0.08 0.48

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. In all columns, IV
used for rainfall, estimation method - household-time FE. Maize and legume productivity for different technologies
(technology dummy is one for technologies in bold): columns (1) and (2) - M vs. L, log of energy yield, OLS and
hhold-time FE; (3) - log of energy yield, maize only (no rotation or intercrop) vs. maize in M-L rotation; (4) - M only
yield in M vs. ML; (5) - L only yield in L vs. ML. ML intercrop is defined as all plots with harvest shares of both M and
L larger than 10%, sum of the shares larger than 75%.
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Table 25: Alternative functional specifications for weather variables
linear square cubic

(1) (2) (3) (4) (5) (6)
pooled OLS hhold-time FE pooled OLS hhold-time FE pooled OLS hhold-time FE

ML technology 0.22∗∗∗ 0.24∗∗∗ -0.00 0.35∗∗∗ 0.09∗∗ 0.28∗∗∗

(dummy or landshare) (0.02) (0.04) (0.04) (0.08) (0.03) (0.09)
fertilizer, 2.97∗∗∗ 2.84∗∗∗ 2.96∗∗∗ 2.98∗∗∗ 3.15∗∗∗ 2.72∗∗∗

tonnes per ha (0.14) (0.45) (0.15) (0.45) (0.15) (0.47)
fertilizer -1.98∗∗∗ -1.16 -1.92∗∗∗ -1.24 -2.07∗∗∗ -0.96
ˆ2 (0.37) (0.85) (0.38) (0.85) (0.36) (0.88)
ML X fert 1.00∗∗∗ -1.14∗∗ 0.90∗∗∗ -1.03∗∗ 0.57∗∗∗ -0.98∗

(0.19) (0.49) (0.20) (0.49) (0.21) (0.51)
ML X fert sq -1.46∗∗∗ 3.50∗∗ -1.29∗∗∗ 3.04∗ -0.80 3.37∗∗

(0.50) (1.67) (0.50) (1.67) (0.50) (1.71)
rainfall, cm 1.13∗∗∗ 0.66∗∗∗ 4.71∗∗∗

per day (0.20) (0.25) (0.44)
ML X rainfall -1.38∗∗∗ -1.51∗∗ -0.72∗∗ -1.51∗∗ -2.29∗∗∗ -5.08∗∗∗

(0.30) (0.74) (0.34) (0.70) (0.67) (1.60)
rainfall -19.15∗∗∗ -15.51∗∗∗ 8.22∗

variance, daily (1.95) (2.56) (4.34)
ML X rainvar 8.77∗∗∗ 11.44∗∗ 7.12∗∗ 19.39∗∗∗ 2.99 18.46∗

(2.38) (4.57) (3.28) (6.12) (5.73) (9.96)
temperature, C 2.34∗∗∗ 4.16∗∗∗ 8.31∗∗∗

/100 (0.51) (0.83) (1.36)
ML X temp -2.47∗∗∗ -3.94∗∗∗ -2.98∗∗∗ -2.21 -4.73∗∗∗ -3.21

(0.63) (1.39) (1.05) (1.97) (1.76) (3.43)
rainfall -16.72∗∗∗ 5.72∗∗

ˆ2 (3.11) (2.36)
ML X 19.46∗∗∗ 2.33 5.35∗ 6.36
rainfall sq (4.02) (5.22) (2.90) (5.11)
rainfall 1.09 6.50∗∗∗

variance ˆ2 x 100 (1.26) (1.02)
ML X rainvar sq 1.44 -7.32∗∗∗ 11.08∗∗∗ -10.13∗

(1.52) (2.56) (2.28) (6.14)
temperature -0.81∗∗∗ -0.42
ˆ2 /100 (0.21) (0.34)
ML X temp sq 0.31 -0.24 -0.83 -0.05

(0.26) (0.45) (0.52) (0.81)
rainfall -0.90∗∗∗

ˆ3 x 100 (0.11)
ML X 0.51∗∗∗ 1.03∗∗∗

rainfall cube (0.17) (0.36)
rainfall -44.68∗∗∗

variance ˆ3 x 1000 (6.79)
ML X -24.75∗∗ 19.05
rainvar cube (10.65) (23.59)
temperature -0.16∗

