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Abstract

A sender designs a signal structure to persuade a receiver to choose one action over
another. The sender is maximally ignorant about the receiver’s prior on the states
where the sender and the receiver disagree about the best action and has additional
information about the receiver’s prior on other states. I characterize the optimal signal
structures in this environment. The lack of knowledge of the receiver’s prior causes the
persuasion mechanism to never completely give up: the optimal signal recommends the
high action with a strictly positive probability in all states. I show that the probability
that the high action is recommended is continuous in the state and the optimal signal
may reveal the state with some probability. Finally, I show that the solution to the
problem of persuasion with unknown beliefs is the same as the solution to the problem
of persuading all members of a large group with heterogeneous priors.

1 Introduction

When trying to persuade someone, one finds it useful to know the beliefs the target

of persuasion holds. Yet often such beliefs are unknown to the persuader. How should

persuasion be designed when knowledge of prior beliefs is limited?

The following example illustrates an application of the model. A pharmaceutical

company commissions an experiment on the safety of a drug that it would like to persuade

the Food and Drug Administration (the FDA) to approve. The company does not know the

exact prior belief of the regulator about the safety of the drug and instead only knows that
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the FDA believes that the probability that the safety of the drug exceeds α is at least β.

How should the company design the experiment?

The present paper aims to answer this question by studying a model of Bayesian

persuasion in a setting where the receiver’s prior belief is not known to the sender. The

sender believes that Nature chooses the receiver’s prior from a set of priors to minimize the

sender’s payoff. The sender has a known prior over the states and designs an experiment to

maximize her payoff in the worst case scenario.

The receiver can take one of two actions. For instance, the FDA can approve a drug

or not. The sender wishes to convince the receiver to take the high action in all states

of the world. Thus a pharmaceutical company aims to convince the FDA to approve the

drug regardless of its quality. The receiver takes the action desired by the sender only if

the receiver’s expectation of the state given his information is above a threshold and takes

the other action otherwise. We call this threshold a threshold of doubt. In line with this

reasoning, the FDA only approves the drugs that it believes to be sufficiently safe.

I focus on the case where the sender is maximally ignorant, and yet is still able to

design a persuasion mechanism inducing the receiver to act where he would not have acted

in absence of persuasion. In particular, I assume that the sender only knows that the receiver

believes that the probability the state is greater than α is at least β.

This set of the receiver’s priors has an appealing interpretation: the sender knows that

the receiver’s belief puts no less than a certain mass on the optimistic region of the state

space containing sufficiently high states but is maximally ignorant about the receiver’s belief

within the optimistic and the pessimistic regions of the state space. As I show in section 5,

my results generalize to the case where the sender is maximally ignorant about the receiver’s

prior on the region of states where the sender and the receiver disagree on the best action

and has some additional information about the receiver’s prior on the region where they

agree on the best action.

We say that the sender conducts an investigation in state ω if there is a signal realization

that has positive probability if and only if the state is ω. The reason we interpret this as

an investigation is that, conditional on seeing this signal realization, the receiver knows the

state. We say that the receiver makes a mistake in state ω if, conditional on the state being

ω, the receiver takes an action different from the one he would take if he knew the state.

In the standard Bayesian persuasion model, the sender and the receiver have a common

prior belief about the state. An optimal signal in that model recommends the high action
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with probability one in all states above a threshold and recommends the low action with

probability one in all states below the threshold. We call this threshold a threshold of

action. The threshold of action is below the threshold of doubt, so that the receiver takes

the high action on a greater range of states than he would under complete information. The

characterization implies that mistakes happen on the interval of intermediate states between

the threshold of action and the threshold of doubt.

The optimal signal in the standard model is not unique, but any optimal signal cannot

feature investigations on any set of states with a positive measure above the threshold of

doubt. The reason for this is that revealing states above the threshold of doubt reduces the

sender’s ability to gain credibility by pooling favorable states with unfavorable ones.

The main contribution of this paper is a characterization of the optimal signal structure

in a model of persuasion when the receiver’s beliefs are unknown. In particular, I provide

a formula for the optimal signal. The persuasion mechanism that the sender designs

recommends the high action with a strictly positive probability in every state of the world.

