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Abstract. This paper incorporates ambiguity and information processing constraints
into a model of intermediary asset pricing. Financial intermediaries (specialists) are
assumed to possess greater information processing capacity. Households purchase this
capacity, and then delegate their investment decisions to specialists. The delegation
contract is constrained by two frictions: (1) As in He and Krishnamurthy (2012), an
incentive constraint arises from a moral hazard problem, which takes the form of a
minimum capital requirement, and (2) Because households can invest for themselves at
any time, continued delegation is subject to a participation constraint that depends on
the underlying heterogeneity in channel capacity. At the same time, both households
and specialists have a preference for robustness, reflecting ambiguity about risky asset
returns. Ambiguity takes the form of endogenously determined pessimistic drift distor-
tions (Hansen and Sargent (2008)). When volatility increases, so does ambiguity, since
it becomes more di�cult to discriminate among models. Importantly, these endogenous
drift distortions produce heterogeneous beliefs. In our model, ambiguity is scaled by the
inverse of time preference, and we assume specialists are more patient. Hence, given their
longer investment horizons, specialists have a stronger preference for robustness. As a
result, when volatility is high specialists become relatively pessimistic, and this tightens
the capital constraint and accelerates the onset of a financial crisis.
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1. Introduction

In a pair of influential papers, He and Krishnamurthy (2012, 2013) [henceforth HK12,
HK13] argue that for many assets it is misleading to characterize prices using household
Euler equations. This is because many assets are not held by households. They are held
by leveraged financial intermediaries. Although these intermediaries may be investing on
behalf of households, the contractual relationships between them are plagued by a variety
of frictions. In HK12, asymmetric information produces a moral hazard problem that leads
to a capital constraint, requiring the intermediary to maintain a minimum degree of ‘skin
in the game’. HK12 and HK13 show that the e↵ective stochastic discount factor becomes
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much more volatile, and that the nonlinearity induced by the constraint can account for
observed state dependence in risk premia.1

Although the work of He and Krishnamurthy has been influential, it has not gone
unquestioned. The key premise of HK12,13 is that some securities are too ‘complex’ for
households to understand, so they delegate investment in these securities to specialists,
whose actions cannot be precisely monitored. Cochrane (2017) questions how widespread
and insurmountable this complexity problem really is,

Furthermore, if there is such an extreme agency problem, that delegated
managers were selling during the buying opportunity of a generation, why
do fundamental investors put up with it? Why not invest directly, or find a
better contract?...So, in my view, institutional finance and small arbitrages
are surely important frosting on the macro-finance cake, needed to get a
complete description of financial markets in times of crisis...But are they
also the cake?...Or can we understand the big picture of macro-finance with-
out widespread frictions, and leave the frictions to understand the smaller
puzzles, much as we conventionally leave the last 10 basis points to market
microstructure. (Cochrane (2017, p. 963-64))

Perhaps in anticipation of this critique, HK13 confine their analysis to the market for
mortgage-backed securities.

In this paper, we argue that intermediary asset pricing is indeed ‘the cake’. We op-
erationalize complexity by assuming that agents face limits on their ability to process
information, giving rise to so-called Rational Inattention (RI) (Sims (2003)). Although
there have been many applications of Rational Inattention to financial markets, these
applications either abstract from heterogeneity in information-processing capacity, or as-
sume that any di↵erences are fixed and immutable.2 In contrast, we argue that trade in
information-processing capacity is the raison d’ etre of financial markets, and that when
this trade is combined with the monitoring frictions of HK12, the scope of intermediary
asset pricing models is greatly expanded. Although most households could manage their
portfolios themselves, most choose not to do so.3

Another key ingredient of our analysis is the assumption that investment is subject
to Knightian Uncertainty, or equivalently, ambiguity. Of course, this is not a new idea.
Besides Knight (1921), Keynes (1936) argued that financial markets are by their very
nature mechanisms for intermediating di↵erences of opinion about ambiguous investment
opportunities. However, it took many decades before this idea became operationalized in
formal mathematical models. Our particular approach is based on the work of Hansen and
Sargent (2008). Agents are assumed to have a (correctly specified) benchmark model of

1Brunnermeier and Sannikov (2014) develop a closely related model. He and Krishnamurthy (2018) survey
the burgeoning literature on ‘intermediary asset pricing’, which followed HK12 and HK13.
2[Provide citations]. Sims (2006) criticizes applications of RI in finance, arguing that in most financial
applications information is scarce and costly, so the relevant constraint is on the supply-side, not the
demand-side. Kacperczyk et. al. (2018) argue that di↵erences in information-processing capacity con-
tribute to wealth inequality, but do not allow agents to buy and sell this information-processing capacity.
3Pagel (2018) also bases portfolio delegation on inattention. However, in her model inattention is not based
on information processing limits, but rather on ‘information avoidance’ (Golman et. al. (2017)), which
arises from from loss aversion.
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asset returns, which they distrust in a way that cannot be captured by a conventional finite-
dimensional Bayesian prior. Rather than commit to a single model/prior, agents entertain
a set of unstructured alternative models, and then optimize against the worst-case model.
Since the worst-case model depends on an agent’s own actions, agents view themselves
as being immersed in a dynamic zero-sum game. Solutions of this game produce ‘robust’
portfolio policies. To prevent agents from being unduly pessimistic, in the sense that they
attempt to hedge against empirically implausible alternatives, the hypothetical ‘evil agent’
who selects the worst-case model is required to pay a penalty that is proportional to the
relative entropy between the benchmark model and the worst-case model.

Incorporating robustness into intermediary asset pricing models is important for a cou-
ple of reasons. First, it delivers a natural source of heterogeneous beliefs. In contrast to
Maenhout (2004), we do not scale the entropy penalty parameter by the value function.
Even with log preferences, a constant entropy penalty produces horizon e↵ects in portfolio
choice. In particular, the e↵ective degree of ambiguity aversion depends on an agent’s
rate of time preference. Agents with a low rate of time preference are endogenously more
ambiguity averse, since they care more about the future. Following HK12, we assume
specialists are more patient than households, which in our model makes them more ambi-
guity averse. As a result, their pessimistic drift distortions are greater. This is important
because it allows households to survive in the long-run, despite their greater impatience.
In contrast, the model in HK12 does not possess a nondegenerate stationary equilibrium,
which makes it di�cult to evaluate empirically.4

The second reason robustness is important is that it tightens the specialist’s capital
constraint, making crisis episodes more likely. The constraint binds when households
want to invest in the risky asset, but specialists do not. We assume throughout that
di↵erences in channel capacity are su�ciently great that households choose to remain
in the contract. This imposes an upper bound on the fee the specialist can charge.5

Because specialists are relatively ambiguity averse, they want to invest less in the risky
asset. As a result, the constraint binds at higher levels of specialist wealth than without
ambiguity. We inject cyclicality into this mechanism by assuming that dividend volatility
is stochastic, and follows a 2-state jump process. In robust control models, pessimistic
drift distortions ‘hide behind’ objective risk. When volatility increases, it becomes more
di�cult to discriminate among models, and this endogenously makes ambiguity increase as
well. Since specialists have a higher degree of ambiguity aversion, their relative pessimism
increases during volatile periods, thus making it more likely that the economy will hit the
capital constraint.

The remainder of the paper is organized as follows. The next section explains how
we incorporate ambiguity and information processing into the model of He and Krishna-
murthy. Section 3 solves the model, and derives equilibrium di↵usion processes for the risk
premium and market price of risk. These processes depend on two state variables: (1) the

4HK13 remedies this defect by introducing nontradeable labor income. However, to keep the analysis
tractable, they assume households live for a single-period and have a rather implausible bequest motive.
HK12 note that when households are relatively impatient, their model can capture ‘liquidation e↵ects’, in
which asset values fall in response to financial disintermediation.
5In contrast, in HK12, where households have no ability to opt out, intermediation fees actually increase
during crises.
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endogenous wealth distribution between specialists and households, and (2) the exogenous
level of dividend volatility. Section 4 calibrates the model, and studies its quantitative
implications.

2. Ambiguity and Financial Intermediation

2.1. Model Specification and the Full-Information Rational Expectations So-

lution. We consider an infinite horizon continuous-time Lucas (1978)-type model. The
economy is populated by two types of agents, specialists and households. There are two
assets in the economy: one risky asset and one risk-free asset. The risky asset represents
complex assets that require some expertise and information processing capacity. We as-
sume the market is incomplete due to limited market participation as Basak and Cuoco
(1998), where only experts who own the intermediaries can invest into the risky asset.
Households can purchase channel capacity from specialists and make investments through
intermediaries. Households thus face the decision to allocate portfolio between purchasing
equity from intermediaries and the riskless short term bond. Figure 1 shows the market
structure of the economy where the intermediary sector is indicated in the middle block.
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Figure 1: Market Structure and Intermediation Relationship

The total wealth of experts is Wt and households wealth is W h
t . A superscript h denotes

the households throughout the paper. Households allocate T
h
t to purchase intermediary

equities and the remaining fraction is used to buy riskless bonds. Intermediaries absorb
in sum T

I
t funds from households T

h
t and experts Tt, allocate a fraction ↵t to the risky

asset and 1 � ↵t to the riskless bond. Assuming there is no short-selling constraint for
the intermediary, we expect ↵t to be larger than 1, i.e., specialists use leverage. In this
case, specialists invest more than total intermediary capital into risky equity and borrow
(↵t � 1)T I

t from the bond market. The total risky asset position or intermediary’s dollar
exposure in risky asset is "It . Through an a�ne contract developed by HK(2012), �t 2 [0, 1]
is the share of returns going to specialists and 1� �t to households. Thus, at time t, the
specialist bears a total risk exposure of "t = �t"

I
t and the household is o↵ered an exposure

of (1� �t)"It to excess return.
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The dividend of the risky asset is governed by a geometric brownian motion with return
g and stochastic volatility �t,

dDt

Dt

= gtdt+ �tdZt, (2.1)

where Zt is a standard Brownian motion. Assume the volatility �t is a two-state Markov
chain with state space ⌃ = {�H ,�L}, where �H > �L. The intensity matrix of the
continuous-time Markov chain is


��H �H

�L ��L

�
.

�H is the rate of transition from the high volatility state to the low volatility state, and
�L is the rate of transition from low to high. The return of the risky asset is defined as:

dRt =
Dtdt+ dPt

Pt

= µR,tdt+ �R,tdZt. (2.2)

where Pt is the risky asset price, µR,t is the expected return and �R,t is the volatility of
the risky asset. The riskless asset is in zero-net supply, and has an interest rate rt. We
define the risk premium in our model as ⇡R,t ⌘ µR,t � rt. We assume that the measure
of households are specialists are normalized to one. Both households and specialists are
infinitely lived and have log preferences over consumption. Denote households (specialists)
consumption rate as Ch

t (Ct). The household’s objective is to:

max
{Ct,"

h
t }
E
Z 1

0
e
�⇢

h
t lnCh

t dt

�
(2.3)

while the specialist’s objective is to:

max
{Ct,"t,�t}

E
Z 1

0
e
�⇢t lnCtdt

�
(2.4)

where ⇢h and ⇢ denote the time discount rates for households and specialists, respectively.
The dynamic budget constraints are

dW
h

t = "
h

t (dRt � rtdt)� kt"
h

t dt+W
h

t rtdt� C
h

t dt, (2.5)

and

dWt = "t(dRt � rtdt) + max

✓
1� �t

�t

◆
kt"

⇤
t

�t2[ 1
1+m ,1]

+Wtrtdt� Ctdt. (2.6)

where kt is the exposure price that clears the intermediation market. Households obtain
an exposure "

h
t from the intermediary with an excess return indicated as the first term

in the budget constraint, i.e., "
h
t (dRt � rtdt). Specialists bear a risky exposure "t by

putting their own wealth into the intermediary. In order to use the intermediation service,
households pay an intermediation fee kt"

h
t ⌘ Kt. The second term denotes the transfer

from households to intermediary. The specialist chooses the optimal contract share �t

to maximize the intermediation fee. The third term is the risk-free interest earns by the
household (specialist) on his own wealth. The last term is the consumption expense.

The optimal exposure supply schedule is �
⇤
t = 1

1+m
if kt > 0 and �

⇤
t 2

h
1

1+m
, 1
i
if kt =
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0. Further, define the per-unit specialist fee qt as qt ⌘
Kt
Wt

=
�1��

⇤
t

�
⇤
t

�
kt

⇡R,t

�R,t
. The full-

information rational expectations solutions for the above two maximization problems are:

C
h⇤
t = ⇢

h
W

h

t and"
h⇤
t =

⇡R,t � kt

�
2
R,t

W
h

t ,

and

C
⇤
t = ⇢Wtand"

⇤
t =

⇡R,t

�
2
R,t

Wt.

