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Abstract 
Thomas Schelling (1966) cites bridge burning as a method of commitment. While such a 
commitment can increase the chances of success in a conflict, it will generally lower one’s 
payoff if the conflict is lost. I use a standard rent seeking framework and establish conditions 
under which this type of commitment can raise a player’s expected payoff. A necessary 
condition is that the scale parameter in the rent-seeking function exceed 1. The comparative 
static effects of bridge burning are never favorable at an interior equilibrium, but the strategy can 
induce the opponent to concede the outcome of the contest. I also analyze the strategy, associated 
with Sun Tzu, of leaving an escape path open for your enemy. This strategy always succeeds at 
an interior equilibrium and raises the expected payoff of both players. Under certain parameter 
restrictions, leaving an open escape path also has the potential of inducing the opponent to 
concede the contest. A special case of the model is used to explain why a group subject to a 
potential transfer might prefer a less efficient tax system to a more efficient system.  
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If you are faced with an enemy who thinks you would turn and run if he kept advancing, and if 

the bridge is there to run across, he may keep advancing. He may advance to the point where, if 

you do not run, a clash is automatic. Calculating what is in your long-run interest, you may turn 

and cross the bridge. At least he may expect you to. But if you burn the bridge so that you cannot 

retreat, and in sheer desperation there is nothing you can do but defend yourself, he has a new 

calculation to make. Thomas Schelling (1966: 43).  

 

Man, the way I been talking, if I didn’t back up my talk I’d have to leave town. I’d have to leave 

the country. … So I talk big and that just makes me fight harder. Cassius Clay1 

 

1. Introduction 

In Arms and Influence, Thomas Schelling cites bridge burning as a method of commitment.2 The 

idea is that troops with no available path for retreat will fight harder. Moreover, if the enemy 

knows its opponent cannot retreat, it will become discouraged knowing its opponent will fight 

harder. This may make the enemy more likely to retreat. This is an example of what Schelling 

(1960: 160) calls a strategic move, whereby a player lowers her payoff in some outcomes of the 

game in such a way as to achieve a superior outcome overall. However, bridge burning is 

dangerous. If the battle is lost, defeat will be total because the avenue of retreat has been cut off. 

In a modeling sense, bridge burning involves lowering one’s own payoff in the event one is 

defeated in a contest. I model this in a standard rent-seeking framework and derive conditions 

under which bridge burning can succeed. A necessary condition is that the scale parameter in the 

contest success function be greater than 1. 

                                                 
1 Later Muhammad Ali. The quote was reproduced in Roberts and Smith (2016: 43).  
2 Bridge burning is referenced in The Strategy of Conflict but not addressed in detail as in Arms and Influence.  
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 I assume one contestant can increase the level of her losses in the event she is defeated. A 

voluntary increase in these potential losses is the modeling equivalent of bridge burning. The 

probability of winning the contest always rises when bridges are burned, but losses are greater in 

the event of defeat. At an interior equilibrium, the comparative static effects of bridge burning 

are never favorable for the party engaged in the strategy. However, when the scale parameter in 

the contest success function exceeds one, there may be a level of losses a contestant can impose 

upon herself in the event she is defeated in the contest such that her own participation constraint 

is satisfied while the participation constraint of her opponent is violated. In this case, her 

opponent will concede the outcome of the contest.   

 In addition to cutting off one’s own path of retreat, a contestant might want to leave open 

a retreat path for her opponent. This should weaken the opponent’s resolve and make it more 

likely that he will retreat. From a modeling standpoint, this involves lowering the opponent’s 

losses in the event he is defeated. At all interior equilibria, leaving an escape path open raises the 

expected payoff of the player engaging in the strategy and also raises the expected payoff of her 

opponent. When the scale parameter in the contest success function is less than 1, leaving an 

escape path open succeeds where bridge burning definitely would fail. When the scale parameter 

exceeds 1, it may be feasible to induce the opponent to concede the contest by leaving an open 

escape path.  

 An example of leaving an open escape path is providing brutal or corrupt dictators an 

option of asylum if they step down. de Córdoba (2018) argues that individuals such as Nicolás 

Maduro in Venezuela and Daniel Ortega in Nicaragua may cling to power because they believe 

that a peaceful exile free from the fear of arrest is not possible.3 Among other issues dictators 

                                                 
3 Wall Street Journal, August 4-5, 2018, p. C3.  
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need to consider is possible prosecution at the International Criminal Court. While such 

prosecutions may be fully justified, they may lead dictators to hold onto power and spill 

additional blood because they lack a viable exit option.  

