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1 Introduction

All-pay auctions are used to model rent seeking behavior in contexts from elections, political

lobbying, military conflict, and research and development. Missing from the existing literature,

however, is the problem that participants in these contests often have the ability to take actions

which reduce the value of the prize. During political campaigns negative advertising erodes the

ability of the winner to pursue their legislative goals. In military conflicts, the winning side is

faced with rebuilding damaged assets. In this work, two models are presented to examine the

phenomenon of destructive bidding. In the first model, the bids themselves reduce the value of

the prize symmetrically for all contestants, including the bidder. Then the highest bidder wins

the remaining prize. In the second model, there is a pre-bidding round in which resources are

committed to asymmetrically destroying value. Then in a bidding round, contestants bid on the

prize. Rather than the highest bidder winning, the probability of winning is increasing with a

contestant’s bid and declining with opponent’s bids.
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The all-pay auction has been of interest to economists since the 1980s. The standard common-

valuation, all-pay auction is covered by Milgrom and Weber’s 1982 revenue equivalence theorem.

A full analysis of non-symmetric solutions appears in Baye et al. (1996). Closest in theme to

this work is Kaplan et al. (2002) which examines an all-pay auction under which the rewards are

dependent on one’s own bid. This research considers the case where the value of the prize depends

on other contestant’s bids. Fibich et al. (2006) breaks revenue equivalence by considering risk-

averse players. In theme, the second model presented here is similar to Franke et al. (2014) which

compares a lottery to an all-pay auction. Finally, for a good summary of the literature regarding

all-pay auctions, I recommend Siegel (2009).

2 Model 1: Common-Value All-Pay Auction with Destructive

Bidding

In this first model of an all-pay auction with destructive bidding, their areN risk-neutral bidders

with a common pre-bid valuation of v. Each bidder simultaneously submits a bid bi. Each bidder

then pays their bid and the highest bidder wins a prize worth ṽ = v − γ
∑

i=1Nbi. As in the

standard all-pay auction, there is no pure strategy Nash Equilibrium as the best response to any

opponent’s bid is to bid slightly higher as long as that is profitable and zero otherwise. To find

the symmetric mixed strategy Nash Equilibrium we assume all other players bid with distribution

bj ∼ f(b) and a corresponding cumulative distribution function of F (b). The expected surplus of

player i bidding bi is then

EUi(bi) = (v − γbi − (N − 1)γ

∫ bi

0

bf(b)

F (bi)
db− bi)FN−1(bi)− bi(1− FN−1(bi)). (1)

Because there is no pure strategy equilibrium, all bids bi must give the same expected surplus.
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Additionally, because a bid of zero yields a surplus of zero, all potential bids in the mixed strategy

Nash equilibrium must yield a surplus of zero.

EUi(bi) = FN−1(bi)v − bi − γbiFN−1(bi)− (N − 1)γFN−2(bi)

∫ bi

0

bf(b)db = 0 (2)

Rearranging this equation, it can be seen that any bid equals the expected value of the prize:

bi = FN−1(bi)(v − γbi −
(N − 1)γ

F (bi)

∫ bi

0

bf(b)db). (3)

Comparing this to the standard all-pay auction result, the bids are reduced by the expected

value of the portion of the prize destroyed during the bidding. Differentiating equation 3 with

respect to bi and solving for f(bi) yields the characteristic differential equation for the problem:

f(bi) =
F (bi) + γFN(bi)

(v − γNbi)FN−1(bi) + (N − 2)bi
. (4)

Differentiating again with respect to bi shows that F ′′(bi) = f ′(bi) > 0 and thus f(bi) is

increasing and F (bi) is convex.1

Having the shape of the cumulative distribution function and the result that the bidding is the

same as the standard all-pay auction adjusted for the expected loss in value due to the destructive

bidding, we move on to our next model.

1f ′(b) = (f(b)+γNFN−1(b)f(b))D+((N−1)(v−γNb)FN−2(b)f(b)+(N−2)−γNFN−1(b))(F (b)+γFN (b))
D2 where D = (v −

γNb)FN−1(b)+(N−2)b. f ′(b) can be shown to be positive since γNFN−1(b)f(b) = γNFN−1(b)(F (b)+γFN (b))
using equation 4.
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3 Model 2: Pre-bidding Destructive Investment with a Stochas-

tic Winner

In many situations to which all-pay auctions are applied, the winner of the contest is stochasti-

cally determined and bids increase the probability of winning the prize. As such, a second model

of destructive bidding is presented here.