Now define the scaled specialist wealth as an aggregate state variable in the economy:

xt ⌘
Wt

Dt

(2.7)

It is governed by the following stochastic process

dxt

xt
= µx,tdt+ �x,tdZt, (2.8)

where µx,t and �x,t are the endogenously determined growth rate and volatility.

2.2. Ambiguity and Robustness. We are interested in studying an intermediation re-
lationship between households and specialists when they have heterogeneous information
processing capacities and a preference for robustness. In this section, we introduce ambi-
guity and robustness into the above otherwise standard He-Krishnamurthy model. Specif-
ically, we assume that agents in our economy do not know the true model governing the
evolution of the economy, and incorporate model uncertainty due to robustness into their
decision problems. Following Hansen and Sargent (2001, 2006), we assume that when
agents face model misspecifications, they take Equation (2.5) as the approximating model
which is generated by the probability measure P . Assume the probability distribution
in the distorted problem Q is absolutely continuous with respect to P . All the random
variables and expectation operators for the robust problem below are defined on Q and Ft

measurable. As argued in Anderson, Hansen and Sargent (2003) – henceforth AHS – the
agents believe the approximating model is only a useful benchmark. However, they are
concerned about the possibility that the approximating model is misspecified. In order
to incorporate doubts about model specification, the agents conceive a class of models
surrounding the approximating model, and make optimal decisions based on the range of
possible models. An endogenous perturbation ⌫

h(W h
t ) = ⌫

h
t is introduced to parameter-

ize the change of measure from P to Q. By the Girsanov Theorem, the distortion only
changes the drift, and the corresponding distorting model is

dW
h

t =
⇣
"
h

t (⇡R,t � kt) + rtW
h

t � C
h

t

⌘
dt+ �

h

W,t

⇣
⌫
h

t dt+ dZt

⌘
, (2.9)

where �h

W,t
⌘ �R,t"

h
t . Note that the endogenous feedback e↵ect of ⌫ht on W

h
t enables a wide

range of model misspecifications. The alternative distorting models are vaguely specified
and statistically di�cult to distinguish within a given sample period T (AHS, 2003). This
setting allows the approximating model to be perturbed by alternative functional forms,
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and enables the complexity of possible models to be nonlinear, and high-dimensional.6

Thus ⌫
h
t reflects the pessimistic view of shock process from households, i.e., a pessimism

parameterization. The evil agent chooses the drift adjustment ⌫ht to minimize the sum of
the expected continuation payo↵, but adjusted to reflect the additional drift component
in (2.9), and of entropy penalty:

inf
⌫
h
t


DV (W h

t ;Y
h

t ) + ⌫
h

t �
h

W,tVw +
1

2✓h
t

Lt

�

where

DV (W h

t ;Y
h

t ) = Vw

h
"
h

t (⇡R,t � kt) + rtW
h

t � C
h

t

i
+

1

2
Vww("

h

t )
2
�
2
R,t + µ

h

Y,t.

and Lt =
�
⌫
h
t

�2
is the relative entropy (i.e., the expected log Radon-Nikodym derivative),

which measures the distance between the two models. 1
✓
h
t
� 0 is the weight on the entropy

penalty term, i.e., the Lagrange multiplier imposed on the time t relative entropy constraint
Lt.

7 The household then solves the following HJB equation:

sup
{Ch

t ,"
h
t }
inf
⌫
h
t


lnCh

t � ⇢
h
V +DV + ⌫

h

t �R,t"
h

t Vw +
1

2✓h
t

⇣
⌫
h

t

⌘2�
.

subject to (2.9). Solving first the infimization part yields

⌫
h⇤
t = �✓

h

t Vw�
h

W,t.

Here we assume that the degree of ambiguity and robustness is constant, i.e., ✓ht = ✓
h

for two reasons. First, following the literature on robust control, Hansen, Sargent and
Tallarini (1999) and AHS (2003) assume ✓

h
t is fixed over time and state independent.

Maenhout (2004) argues that ✓ht should be state dependent in order to prevent robustness
from diminishing and to ensure homotheticity in the CRRA utility setting. The log utility
in this paper does not face this problem. Second, Hansen and Sargent (1998) showed
that the model with time-varying ✓

h
t but a constant relative entropy is observationally

equivalent to the model with a constant robust parameter ✓
h but has a time-varying

entropy Lt. Substituting for ⌫ht in the HJB equation gives:

0 = sup
{Ch

t ,"
h
t }


lnCh

t � ⇢
h
V +DV �

✓
h

2
(�R,t"

h

t Vw)
2

�
. (2.10)

The following proposition summarizes the main results from the above model with:

Proposition 2.1. Under robustness, the household’s optimal consumption rule is

C
h⇤
t = ⇢

h
W

h

t (2.11)

6Learning is excluded here by assuming the impossibility to learn due to the model complexity. It is also
possible to decompose ambiguity into time-varying non-learnable ambiguity (Markov hidden state) and
time-invariant learnable ambiguity, e.g. Hansen and Sargent (2005, 2007, 2010) and Epstein and Schneider
(2007).
7Hansen and Sargent (2001) show the observational equivalence between the robust control problem and
multiple priors setup in the ambiguity literature (Gilboa and Schmeider, 1989; Epstein and Wang, 1994).
Comparatively, ✓h indexes the set of priors used in multiple priors modeling.
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and the optimal risk exposure is

"
h⇤
t =

⇡R,t � kt

�h�
2
R,t

W
h

t (2.12)

where �
h = 1+ ✓

h
/⇢

h and ✓
h reflects the degree of robustness. Household’s value function

takes the form V (W h
t ;Y

h
t ) =

1
⇢h

lnW h
t + Y

h
t , where Y

h
t is a function of aggregate state xt

which satisfies a second-oder ODE.

Proof. See the Appendix 6.1 for the derivations. ⇤
Now we turn to the specialist’s problem. Take Equation (2.6) as the specialist’s ap-

proximating model. The corresponding distorting model can thus be obtained by adding
an endogenous distortion ⌫(Wt) = ⌫t,

dWt = ("t⇡R,t + (qt + rt)Wt � Ct) dt+ �W,t (⌫tdt+ dZt) (2.13)

where �W,t = �R,t"t. Choosing a drift adjustment ⌫t to:

inf
⌫t


DJ(Wt;Yt) + ⌫t�W,tJw +

1

2✓t
Ht

�

where

DJ(Wt;Yt) = Jw ["t⇡R,t + (qt + rt)Wt � Ct] +
1

2
Jww"t

2
�
2
R,t + µY,t

and Ht = ⌫
2
t denotes the relative entropy of the specialist’s approximating model. 1

✓t
is the

weight that specialist puts on the entropy penalty term. We assume ✓t is time invariant
which equals constant ✓. The specialist solves the following HJB equation:

sup
{Ct,"t}

inf
⌫t


lnCt � ⇢J +DJ + ⌫t"t�R,tJw +

1

2✓t
⌫
2
t

�

subject to (2.13). Assuming ✓t is a constant and solving first the infimization part,

⌫
⇤
t = �✓Jw�W,t.

Substituting for ⌫t in the HJB equation gives

0 = sup
{Ct,"t}


lnCt � ⇢J +DJ �

✓

2
�
2
R,t"

2
tJ

2
w

�
(2.14)

The following proposition summarizes the main results from the above model with:

Proposition 2.2. Under robustness, the specialist’s optimal consumption rule is

C
⇤
t = ⇢Wt (2.15)

and the optimal risk exposure is

"
⇤
t =

⇡R,t

��
2
R,t

Wt. (2.16)

where � = 1 + ✓/⇢ and ✓ reflects the degree of robustness. The specialist’s value function
takes the form J(Wt;Yt) =

1
⇢
lnWt+Yt, where Yt is a function of aggregate state xt which

satisfies a second-oder ODE.
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Proof. See the Appendix 6.1 for the derivations. ⇤
It is clear from the above optimal rules that the robustness parameter changes the

desired exposures of households and specialists. When ✓ = ✓
h = 0, the optimal choices

of the household and specialist reduce to the original FI-RE model. It is worth noting

that the e↵ective coe�cient of risk aversion


�
h

�

�
is determined by the interaction of the

risk aversion (1) in the logarithm utility specification, the degree of robustness


✓
h

✓

�
,

and the subjective discount factor


⇢
h

⇢

�
via the relationship


�
h

�

�
=1 +


✓
h
/⇢

h

✓/⇢

�
.

This representation coincides with Tallarini (2000) where


�
h

�

�
is more plausibly inter-

preted as a measure of the agents’ aversion to model uncertainty instead of atemporal risk
aversion. From the optimal risk exposure choices, (2.12) and (2.16), it is clear that the
e↵ective coe�cient of risk aversion negatively influences the desired risk exposure for both
agents. In particular, the e↵ective coe�cient of risk aversion increases with the degree
of robustness, and decreases with the rate of time preference. The higher the degree of
robustness, the lower the demand for risk exposure. When agents are more concerned
about model uncertainty, they become more risk averse, and reduce their desired expo-
sure to the risky assets. Moreover, when the discount rate is higher, agents value present
well-being more than than the future, and thus behave less risk-averse to the present risks
since they are so unlikely to forgo the present. Hansen, Sargent, Tallarini (1999) show
the observational equivalence of the locus of robustness parameter and subjective discount

factor

 �
✓
h
, ⇢

h
�

(✓, ⇢)

�
where movements along which preserve all equilibrium quantities. The

pairs of


✓
h

✓

�
and


⇢
h

⇢

�
have explicitly negative relationship and variations in one

can be completely o↵set by appropriate changes in the other one.8 Later it will also be
shown that �

h and � are the keys to determine the e↵ective financial constraint. When
⇢
h
/⇢ = ✓

h
/✓, these two problems are observationally equivalent to the FI-RE model in

the constrained region. Following HK12 and HK13, we assume households are less patient
than the specialists (⇢h > ⇢). Hence, observation equivalence would require households to
be more ambiguity averse than the specialists (✓h > ✓).

The specialist’s exposure supply is a step function:

{

1��
⇤
t

�
⇤
t

"
⇤
t 2 [0,m"

⇤
t ], for any�

⇤
t 2 [ 1

1+m
, 1] ifkt = 0,

m"
⇤
twith�

⇤
t = 1

1+m
ifkt > 0.

with "
⇤
t =

⇡R,t

��
2
R,t

Wt, and kt denotes the per-unit exposure price, which is the only de-

terminant for optimal contract �
⇤
t . In contrast, the household’s exposure demand is

"
h
t =

⇡R,t�kt

�h�2
R,t

W
h
t , which follows the risk sharing constraint "

h
t  m"

⇤
t . From Figure 2,

8Hansen, Sargent, Tallarini (1999) and Luo (2016) discuss the robustness e↵ect from the precautionary
saving perspective.
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it is clear that both the exposure supply and demand functions are influenced by the
robust parameters ✓ and ✓

h.
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Figure 2: Unconstrained and Constrained Region in Equilibrium

3. Capacity-constrained Filtering and Robust Filtering

Now we assume that the evolution of the expected dividend growth rate gt is unobserv-
able to the agents, but it is assumed to follow a mean reverting process:

dgt = ⇢g (g � gt) dt+ ⇢Dg�gdZt +
q
1� ⇢

2
Dg

�gdZg,t, (3.17)

where Zt and Zg,t are independent standard Brownian motions with Zg,t capturing innova-
tions to the growth rate that are not correlated with the dividend process. The assumption
of the mean-reverting expected growth rate of dividend is consistent with the facts on real
business cycles.

Here we assume that the typical investor learn the state (gt) via finite information-
processing capacity (rational inattention, or RI). The main idea of Sims’ RI theory is that
agents with finite capacity react to the innovations to the state gradually and incompletely
because the channel along which information flows cannot carry an infinite amount of
information. Following Peng (2004) and Kasa (2006), we adopt the noisy-information
specification and assume that the investor observes only a noisy signal containing imperfect
information about gt:

dg
⇤
t = gtdt+ d⇠t, (3.18)

where ⇠t is the noise shock, and is a Brownian motion with mean 0 and variance ⇤ (in the
RI setting, the variance, ⇤, is a choice variable for the agent). Following the RI literature,
we assume that ⇠t is independent of the Brownian motions, Zt and Zg,t.