ˆ3 /100 (0.08)
ML X temp cub 0.26∗∗ 0.04

(0.12) (0.21)
Constant 14.42∗∗∗ 14.30∗∗∗ 14.61∗∗∗ 14.30∗∗∗ 14.38∗∗∗ 14.30∗∗∗

(0.01) (0.02) (0.03) (0.02) (0.02) (0.03)
Observations 13305 1676 13305 1676 13305 1676
R-squared 0.09 0.08 0.05
R-squared overall 0.13 0.12 0.10

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. In all columns, IV
used for rainfall, rainfallˆ2, and rainfallˆ3. Dependent variable in all specifications - log energy yield. Columns 1,2 - all
weather variables (rainfall, rainfall variance, temperature) linear; column 3,4 - all weather variables linear and quadratic;
column 5,6 - all weather variables linear, quadratic, and cubic.
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Table 26: M vs. ML controlling for seed input and land size
pooled OLS hhold-time FE

(1) (2) (3) (4)
log energy yield log energy yield log energy yield log energy yield

ML technology 0.21∗∗∗ 0.23∗∗∗ 0.33∗∗∗ 0.36∗∗∗

(dummy or landshare) (0.05) (0.05) (0.07) (0.07)
rainfall, cm 2.67∗∗∗ 2.63∗∗∗

per day (0.42) (0.41)
ML X rainfall -3.94∗∗∗ -3.89∗∗∗ -1.55∗ -1.66∗

(0.56) (0.56) (0.91) (0.89)
rainfall -8.91∗∗∗ -9.18∗∗∗

variance, daily (2.63) (2.60)
ML X rainvar 17.61∗∗∗ 17.96∗∗∗ 4.77 6.59

(3.51) (3.47) (5.48) (5.40)
temperature, C 19.65∗∗∗ 19.21∗∗∗

/100 (1.98) (1.96)
temperature 2.85∗∗∗ 2.65∗∗∗

ˆ2 /100 (0.39) (0.39)
temperature -0.85∗∗∗ -0.82∗∗∗

ˆ3 /100 (0.10) (0.10)
ML X temp -14.50∗∗∗ -14.49∗∗∗ -8.52∗∗ -8.75∗∗

(2.50) (2.47) (3.67) (3.60)
ML X temp sq -1.63∗∗∗ -1.61∗∗∗ -1.63∗ -1.48∗

(0.56) (0.56) (0.83) (0.82)
ML X temp cub 0.64∗∗∗ 0.64∗∗∗ 0.39∗∗ 0.36∗

(0.13) (0.13) (0.19) (0.18)
fertilizer, 3.18∗∗∗ 3.06∗∗∗ 2.66∗∗∗ 2.51∗∗∗

tonnes per ha (0.22) (0.22) (0.49) (0.48)
fertilizer -2.47∗∗∗ -2.44∗∗∗ -1.23 -1.29
ˆ2 (0.47) (0.46) (0.89) (0.87)
ML X fert 0.32 0.22 -1.38∗∗ -1.34∗∗

(0.30) (0.30) (0.58) (0.57)
ML X fert sq -0.66 -0.53 4.64∗∗ 4.21∗∗

(0.71) (0.70) (1.83) (1.80)
log seed input, 0.10∗∗∗ 0.08∗∗∗ 0.06 0.04
kg per ha (0.01) (0.01) (0.05) (0.05)
plot area, ha -0.17∗∗∗ -0.29∗∗∗

(0.04) (0.06)
Constant 13.89∗∗∗ 14.06∗∗∗ 14.07∗∗∗ 14.25∗∗∗

(0.05) (0.06) (0.13) (0.14)
Observations 4954 4954 1215 1215
R-squared 0.20 0.21
R-squared overall 0.11 0.15

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. In all columns, IV
used for rainfall. Dependent variable in all specifications - log energy yield. Seed data is available only for waves 2 and 3
of the survey (hence, GMM estimation is not possible).
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Table 27: Estimation results: Various specification of GMM regression
(1) (2) (3) (4) (5) (6)

main
specification

all var’s
except yield

strictly
exogenous

weather
var’s only

strictly
exogenous

T and
fert. vars
lagged

no
time f.e.