The results thus change the way we think about Bayesian persuasion: unlike the

intuition in the standard model, it is not optimal to pool all sufficiently high states together

and give up on persuading receiver in the lower states. Instead, the sender must allow

persuasion to fail with some probability on some of the high states and is able to persuade

the receiver with a positive probability in the low states. This reveals the nature of persuasion

to be fundamentally local: for small increases in the state the sender is able to increase the

probability with which the receiver is persuaded only by a small amount.

The signal robust to the sender’s uncertainty over the receiver’s prior has three distinct

features: the incidence of mistakes, the continuity in the state of the probability with

which the high action is recommended, and the incidence of investigations. The pattern

of mistakes in the model with unknown beliefs differs from the one in the standard model.

Because the optimal signal recommends the high action with a strictly positive probability

in all states, mistakes happen with a strictly positive probability in all states below a

certain threshold. This happens because in the model with unknown beliefs the sender’s

ability to gain credibility by pooling sufficiently favorable states together is limited: if a

signal realization recommends the high action in states below the threshold of doubt with

a probability that is too high, then Nature is able to choose the receiver’s prior that causes

the receiver to take the low action after observing this signal realization instead.

On the other hand, because in the standard model the sender pools sufficiently favorable
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states together, when the receiver’s beliefs are known, mistakes only happen on the interval of

intermediate states between the threshold of action and the threshold of doubt. We see that,

when the receiver’s beliefs are unknown, especially pernicious outcomes are possible. For

instance, the FDA approves even the most unsafe drugs with a strictly positive probability,

whereas if the receiver’s prior is known, the probability that the most unsafe drugs are

approved is zero. Thus a model of persuasion with unknown beliefs can rationalize the

occurrence of adverse outcomes that cannot be explained by the standard model.

In the model where the receiver’s beliefs are unknown the probability of the high action

is continuous in the state. We can interpret the continuity as similar treatment of similar

cases. Thus pharmaceutical firms which produce drugs adhering to similar safety standards

face a similar probability that the drug is approved. In the model where the receiver’s beliefs

are known, on the other hand, the probability of the high action is discontinuous, jumping

from zero to one at the threshold.

The patterns of investigations that may arise in a model with unknown beliefs differ

from the patterns of investigations possible in the model where the receiver’s beliefs

are known. One optimal information policy in a model with unknown beliefs involves

recommending the high action with some probability and revealing the state with a

complementary probability. Importantly, some states above the threshold of doubt are

revealed with a strictly positive probability. We see that, unlike in the model with known

beliefs, when the receiver’s beliefs are unknown, investigations are possible even in the states

where the receiver would take the high action if he knew the state. The reason for this is

that in the model with unknown beliefs the sender’s ability to gain credibility by pooling

favorable states with unfavorable ones is limited, so the sender’s payoff is not reduced if

she reveals some states above the threshold of doubt with a sufficiently small probability.

Moreover, the probability that an investigation is conducted need not be monotone in the

state and may be maximal when the state is intermediate.

An additional contribution of this paper is the analysis of the welfare implications of

persuasion with unknown beliefs, including the value of information for the receiver, the

comparative statics on the sender’s welfare and the cost of sender’s ignorance.

The value of information for the receiver is the difference between the receiver’s payoff

under persuasion and under no information. I show that the value of information is zero for

receivers with some priors, while for receivers with other priors it is strictly positive. I find

that making the receiver more optimistic in the sense of first order stochastic dominance

may either increase or decrease the receiver’s value of information, a result that relies on
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the receiver’s prior not having full support. The finding that the value of information for

the receiver can be strictly positive may help explain why receivers participate in persuasion

even though this is costly in terms of time and effort. Because the value of information in

the standard model of persuasion is zero, such behavior cannot be explained by the standard

model.