To model RI due to finite capacity, we follow Sims (2003) and impose the following
constraint on the investor’s information-processing ability:

H (gt+�t|It)�H (gt+�t|It+�t) �t, (3.19)
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where  is the investor’s information channel capacity; H (gt+�t|It) denotes the entropy
of the state prior to observing the new signal at t+�t; and H (gt+�t|It+�t) is the entropy
after observing the new signal.  imposes an upper bound on the amount of information
– that is, the change in the entropy – that can be transmitted in any given period. To
apply this information constraint to the state transition equation, we first rewrite (3.17)
in the time interval of [t, t+�t]:9

gt+�t = ⇢0 + ⇢1gt + ⇢2

p

�t"t+�t, (3.20)

where ⇢0 = g (1� exp (�⇢g�t)), ⇢1 = exp (�⇢g�t), ⇢2 = �g

p
(1� exp (�2⇢g�t)) / (2⇢g�t),

and "t+�t is the time-(t+�t) standard normal distributed innovation to permanent in-
come. Taking conditional variances on both sides of (??) and substituting it into (??), we
have

ln
�
⇢
2
1⌃t + ⇢

2
2

�
� ln (⌃t+�t) = 2�t,

which reduces to
·
⌃t = 2 (�⇢g � )⌃t + �

2
g ,

as �t ! 0, where ⌃t = Et

h
(gt � bgt)2

i
the conditional variance at t. In the steady state

in which
·
⌃t = 0, the steady state conditional variance can be written as:

⌃ =
�
2
g

2 (+ ⇢g)
. (3.21)

Proof. The IPC,

ln
�
⇢
2
1⌃t + ⇢

2
2

�
� ln⌃t+�t = 2�t,

can be rewritten as

ln

✓
exp (�2⇢g�t)⌃t +

1� exp (�2⇢g�t)

2⇢g�t
�t�

2
g

◆
� ln⌃t+�t = 2�t,

ln

✓
exp (�2⇢g�t)⌃t +

1� exp (�2⇢g�t)

2⇢g
�
2
g

◆
� ln⌃t+�t = 2�t,

which can be reduced to

⌃t+�t � ⌃t = (exp (2 (�⇢g � )�t)� 1)⌃t +
exp (2 (�⇢g � )�t)� exp (�2�t)

�2⇢g
�
2
g .

Dividing �t on both sides of this equation and letting �t ! 0, we have the following
continuous-time updating equation for ⌃t:

·
⌃t = lim

�t!0

⌃t+�t � ⌃t

�t
= 2 (�⇢g � )⌃t + �

2
g .

⇤

9Note that here we use the fact that �Bt = "t
p
�t, where �Bt represents the increment of a Wiener

process.
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In the filtering problem, we assume that the agent’s objective is to minimize the follow-
ing minimum square errors (MSE):

Jt = inf
{bgt}

Et

h
(gt � bgt)2

i
, (3.22)

subject to the information-processing constraint. Note that in the steady state the value

of Jt is just ⌃ =
�
2
g

2(+⇢g)
.

Specifically, we may think that the model with imperfect state observations can be
decomposed into a two-stage optimization procedure:

(1) The optimal filtering problem determines the optimal evolution of the perceived
state;

(2) The optimal control problem in which the decision makers treat the perceived state
as the underlying state when making optimal decisions.

Here we assume ex post Gaussian distributions and Gaussian noise but adopt log pref-
erences. In stage 1, consumers need to estimate the unobserved state (gt) using its prior
distribution and all processed and available information (i.e., their noisy observations,

Ft=
n
g
⇤
j

o
t

j=0
). Specifically, consumers rationally compute the conditional distribution of

the unobserved state and represent the original optimization problem as a Markovian
one. Given the Gaussian prior g0 ⇠ N (bg0,⌃0), finding the posterior distribution of gt
becomes a standard filtering problem that can be solved using the Kalman-Bucy filtering

method. Specifically, the optimal estimate for gt given Ft=
n
g
⇤
j

o
t

j=0
in the mean square

sense coincides with the conditional expectation: bgt = Et [gt], where Et [·] is based on
Ft. Applying Theorem 12.1 in Liptser and Shiryaev (2001), we can obtain the filtering
di↵erential equations for bgt and ⌃t as follows:

dbgt = ⇢g (g � bgt) dt+Ktd⌘t, (3.23)
·
⌃t = �⇤K2

t � 2⇢g⌃t + �
2
g , (3.24)

given g0 ⇠ N (bg0,⌃0), where

Kt =
⌃t

⇤
(3.25)

is the Kalman gain and

d⌘t =
p

⇤dB⇤
t , (3.26)

with mean E [d⌘t] = 0 and var (d⌘t) = ⇤dt, where B
⇤
t is a standard Brownian motion and

⇤ is to be determined. Note that ⌘t is a Brownian motion with mean 0. Although the
Brownian variable, ⇠t, is not observable, the innovation process, ⌘t, is observable because
it is derived from observable processes (i.e., dg⇤t and ⇢g (g � bgt) dt). In this case, the path
of the conditional expectation, bst, is generated by the path of the innovation process, ⌘t.
In the steady state, we have the following proposition:

Proposition 3.1. Given finite capacity , in the steady state, the evolution of the perceived
state can be written as:

dbgt = ⇢g (g � bgt) dt+ b�dB⇤
t , (3.27)
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where
b� ⌘ ⌃/

p

⇤ = f ()�g, (3.28)

f () =
p
/ (+ ⇢g) < 1 (i.e., the standard deviation of the estimated state is greater

than that of the true state),

⇤ =
�
2
g

4 (+ ⇢g)
(3.29)

is the steady state conditional variance, and

K = 2 (3.30)

is the corresponding Kalman gain.

Proof. In the steady state in which
·
⌃t = 0, substituting the definition of the Kalman gain,

(3.25), into �⇤K2
t + 2r⌃t + �

2
g = 0 and using ⌃ =

�
2
g

2(+⇢g)
, we can easily obtain that:

⇤ =
�
2
g

4 (+ ⇢g)
and K = 2.

⇤
3.1. Robust Filtering. In the robust filtering problem, as shown in Basar and Bernhard
(1995), Pan and Basar (1996), Ugrinovskii and Petersen (2002), and Kasa (2006), a robust
filter can be characterized by the following dynamic zero-sum game:

Lt = inf
{bgs}

sup
{Q}

n
E

Q

h
(gs � bgs)2

i
� ✓

�1
H (Q|P )

o
, (3.31)

where P and Q are the approximating and distorted models, respectively, and H1 is
the relative entroy and is bounded from above. As shown in Dai Pra, Meneghini, and
Runggaldier (1996), the entropy constrained robust filtering problem is equivalent with
the following risk-sensitive filtering problem:

1

✓
log

✓Z
exp (✓F (gs, bgs)) dP

◆
= sup

Q

⇢Z
F (gs, bgs) dQ� ✓

�1
H1 (Q|P )

�
, (3.32)

where F ⌘ (gs � bgs)2 is the loss function. The steady state conditional variance is deter-
mined by the following Riccati equation:10

2⇢g⌃ = �
2
g �

✓
1

�2
� ✓

◆
⌃2

,

which means that

⌃⇤ =
�
2
h
�⇢g +

q
⇢2g + (1� ✓�2)SNR

i

1� ✓�2
, (3.33)

where SNR = �
2
g/�

2 is the signal-to-noise ratio. The corresponding Kalman gain is

K =
⌃⇤

�2
=

�⇢g +
q

⇢2g + (1� ✓�2)SNR

1� ✓�2
.

10For simplicity here we assume that ⇢Dg = 0.
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The value function can be written as

Jt =
1

✓
log

✓Z
exp (✓F (gs, bgs)) dP

◆
=

1

✓
log
⇣
Et exp

⇣
✓ (gt � bgt)2

⌘⌘

= Et

h
(gt � bgt)2

i
+

1

2
✓vart

h
(gt � bgt)2

i

= ⌃t +
1

2
✓

✓
Et

h
(gt � bgt)4

i
�

⇣
Et

h
(gt � bgt)2

i⌘2◆

= ⌃t + ✓⌃2
t

where we use the fact that Et

h
(gt � bgt)4

i
= (3!!)⌃2

t . In the steady state,

J = ⌃+ ✓⌃2
, (3.34)

i.e., the welfare loss under robustness is larger than that obtained in the model without
robustness.

3.2. Observational Equivalence (OE) between Capacity Constrained Filtering

and Robust Filtering. We can establish the first observational equivalence between
capacity constrained filtering and robust filtering when the filtering problems lead to the
same Kalman gain:

 =
�⇢g +

q
⇢2g + (1� ✓�2)SNR

2 (1� ✓�2)
. (3.35)

The following figure illustrates the relationship between  and ✓.
itbpF4.0145in3.5129in0inoe1.eps
Since both capacity and ambiguity increase the Kalman gain of the filtering problem,

one way agents can implement a robust filter is by re-allocating some of their limited
capacity to decisions that demand a relatively high degree of ambiguity. This result is the
same as that obtained Kasa (2006).

4. Theoretical Implications

4.1. Market Equilibrium. Here we provide a detailed definition of market equilibrium
in our model economy:

Definition 4.1. An equilibrium for the economy is a set of progressively, measurable price
processes {Pt, rt, Rt} and {kt}, households’ decisions {C

h⇤
t , "

h⇤
t }, and experts’ decisions

{C
⇤
t , "

⇤
t ,�

⇤
t } such that

(1) Given the processes, decisions optimally solve (2.3) and (2.4).
(2) The intermediation market reaches equilibrium with risk exposure clearing condi-

tion,

"
h⇤
t =

1� �
⇤
t

�
⇤
t

"
⇤
t . (4.36)

(3) The stock market clears:

"
⇤
t + "

h⇤
t = Pt. (4.37)
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(4) The goods market clears:

C
⇤
t + C

h⇤
t = Dt. (4.38)

(5) Transversality conditions satisfy:

lim
t!1

E
h
exp

⇣
�⇢

h
t

⌘
V (W h

t , t)
i
= 0 (4.39)

lim
t!1

E [exp (�⇢t) J(Wt, t)] = 0 (4.40)

In the unconstrained region (see the right panel of Figure 2), the exposure supply exceeds
the demand. There exists an abundance of intermediary supply so that specialists must
set the intermediation fee to zero to attract all the exposure demand from the household.
In this case, both the per-unit exposure price kt and per-unit of specialist wealth fee
qt are zero. The incentive-compatibility constraint is slack (�⇤

t >
1

1+m
), as well as the

risk-sharing constraint is slack, such that

"
h

t |kt=0 < m"t ()
⇡R,t

�h�
2
R,t

W
h

t < m
⇡R,t

��
2
R,t

Wt,

where we assume risk premium ⇡R,t is positive. Define m̃ ⌘
�
h

�
m, the risk-sharing con-

straint is translated into the equity capital constraint

W
h

t < m̃Wt.

Intermediary earns higher exposure, so that households put all the wealth into the inter-
mediation, T h

t = W
h
t .

In the constrained region (see the left panel of Figure 2 ), the exposure supply is less
than demand, kt � 0. The incentive-compatibility constraint is binding (�⇤

t = 1
1+m

) and
the equity capital constraint is binding, such that

"
h

t = m"t ()
⇡R,t � kt

�h�
2
R,t

W
h

t = m
⇡R,t

��
2
R,t

Wt

() W
h

t � m̃Wt. (4.41)

In equilibrium, the specialist earns a rent qt =
ktm"

⇤
t

Wt
= mkt

�

⇡R,t

�
2
R,t

� 0 for scarce intermediary

service. When kt increases, "
h⇤
t decreases, hence exposure demand drops. Households

would not put all their wealth into the intermediary, T h
t = m̃Wt  W

h
t , thus induces the

financial constraint for the intermediation. Define e↵ective financial constraint

Definition 4.2.

m̃ ⌘
�
h

�
m. (4.42)

Robustness concerns change the binding conditions for the economy through the e↵ec-
tive financial constraint m̃. When �

h = � , ✓
h
/✓ = ⇢

h
/⇢, ambiguity parameters don’t

change the financial constraint, i.e. m̃ = m. However, as HK12 and HK13, assuming
the specialist is more patient than the household, ⇢

h
> ⇢, the existence of ambiguity

causes the e↵ective financial constraint to be scaled by relative ambiguity aversion. Thus,



16 LEYLA JIANYU HAN, KENNETH KASA, AND YULEI LUO

specialists become more constrained even if they face the same level of ambiguity as the
households, i.e. when ✓

h = ✓, m̃ < m. Later we will see in addition to the wealth distribu-
tion among households and specialists, robustness parameters influence the equity capital
binding conditions as well as the conditions for whether the economy is in the constrained
region or not. This is similar to the role of the financial constraint. We incorporate am-
biguity into the financial constraint to make it “endogenous” by the agents’ ambiguity.
The e↵ective financial constraint can also be treated as an “adjusted” financial constraint

with the adjustment of �
h

�
= 1+✓

h
/⇢

h

1+✓/⇢
, which is the relative ratio of e↵ective risk aversion

between the household and specialist. During a financial crisis, people fear more about
the adverse state and are more uncertain about the true state. This fear will influence the
asset market through e↵ective financial constraint directly. Using (4.42), we have

dm̃

d✓
= �

�
h

⇢�2
m < 0 and

dm̃

d✓h
=

1

⇢h�
m > 0.