orthogonal

projections
ML technology 0.26∗∗∗ 0.27∗∗∗ 0.15∗ 0.17 0.28∗∗∗ 0.26∗∗∗

(dummy or landshare) (0.07) (0.07) (0.08) (0.13) (0.07) (0.07)
rainfall, cm 2.07∗∗∗ 1.32∗∗∗ 2.54∗∗∗ 1.88∗∗∗ 2.18∗∗∗ 2.07∗∗∗

per day (0.32) (0.31) (0.34) (0.50) (0.32) (0.32)
ML X rainfall -2.04∗∗∗ -1.63∗∗∗ -2.09∗∗∗ -0.67 -2.10∗∗∗ -2.04∗∗∗

(0.53) (0.53) (0.57) (0.83) (0.54) (0.53)
rainfall -4.58 -1.47 -8.34∗∗ -7.67∗ -8.84∗∗∗ -4.57
variance, daily (3.08) (3.00) (3.44) (4.36) (3.03) (3.07)
ML X rainvar 14.69∗∗∗ 12.29∗∗∗ 17.47∗∗∗ 14.17∗∗ 13.92∗∗∗ 14.75∗∗∗

(4.45) (4.71) (5.06) (6.50) (4.47) (4.45)
temperature, C 23.55∗∗∗ 23.09∗∗∗ 25.24∗∗∗ 28.63∗∗∗ 21.01∗∗∗ 23.56∗∗∗

/100 (3.16) (3.10) (3.17) (4.06) (3.13) (3.15)
temperature 3.86∗∗∗ 3.40∗∗∗ 2.82∗∗∗ 4.01∗∗∗ 3.72∗∗∗ 3.86∗∗∗

ˆ2 /100 (0.60) (0.56) (0.56) (0.83) (0.60) (0.60)
temperature -1.15∗∗∗ -1.20∗∗∗ -1.13∗∗∗ -1.53∗∗∗ -0.99∗∗∗ -1.16∗∗∗

ˆ3 /100 (0.17) (0.17) (0.17) (0.25) (0.17) (0.17)
ML X temp -16.63∗∗∗ -15.80∗∗∗ -17.44∗∗∗ -21.40∗∗∗ -13.82∗∗∗ -16.67∗∗∗

(4.18) (4.21) (4.35) (5.73) (4.17) (4.18)
ML X temp sq -3.80∗∗∗ -3.20∗∗∗ -2.42∗∗ -4.69∗∗∗ -2.70∗∗∗ -3.80∗∗∗

(0.99) (0.93) (0.95) (1.41) (0.98) (0.99)
ML X temp cub 1.06∗∗∗ 1.09∗∗∗ 0.99∗∗∗ 1.54∗∗∗ 0.79∗∗∗ 1.07∗∗∗

(0.23) (0.23) (0.23) (0.33) (0.22) (0.23)
fertilizer, 2.80∗∗∗ 2.88∗∗∗ 2.94∗∗∗ -2.73 2.97∗∗∗ 2.80∗∗∗

tonnes per ha (0.37) (0.31) (0.39) (2.04) (0.37) (0.37)
fertilizer -2.93∗∗∗ -2.44∗∗∗ -3.19∗∗∗ 6.82 -3.25∗∗∗ -2.93∗∗∗

ˆ2 (0.76) (0.64) (0.74) (5.97) (0.78) (0.76)
ML X Txfert 0.29 0.49 0.47 0.40 0.32 0.29

(0.57) (0.48) (0.58) (2.68) (0.57) (0.57)
ML X Txfert sq 0.35 -0.47 -0.00 9.36 -0.09 0.34

(1.56) (1.32) (1.59) (9.98) (1.61) (1.56)
L.log energy yield 0.08∗∗ 0.12∗∗∗ 0.11∗∗∗ 0.17∗∗∗ 0.03 0.08∗∗

(0.03) (0.04) (0.04) (0.04) (0.03) (0.03)
(mean) wave=1 0.00 0.00 0.00 0.00 0.00

(.) (.) (.) (.) (.)
(mean) wave=2 12.91∗∗∗ 12.31∗∗∗ 0.00 11.64∗∗∗ 12.89∗∗∗

(0.46) (0.58) (.) (0.63) (0.47)
(mean) wave=3 13.14∗∗∗ 12.54∗∗∗ 0.24∗∗∗ 12.04∗∗∗ 13.13∗∗∗

(0.46) (0.57) (0.04) (0.61) (0.46)
Constant 0.00 0.00 12.57∗∗∗ 0.00 13.72∗∗∗ 0.00