 A special case of the model may be interpreted as a contest over a transfer payment. 

Contestant 2 is subject to a potential transfer payable to contestant 1 if she loses the contest. I 

assume that the net value of the transfer is fixed, but that the gross value depends upon the 

efficiency of the tax-transfer system. Contestant 2 may prefer a less efficient tax-transfer system 

if this deters her opponent from engaging in the transfer seeking game. Thus, for example, while 

value added taxes (VAT) are generally perceived to be efficient, groups subject to potential 

transfers might oppose such a tax system in favor of one which is less efficient.  

 As the opening quote from Cassius Clay indicates, there are other metaphorical examples 

of bridge burning. His quote indicates that his bragging prior to a boxing match increased the 

costs associated with him losing the match. As a result, he has an incentive to train harder for the 

match and to fight harder in the match. Dixit and Nalebuff (2008) cite Polaroid’s commitment to 

a single line of business, the instant camera, as an example of corporate bridge burning. They 

argue that this provided a commitment to fend off potential competitors and cite Polaroid’s 

lengthy court case against Kodak (which Polaroid won) as evidence of this. 

 Schelling (1960, 1966) places the idea of bridge burning within the context of game 

theory. The idea of leaving a retreat route open for your enemy may be found in Sun Tzu’s The 

Art of War.4 The contest success function I utilize comes from Tullock (1980). The contest 

                                                 
4 Also see the discussion in Dixit and Nalebuff (2008: 215-6). As seen in their discussion another frequently given 
example of commitment is boat burning. Schelling (1966, pp. 44-5) also discusses the strategy of leaving an open 
escape route.  
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literature is surveyed by Konrad (2009). The literature on conflict is surveyed by Garfinkel and 

Skaperdas (2007).5 

 

2. The Model 

In section 2.1 I will describe the contest. This contest is embedded in a larger game which is 

described in Section 2.2. The structure of the larger game is designed to allow for the following 

realistic outcome: If one player’s participation constraint is satisfied and the other’s is not, the 

player whose constraint is violated will be allowed to concede the contest to the player whose 

constraint is satisfied. This cannot be done without adding some additional structure to a 

standard contest model.  

2.1. Contest Description 

In this subsection the contest is described. The potential contest between the two players is 

embedded in a larger game which is fully described in Section 2.2. Let there be two contestants 

denoted by i  = 1, 2 and let their respective efforts in the contest be denoted by Xi. The 

probability p that contestant 1 wins the contest is given by a standard Tullock (1980) function:  

 

rr

r

XaX

aX
p

21

1


 ,           (1) 

 
where a > 0 is a bias parameter and 0 < r < 2 is a scale parameter. When a > 1, the contest is 

biased in contestant 1’s favor and when a < 1, it is biased in contestant 2’s favor. When r > 2 we 

may have both player’s participation constraints violated simultaneously. For 1 < r < 2, at most 

                                                 
5 The idea of bridge burning has also been related to entry deterrence in the industrial organization literature. In his 
discussion of entry deterrence, Tirole (1988: 316) provides an informal discussion of bridge burning within in the 
context of a military example. As in the current paper, in Tirole’s informal example, bridge burning succeeds by 
discouraging an attack.  
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one player’s participation constraint will be violated. Thus, in order to avoid lengthy discussions 

about what happens when both constraints are violated, we will utilize the stated restriction on r.6 

The cost of a unit of effort X is normalized to 1. 

 A key departure from typical analyses along these lines is that I will explicitly model a 

negative payoff when a player loses the contest.7 Thus, players obtain W
iR  when they win the 

contest and suffer the loss L
iR  when they lose, where i = 1,2. With the i subscript, I am allowing 

these payoffs to vary across the players.8 Note that L
iR  enters negatively into the payoff function. 

A key assumption of the model is that prior to the contest, player 2 can affect the extent of her 

own loss LR2  in the event she is defeated. An act to raise her own loss in the event of defeat is 

interpreted as bridge burning. Alternatively, I will allow player 2 to lower LR1  the loss player 1 

suffers when he is defeated. This is interpreted as leaving an open escape route. 

2.2. The Overall Structure of the Game 

The game proceeds as follows:  

 1.a. Player 2 chooses the loss she incurs in the event she is defeated in the contest, LR2 . 