How does the sender’s payoff from persuasion change as the sender’s prior, interpreted

as a known distribution of the state, changes? I show that the sender benefits from the

distribution of the state being more dispersed in the sense of a mean-preserving spread on

the states below some threshold. This is because the probability of the high action induced

by the optimal signal is convex on the states below the threshold. The result that the sender

may prefer certain more risky distributions of the state implies that if the sender has a choice

as to what to persuade the receiver about, the sender may choose the object of persuasion

that is more risky. Thus, for instance, a pharmaceutical company may prefer to experiment

with drugs that are more risky.

I define the cost of the sender’s ignorance as the difference between the sender’s payoff

when the receiver’s prior is known and the sender’s payoff when the receiver’s prior is

unknown. I provide a formula for the cost of the sender’s ignorance. Moreover, I show that

the sender’s cost of ignorance is lower if the distribution of the state is more dispersed either

below some threshold that is lower than the threshold of action or between this threshold

and the threshold of action. This is because the cost of the sender’s ignorance as a function

of the state is concave on both of these intervals.

I observe that the solution to the problem of persuasion with unknown beliefs coincides

with the solution to the problem of persuading all members of a group with known

heterogeneous beliefs to take an action. In particular, if the sender faces a large group

of the receivers where all prior beliefs that put a mass of at least β on states above α are

represented, it is optimal for her to commit to the same signal structure as she would had

she faced a single receiver with unknown beliefs.

The final contribution of the paper lies in solving a mechanism design problem to which

the revelation principle does not apply. Solving such problems tends to be challenging. I

show that the model in the present paper can be solved by the means of using a fixed-point

argument to define the receiver’s prior chosen by Nature in response to the sender choosing

a signal structure.

The rest of the paper proceeds as follows. Section 2 introduces the model. Section
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3 presents the characterization of the optimal signal structure and discusses the distinct

features of the optimal signal. Section 4 analyzes the welfare implications of persuasion with

unknown beliefs. Section 5 generalizes the set of the receiver’s priors. Section 6 discusses the

persuasion of groups with diverse beliefs. Section 7 provides a sketch of the proof. Section

8 reviews the related literature. Section 9 concludes.

2 Model

2.1 Payoffs

The state space is an interval Ω = [a0, a] such that a0 > 0. The sender’s preferences are

state-independent. The sender gets a utility of u(a) if the receiver’s expected value of the

state given the receiver’s prior and the signal realization is a. The sender’s utility function

u is

u(a) =

0 if a ∈ [a0, a
∗)

1 if a ∈ [a∗, a]

The model can be interpreted as one where the receiver can take one of the two actions,

0 or 1, and he takes action 1 if and only if his expectation of the state is weakly greater than

a∗.

2.2 Priors

The sender has a known prior over the states, while the receiver has a set of priors.

This is in contrast to the standard model of Bayesian persuasion, where the sender and the

receiver have a known common prior. Let ϕ denote the set of all CDFs on Ω. The sender’s

prior is a CDF Fs.
1

Given α ∈ Ω and β ∈ (0, 1), define a set of CDFs C(α, β) as follows:

C(α, β) = {F ∈ ϕ : 1− lim
w↑α

F (w) ≥ β}

1Because the optimal signal in section 3 does not depend on the sender’s prior Fs, the signal would remain
optimal if we assumed that the sender does not know the distribution of the state and Nature chooses the
sender’s prior as well as the receiver’s prior.
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Figure 1: The Set of Receiver’s Priors

ω

F (ω)
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The set of the receiver’s priors is the set of CDFs C(α, β). Thus the sender knows that

there exists a state α ∈ Ω such that the mass that the receiver’s prior puts on states above

α is at least β for some β ∈ (0, 1). Figure 1 illustrates the set of the receiver’s priors: the

set consists of all CDFs below the CDF drawn in bright blue in figure 1.

Observe that the fact that the highest CDF drawn in bright blue is constant on the

intervals [a0, α) and [α, a] implies that the receiver’s prior can put a mass of no more than

1− β on the pessimistic region [a0, α) and a mass of no less than β on the optimistic region

[α, a], but subject to this constraint, any allocation of mass within these regions is possible.

Therefore, the fact that the highest CDF is constant on the intervals [a0, α) and [α, a] reflects

the sender’s maximal ignorance about the receiver’s prior within the pessimistic region [a0, α)

and the optimistic region [α, a].