This game is played in two rounds by N risk-neutral contestants. In the pre-bidding round,

contestants simultaneously choose an asymmetrically destructive investment di. The value of the

prize for each player then becomes common knowledge: vi(d1, ..., dN) such that ∂vi
∂dj

< ∂vi
∂di
≤ 0 for

j 6= i. In the bidding round, each contestant then simultaneously submits a bid on the prize and

wins with probability ρi(b1, ..., bN) such that ∂ρi
∂bi

> 0, ∂ρi
∂bj

< 0,
∑N

k=1 ρk = 1. All players must pay

the cost of their destructive investment and bid. Denote this cost as ci(bi, di) such that ∂ci
∂bi

= 1.2

Using backwards induction to solve for Nash Equilibrium behavior, we first find the best re-

sponse bidding function. Each bidder simultaneously maximizes their expected utility given the

destructive investments and opponents’ bids.

max
bi≥0

ρi(bi, b−i)vi(di, d−i)− ci(bi, di) (5)

This yields the first order condition, ∂ρi
∂bi
vi(di, d−i) = 1. From the second order condition,

this is a maximum as long as ∂2ρi
∂b2i

< 0. The best response function, bbri (vi, v−i, b−i), is implicitly

defined by the first order condition. Holding all else constant, this implies that higher valuations

lead to higher bids, ∂bbri
∂vi

as long as the probability of winning is concave. The best response is

non-monotonic in opponents bids. The change in the best response bid ∂bbri
∂bj

has the same sign

as ∂2ρi
∂bi∂bj

. To see that this can have either sign as bi increases, consider the simple probability

function ρ1(b1, b2) = b1
b1+b2

which has a ∂2ρ1
∂b1∂b2

= b1−b2
(b1+b2)3

and thus a non-monotonic bidding best

response function as shown in Figure 1. Finally, Nash Equilibrium bidding is characterized by the
2Costs are additively separable with ci(bi, di) = bi + ci(di).
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simultaneous solution to the first order condition for contestants i = 1..N . Denote this solution as

b∗i (vi, v−i).

The effect of destructive investment on bidding can be seen in Figure 2. As contestant 1 in-

creases their destructive investment, lowering the value of contestant 2’s prize, contestant 2’s best

response bid shifts downward. This lowers the bid of contestant 2 reducing their probability of win-

ning. In response, contestant 1 is able to slightly reduce their bid as well but less than contestant

2: ∂b∗2
∂v2

>
∂b∗1
∂v2

.

Via backward induction, the equilibrium behavior in the first round can be solved by substi-

tuting the Nash equilibrium bids conditional on the destructive investments. Each contestant then

simultaneously maximizes their expected surplus

max
di≥0

ρi(b
∗
i (di, d−i), b

∗
−i(di, d−i))vi(di, d−i)− ci(b∗i (di, d−i), di) (6)

Differentiating with respect the destructive investment and rearranging so each term is positive

yields

− (
∂b∗i
∂vi

∂vi
∂di

+
∑
j 6=i

∂b∗i
∂vj

∂vj
∂di

)+
∑
j 6=i

∂ρi
∂bj

(
N∑
k=1

∂b∗j
∂vk

∂vk
∂di

)vi =
∂ci
∂di
− ∂ρi
∂bi

(
N∑
k=1

∂b∗i
∂vk

∂vk
∂di

)vi−ρi
∂vi
∂di

. (7)

The left-hand side of equation 7 is the marginal benefit of the destructive investment. The

first term denotes the amount the player will save by reducing their own bid because of the value

they destroy as well as being able to bid less because other contestants lower their bids as their

value is destroyed. The second term denotes the marginal benefit destructive investment resulting

in an increased probability of winning due to lower bids by other contestants. The right-hand

side of equation 7 is the marginal cost of the destructive investment. The first right-hand term is

the marginal cost of the destructive investment itself. The second right-hand term is the marginal

reduction in the probability of winning since the contestant bids less when their own valuation
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is reduced. The third right-hand term is the marginal reduction in value of the prize when the

contestant wins due to the destructive investment. Nash equilibrium behavior is characterized by

the simultaneous solution of equation 7 by all players i = 1..N .