 This loss has a minimum value of LR2 , but it may be freely increased above this level up 

 to a finite maximum value of 2
LR . 

                                                 
6 Equilibria for r > 2 in a symmetric contest have been characterized by Alcade and Dahm (2010) and Ewerhart 
(2015). These are mixed strategy equilibria. The outcomes of these equilibria bear a strong resemblance to the 
outcomes of the all-pay auction. Analyses of the all-pay auction may be found in Hillman and Samet (1987), 
Hillman and Riley (1989) and Baye et al. (1996). Ewerhart (2015: 67-70) suggests that similar results will apply for 
asymmetric contests.  
7 A recent example that considers negative prizes is Liu et al. (2018). They consider negative prizes as part of an 
optimal contest design to induce maximal effort on the part of the participants.  
8 Nti (1999) analyzes contests where players have asymmetric valuations.  
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 1.b. Player 2 chooses the loss player 1 incurs in the event he loses the contest LR1 . This 

 loss has an initial value of LR1 , but player 2 may reduce this down to a minimum of 0.  

 2. The contestants decide whether or not to incur an entry fee  > 0 to potentially 

 participate in the contest at stage 3, where  is small. If neither player incurs the entry 

 fee, they both  receive a payoff of 0. If player 1 incurs the entry fee and player 2 does not, 

 player 1 receives the positive payoff ,1
WR  player 2 incurs the loss LR2 , and no contest 

 takes place. If player 2 incurs the entry fee and player 1 does not, player 1 incurs the loss 

 ,1
LR player 2 receives the positive payoff ,2

WR  and no contest takes place. If both incur 

 the entry fee, the game proceeds to step 3.  

 3. Both players engage in the contest described in Section 2.1.  

 
There is no asymmetric information in this game, so that player 2’s choice of either LR2  or 2

WR  at 

step 1 is observable to player 1 when he makes his participation decision at step 2. I will 

separately analyze the bridge burning and escape route strategies and in that sense I will be 

treating steps 1a and 1b as alternatives. Thus, the analysis proceeds as if only one of these 

strategies is available to player 2 in any given game.  The role of the maximal loss 2
LR  will 

become apparent later on when I analyze the model.  

 The entry fee  is positive but close to zero. From a modeling standpoint, the purpose of 

the entry fee is to allow a player whose participation constraint is violated at stage 3 to concede 

the contest at stage 2 by failing to proceed. Given the restriction on r at most, only one player 

will have their participation constraint violated. An outcome in which a player whose 

participation constraint is violated is able to concede the contest seems quite realistic. Absent an 

entry fee it would be necessary to describe a semi-mixed strategy equilibrium because even if 
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one party’s participation constraint is violated, it is not an equilibrium for the other party to 

commit only a small level of effort to the contest while the party whose constraint is violated 

commits to 0 effort. Note the opening quote by Schelling implies that bridge burning, if 

successful, may prevent an attack from occurring. This is consistent with a failure to proceed at 

stage 2 of the contest. Thus, the model structure is an appropriate way to capture the idea of 

bridge burning.  

 Wang (2010) analyzes an asymmetric Tullock contest where one of the player’s 

participation constraints is violated at the interior pure strategy Nash equilibrium. In the resulting 

equilibrium, the stronger player employs a pure strategy while the weaker player mixes between 

zero effort and a positive level of effort. Since the weaker player earns zero when he employs 

zero effort, in this mixed strategy equilibrium his expected payoff is zero. Thus, if he needed to 

incur a small fixed cost to participate in the game, he would strictly prefer not to do so, but 

would instead concede the contest to his stronger opponent. Ewerhart (2017) and Lu (2017) 

show that the equilibrium identified by Wang is unique. Ewerhart (2017) shows that the 

equilibrium holds for very general specifications of the contest which encompass the model 

presented here.  

 In my game, a player who concedes the contest at stage 2 or who exerts zero effort at 

stage 3 loses L
iR  instead of zero, but otherwise the results of Wang will apply. If a player 

foresees that his participation constraint will be violated at stage 3, then he anticipates an 

expected loss of L
iR  if he proceeds to that stage. Thus, he would prefer to concede the game 

at stage 2 where his loss will be L
iR . 