From these results, we can see that ✓ and ✓
h play opposite roles in determining m̃

which captures the inverse of agency friction. When the specialist’s ambiguity aversion
✓ is larger, the e↵ective financial constraint m̃ is smaller, which makes the equity capi-
tal constraint easier to bind for a given wealth distribution. On the other hand, when
household’s ambiguity ✓

h increases, m̃ is larger, thus relieving the financial constraint
faced by the intermediary for a given wealth. The intuition is that when experts are more
uncertain they are less willing to put the required ‘skin in the game’, and so the agency
friction worsens. However, when household become more ambiguous, they have a lower
demand for financial intermediation, which relaxes the agency friction. HK12 document
the constraint e↵ect and the sensitivity e↵ect of the intermediation multiplier which are
also applicable here.

4.2. Asset Pricing Implications.

4.2.1. The Equity Capital Constraint and the Price-Dividend Ratio. Since bonds are in
zero net supply, the asset market clears when aggregate wealth equals the market value of
the risky asset,

W
h

t +Wt = Pt. (4.43)

In equilibrium, from the goods market clearing condition (4.38) and the optimal con-
sumption rules of households and specialists,

⇢Wt + ⇢
h
W

h

t = Dt.

Thus, the equilibrium price/dividend ratio is

Pt

Dt

=
1

⇢h
+ (1�

⇢

⇢h
)xt =

1 +�⇢xt

⇢h
(4.44)

where xt ⌘ Wt/Dt is the aggregate state variable and �⇢ ⌘ ⇢
h
�⇢. Notice that robustness

concerns do not have a first order e↵ect on the price/dividend ratio. Robustness only
indirectly influences it through a wealth e↵ect. When the risk sharing constraint just
starts to bind, the threshold level of the state x

c could be derived as

"
h

t = m"t,
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which means that Pt�Wt
�h = mWt

�
. Together with the equilibrium price/dividend ratio

above yields:

x
c =

1

m̃⇢h + ⇢
. (4.45)

When xt  x
c, the economy is within the constrained region, otherwise, when xt > x

c,
the economy is unconstrained. Agents are ambiguous, thus both the robust concerns from
households and expert s influence the critical level of xc through the e↵ective financial
constraint m̃. As Figure 3 shows, when household become more ambiguous about the
world, m̃ is larger and x

c is smaller thus the constrained region is smaller. On the other
hand, when expert s becomes more ambiguous, m̃ is smaller so that they face tighter
e↵ective financial constraint which is easier to bind for a given wealth distribution. Hence,
the constrained region is larger thus the probability for the economy to drop into the
constrained region is higher.

4.2.2. Specialist’s Portfolio Share. The specialist makes a portfolio choice to invest a share
↵t of the total equity T

I
t = Wt+T

h
t into the risky asset and the rest into the riskless bond.

Thus, the total exposure is
"
I

t = ↵tT
I

t

which yields the following implementation constraint:

"
⇤
t + "

h⇤
t = ↵t(Wt + T

h

t ). (4.46)

This implementation constraint requires the specialist to choose ↵t to reach the optimal
risk exposure "⇤t . Household obtains the desired exposure "h⇤t by choosing how much wealth
T
h
t to contribute to the intermediation.

Proposition 4.3. In unconstrained region, the share of the return is

�
U

t =
1

1 + �

�h

⇣
1

⇢hxt
�

⇢

⇢h

⌘ . (4.47)

In constrained region,

�t =
1

1 +m
. (4.48)

Proof: In the unconstrained case, per-unit exposure price is zero. Recall that the share of
return contract �t ⌘ "

⇤
t /"

I
t . Since the robust concern distorts the specialist’s desired risk

exposure "
⇤
t , the choice of share contract turns into

�
U

t =
Wt

Wt +
�

�hW
h
t

and kt = 0.

Now the specialist and household no longer hold the equity claims according to their
wealth contributions as in HK(2012)’s case, but with a distortion term �

�h which equals
the inverse of distortion on the financial constraint. Note that although agency friction m

doesn’t enter �U
t in unconstrained region, both robustness parameters distort the contract

share alternatively. Replacing W
h
t with asset market clearing condition (4.43) yields:

�
U

t =
1

1 + �

�h

⇣
1

⇢hxt
�

⇢

⇢h

⌘ .
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By the imposed assumption that 0 < �
U
t  1, xt should be limited within (0, 1/⇢]. Later

we will show that in order for the risk-free rate to be valid whenever robustness exists,
xt 6= 1/⇢. From now on, we assume

xt 2 {
(0, 1/⇢] for ✓ = ✓

h = 0
(0, 1/⇢) others.

Furthermore, we have

d�
U
t

d✓
=

�

⇣
1

⇢xt
� 1
⌘
⇢
h
�
h

h
⇢h�h + �

⇣
1
xt

� ⇢

⌘i2  0and
d�

U
t

d✓h
=

⇣
1

⇢xt
� 1
⌘
⇢�

h
⇢h�h + �

⇣
1
xt

� ⇢

⌘i2 � 0.

Note that when ✓ = ✓
h = ✓̄, we have

�
U

t =
⇢
h + ✓̄

⇢h � ⇢+ (1 + ✓̄/⇢) 1
xt

,
d�

U
t

d✓̄
=

��⇢

⇣
1

⇢xt
� 1
⌘

⇣
�⇢+ (1 + ✓̄/⇢) 1

xt

⌘2  0.

A higher ambiguity from the specialists decreases the share of returns that go to them. In
other words, when specialists have more doubt about their approximating models, they
prefer a lower return share which comes from a lower risk exposure. In contrast, a higher
ambiguity from household increases the contract share in the unconstrained region, where
they want to bear lower risk and transfer the risk to the intermediation. By calculating

the scale e↵ect of the two robustnesses
��d�U

t
d✓

�� and
��d�U

t
d✓h

��, it is clear to see that if ⇢h�h >

⇢� () ✓
h + ⇢

h
> ✓ + ⇢ , the expert ’s preference for robustness has a stronger e↵ect

on the contract share than the household in the unconstrained case. In the constrained
region, the share of return is determined by the incentive constraint of specialist. In order
to prevent the specialist from shirking, households need to pay a positive intermediation
fee and exposure price to the intermediary, thus

�t =
1

1 +m
and kt > 0.

expert

Proposition 4.4. In the unconstrained region, the desired risk exposure and optimal port-
folio choice are

"
U⇤
t =

1

1 + �

�h

⇣
1

⇢hxt
�

⇢

⇢h

⌘Pt. (4.49)

↵
U⇤
t = 1. (4.50)

In the constrained region,

"
⇤
t =

1

1 +m
Pt. (4.51)

↵
⇤
t =

1
xt

+ ⇢
h
� ⇢

(1 + m̃)⇢h
. (4.52)
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Proof. In the unconstrained region, T h
t = W

h
t , both households and specialists put all their

wealth into the intermediation, such that the total risk exposure equals "It = ↵t(Wt+W
h
t ).

The equilibrium conditions (4.37) and (4.43) yield ↵
U⇤
t = 1. The risk exposure for the

specialist can be derived as follows:

"
⇤
t + "

h⇤
t = Wt +W

h

t

"
⇤
t +

1� �
U
t

�
U
t

"
⇤
t = Pt

"
⇤
t = �

U

t Pt =) "
U⇤
t =

1

1 + �

�h

⇣
1

⇢hxt
�

⇢

⇢h

⌘Pt.

In the constrained region, the expert holds �t =
1

1+m
share of risk. Hence, the expert ’s

risk exposure

"
⇤
t = �t"

I

t =
1

1 +m
Pt.

Further, the expert ’s portfolio share is

↵t =
"
I
t

Wt + T
h
t

=
Pt

(1 + m̃)Wt

=) ↵
⇤
t =

1
xt

+ ⇢
h
� ⇢

(1 + m̃)⇢h
.

From (4.52), we have
d↵

⇤
t

d✓
> 0and

d↵
⇤
t

d✓h
< 0,

which means that the two robustness parameters play opposite roles in determining the
equilibrium portfolio share ↵t in the risky asset. From Figure 3, in the unconstrained
region, ↵t = 1 such that the expert invests all of the intermediary’s equity capital into the
risky asset. Once the constraint is binding. ↵t > 1 means the expert holds above 100% of
the total equity and borrows (↵t � 1)(Wt + T

h
t ) riskless bonds. There are three e↵ects of

heterogeneous ambiguity:The first is the “constraint e↵ect” under a given wealth distri-
bution.11 When the expert ’s (household’s) ambiguity aversion ✓ (✓h) is larger (smaller),
the e↵ective financial constraint m̃ is tighter (looser), which induces the expert to hold a
larger (smaller) portfolio share ↵t of risky assets. The constraint e↵ect could be further
decomposed into two channels, (i) the “general equilibrium channel” and (ii) the “inter-
mediary expertise e↵ect”. Specifically, a higher ambiguity aversion ✓ induces the expert
to have more doubts about the approximating model thus more unlikely to expose to the
risky asset. Hence, the exposure supply decreases, risky asset price decreases accordingly
in equilibrium using equation (4.51). Lower price triggers a higher demand for risky asset
portfolio holding for a given return. This is the general equilibrium e↵ect. When the
households realize that the expert loses the expertise in determining the probability dis-
tributions, they put even less wealth into the intermediation, which worsens the agency
problem. Since the households are more sensitive to the expertise of the expert implied by
the ambiguity aversion, the expert loses more equity capital due to the household partici-
pation decline by lowering the risk exposure. As a consequence, the equilibrium portfolio

11HK(2012) illustrate the constraint e↵ect of intermediation multiplier m as an accelerator of the tightness
for capital constraint. In our model, ambiguity is endogenous as a scale on m and plays the similar role in
terms of constraint e↵ect through the e↵ective financial constraint.
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share has to adjust above 1 to make the risk exposure optimal, where the extra leverage
is borrowed from the short-term bond market. This is the intermediary expertise e↵ect
implied by the expert ambiguity change. On the other hand, when the households become
more ambiguous, i.e. ✓

h is larger, the e↵ective financial constraint m̃ becomes looser,
such that expert will invest less in the risky asset. The general equilibrium e↵ect raises
when the households more concern about their model uncertainty, such that they want
to bear less risk exposure and reduce risk exposure demand, hence the risky asset price
decreases in equilibrium. The expert needs to reduce the optimal exposure from equation
(4.51). Total risk exposure declines but equity capital rises. As a result, portfolio share
has to decrease to meet the optimization in equilibrium. Furthermore, households trust
the expertise of expert , reflected in less ambiguity, more than themselves when they are
more ambiguous, so that they don’t want to make portfolio decisions and put more wealth
into the intermediation and let the expert do the portfolio choice, thus releasing the ef-
fective financial constraint for the expert . The intermediation expertise e↵ect makes the
agency problem less severe hence the expert bears less risk exposure and invests less in
the risky asset. The relative ratio of both agents’ relative risk aversions determines the
equilibrium result. The agent who’s e↵ective risk aversion changes larger during financial
crisis will dominate the equilibrium portfolio choice even though the expert is the marginal
investor. This coincides with Bossaerts et al (2010) that prices reflect the average beliefs
of heterogeneous agents. Moreover, the ambiguity dispersion of two agents will scale up
the tightness of financial constraint. The e↵ective financial constraint m̃ plays a crucial
role of financial multiplier or accelerator, which incorporates the sensitivities of agents’
heterogeneous ambiguities, in transmitting the belief dispersion into the asset market. In
the special case when � = �

h, the heterogeneous ambiguity constraint e↵ect neutralizes.
The second e↵ect is the “wealth e↵ect” under certain e↵ective financial constraint. Later,
Figure show that the unconditional mean of scaled expert wealth xt is a decreasing func-
tion of ✓ which will even amplify the constraint e↵ect. However, there is no steady state
solution E[xt | ✓ = 0] for any ✓

h. From equation (4.52), constraint e↵ect is a first order ef-
fect of ambiguity to portfolio share while wealth e↵ect is not. This further emphasizes the
most important channel of heterogeneous ambiguity through e↵ective financial constraint
transmitting into asset market dynamics. The third is the “sensitivity e↵ect” to exoge-
nous shocks. HK (2012) document the sensitivity e↵ect such that one percent of expert s’
wealth drop will induce m (> 1) percent equity participation of households’ wealth into
the intermediation. The economy is more sensitive to the changes in the aggregate state
in the constrained region. It is easy to show,

d

d✓

✓
d↵

⇤
t

dxt

◆
=

1

(1 + m̃)2⇢hx2
t

dm̃

d✓
< 0and

d

d✓h

✓
d↵

⇤
t

dxt

◆
=

1

(1 + m̃)2⇢hx2
t

dm̃

d✓h
> 0.