I assume that α > a∗, so that the receiver’s prior puts a mass of at least β on states

strictly above a∗. This assumption ensures that the solution to the sender’s problem is

non-trivial.

Note that the worst prior the receiver can have if the sender provides no information

is µF = (1− β)δa0 + βδα. I assume that

(1− β)a0 + βα < a∗

This assumption ensures that the receiver with the worst prior takes action zero if he
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does not receive any information.

2.3 Information Structures

The order of moves is as follows. First, the sender commits to a signal structure P .

Next, Nature chooses the receiver’s prior F ∈ C(α, β) to minimize the sender’s payoff. Then

the state is realized (from the sender’s perspective, the state is drawn from the distribution

Fs). After this, the signal is realized according to the signal structure P . Then, having seen

a signal realization σ, the receiver forms an expectation of the state given that the receiver’s

prior is F and that the signal structure is P .

We let the message space be M = Ω. A signal structure is a kernel P . Informally,

we can interpret P (ω, σ) as the probability of signal realization σ given that the state is ω.

Formally, letting B(M) and B(Ω) denote the Borel sigma-algebras on M and Ω respectively,

a kernel P is defined as a mapping P : Ω × B(M) → [0, 1] such that for every ω ∈ Ω,

B 7→ P (ω,B) is a probability measure on M and for every B ∈ B(M), ω 7→ P (ω,B) is

B(Ω)-measurable. I restrict my attention to the signal structures that have a finite number

of signal realizations given each state.2

Given a distribution F on Ω, a kernel P is a regular conditional probability. That

is, given a kernel P and a distribution F , there exists a joint probability measure mF over

Ω×M such that

mF (A,B) =

∫
A

∫
B

P (ω, dσ)dF (ω)

for all measurable A ⊆ Ω, B ⊆M .3

Define a probability measure µGF,P by setting µGF,P (B) =
∫

Ω

∫
B
P (ω, dσ)dF (ω) for each

B in the Borel sigma-algebra on M . Let MF,P = suppµGF,P denote the support of µGF,P .

Then there exists a kernel QMF,P
4 such that

mF (A,B) =

∫
B

∫
A

QMF,P
(σ, dω)dGF,P (σ)

for all measurable A ⊆ Ω, B ⊆MF,P .5

2I conjecture, but do not have a proof, that my results hold for all signal structures.
3See Theorem 20 on page 86 in Pollard (2002).
4The kernel QMF,P

is a mapping QMF,P
: MF,P × B(Ω) → [0, 1] such that for every σ ∈ MF,P , B 7→

QMF,P
(σ,B) is B(Ω)-measurable and for every B ∈ B(Ω), σ 7→ QMF,P

(σ,B) is a probability measure on Ω.
5Note that, for all A ∈ B(M), if µGF,P

(A) = 0, then margM mF (A) = 0. That is, the M -marginal of
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QMF,P
is defined formally in footnote 4. Informally, we can interpret QMF,P

(σ, ω) as

the probability of state ω given that the signal realization is σ.

2.4 Updating

Because the present model features priors with possibly non-overlapping supports, the

issue of the receiver updating beliefs after observing a zero-probability event needs to be

addressed.

I assume that, having seen a signal realization σ such that (ω, σ) is not in the support

of the joint probability measure mF (Ω×M) for any ω ∈ Ω, the receiver with prior µF assigns

probability one to the lowest state ω such that σ is in the support of P (ω, ·). That is, having

seen a signal realization σ such that (ω′, σ) 6∈ suppmF (Ω×M) for any ω′ ∈ Ω, the receiver

with prior µF puts probability one on

ω(σ) = inf{ω : σ ∈ suppP (ω, ·)}

This assumption can be justified by considering Nature choosing a prior that is a

convex combination of a distribution µ supported on [ω(σ), ω(σ) + η] for some η ∈ (0, 1)

and the distribution µF with weights ε ∈ (0, 1) and 1 − ε respectively. Given this prior,

Bayesian updating leads the receiver to assign probability one to the interval [ω(σ), ω(σ)+η]

after seeing the signal realization σ. Note that as η → 0, a distribution µ on [ω(σ), ω(σ) + η]

converges to δω(σ).
6 The receiver’s behavior specified in the assumption can then be obtained

by taking the limit of the receiver’s beliefs as η and ε go to zero.