2.3. Model Analysis 
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In this subsection I will analyze the contest stage including both the interior equilibrium and the 

player’s participation constraints. Before presenting each player’s objective function I will make 

note of some substitutions which will be utilized in the following:  

i
L
i

W
i RRR  , i = 1, 2.         (2a) 

RRR 12 / .            (2b) 

Note that Ri constitutes player i’s stake in the contest, which is the sum of i’s the payoff in the 

event of victory and i’s loss in the event of defeat, while R constitutes the relative stakes. Higher 

values of R imply the relative stakes favor player 2. With probability p, player 1 wins the contest 

and receives WR1  and with probability 1-p, he loses and pays LR1 . His effort in the contest is 

denoted X1. Thus his expected payoff may be expressed as follows: p( WR1 + LR1 ) - LR1  - X1. 

Making use of (1) and (2a), this may be expressed as  

111
21

1
1 XRR

XaX

aX L
rr

r




 ,         (3a) 

 
where the expected payoff is denoted by 1. Since player 2 wins with probability 1-p and loses 

with probability p her expected payoff may be expressed as  

 

22
21

1
22 XR

XaX

aX
R

rr

r
W 


 .        (3b) 

 
Holding effort level constant, an increase in LR2  will lower player 2’s expected payoff through its 

increase in R2.  

 The first order conditions from (3a) and (3b) imply the following solutions for effort 

levels in the contest:  
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  121 R
Ra

raR
X

r

r


 ,           (4a) 

  222 R
Ra

raR
X

r

r


 ,          (4b) 

 
where use has been made of (2b). Substitute (4a-b) into (1), (3a) and (3b) to obtain the 

equilibrium payoffs and the equilibrium probability that player 1 prevails:  

 

L
r

r

r
RR

Ra

rR

Ra

a
111 1 



















 ,         (5a) 

222 1 R
Ra

rR

Ra

a
R

r

r

r
W




















 ,        (5b) 

rRa

a
p


 .           (5c) 

 
Since R = R2/R1 and LW RRR 222  , when player 2 increases LR2 , she lowers p and therefore 

raises the probability that she wins the contest. When she raises the stakes she faces, she will 

fight harder in the ensuing contest. From (4a-b), player 2’s relative effort X2/X1 is increasing in 

R2/R1 and therefore unambiguously increasing in LR2 . However, we can see from (5b), that in 

raising R2 this action increases her losses in the event player 1 wins the contest. Thus, there is a 

potentially ambiguous effect from increasing LR2 , which I interpret as bridge burning.  

 At the time the contest is to be held, the participation constraints for the interior Nash 

equilibrium require that the expected payoff for each player exceed their payoff if they do not 

participate in the contest, L
iR . As we shall see, at most one player’s participation constraint will 

be violated. Thus, for example, if player 1 does not participate in the contest, player 2 will 



10 
 

participate and player 1 will lose LR1  with certainty. Similarly, when player 2 does not participate 

in the contest, she loses LR2  with certainty. Note, if a player foresees an expected loss equal to 

L
iR  at stage 3, he will not incur the cost  at stage 2 and will concede the contest at that point.9 

By conceding at stage 2, he will incur the loss L
iR  rather than a total loss of L

iR  if he 

proceeds to stage 3.  

 With the above in mind we can use (5a) and (5b) to derive the following participation 

constraints:10 

 
Player 1 Participation Constraint: ( 1) ra r R        (6a) 

Player 2 Participation Constraint: ( 1)rR r a        (6b) 

 
If r  1, the constraints of both players are always satisfied. If 1 < r < 2, at most one participation 

constraint is violated. For example, if rRra )1(   (player 1’s constraint is violated), it is 

necessarily the case that arRr )1(   (player 2’s constraint is satisfied). Since R = R2/R1, greater 

values of R make it more likely that player 2’s constraint is satisfied and less likely that player 

1’s constraint is satisfied assuming that r > 1.11 When r > 1, both constraints are satisfied if  

                                                 
9 Recall that the work of Wang (2010) and Ewerhart (2017) imply that there would be a semi-mixed strategy 
equilibrium in the stage 3 contest at which the disadvantaged player would earn an expected payoff of L

iR . 
10 These constraints do not take into account the fixed costs  which are assumed to be close to zero. Rather they 
simply impose that at the time the contest is to be held, that each player earn an expected payoff greater than L

iR  at 

the interior Nash solution reflected in equations (5a-b). Technically however, there are interior Nash equilibria 
where a player’s payoff exceeds L

iR , but by less than , so that he would strictly prefer to concede the game at 

stage 2. We ignore this possibility because  is close to zero, but this could be an issue if 2
LR  can rise without bound. 