When expert robustness is higher, the e↵ective financial constraint m̃ is smaller, such that
a change in the expert s’ wealth leads to a smaller change in ↵t, i.e. a weaker sensitivity
e↵ect. However, when household robustness ✓h is larger, the e↵ective financial constraint
becomes looser, a change in the expert wealth results in a larger change in ↵t. On the other
hand, the robust concern from the household plays an opposite role. When ✓

h is larger,
the e↵ective financial constraint becomes looser, a change in the expert wealth results in
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a larger change in ↵t. This would cause a severer binding during crisis and accelerate the
sensitivity e↵ect especially during financial crisis.
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Figure 3:

The expert’s portfolio choice for risky asset ↵t is graphed against the expert wealth xt for di↵erent
robust parameters (✓ and ✓h) varying from 0 to 3. The threshold value xc (vertical line) separates the
constrained (left) and unconstrained (right) region. The top panels shut down expert’s robust concern
(✓ = 0) and the top right panel is the enlarged version of top left panel. Bottom left panel shuts down

household’s robust concern (✓h = 0). Bottom right panel plots the homogeneous robust concern from two
agents (✓ = ✓h = ✓̄).

4.2.3. Risky Asset Volatility.

Proposition 4.5. In the unconstrained region,

�
U

R,t = �

✓
1

1 +�⇢xt

◆�
⇢
h
�
h
� ⇢�

�
xt + �

⇢ (�h � �)xt + �
. (4.53)

In the constrained region,

�R,t = �

✓
⇢
h

1 +�⇢xt

◆✓
1 +m

m⇢h + ⇢

◆
. (4.54)
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Proof. The return volatility can be derived from matching the di↵usion terms of equation
(2.1), (2.2) and (4.44) that

�R,t =
�Dt

⇢hPt � (⇢h � ⇢)"⇤
t

=

✓
1

Pt/Dt

◆
�

⇢h � (⇢h � ⇢)�t
. (4.55)

Using Proposition 4.4 and 4.3, we have

�
U

R,t =
�

⇢h

✓
1

Pt/Dt

◆
⇢
�
�
h
� �
�
xt + �

(⇢h�h � ⇢�)xt + �
. (4.56)

�R,t =

✓
1

Pt/Dt

◆✓
�

⇢h �
⇢h�⇢

1+m

◆
. (4.57)

From equation (4.56) and (4.57), price/dividend ratio increases when xt increases, thus
the return volatilities decrease. In the constrained region, as xt drops, the constraint
tightens, thus return volatility rises only through price/dividend ratio. However, in the
unconstrained region, decreasing in xt not only increases �U

R,t
through price/dividend ratio

from the first term in parentheses of equation (4.56), but also decreases �U

R,t
through the

second term. Thus, the e↵ect of xt to �
U

R,t
is ambiguous in the unconstrained case. When

there is no ambiguity, i.e. ✓ = ✓
h = 0, �U

R,t
= � which is independent of xt.

Lemma 4.6.
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⇢h (1 +�⇢xt) (⇢��xt + �)2
 0.
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�
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1
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� xt

⌘
⇢�⇢�xt

⇢h (1 +�⇢xt) (⇢��xt + �)2
� 0.

d�
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R,t

d✓̄
= �

�

⇣
1
⇢
� xt

⌘
�⇢

⇢h (1 +�⇢xt) (⇢��xt + �)2
 0

where �� ⌘ �
h
� � denotes the dispersion in e↵ective risk aversion. And,

d�R,t

d✓
=

d�R,t

d✓h
=

d�R,t

d✓̄
= 0.

Lemma 4.6 shows the opposite influence from two agents’ ambiguities. From equation
(4.55), the risky asset volatility come from two parts: price/dividend ratio and risk share
contract. Price/dividend ratio is not a function of ambiguity under given wealth. In
Proposition 4.3, heterogeneous agents’ ambiguities have first order e↵ect on �

U
t in the

unconstrained region but no e↵ect in constrained region, thus first order influence the
risky asset volatility.
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Figure 4:

The risky asset volatility �R,t is graphed against the expert wealth xt for di↵erent robust parameters (✓
and ✓h) varying from 0 to 3. The threshold value xc (vertical line) separates the constrained (left) and

unconstrained (right) region. The top panels shut down expert’s robust concern (✓ = 0) and the top right
panel is the enlarged version of top left panel. Bottom left panel shuts down household’s robust concern

(✓h = 0). Bottom right panel plots the homogeneous robust concern from two agents (✓ = ✓h = ✓̄).

4.2.4. Risk Premium and Financial Constraint. The risk premium could be solved through
optimal exposure supply by the expert (2.16),

⇡R,t =
��

2
R,t

"
⇤
t

Wt

.

Thus, we have the following results.

Proposition 4.7. In the unconstrained region,
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. (4.58)

In the constrained region,

⇡R,t =
�
2
⇢
h
�

xt (1 +�⇢xt)

1 +m

(m⇢h + ⇢)2
. (4.59)
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Proof. See Appendix 6.2.1.

Lemma 4.8.
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� 0.

d⇡R,t

d✓
> 0 and

d⇡R,t

d✓h
= 0 and

d⇡R,t

d✓̄
> 0.

Proof. See Appendix 6.3.1. It is interesting to notice that, ✓ positively changes the risk
premium both in the unconstrained and constrained region, while ✓

h also has a positive
impact but only in the unconstrained region, as shown in Figure 5. The intuition is,
whenever there is an increase in ambiguity aversion from two agents, both of them require
higher risk premium in unconstrained region.12 However, during financial crisis, the model
predicts a first order e↵ect of ✓ which reflects the major influence from marginal investor.
The higher risk premium induces the expert who has high ambiguity aversion or low wealth

to buy the exposure. Further, since d
h
(1 +m)

�
�

m⇢h+⇢

�2i
/dm = �

2⇢h�2(1+m)

(m⇢h+⇢)3
< 0, the risk

premium is a decreasing function of monly in the constrained region. When the capital
constraint tightens, it will induce a higher risk premium.

4.2.5. Market Price of Risk and Uncertainty. The market price of risk is defined as the
Sharpe ratio. Using Proposition 4.5 and 4.7 directly gets the following result.

Proposition 4.9. In the unconstrained region, the market price of risk is

⇡
U

R,t

�
U

R,t

=
���

h

⇢ (�h � �)xt + �
. (4.60)

In the constrained region,
⇡R,t

�R,t

= �

✓
�

m⇢h + ⇢

◆
1

xt
. (4.61)

In the constrained region, only the expert robustness concern has first order e↵ect on
the sharpe ratio. This is consistent with the argument in intermediary asset pricing that
marginal investors rather than households truly dominate the asset market. From equation
(6.96), wealth growth and consumption growth are direct functions of sharpe ratio over

12This coincides with the literature where robustness can explain equity premium puzzle, e.g. Hansen,
Sargent and Tallarini (1999), Chen and Epstein (2002), Maenhout (2004).
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Figure 5:

The risk premium ⇡R,t is graphed against the expert wealth xt for di↵erent robust parameters (✓ and ✓h)
varying from 0 to 3. The threshold value xc (vertical line) separates the constrained (left) and

unconstrained (right) region. The top panels shut down expert’s robust concern (✓ = 0) and the top right
panel is the enlarged version of top left panel. Bottom left panel shuts down household’s robust concern

(✓h = 0). Bottom right panel plots the homogeneous robust concern from two agents (✓ = ✓h = ✓̄).

expert robustness parameter, which generate larger first and second order amplification
e↵ect from expert . Further,

d

⇣
⇡
U

R,t
/�

U

R,t

⌘

d✓
=

��
h2
xt

[⇢ (�h � �)xt + �]2
> 0

d

⇣
⇡
U

R,t
/�

U

R,t

⌘

d✓h
=

��
2 (1� ⇢xt)

⇢h [⇢ (�h � �)xt + �]2
� 0.

d

⇣
⇡
U

R,t
/�

U

R,t

⌘

d✓̄
=

�
�
1 + ✓̄/⇢

� h
�⇢

⇣
⇢
h
�

✓̄
2

⇢

⌘
xt + ⇢

h
�
1 + ✓̄/⇢

�2i

⇥
��⇢✓̄xt + ⇢h

�
1 + ✓̄/⇢

�⇤2 > 0.

Proof. See Appendix 6.98. Also, it is easy to see that,
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> 0 and
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= 0 and
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Figure 6:

The sharpe ratio ⇡R,t/�R,t is graphed against the expert wealth xt for di↵erent robust parameters (✓ and
✓h) varying from 0 to 3. The threshold value xc (vertical line) separates the constrained (left) and

unconstrained (right) region. The top panels shut down expert’s robust concern (✓ = 0) and the top right
panel is the enlarged version of top left panel. Bottom left panel shuts down household’s robust concern

(✓h = 0). Bottom right panel plots the equal robust concern from two agents (✓ = ✓h = ✓̄).

4.2.6. Exposure Price and Intermediation Fee.

Proposition 4.10. In the unconstrained region, the per-unit exposure price k
U
t = 0 and

intermediation fee q
U
t = 0. In the constrained region,
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Proof. See Appendix 6.2.2.
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Proof. See Appendix 6.3.3. And,

dqt

d✓
> 0 and

dqt

d✓h
< 0 and

dqt

d✓̄
> 0.

From Figure 7 and 8, the exposure price and intermediation fee change similar in terms of
✓ and ✓

h. The exposure price clears the intermediation market where the exposure supply
and demand are directly reduced by an increase in ✓ and ✓

h, respectively. There are two
reasons for it. First, During the crisis, an increased ambiguity induces the household
a lower demand for risky asset and higher demand for the riskless bond. This directly
reduces the exposure demand hence the per-unit exposure price drops in equilibrium.13

Secondly, equation (6.95) implies dkt/dm̃ < 0, which indicates another channel that ✓ and
✓
h change kt through m̃. The intuition is, both higher ambiguity of households and lower
ambiguity of expert s will make households trust the expertise of the expert more so that
agency friction is relaxed, making it easier for expert to manage the intermediary thus
charging a lower intermediation fee.

4.2.7. Interest Rate.

Proposition 4.11. In the unconstrained region, the interest rate is
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In the constrained region,
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Proof. See Appendix 6.2.3. Moreover,
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13The exposure supply also drops due to higher ✓h, but indirectly through risky asset price decline, which
is smaller compared to the first order e↵ect of ✓h on demand reduction.
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Figure 7:

The exposure price kt is graphed against the expert wealth xt for di↵erent robust parameters (✓ and ✓h)
varying from 0 to 3. The threshold value xc (vertical line) separates the constrained (left) and

unconstrained (right) region. The top panels shut down expert’s robust concern (✓ = 0) and the top right
panel is the enlarged version of top left panel. Bottom left panel shuts down household’s robust concern

(✓h = 0). Bottom right panel plots the equal robust concern from two agents (✓ = ✓h = ✓̄).
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Figure 8:

The per-unit intermediation fee qt is graphed against the expert wealth xt for di↵erent robust parameters
(✓ and ✓h) varying from 0 to 3. The threshold value xc (vertical line) separates the constrained (left) and
unconstrained (right) region. The top panels shut down expert’s robust concern (✓ = 0) and the top right
panel is the enlarged version of top left panel. Bottom left panel shuts down household’s robust concern

(✓h = 0). Bottom right panel plots the equal robust concern from two agents (✓ = ✓h = ✓̄).

Proof: See Appendix 6.3.4.