Careful examination of equation 7 yields that destructive investment increases as the marginal

effect of destructive investment on opponents valuations increases and as the marginal effect of

destructive investment on one’s own valuation declines. This observation implies that destructive

investment will be most prevalent when actions which have a large negative effect on opponents

and little effect on oneself are available to contestants.

3.1 Model 2: Sample Solution

Consider the following realization of Model 2 for two contestants. Let the probability of win-

ning the contest be given by ρi(b1, b2) = bi
b1+b2

for i ∈ {1, 2}. Each contestant values the good

at vi = v̄ − γowndi − γoppdj for i ∈ {1, 2} and j 6= i. Finally, let each contestant pay cost

ci(bi, di) = bi + d2i . In this formulation, the key parameters of interest are the effect of destruc-

tive investment on one’s own valuation and it’s effect on the opponent’s valuation, γown and γopp

respectively.

Solving the first order conditions from above3, yields the following symmetric behavior:

d∗ = max{1

8
(γopp − 2γown), 0} (8)

v∗ = max{1

8
(8v̄ + 2γ2own + γownγopp − γ2opp, 0} (9)

b∗ =
v∗

4
(10)

Eπ∗ =
1

64
(16v̄ − 3γopp(γopp − 2γown)) (11)

There are a number of interesting characteristics to this solution. First, equilibrium destructive
3With help from Mathematica for the pre-bidding, though verified by hand.
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investment is non-zero only when the marginal effect of the investment on the opponent is suffi-

ciently large relative to the effect on oneself (γopp > 2γown in this case). Destructive investment is

only optimal when the damage it does to other contestants is sufficiently large as compared to the

damage it does to oneself.

Second, while this solution makes it seem that destructive investment sufficient to reduce val-

uations to zero are feasible, the second order conditions prevent this. Due to the complexity of

the closed form solution, the second order condition is omitted here. For larger than this critical

threshold, γopp > γ∗opp , symmetric, pure strategy equilibria fail to exist.4.

3.2 Risk-Aversion

Consider the following realization of model 2 which adds risk-averse contestants. This game

is played in two rounds by two contestants with weakly risk-averse preferences. In the first

round, players simultaneously choose an asymmetrically destructive investment di. To simplify

the analysis, destructive investment only affects other contestants. The value of the prize for each

player is then common knowledge and depends only on the opponent’s destructive investment:

vi(dj) = v̄ − γdj for j 6= i. In the second round, each player then simultaneously submits a

bid and wins with probability ρi(bi, bj) = bi
bi+bj

. All players must pay the cost of their destruc-

tive investment and bid: ci(bi, di) = bi + d2i . To study the effect of risk-aversion on contestant

behavior, utility over wealth is assumed to have a constant coefficient of relative risk-aversion:

ui(wi) = w1−αi
i . Contestants have constant relative risk-aversion of αi ∈ (0, 1].5 Finally, bidders

receive Von-Neuman Morganstern utility u(w̄+ vi− ci) if they win the prize and u(w̄− ci) if they

lose the prize.

Due to the complexity of finding a closed form solution to this model when α 6= 0, numerical

solutions are presented in Figures 3-8.6 All figures have a risk-neutral contestant 1 and display
4Work to characterize the asymmetric and/or mixed strategy equilibria in this case is incomplete at this time.
5Coefficient of Relative Risk Aversion: CRRA = −wu′′(w)

u′(w) = α
6Numerical solutions found by repeatedly and sequentially finding roots to the first order conditions to each round
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ten graphs of Nash equilibrium behavior for varying parameter values: Equilibrium bids b1 and

b2, the sum of bids b1 + b2, equilibrium destructive investments d1 and d2, the sum of destructive

investments d1 + d2, equilibrium round 2 valuations v1 and v2, the sum of valuations v1 + v2, and

contestant 1’s probability of winning. Figures 3-5 show the effect making contestant 2 increasingly

risk-averse for differing strengths of destructive investment. Figures 6-8 show the effect increasing

the strength of the destructive investment for differing levels of risk-aversion by contestant 2.