See footnote 18.  
11 It is important to note that raising 2

LR  increases player 2’s loss when she loses the contest, but also increases her 

loss when she concedes the contest. Thus, an increase in 2
LR  does not make it less likely that player 2’s participation 

constraint is satisfied. In fact it is just the opposite as the increase in relative stakes makes it more likely that she 
would like to participate in the contest.  
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(r-1)a  Rr  a/(r-1).           (7) 

 
Using the structure above, we can now present the model results.  

2.4. Results 

First, consider the impact on player 2’s expected payoff of a marginal increase in LR2 . This 

corresponds to the case of bridge burning. Taking the derivative of (5b) yields the following:  

 

   rr

rL
RrRraa

Ra

a

dR

d 2222
3

2

2 )1()2( 














.      (8) 

 
Note that the derivative in (8) will be negative if r < 1. Thus, bridge burning is never worthwhile 

at an interior equilibrium if r < 1 because it lowers player 2’s expected payoff. However, 

equation (8) appears to imply that bridge burning will raise player 2’s expected payoff if  

 
rr RraaRr )2()1( 2222  .         (9) 

 
The inequality in (9) can only hold if r > 1. The right-hand side of this expression is increasing 

in a. Conditional on r > 1, from (6a), the lowest possible value of a at an interior equilibrium is  

a = (r-1)Rr. If we substitute this value of a into (9), we find that the inequality only holds for r < 

1, yielding a contradiction.12 If, when r > 1, the inequality in (9) cannot hold for the lowest value 

of a consistent with an interior equilibrium then it cannot hold for any value of a consistent with 

an interior equilibrium. This, in turn, implies that at an interior equilibrium, the derivative in (8) 

                                                 
12 In light of the substitution a = (r-1)Rr, r < 1 implies a < 0, which is not permissible. This would however make 
the right-hand side of (9) negative, explaining why the inequality would hold when r < 1. 
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is always negative. In other words, bridge burning always reduces player 2’s expected payoff at 

an interior equilibrium.  

 This analysis is summarized as Result 1: 

 
 Result 1: At an interior equilibrium, bridge burning (raising 2

LR ) will always reduce 

 player 2’s expected payoff.  

 
Result 1 indicates that bridge burning is never desirable based on its comparative static 

properties.13 The direct effect of increasing 2
LR  is to lower player 2’s payoff. Bridge burning 

raises player 2’s relative effort and could be a force leading to higher expected payoffs for player 

2. However, Result 1 indicates that these potentially positive effects can never overcome the 

negative direct effect at an interior equilibrium.  

 Next suppose that player 2 can lower LR1 . This captures the idea of leaving an escape 

route open for your enemy. This makes it easier for him to retreat and will therefore weaken his 

resolve. From (5b) we obtain the following:  

 

   )1()1(3

1

1

2 rRra
Ra

arR

dR

d r

r

r

L















 

.       (10) 

 

                                                 
13 Suppose that player 1’s participation constraint is satisfied, so that a > (r-1)Rr, and that player 2’s constraint 
initially is violated. Further suppose that player 2 can raise 2

LR  sufficiently such that her participation constraint is 

satisfied but that she cannot raise it sufficiently such that player 1’s constraint is violated. Would she want to burn 
bridges under this scenario? The answer is no. Initially she prefers conceding the contest to participating so that the 
payoff at the interior equilibrium must be less than the initial value of 2

LR . Our prior analysis shows that player 2’s 

payoffs at the interior equilibrium fall with increases in 2
LR , when a > (r-1)Rr. Thus, the payoff at the interior 

equilibrium that player 2 induces by increasing 2
LR  will be lower than her payoff if she initially conceded the contest 

at the original value of 2
LR .  



13 
 

Keep in mind that the strategy of leaving a path of retreat implies a reduction of LR1 . Thus, 

leaving an escape open raises player 2’s expected payoff if the derivative in (10) is negative. 

From (10), we can see that at an interior equilibrium a reduction of LR1  (i.e., leaving open a path 

of retreat) always raises player 2’s expected payoff when r  1. However, equation (10) suggests 

that leaving an escape route open will lower player 2’s expected payoff if  

 
(1 ) ( 1)rR r a r   .           (11) 

 
Equation (11) can only possibly hold if r > 1. If (11) holds, then 2 1/ 0Ld dR   which implies 

leaving an escape path open (lowering LR1 ) will lower player 2’s expected payoff. From (7), the 

lowest value of Rr consistent with an interior equilibrium is Rr = (r-1)a, where r > 1. Substitute 

this into (11) to find the condition becomes r < 1, which yields a contradiction. If the condition 

in (11) cannot hold at the lowest value of Rr consistent with an interior equilibrium, it cannot 

hold at any interior equilibrium. Thus, it is never the case that 2 1/ 0Ld dR   at an interior 

equilibrium.  