(.) (.) (0.52) (.) (0.46) (.)
Observations 3095 3095 3095 3095 3095 3095

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. In all columns, IV
used for rainfall, rainfallˆ2, and rainfallˆ3. Dependent variable in all specifications - log energy yield. Wave represents
the wave of the survey (total of 3). Detailed description of the specifications: column 1 - the main specification from
Table 9; column 2 - all variables except lagged log energy yield are assumed strictly exogenous; column 3 - only weather
variables (rainfall rainfall variation and their interactions with T) are assumed strictly exogenous; column 4 - similar to
column 3, but T and fertilizer variables are instrumented with second lags; column 5 - similar to column 1, but time
fixed effects are not included; column 6 - similar to column 1, but orthogonal projections are used instead of differencing.
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Table 28: Main estimation results with time fixed effects
(1) (2) (3) (4)

pooled OLS hhold-time FE
hhold-time &
techn. FE hhold FE GMM

ML technology 0.18∗∗∗ 0.27∗∗∗ 0.10
(dummy or landshare) (0.02) (0.05) (0.13)
rainfall, cm 0.40∗∗ 1.85∗∗∗

per day (0.20) (0.47)
ML X rainfall -0.80∗∗∗ -1.25∗ -1.60 -0.83

(0.30) (0.70) (2.47) (0.80)
rainfall 5.87∗∗ -8.09∗

variance, daily (2.39) (4.25)
ML X rainvar 10.33∗∗∗ 8.69∗ 12.52 15.45∗∗

(2.39) (4.63) (24.16) (6.41)
temperature, C 2.36∗∗ 28.33∗∗∗

/100 (1.02) (4.05)
temperature 1.47∗∗∗ 3.80∗∗∗

ˆ2 /100 (0.32) (0.81)
temperature -0.33∗∗∗ -1.50∗∗∗

ˆ3 /100 (0.07) (0.25)
ML X temp -2.00 -7.41∗∗∗ -21.24∗∗ -21.82∗∗∗

(1.25) (2.84) (8.88) (5.77)
ML X temp sq -0.66 -1.06 3.29 -4.39∗∗∗

(0.42) (0.72) (4.04) (1.37)
ML X temp cub 0.12 0.31∗ 0.83 1.51∗∗∗

(0.09) (0.17) (0.60) (0.33)
fertilizer, 3.38∗∗∗ 2.86∗∗∗ 2.82∗∗ -2.16
tonnes per ha (0.14) (0.45) (1.39) (2.01)
fertilizer -2.50∗∗∗ -1.22 -1.00 3.75
ˆ2 (0.35) (0.85) (2.38) (5.30)
ML X Txfert 1.05∗∗∗ -1.05∗∗ -2.40 0.49

(0.19) (0.49) (2.01) (2.84)
ML X Txfert sq -1.56∗∗∗ 3.12∗ 4.40 11.26

(0.48) (1.67) (7.48) (9.77)
(mean) wave=1 0.00 0.00

(.) (.)
(mean) wave=2 -0.57∗∗∗ 12.43∗∗∗

(0.03) (1.07)
(mean) wave=3 -0.34∗∗∗ 12.81∗∗∗

(0.02) (1.05)
L.log energy yield 0.11

(0.07)
Constant 14.60∗∗∗ 14.30∗∗∗ -0.00 0.00

(0.02) (0.02) (0.03) (.)
Observations 13305 1676 196 3095
R-squared 0.17
R-squared overall 0.13 0.09

Note Standard errors (clustered by household) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. In all columns, IV
used for rainfall, rainfallˆ2, and rainfallˆ3. Dependent variable in all specifications - log energy yield. Wave represents
the wave of the survey (total of 3).
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Figure 12: Estimated response to fertilizer: M vs. ML - GMM

Note: Based on the estimation in Table 1, column 9 - GMM.
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Figure 13: Estimated response to fertilizer: M vs. ML - Grain yield

Note: Based on the estimation in Table 1, column 4 - household-time FE. Yield measure
- log grain yield.
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Figure 14: Estimated effect of temperature on yield: M vs. ML - Household-
time FE

Note: Based on the estimation in Table 1, column 4 (household-time FE) for ML-specific
coefficients, column 9 (GMM) for non ML-specific coefficients. The maximal average
temperature observed in Malawi over the estimation period is 28.5◦C. For higher
temperatures the predictions are out of sample.
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