4.3. Observational Equivalence for Financial Friction. There exists an observa-
tional equivalence (OE) for �h = � , ✓

h
/⇢

h = ✓/⇢ , m̃ = m. Following the assumption
by HK(2012) that ⇢

h
> ⇢, we must get ✓

h
> ✓, i.e. households are more patient and

more ambiguous than the expert . This is intuitive in the way that marginal investor
has the expertise in the sense that he concerns less about the robustness. Moreover, in-
sider information also makes them less ambiguous about the true state. Under OE, the
e↵ective financial constraint drops to the non-adjusted one, where the e↵ect of heteroge-
neous ambiguity cancel out with each other in aggregate equilibrium. Thus, the constraint
e↵ect, which describes the channel of how heterogeneous ambiguities influence asset mar-
ket through e↵ective financial constraint, is neutralized. We could see from Figure 10,
the portfolio share and risky asset volatility won’t change with di↵erent ambiguity levels.
However, the power of ambiguity to explain risk premium puzzle still remains both in
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Figure 9:

Interest rate rt is graphed against the expert wealth xt for di↵erent robust parameters (✓ and ✓h) varying
from 0 to 3. The threshold value xc (vertical line) separates the constrained (left) and unconstrained

(right) region. The top panels shut down expert’s robust concern (✓ = 0) and the top right panel is the
enlarged version of top left panel. Bottom left panel shuts down household’s robust concern (✓h = 0).

Bottom right panel plots the equal robust concern from two agents (✓ = ✓h = ✓̄).

constrained and unconstrained case (middle panels), where risk premium and sharpe ratio
are higher with higher ambiguity.

4.4. The Wealth Distribution.

Proposition 4.12. The expert wealth process follows,

dxt

xt
= µx,tdt+ �x,tdZt.
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Figure 10:

Major asset pricing variables against the expert wealth xt when equalizing e↵ective financial constraint
(m = m̃) under di↵erent robust parameters (✓ and ✓h) varying from 0 to 3. The threshold value xc

(vertical line) separates the constrained (left) and unconstrained (right) region.
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Figure 11:

Unconditional mean of expert ambiguity ✓ conditional on household ambiguity ✓h = 0.

In unconstrained region,
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In constrained region,
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Proof. See Appendix 6.4.
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Figure 12: Theoretical Stationary Distribution

The left (right) figure is the stationary distribution of expert’s scaled wealth when
� = �L (� = �H).

Figure 11 shows the unconditional mean of xt with di↵erent expert ambiguity degree ✓

assuming no household ambiguity, i.e. µx,t(✓) = 0 conditional on E
⇥
xt | ✓

h = 0
⇤
. However,

there is no solution of µx,t(✓h) = 0 for E [xt | ✓ = 0].

Define scaled household wealth x
h
t ⌘

W
h
t

Dt
,

x
h

t =
Pt �Wt

Dt

=
1� ⇢xt

⇢h
. (4.70)

We solve the stochastic process for the wealth process however highly non-linear, which
prevents us from obtaining a close form solution of the density function. However, it
enables us to do the simulation easily and solve other variables in terms of the state vari-
able in close form. Figure 14 shows the stationary scaled household wealth distribution
is fat-tailed or Pareto, which coincides with the fundamental results in empirical evidence
(Gabaix, 2009) and theoretical results from dynamic heterogeneous agent models in study-
ing wealth distributions (Benhabib, Bisin and Zhu, 2011, 2015). Furthermore, we consider
the heterogeneity of ambiguity or robust concern as reflecting the expertise level. Expert
as marginal investor has higher expertise thus lower ambiguity. The heterogeneity in ex-
pertise would lead to the stationary fat-tailed wealth distribution is analyzed by Eisfeldt,
Lustig and Zhang (2017).
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Figure 13: Theoretical Stationary Distribution

Stationary distribution of expert’s scaled wealth when � = �̄, where �̄ = 0.094 is the
unconditional mean of � in the steady state.

Figure 14: Simulated Expert Scaled Wealth Distribution

Histogram of expert scaled wealth distribution at the end period of simulation. The red
line is the just binding constraint xc. The left figure is the case when ✓ = ✓

h = 0.04 and
the right one is the benchmark model when ✓ = ✓

h = 0.0001.

In HK(2012), a big problem is that the state variable process degenerates in steady
state. Under observational equivalence �h = � in subsection 4.3, which includes HK(2012)
where � = �

h = 1.
In the unconstrained region,

µ
U

x,t |�=�h=1= �⇢ (1� ⇢xt) and �
U

x,t |�=�h=1=0.
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Thus, xt satisfies a second-order linear di↵erential equation dxt = �⇢(1� ⇢xt)xtdt,
Z

1

�⇢ (1� ⇢xt)xt
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, Ce
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where x
c
 xt <

1
⇢
and C is a constant. When t = 0, xt drops into unconstrained

region, x0 = x
c = 1

m⇢h+⇢
,
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x
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⇢
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Finally, we get

�
⇢

m⇢h
e
�⇢t =

xt

xt �
1
⇢

, xt =
1

m⇢he��⇢t + ⇢
.

It can be seen that under ⇢h > ⇢, when t ! 1,

lim
t!1

xt =
1

⇢
.

The top left panel in Figure 15 shows that, the convergence speed is exponentially fast
until 1000 periods. HK(2012) corresponds to case (✓ = 0) on the top right panel. When
xt is close to zero, µx,t is su�ciently large and �x,t ! 1 such that xt jumps into the
unconstrained region easily. Once inside the unconstrained region, xt will converge to the
steady state value 1/⇢ and, with zero di↵usion, never jump back to the constrained region
again.

Decompose equation (4.66),

µ
U

x,t = �⇢ (1� ⇢xt)| {z }
µ
U
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(1� ⇢xt) [⇢⇢h (�h � �)xt + ⇢h�]2| {z }
subjective expected wealth (under Q)

.

The third term is generated by ambiguity heterogeneity which is the mean driving force
in scaled expert wealth evolution process. Under OE, In the constrained region, decompose
equation (4.68),

µx,t = �⇢ (1� ⇢xt) + �
2
� (�xc)2

"�
⇢
h
m
�2

1� ⇢xt
+

m
2
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h
�
m+ 3⇢

xt
�

m+ 1

x
2
t

#
.

Solve for inverse function xt (✓) = x
c conditional on µx,t = 0 under OE, we get ✓xc =

⇢
h
�⇢

�2 . When ✓  ✓xc , since �⇢ is close to zero, ✓xc is close to 0 (around 0.0078), it is
more possible for xt to drop into constrained region. Small ✓ corresponds to big �x,t thus
it would be highly possible to jump to infinity (see bottom panel of Figure 15). On the
contrary, when ambiguity parameter ✓ > ✓xc , it is less possible to drop into the constrained
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Figure 15:

Top left: The expert wealth xt evolves over time in unconstrained region under HK(2012) and
observational equivalence (OB, m̃ = m). Top right: Unconditional mean of µx,t in constrained region

over di↵erent ✓s under OB. Bottom: Unconditional mean and standard variance of scaled expert wealth
distribution in constrained region under CE.

region. Conditional on xt  x
c, the larger ✓, the smaller �x,t, making the distribution non-

degenerate and stationary. However, under OE, we cannot get the fat-tailed household
wealth distribution. Thus, we show that the heterogeneity in e↵ective risk aversion matters
in order to fit the empirical evidence.

The wealth evolution for households is

dW
h
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In HK(2012) case,
⇡R,t

�R,t
= �

2, � = 1, then dW
h
t

W
h
t

�
dWt
Wt

= ��⇢  0. Households will

eventually become extinct and only experts will survive in the economy.

5. Quantitative Results

5.1. Calibrating Robustness Parameter Using Detection-error Probabilities.

Obtain the relative entropies from household and expert optimal robust problem,

g
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where 1 denotes the indicator function. See Appendix 6.6 for the proof. Follow the

method of Maenhout (2006), define Radon-Nikodym derivative ⌅h
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When approximating model P generates the data, qP measures the probability of the
likelihood ratio of making detection errors in selecting model Q. Define

q
h

P = Pr
⇣
⇠
h

1,t > 0|P,F0

⌘
(5.78)
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Similarly, when model Q generates the data,
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Given the equal weight of prior probabilities over model P and Q, the conditional proba-
bility of the detection error for two agents over sample length N are

p
h

⇣
✓
h;N

⌘
=

1

2
q
h

P +
1

2
q
h

Q (5.82)

p (✓;N) =
1

2
qP +

1

2
qQ. (5.83)

5.2. Measurements from Simulation. In this section we evaluate the model’s ability
to match the empirical moments. The calibration proceeds in two steps. First, a subset of
parameter values in Table 1 are set using standard values from the literature. Second, given
these parameter values, the two ambiguity parameters are simultaneously determined by
solving the model to target jointly five moments from the data.

In the first step, we adopt the parameter values from HK (2012). In the second step,
we compare the theoretical moments of our model with heterogeneous ambiguity with the
equivalent model under rational expectation. The baseline moments in the first column
of Table 2 estimated from the data are taken from HK(2013). The second column is the
approximating model without considering two agents’ ambiguity degrees. Left columns
are simulation results with calibrated ambiguity degrees.

14Indeed, all of the measurements display more severe dynamics after considering ambi-
guity aversion. The main points to notice in Table 2 are the following: (i) The calibration
suggests that the expert has a very low level of ambiguity aversion. This is because the
ambiguity indicates the heterogeneity in expertise. Expert has high expertise thus low
ambiguity degree than the households. (ii) Expert ambiguity dominates the key moments
of risk premium and Sharpe ratio. A small shift of the expert ambiguity degree from 0.01
to 0.02 would cause the risk premium and Sharpe ratio to jump twice values than before.
(iii) Heterogeneity should be within a certain range, neither too low or too high. For
✓ = 0.01, ✓h 2 (0.1, 1] will result in reasonable moments. (iv) Heterogeneity is important
while non-linear in determining the risk free rate level and volatility. That is the joint
result of “flight to quality” wealth e↵ect and expertise e↵ect. The equilibrium interest rate
decline depends on which e↵ect dominates. (iv) household wealth distribution is fat-tailed
and Pareto due to the heterogeneity in ambiguity.

After the expert’s ambiguity shift from 0.1 to 0.2 conditional on invariant of household’s
ambiguity, column 5 of Table 2 shows the risk premium soar immediately from 36.30% to
59.33% (63% change). This is consistent with the fact documented in Muir (2017) that
an increase in risk premia occurs right during or after the banking or financial panic. We
interpret the panic as an increase in expert’s robust preference or ambiguity.

14The simulation uses quarterly data over 10,000 sample paths and remain the last 33 years as non-burn-in
periods. Numerically we prove that it is long enough to ensure the stationary distribution of state variable
xt. Also, xt is independent of the initial values.
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Table 1: Parameters and Targets

Panel A. Preferences
⇢ Time discount rate of expert 0.5%
⇢
h Time discount rate of household 1.136%

✓ Ambiguity attitude of expert 0.0413
✓
h Ambiguity attitude of household 0.0413
Panel B. Intermediation
m intermediation multiplier 2
g Dividend growth rate 2%
�H Dividend volatility in the high state 9%
�H Dividend volatility in the low state 15%
�H Transition rate from high to low 0.7
�L Transition rate from low to high 0.05

Table 2: Measurements

Data Model
✓ 0.0001 0.04
✓
h 0.0001 0.04
� 1.02 9.26
�
h 1.01 4.63

Risk Premium (%) 0.92 5.29
Sharpe Ratio (%) 9.59 61.62
Interest Rate (%) 1.59 1.77

Interest Rate Volatility (%) 0.31 0.35
Return Volatility (%) 9.40 8.35

P/D Mean 200.00 150.40
P/D Volatility 0.00 3.99
Portfolio Share 1 1.0031

Expert Scaled Wealth Mean 200.00 111.44
Expert Scaled Wealth Volatility 0.00 7.12

Expert Detection Error Probability 0.25 0.29
Household Detection Error Probability 0.25 0.28

Probability of Sharpe Ratio Exceed Twice of the Mean (%) 0 0.32
This table reports the unconditional simulated results. We simulate 5000 years and 5000
sample paths with quarterly frequency. To match the data from 1970-2017, we report 47

years simulated results in stationary distribution.

6. Conclusion

TBA.
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Figure 16: Probability of Constraint Binds

Time path for the probability of falling into constrained region.
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Figure 17:

All blue lines indicate the calibrated case with ✓ = ✓
h = 0.04. The dotted black line are

✓ = ✓
h = 0.0001, which represent almost no ambiguity. Red rectangular regions indicate

the constrained region of the ✓ = ✓
h = 0.04 case. The light blue horizontal lines in the

first two figures are unconditional means for risk premium and Sharpe Ratio,
respectively.