 The analysis above is summarized as follows:  

 
 Result 2: At an interior equilibrium, leaving an escape path open (i.e., lowering 1

LR ) 

 always increases player 2’s expected payoff.  
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 Result 2 shows that leaving an escape path always succeeds at an interior equilibrium in 

the sense of raising player 2’s expected payoff.14 Given the favorable comparative static effects 

of leaving an escape path open, at stage 1, player 2 would reduce LR1  down to its minimum value 

of zero.15 

 Allowing for an escape path lowers the stakes for player 1 and therefore lowers his 

relative effort level. This raises the probability that player 2 wins the contest and is the source of 

the gain for player 2. There is no direct negative effect of lowering LR1  on player 2’s payoff. This 

is in contrast to bridge burning, which has the direct effect of lowering 2’s expected payoff. This 

is the reason for the gains obtained under the strategy of leaving an open escape path.  

 What is the effect on player 1, when player 2 leaves an open escape path? To see this 

effect, consider the following derivative of player 1’s expected profits:  

 

2 2 2 21
3

1

(2 ) (1 ) 1
( )

r r
L r

d a
a a r R r R

dR a R

            
.      (12) 

 
When player 2 leaves an open escape path, she lowers LR1 . Thus, player 1 will benefit from this 

strategy if the derivative in (12) is negative. This derivative is negative if  

 

   22 r rar a R a R   .         (13) 

 

                                                 
14 Suppose that initially player 2’s constraint is violated and player 1’s is not. Would player 2 want to lower 1

LR  in 

order to allow her constraint to be satisfied? The answer is yes. Since 2
LR  is constant in this scenario, player 2 can 

only cause her constraint to hold if she raises her payoff above the fixed value - 2
LR  at the interior equilibrium and 

this unambiguously make her better off. This contrasts with bridge burning where player 2 is increasing 2
LR  and will 

make herself worse off even though changes in 2
LR  can induce her participation constraint to hold. See footnote 13.  

15 Nothing of substance is changed if we assume this minimum value lies above zero, though a minimum value 
above zero would affect the precise expressions presented below in Result 5.  
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This condition will clearly hold if r < 1. Consider r > 1 and note that the condition is more likely 

to hold the larger is Rr. From equation (6b), the lowest value of Rr consistent with an interior 

equilibrium is Rr = (r-1)a. Substitute this into (13) to find that the needed condition holds 

whenever r > 1 as was our initial assumption. Since this holds for the smallest value of Rr 

consistent with an interior equilibrium, it will hold at all interior equilibria. This leads to Result 

3:  

 Result 3: At an interior equilibrium, player 1 always benefits when player 2 leaves him an 

 open escape path.  

 
Leaving an open escape route is a positive sum maneuver in the sense that it makes both players 

better off.16 The fact that player 1 loses less in the event of defeat creates a surplus which the two 

players may split.   

 Results 1 and 2 show that at an interior equilibrium leaving an open escape path is always 

a successful strategy and that bridge burning is never successful. However, as we shall see, once 

participation constraints are taken into account, a bridge burning strategy may be successful 

when r > 1. From (6a), if r < 1 player 1’s participation constraint is always met and bridge 

burning cannot succeed.  

 Suppose r > 1 and consider two cases defined by the maximal loss that player 2 can 

impose upon herself 2
LR :  

(i)    (1/ )

2 1 1 2[ 1]
rL W L WR a r R R R     and  

                                                 
16 Because the analysis indicates that player 2 will never utilize the bridge burning strategy at an interior 
equilibrium, I have not presented the derivative showing the effect of such a strategy on player 1. However, it can be 
shown that such a strategy would lower player 1’s expected payoff. Thus, if it were invoked at an interior 
equilibrium, bridge burning would make both players worse off.  
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(ii)    (1/ )

2 1 1 2[ 1]
rL W L WR a r R R R    .  