Examining graphs in Figures 3-5 demonstrates a number of key results. First, as contestant 2

becomes more risk-averse, they reduce their destructive investment and eventual bid. Contestant-

1 however has a non-monotonic response to an increase in contestant 2’s risk-aversion. Initially,

increasing opponent risk-aversion results in a larger investment in reducing the value of contestant-

2’s prize. Additionally, contestant 1 increases their bid as contestant 2 becomes more risk-averse

because contestant 2 destroys less of contestant 1’s value. For high levels of relative risk-aversion

by contestant 2, contestant 2 will reduce their bid enough that contestant 1’s probability of winning

increases sufficiently that they destroy less and bid less. As destructive investment becomes more

effective however (increasing γ), closer to monotonic contestant-1’s destructive investment and

bidding become with respect to contestant-2’s risk-aversion. Effectively, when destructive invest-

ment is highly effective, the increase in destructive investment reduces the valuation of the second

contestant sufficiently to make changes in risk-aversion less important.

Figure 6 shows how increasing the effectiveness of destructive investment impacts destructive

investment and bids for the symmetric, risk-neutral case. As expected, when destructive invest-

ment becomes more effective, that investment increases and bids decline. Increased risk-aversion

by contestant 2 results in more destructive investment by contestant 1 (see scales on (γ, d1) graphs)

and non-monotonicity in contestant 2’s destructive investment response to investment effective-

ness. For risk-averse contestant, as destructive investment becomes highly effective, they will

until convergence is reached. A tolerance of 10−7 between iterations was used to determine convergence between
iterations. Mathematica code is available upon request.
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reduce investment. Because the less risk-averse contestant highly invests in destroying the more

risk-averse contestant’s value, the more risk-averse contestant reduces their bid and thus their prob-

ability of winning. When a contestant loses, any destruct investment is merely a cost. this cost is

reduced by investing less in the destruction of opponent’s value.

4 Conclusion

There are a few results explicitly omitted from prior discussion. First, in any case where the

destructive investment is costly and chosen simultaneous to the bid, the Nash equilibrium is to

choose no destructive investment. This is because the chosen destructive investment is unobserved

by the opponent and thus cannot affect their bid to increase the probability of the player winning the

contest. Second, the Nash equilibrium surplus in model 2 is lower than if both contestants choose

no destructive investment. This is a classic prisoner’s dilemma problem and thus cooperative

solutions which ban or minimize destructive investment will increase the expected surplus for each

contestant. In military conflicts, this can take the form of bans on particular weapons or tactics. In

corporate competition, many countries have at times outlawed comparative advertising. In politics,

there have been calls to ban attack ads.

The explicit results from models 1 and 2 admit a number of conclusions which have implica-

tions for all-pay auctions in the real world. If the bidding itself reduces the common value of a

prize, as in model 1, then bidding behavior is consistent with existing literature but with the bids

decreased by the expected value of destruction to the prize. As such, in a military conflict, the

more powerful the weaponry is, the less that will be committed to the battle. If a separate invest-

ment which reduces the value of the prize for contestants asymmetrically is required, as in model

2, then the deciding factor in how large such a destructive investment will be the relative effect of

the investment on opponents’ valuation compared to one’s own valuation. Negative advertising in

political campaigns reduce the ability of the winning candidate to effectively govern. Research has
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suggested that voters do view the attacker, as well as the target, more negatively. Model 2 predicts

that such a tactic is only optimal when voters view the recipient of the negative ads significantly

worse than the attacker in the process. If the use of negative advertising had a nearly symmetric

effect on both parties then such tactics would be eschewed. Additionally, risk-aversion is a com-

petitive disadvantage in this game. Risk-averse contestants will bid less aggressively and be faced

with opponents who are more aggressive in destroying value.

In the future, this research will examine the point at which the symmetric pure strategy Nash

equilibrium in model 2 breaks down and potential variations on the set-up of model 1.
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5 Figures

Figure 1: Best Responses and Nash Equilibrium Bidding for ρ1(b1, b2) = b1
b1+b2

and v1 = v2 = 100,
yielding bbri =

√
vibj − bj
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Figure 2: Affect of Destructive Investment by Contestant 1 on Equilibrium Bids
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Figure 3: α1 = 0, γ1 = 1
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Figure 4: α1 = 0, γ1 = 2
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Figure 5: α1 = 0, γ1 = 4
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Figure 6: α1 = 0, α2 = 0
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Figure 7: α1 = 0, α2 = 0.5
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Figure 8: α1 = 0, α2 = 0.9
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