42 LEYLA JIANYU HAN, KENNETH KASA, AND YULEI LUO

20 40 60 80 100 120 140 160 180

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Risk Premium

20 40 60 80 100 120 140 160 180

0.1

0.11

0.12

0.13

0.14

0.15

Sharpe Ratio

20 40 60 80 100 120 140 160 180

0

1

2

3

4

10-4 Two Agents Pessimism

20 40 60 80 100 120 140 160 180

0

1

2

3

10-4 Two Agents Ambiguity Difference

20 40 60 80 100 120 140 160 180

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16
Volatility

20 40 60 80 100 120 140 160 180

198

198.5

199

199.5

200

200.5

201

201.5

Expert Scaled Wealth

Figure 18:

This figure plots the enlarged graph for ✓ = ✓
h = 0.0001, which represent almost no

ambiguity. The light blue horizontal lines in the first two figures are unconditional means
for risk premium and Sharpe Ratio, respectively.
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Figure 19:

All blue lines indicate the calibrated case with ✓ = ✓
h = 0.04. The dotted black line are

✓ = ✓
h = 0.0001, which represent almost no ambiguity. Red rectangular regions indicate

the constrained region of the ✓ = ✓
h = 0.04 case. The light blue horizontal lines in the

first two figures are unconditional means for risk premium and Sharpe Ratio,
respectively.
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Figure 20:

This figure plots the enlarged graph for ✓ = ✓
h = 0.0001, which represent almost no

ambiguity. The light blue horizontal lines in the first two figures are unconditional means
for risk premium and Sharpe Ratio, respectively.
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Appendix

0.1. Solving the Optimal Choices of Households and Experts under Robust
Concern. Proof of Proposition ??. Optimal household consumption and portfolio rule
under robustness are

Ch
t =

1

Vw
(0.1)

"ht =
�Vw

Vww � ✓hV 2
w

(⇡R,t � kt)

�2
R,t

. (0.2)

Put (0.1) and (0.2) back into (??) gives

0 = � lnVw � ⇢hV + Vw


"ht (⇡R,t � kt) + rtW

h
t �

1

Vw

�
+

1

2
Vww("

h
t )

2�2
R,t + µh

Y,t �
✓h

2
(�R,t"

h
t Vw)

2

= � lnVw � ⇢hV � 1 + Vw

h
"ht (⇡R,t � kt) + rtW

h
t

i
+

1

2

⇣
Vww � ✓hV 2

w

⌘
("ht )

2�2
R,t + µh

Y,t. (0.3)

Guess value function takes the form

V (W h
t ;Y

h
t ) =

1

⇢h
lnW h

t + Y h
t (0.4)

where Y h
t is a function of aggregate state variable xt. Now define Y h

t andYt as a function
of xt,

dY h(xt) = µh
Y,tdt+ �h

Y,tdZt

dY (xt) = µY,tdt+ �Y,tdZt.

Using Ito’s formula,

µh
Y,t = Y h0(xt)µx,txt +

1

2
Y h00(xt)�

2
x,tx

2
t (0.5)

�h
Y,t = Y h0(xt)�x,txt (0.6)

µY,t = Y 0(xt)µx,txt +
1

2
Y 00(xt)�

2
x,tx

2
t (0.7)

�Y,t = Y 0(xt)�x,txt. (0.8)

Under this conjecture, Vw = 1
⇢hWh

t
and Vww = �

1
⇢h(Wh

t )2
. Substituting these conjectures

into FOCs (0.1) and (0.2),
Ch
t = ⇢hW h

t

"ht =
⇡R,t � kt
�h�2

R,t

W h
t .

Put all those expressions back to (0.3) yields (for simplicity, I dropped the time script),

0 = ln ⇢hW h
� lnW h

� ⇢hY h
� 1 +

1

⇢hW h


(⇡R � k)2

�h�2
R

W h + rW h

�

�
1

2

 
1

⇢h(W h)2
+

✓h

(⇢hW h)2

!
W h2

�h2
(⇡R � k)2

�4
R

�2
R + µh

Y

0 = ln ⇢h � ⇢hY h
� 1 +

(⇡R � k)2

⇢h�h�2
R

+
r

⇢h
�

1

2⇢h�h
(⇡R � k)2

�2
R

+ µh
Y .
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Substituting equation (0.5) yields

Y h0
t µx,txt +

1

2
Y h00
t �2

x,tx
2
t = ⇢hY h

t � ln ⇢h + 1�
(⇡R,t � kt)2

2⇢h�h�2
R,t

�
rt
⇢h

. (0.9)

From propositions ??????????, Y h
t could be derived in terms of xt and satisfies the above

second-order ODE. Thus, optimal robust consumption rule for the household is

Ch⇤
t = ⇢hW h

t

and the robust optimal risk exposure is

"h⇤t =
⇡R,t � kt
�h�2

R,t

W h
t .

Proof of Proposition ??. Optimal expert consumption and portfolio rules under RB are

Ct =
1

Jw

"t =
�Jw

Jww � ✓J2
w

⇡R,t

�2
R,t

where �Jw
Jww�✓J2

w
is the adjustment for risk aversion of mean-variance coe�cient. Conjecture

the value function for expert takes the form

J(Wt;Yt) =
1

⇢
lnWt + Yt. (0.10)

So that Jw = 1
⇢Wt

and Jww = �
1

⇢W 2
t
. Put those expressions into FOCs and back into (??),

0 = ln ⇢W � lnW �⇢Y �1+
1

⇢W


W⇡2

R

��2
R

+ (q + r)W

�
�

1

2

✓
1

⇢W 2
+

✓

⇢2W 2

◆
W 2

�2
⇡2
R

�2
R

+µY .

Substituting equation (0.7) yields

Yt0µx,txt +
1

2
Yt00�

2
x,tx

2
t = ⇢Yt � ln ⇢+ 1�

qt + rt
⇢

�
⇡2
R,t

2⇢��2
R,t

. (0.11)

From propositions ??????????, Yt could be derived in terms of xt and satisfies the above
second-order ODE. Thus, optimal robust consumption rule for the expert is

C⇤
t = ⇢Wt

and the robust optimal risk exposure is

"⇤t =
⇡R,t

��2
R,t

Wt.

0.2. Solving for Asset Prices.
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0.2.1. Solving the risk premium.

⇡R,t =
��2

R,t"
⇤
t

Wt
=

��2
R,t�tPt

Wt
=

��2
R,t�t(Pt/Dt)

xt
.

In the unconstrained region,

⇡U
R,t =

��U2
R,t�

U
t (Pt/Dt)

xt

) ⇡U
R,t =

�2��h

(1 +�⇢xt)

⇥�
⇢h�h � ⇢�

�
xt + �

⇤

[⇢ (�h � �)xt + �]2
.

In the constrained region,

⇡R,t =
��2

R,t�t(Pt/Dt)

xt

) ⇡R,t =
�2�⇢h

xt (1 +�⇢xt)

1 +m

(m⇢h + ⇢)2
.

0.2.2. Solving the exposure price and intermediation fee. In the constrained region, kt � 0.
When household desired exposure demand (??) equals expert exposure supply (??), we
have

"h⇤t (kt) = m"⇤t ,
⇡R,t � kt
�h�2

R,t

W h
t = m

⇡R,t

��2
R,t

Wt

) kt =

✓
1�

m̃⇢hxt
1� ⇢xt

◆
⇡R,t =

✓
1�

�h

�

m⇢hxt
1� ⇢xt

◆
⇡R,t (0.12)

) kt =
�2(1 +m)

(m⇢h + ⇢)2

✓
� �

⇢h�hmxt
1� ⇢xt

◆
⇢h

(1 +�⇢xt)xt
.

And then

qt ⌘
Kt

Wt
=

mkt"⇤t
Wt

=
mkt
�

Pt

�t
=

m

(1 +m)

Pt/Dt

xt
kt

) qt =
�2m

(m⇢h + ⇢)2

✓
� �

⇢h�hmxt
1� ⇢xt

◆✓
1

xt

◆2

.

In order to make sure kt � 0, xt should satisfy the condition
✓
1�

m̃⇢hxt
1� ⇢xt

◆
⇡R,t � 0 )

(m̃⇢h + ⇢)xt � 1

1� ⇢xt
 0

) xt 
1

m̃⇢h + ⇢
= xc.

Since kt is positive only when xt  xc, thus the condition satisfies automatically.
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0.2.3. Solving the risk free rate. From household’s Euler equation under distorted model,

rtdt = ⇢hdt+ Et


dCh⇤

t

Ch⇤
t

�
� vart


dCh⇤

t

Ch⇤
t

�
.

dCh⇤
t

Ch⇤
t

=
d
�
⇢hW h

t

�

⇢hW h
t

=
d (Pt �Wt)

Pt �Wt
.

dWt = ("t⇡R,t + (qt + rt)Wt � Ct) dt+ �R,t"t (�R,t"t⌫tdt+ dZt)

)
dWt

Wt
=

"
1

�

✓
1�

� � 1

�

◆
⇡2
R,t

�2
R,t

+ qt + rt � ⇢

#
dt+

⇡R,t

��R,t
dZt

= �W,tdt+ rtdt+
⇡R,t

��R,t
dZt (0.13)

where �W,t =
� ⇡R,t

��R,t

�2
+ qt � ⇢.

d (Pt �Wt)

Pt �Wt
=

(gdt+ �dZt)Dt � ⇢dWt

Dt � ⇢Wt
=

(gdt+ �dZt)� ⇢dWt
Wt

xt

1� ⇢xt
(0.14)

) Et


d(Pt �Wt)

Pt �Wt

�
=

g � ⇢xt (�W,t + rt)

1� ⇢xt
dt

vart


d(Pt �Wt)

Pt �Wt

�
=

✓� �
⇢xt
�

⇡R,t

�R,t

1� ⇢xt

◆2

dt

rt = ⇢h +
g � ⇢xt (�W,t + rt)

1� ⇢xt
�

✓� �
⇢xt
�

⇡R,t

�R,t

1� ⇢xt

◆2

) rt = ⇢h + g � ⇢
⇣
⇢h � ⇢

⌘
xt � ⇢qtxt �

⇢xt
⇣⇥ ⇡R,t

��R,t

⇤2
� 2�

⇡R,t

��R,t

⌘
+ �2

1� ⇢xt
.

Using the expressions for ⇡R,t/�R,t and qt in constrained and unconstrained regions by
propositions ?? and ??,

rUt = ⇢h + g � ⇢�⇢xt + �2 ��
h
�
�
�h + �

� �
⇢xt
�
�h � �

�
+ �
�

[⇢ (�h � �)xt + �]2
.

rt = ⇢h + g � ⇢�⇢xt � �2 (1� ⇢xt)
⇥
⇢ (1 + �m) + ⇢hm2�h

⇤
+ ⇢hm2

�
⇢hxt � �h

�

(1� ⇢xt) (⇢+m⇢h)2 xt
.

From equation (0.14),

dW h
t

W h
t

=
d(Pt �Wt)

Pt �Wt
=

(gdt+ �dZt)� ⇢dWt
Wt

xt

1� ⇢xt
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,
dW h

t

W h
t

=

✓
1�

1

1� ⇢xt

◆
dWt

Wt
+

1

1� ⇢xt

dDt

Dt

dW h
t

W h
t

�
dWt

Wt
= �

1

1� ⇢xt

✓
dxt
xt

+
�

�

⇡R,t

�R,t
dt� �2dt

◆
.

0.3. Comparative Analysis.

0.3.1. Risk premium.

⇡U
R,t =

�2(1 + ✓/⇢)
�
1 + ✓h/⇢h

�

⇢2xt [1 + (⇢h � ⇢)xt]

h�
⇢h � ⇢

�
+
�
✓h � ✓

�
+ (1 + ✓/⇢) 1

xt

i

h
(1 + ✓h/⇢h)� (1 + ✓/⇢) + (1 + ✓/⇢) 1

⇢xt

i2

)
d⇡U

R,t

d✓
=

2�2
�
�h
�2 h

⇢h + ✓h + �
⇣

1
xt

� ⇢
⌘i

⇢3xt [1 + (⇢h � ⇢)xt]
h
�h � � + � 1

⇢xt

i3 .

If �h > � � 1,

xt > 0 > �
�

⇢ (�h � �)
, �h � � + �

1

⇢xt
> 0.

If � > �h � 1,

�

� � �h
> 1 ,

�

⇢ (� � �h)
>

1

⇢
� xt , �h � � + �

1

⇢xt
> 0.

If �h = � � 1,

�h � � + �
1

⇢xt
= �

1

⇢xt
> 0.

)
d⇡U

R,t

d✓
=

2�2
�
�h
�2 h

⇢h + ✓h + �
⇣

1
xt

� ⇢
⌘i

⇢3xt [1 +�⇢xt]
h
�h � � + � 1

⇢xt

i3 > 0.