Recall that R = R2/R1 and Ri = W
iR  + L

iR . Let R  be the highest possible value of R. When 

condition (i) holds, then ( 1) rr R a   and when condition (ii) holds ( 1) rr R a  .17 When 

condition (i) holds, then from (6a-b) we see that it is possible for player 2 to choose a large 

enough value of LR2  such that her constraint in (6b) is satisfied while player 1’s constraint in (6a) 

is violated. Under these conditions, bridge burning can always be made into a successful strategy 

by inducing player 1 to concede the contest. However, when condition (ii) holds, player 2 cannot 

induce player 1 to concede the contest and the bridge burning strategy will not be employed. The 

analysis above is summarized as follows:  

 
 Result 4 (a) When r < 1, bridge burning is never a desirable strategy. (b) Assume r > 1. 

 When 2
LR  is sufficiently large as defined by condition (i), it is always possible to identify 

 a successful bridge burning strategy under which player 2’s participation constraint is 

 satisfied, while player 1’s constraint is violated. When 2
LR  is sufficiently small as defined 

 by condition (ii), player 2 cannot induce player 1 to concede the contest and the bridge 

 burning strategy is not employed.  

 
 When r > 1, a player will concede the contest if it is sufficiently unbalanced. Thus, the 

needed conditions on 2
LR  are required to ensure that player 2 can create a sufficiently 

unbalanced contest such that player 1 will concede.18 

                                                 
17 Recall we are assuming r > 1.  
18 In the statement of the game it is assumed that 2

LR  is finite. If 2
LR  can be increased without bound, then bridge 

burning can succeed even if r < 1. From (5a), if R can be increased without bound, then at some point we will have 
1 -  < - 1

LR . At this point, player 1 would prefer to concede at stage 2 rather than proceed to the contest. In 
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 Leaving an escape path open can also cause player 1’s participation constraint to fail. 

Assuming that player 2 can reduce LR1  to 0, the following are the crucial conditions:  

 

(iii) 
2 2

1

( 1)

rL W

W

R R
r a

R

 
   

 
  

(iv) 
2 2

1

( 1)

rL W

W

R R
r a

R

 
   

 
  

 

Note that the term in the large parentheses in each expression is R , the largest value of R which 

can be obtained by leaving an open escape path. From (6a-b) we can see that when (iii) holds, 

player 2 can induce player 1 to concede the contest via the strategy of leaving an open escape 

path. The condition in (iii) can only hold if r > 1. When the condition in (iv) holds, player 2 

cannot induce player 1 to concede the contest via this strategy. The analysis above is summarized 

as follows:  

 
 Result 5: (a) When condition (iii) holds, player 2 can induce player 1 to concede the 

 contest by leaving an open escape path, i.e., by reducing LR1 , possibly down to its 

 minimum value of 0. A necessary condition for (iii) to hold is r > 1. (b) When the 

 condition in (iv) holds, player 2 cannot induce player 1 to concede the contest by leaving 

 an open escape path. A sufficient condition for (iv) to hold is r  1. 

 

                                                 

assuming 2
LR  is finite and that  is near zero, I am implicitly assuming that this cannot occur in the game I have 

specified. If we allow that fixed costs  could be large or that 2
LR  could become infinite, then this case would 

become relevant. This would enlarge the circumstances under which bridge burning would be effective.  
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 Lowering LR1  raises the relative stakes R in player 2’s favor. When condition (iii) is met 

it is feasible to raise the relative stakes sufficiently as to get player 1 to concede the contest. 

Thus, bridge burning and leaving an open escape path both have the potential to succeed by 

inducing a concession from player 1. However, only leaving an open escape path can succeed at 

an interior equilibrium. Moreover, leaving an escape path open can succeed (via a positive 

comparative static effect) in a portion of the parameter space, r < 1, in which bridge burning can 

never succeed.  

2.5. A Special Case: A Transfer Seeking Game 

Consider a special case of the model in which player 1 attempts to extract a transfer from player 

2. If player 1 is successful he obtains WR1  and if he is unsuccessful he obtains 01 LR . If player 2 

wins the contest she receives the payoff 02 WR  and if she loses the contest she pays 

WL RR 12 )1(  . Thus, player 2 pays what player 1 receives times 1+, where  reflects 

distortions associated with the tax-transfer system.19 Since these represent specific parameters for 

the more general model presented earlier, all the previous analysis goes through. Since 01 LR  in 

the transfer game, “leaving an escape open” is not an option in this game, but if player 2 can 

control the size of the distortion , she can increase LR2  and utilize a bridge burning strategy. As 

seen previously, this strategy is ineffective if r  1. However, if r > 1 then a large enough value 

                                                 
19 The transfer game as specified has only two players. If we have a group 1 with n1 identical players and a group 2 
with n2 identical players, then the transfer paid by each member of group 2 in the event of a loss would be 

2112 /)1( nnRR WL  . Adding the constant n1/n2 to the model would not affect any conclusions. With many 

members, each group would be subject to a free-rider problem. When there are no income effects, as in the current 
model, within each group only the player with the largest stakes in the contest will contribute. If players are 
identical, aggregate contributions from the group are equivalent to the contributions a single individual would make. 
These results are related to Olson’s (1965) exploitation of the great by the small result and his group-size paradox. 
See the discussions of these issues in Sandler (2015), Buchhotz and Sandler (2016), and Pecorino (2015, 2016). 
Consideration of a free-rider problem would not affect the conclusions discussed in the main text.  
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of  can ensure that player 2’s participation constraint is satisfied while player 1’s constraint is 

violated.  

 A higher value of  implies a less efficient tax system. Thus, the model suggests at least 

some circumstances under which a party potentially subject to a transfer prefers a less efficient 

tax-transfer system. The reason is that (relative to their opponent) they will fight harder to resist 

transfers under such a system and this might prevent player 1 from seeking the transfer (i.e., with 

a large enough value of , player 1’s participation constraint will be violated.). This corresponds 

in at least a rough way with conservative suspicions of a value added tax (VAT) based on the 

concern that such a tax can too easily raise large sums of money for the government.20 

 Of course, a group subject to a transfer does not directly control . What the analysis 

suggests is that if lobbying over the nature of the tax system precedes lobbying over the transfer, 

then the group potentially subject to the transfer may lobby for the enactment of a less efficient 

tax system.  

 

3. Conclusion 

This paper formalizes the ideas of bridge burning and of leaving your opponent an open escape 

path within the familiar rent-seeking framework. This is accomplished by explicitly considering 

the negative payoff each party suffers when they lose the contest. Bridge burning can be 

successful when the scale parameter in the contest success function exceeds one. When this is 

true, a player may be able to find a high enough value of her own loss such that her participation 

constraint is satisfied, while the participation constraint of her competitor is violated. When 

bridge burning succeeds it does so by inducing the other player to concede the contest. It never 

                                                 
20 This point is discussed by Dorfman (2016).  



20 
 

has favorable comparative static properties at an interior equilibrium for the player utilizing the 

strategy. For bridge burning to succeed, the player needs to be able to impose a sufficiently high 

level of costs upon herself in the event of defeat. Note that bridge burning never succeeds when 

the scale parameter is less than or equal to one. By contrast, leaving an escape path open always 

raises a players expected payoff at an interior equilibrium. This strategy can succeed in a portion 

of the parameter space (a scale parameter less than 1) in which bridge burning always fails. It is 

also a positive sum strategy as it raises the expected payoffs of both players at an interior 

equilibrium. Moreover, leaving an open escape path can also possibly induce the opponent to 

concede the contest if the scale parameter is greater than 1.  

 While the paper establishes that bridge burning and leaving an escape route can be 

successful within the familiar rent-seeking framework, certain important caveats are in order. 

First, it is assumed that bridge burning lowers one’s own payoff, but does not raise the 

opponent’s payoff. This might be the case in a one off battle, but if the battle is part of a larger 

engagement, then the greater losses you suffer as a result of bridge burning will benefit your 

opponent in future engagements. This then raises the stakes of the current engagement for your 

opponent. A similar caveat applies to the idea that trash talking can motivate one’s self to 

compete harder. Yip et al. (2018) have shown experimentally that trash talking can motivate your 

opponent to fight harder as well. If burning a bridge raises your opponent’s payoff it will not lead 

to a failure of his participation constraint. Similarly, while leaving an escape path open will 

reduce your opponent’s loss in the event he loses, it may reduce your own payoff in the event 

you win, if you need to battle your opponent again at some future point. Dixit and Nalebuff 

(2008: 224) frame Sun Tzu’s strategy as fooling the enemy into thinking there is an escape path, 

but then ambushing them during the retreat. This suggests a concern for future engagements.  
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 While these caveats are important, this paper has shown in a standard framework that 

these two famous strategies, bridge burning and leaving an open escape path, can be successful 

under a wide range of circumstances.  
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