⇡U
R,t =

1

P/D

�2 (1 + ✓/⇢)�U
t

xt
⇥
⇢h � (⇢h � ⇢)�U

t

⇤2

)
d⇡U

R,t

d✓h
=

1

P/D

�2 (1 + ✓/⇢)

xt
⇥
⇢h � (⇢h � ⇢)�U

t

⇤3


d�U

t

d✓h

⇣
⇢h �

⇣
⇢h � ⇢

⌘
�U
t

⌘
+ 2

⇣
⇢h � ⇢

⌘ d�U
t

d✓h
�U
t

�

=
⇢h

[1 + (⇢h � ⇢)xt]xt

�2 (1 + ✓/⇢)2
⇣

1
xt

� ⇢
⌘ �

⇢h +
�
⇢h � ⇢

�
�U
t

� �
�U
t

�2

�
⇢h � (⇢h � ⇢)�U

t

�3
⇢h (1 + ✓h/⇢h)

.

0  �U
t  1 ) ⇢  ⇢h �

⇣
⇢h � ⇢

⌘
�U
t  ⇢h

)
d⇡U

R,t

d✓h
=

�2�2
⇣

1
xt

� ⇢
⌘ �

⇢h +�⇢�U
t

� �
�U
t

�2

�hxt (1 +�⇢xt)
�
⇢h ��⇢�U

t

�3 � 0.
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0.3.2. Sharpe ratio.

d
⇣
⇡U
R,t/�

U
R,t

⌘

d✓
=

�
�
⇢h + ✓h

�2
xt

[(⇢✓h � ⇢h✓)xt + ⇢h (1 + ✓/⇢)]2
.

)

d
⇣
⇡U
R,t/�

U
R,t

⌘

d✓
=

��h2xt

[⇢ (�h � �)xt + �]2
> 0.

d
⇣
⇡U
R,t/�

U
R,t

⌘

d✓h
=

� (1 + ✓/⇢) ⇢h (✓ + ⇢)
⇣
1
⇢ � xt

⌘

[(⇢✓h � ⇢h✓)xt + ⇢h (1 + ✓/⇢)]2

)

d
⇣
⇡U
R,t/�

U
R,t

⌘

d✓h
=

��2 (1� ⇢xt)

⇢h [⇢ (�h � �)xt + �]2
� 0.

d
⇣
⇡U
R,t/�

U
R,t

⌘

d✓̄
=

�
�
1 + ✓̄/⇢

� h
�⇢
⇣
⇢h � ✓̄2

⇢

⌘
xt + ⇢h

�
1 + ✓̄/⇢

�2i

⇥
��⇢✓̄xt + ⇢h

�
1 + ✓̄/⇢

�⇤2 .

When �⇢
⇣
⇢h � ✓̄2

⇢

⌘
xt + ⇢h

�
1 + ✓̄/⇢

�2
> 0,

d(⇡U
R,t/�

U
R,t)

d✓̄
> 0. Hence,

�⇢

✓
⇢h �

✓̄2

⇢

◆
xt + ⇢h

�
1 + ✓̄/⇢

�2
> 0

, {

⇢h � ✓̄2

⇢ = 0 , ✓̄ =
p
⇢⇢h

{

⇢h � ✓̄2

⇢ < 0 , ✓̄ >
p
⇢⇢h

xt < �
⇢h(1+✓̄/⇢)2

�⇢
⇣
⇢h� ✓̄2

⇢

⌘ = �

Take first derivative of � with respect to ✓̄,

d�

d✓̄
=

�2⇢h
�
1 + ✓̄/⇢

�

�⇢
�
⇢⇢h � ✓̄2

�2

✓
⇢h � ✓̄ � 2

✓̄2

⇢

◆
.

⇢h � ✓̄ � 2
✓̄2

⇢
= 0 , 2✓̄2 + ⇢✓̄ � ⇢⇢h = 0

) ✓̄ =
�⇢±

p
⇢2 + 8⇢⇢h

4
.

Since ✓̄ � 0, the negative root is not valid. Now show ✓̄ =
�⇢+

p
⇢2+8⇢⇢h

4 <
p
⇢⇢h,

✓̄p
⇢⇢h

=
�

q
⇢
⇢h

+
q

⇢
⇢h

+ 8

4
<

3

4
< 1.

where we have used 0 < ⇢
⇢h

 1.

) ⇢h � ✓̄ � 2
✓̄2

⇢
< 0 for ✓̄

p
⇢⇢h.
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Thus,
d�

d✓
> 0.

Now show that � > 1/⇢,

�
⇢h
�
1 + ✓̄/⇢

�2

�⇢
⇣
⇢h � ✓̄2

⇢

⌘ >
1

⇢
, �⇢⇢h

✓
1 +

2✓̄

⇢
+

✓̄2

⇢

◆
> ⇢h2 �

⇢h

⇢
✓̄2 � ⇢⇢h + ✓̄2

,

⇣
✓̄ + ⇢h

⌘2
> 0

) xt <
1

⇢
< �.

Finally,

)

d
⇣
⇡U
R,t/�

U
R,t

⌘

d✓̄
> 0.

0.3.3. Exposure price.

dkt
d✓̄

=
�2(1 +m)

(m⇢h + ⇢)2
⇢h (1� ⇢xt � ⇢mxt)

[1 + (⇢h � ⇢)xt]xt
.

Since

x̄c =
1

m̃⇢h + ⇢
=

1

⇢

✓
1

1 + ⇢h+✓̄
⇢+✓̄

m

◆


1

⇢

✓
1

1 +m

◆

) xt  x̄c 
1

⇢

✓
1

1 +m

◆

, 1� ⇢xt (1 +m) > 0. (0.15)

dkt
d✓̄

=
�2(1 +m)

(m⇢h + ⇢)2
⇢h [1� ⇢xt (1 +m)]

[1 + (⇢h � ⇢)xt]xt
> 0.

0.3.4. Interest rate. Denote sharpe ratio
⇡R,t

�R,t
= sp,

rt = ⇢h + g � ⇢
⇣
⇢h � ⇢

⌘
xt � ⇢qtxt �

⇢xt

⇣
1
� sp
⌘2

� 2� 1
� sp

�
+ �2

1� ⇢xt

)
drt
d✓

= �⇢xt
dqt
d✓

�
2xt

(1� ⇢xt) �2

✓
sp

�
� �

◆✓
�sp+

dsp

d✓
⇢�

◆�
(0.16)

,
drUt
d✓

=
2�2xt�h (1� ⇢xt)

[⇢ (�h � �)xt + �]3

⇣
�h � �

⌘
.

) {

drUt
d✓ < 0 if �h < �
drUt
d✓ � 0 if �h � �.

drt
d✓h

= �⇢xt
dqt
d✓h

�
2⇢xt

(1� ⇢xt) �

✓
sp

�

dsp

d✓h
� �

dsp

d✓h

◆
(0.17)



10

drUt
d✓h

= �
2�2⇢�xt (1� ⇢xt)

�
�h � �

�

⇢h [⇢ (�h � �)xt + �]3
.

) {

drUt
d✓h

> 0 if �h < �
drUt
d✓h

 0 if �h � �.

drUt
d✓̄

=
2�2✓̄�⇢xt

⇥
�⇢
�
⇢h✓̄ + ⇢⇢h

�
xt ��⇢⇢h

�
1 + ✓̄/⇢

�⇤

⇢
�
1 + ✓̄/⇢

� ⇥
��⇢✓̄xt + ⇢h

�
1 + ✓̄/⇢

�⇤3

)
drUt
d✓̄

= �
2�2✓̄⇢h (�⇢)2 xt (1� ⇢xt)

⇢
⇥
��⇢✓̄xt + ⇢h

�
1 + ✓̄/⇢

�⇤3  0.

In constrained case, from equations (0.16) and (0.17),

drt
d✓

= �
�2m

(m⇢h + ⇢)2 xt
�

2xt
(1� ⇢xt) �2

✓
�

(m⇢h + ⇢)xt
� �

◆✓
�

��

(m⇢h + ⇢)xt
+

� (⇢+ ✓)

⇢ (m⇢h + ⇢)xt

◆�

drt
d✓

= �
�2m

(m⇢h + ⇢)2 xt
< 0.

drt
d✓h

=
⇢�2m2

(m⇢h + ⇢)2 (1� ⇢xt)
> 0.

drt
d✓̄

= �
�2m [1� ⇢xt (1 +m)]

(m⇢h + ⇢)2 (1� ⇢xt)xt
< 0

where we used the condition (0.15).

0.4. Solving the Stochastic Process of Aggregate State. In order to derive the
unconditional mean and variance of risk premium and interest rate, we need to know the
distribution of the state variable xt. Using Ito’s formula,

dxt = d

✓
Wt

Dt

◆
=

dWt

Dt
�

WtdDt

D2
t

�
dWtdDt

D2
t

+
Wt

D3
t

[dDt, dDt]

)
dxt
xt

=
dWt

Wt
�

dDt

Dt
�

dDt

Dt

dWt

Wt
+

✓
dDt

Dt

◆2

.

Plug in the assumed dividend process (??) and derived expert wealth process (0.13),

dxt
xt

=
dWt

Wt
�

dDt

Dt
�

�

�

⇡R,t

�R,t
dt+ �2dt

dxt
xt

=

 
�2

� g � ⇢+ qt + rt +
1

�2
⇡2
R,t

�2
R,t

�
�

�

⇡R,t

�R,t

!
dt+

✓
⇡R,t

��R,t
� �

◆
dZt.
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Denote E =
⇡R,t

��R,t
, drift and di↵usion of aggregate state process as µx,t and �x,t, respec-

tively.

µx,t = �2
� g � ⇢+ qt + rt + E2

� �E

= �2 + ⇢h � ⇢� ⇢
⇣
⇢h � ⇢

⌘
xt + (1� ⇢xt) qt +

E2 (1� 2⇢xt) + (3⇢xt � 1)�E � �2

1� ⇢xt
�x,t = E � �

From equation (??)
dxt
xt

= µx,tdt+ �x,tdZt.

The mean of dxt/xt is a quartic equation with polynomial of degree four. Under OE,

µx,t = xc ) xt =
�m+ 1

3⇢+m⇢h + �m2⇢h + 2�m⇢
.

0.5. Leverage Exposure and Liquidity. Define the state variable in HK(2013) as yt ⌘
Wt
Pt

. From goods market clearing condition,

⇢(ytPt) + ⇢h(Pt � Ptyt) = Dt ,
Pt

Dt
=

1

⇢h ��⇢yt
.

) xt =
yt

⇢h ��⇢yt
.

)
�t

�U
t

=
1

1 +m


1�

⇢�

⇢h�h

✓
1

⇢xt
� 1

◆�
=

1

1 +m


1 +

✓
1�

�h � �

�h

◆✓
1� yt
yt

◆�
.

Compare with equation (20) in HK(2013), it is obvious that the liquidity � = �h��
�h . And

the e↵ective financial constraint m̃ = �h

� m = m
1�� . In the bad state,

�
�h � �

�
#) � #)

m̃ #. Thus, the wedge of two agents ambiguity aversion or the belief dispersion matters
for household liquidity demand.

0.6. Detection Error Probability Calibration. Obtain the relative entropies from
household and expert optimal robust problem,

gh (xt) =
p
Lt = ✓h�h

W,tVw =
✓h�R,t"ht
⇢hW h

t

=
✓h

⇢h�h
⇡R,t � kt

�R,t
=

�h � 1

�h

✓
⇡R,t

�R,t
�

kt
�R,t

◆
.

In constraint case, from equation (0.12),

⇡R,t

�R,t
�

kt
�R,t

=
m̃⇢h��

(1� ⇢xt) (m⇢h + ⇢)
.

In unconstrained case, kt = 0,

⇡R,t

�R,t
�

kt
�R,t

=
���h

⇢ (�h � �)xt + �
.
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) gh (xt) =
�h � 1

�h


�hm⇢h�

(1� ⇢xt) (m⇢h + ⇢)
1xt2(0,xc] +

���h

⇢ (�h � �)xt + �
1xt2(xc, 1⇢ ]

�
.

= ��
⇣
�h � 1

⌘ m⇢h

� (m⇢h + ⇢) (1� ⇢xt)
1xt2(0,xc] +

1

⇢ (�h � �)xt + �
1xt2(xc, 1⇢ ]

�

g (xt) =
p

Ht = ✓�W,tJw = �
✓�R,t"t
⇢Wt

= �
✓

⇢�

⇡R,t

�R,t
=

� � 1

�

⇡R,t

�R,t

) g (xt) = ��h (� � 1)


1

�h (m⇢h + ⇢)xt
1xt2(0,xc] +

1

⇢ (�h � �)xt + �
1xt2(xc, 1⇢ ]

�

where 1 denotes the indicator function.