Observe that, because the sender’s payoff is increasing in the receiver’s expectation of

the state, the limit belief is the receiver’s belief that is the worst for the sender among the

limits of sequences of beliefs that can be obtained through Bayesian updating after seeing

a signal realization σ provided that the receiver’s prior is a convex combination of µF and

some other measure.

The assumption about updating is not important for the main results of the paper

concerning the equilibrium distribution of actions in a model of persuasion with unknown

beliefs. In particular, we could have assumed instead that upon seeing a signal realization

mF is absolutely continuous with respect to µGF,P
. Then the result follows from Theorem 1 on page 339 in

Pollard (2002).
6δω(σ) denotes the Dirac measure on ω(σ).

9



impossible under the receiver’s prior the receiver does not update his beliefs. In this case,

the equilibrium distribution of actions would be the same.

The assumption about updating is used in obtaining the optimal signal that features

revealing some of the states above the threshold of doubt with a positive probability. If

instead we assumed that a receiver seeing a signal he believed to be impossible does not

update his beliefs, a signal with investigations in states above the threshold of doubt would

never be optimal.

To augment the receiver’s posterior beliefs with beliefs the receiver holds after observing

events to which his prior assigns zero probability, I define a kernel QF : M × B(Ω) → [0, 1]

such that for all σ ∈M we have

QF (σ, ·) =

QMF,P
(σ, ·) if σ ∈MF,P

δω(σ) if σ 6∈MF,P

2.5 Evaluation of Payoffs

If the sender chooses a kernel P and a receiver with a prior F sees a signal realization

σ, then the receiver’s expectation of the state is

EF,P [ω|σ] =

∫
Ω

wQF (σ, dw)

Then, if the sender chooses a kernel P and Nature chooses F ∈ C(α, β), the sender’s

payoff is ∫
Ω

∫
M

1EF,P [ω|σ]≥a∗P (w, dσ)dFs(w)

Thus the sender’s equilibrium payoff is

max
P

min
F∈C(α,β)

∫
Ω

∫
M

1EF,P [ω|σ]≥a∗P (w, dσ)dFs(w) (1)

3 The Optimal Signal

A signal is said to be optimal if it solves the sender’s problem (1). Theorem 1 describes

an optimal signal and the distribution over the receiver’s actions induced by it.
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Figure 2: Optimal Information Policy without Revelation
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Theorem 1. There exists an optimal signal that induces a distribution over the receiver’s

actions such that the probability of action 1 in state ω is given by

s(ω) =

1 if ω ∈ (a∗, a]

min
{

β(α−a∗)
(1−β)(a∗−ω)

, 1
}

if ω ∈ [a0, a
∗]

If there exists an optimal signal that induces a distribution over the receiver’s actions

where the probability of action 1 is given by s′ and s′ 6= s, then s′(ω) = s(ω) µFs-a.e.

An optimal signal inducing the distribution s over the receiver’s actions is given by

π(σ|ω) = s(ω), π(σ0|ω) = 1− s(ω) for all ω ∈ Ω.

Theorem 1 says that any signal that is optimal for the sender induces a distribution

over the actions of the receiver that is unique up to sets that have measure zero under the

sender’s prior. If the state is in (a∗, a], the receiver takes action 1 with probability one, and

if the state is in [a0, a
∗], the receiver takes action 1 with probability min

{
β(α−a∗)

(1−β)(a∗−ω)
, 1
}

.

The optimal signal described in Theorem 1 features two signal realizations, σ and σ0.

The receiver takes action 1 after seeing signal σ and action zero after seeing signal σ0. The

sender recommends action 1 with probability one if the state is above a certain threshold.

If the state is below this threshold, the sender recommends action 1 with some strictly

positive probability that decreases continuously as the state decreases. Figure 2 illustrates

this information policy.
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In the standard Bayesian persuasion model where the sender knows the receiver’s prior

the signal optimal for the sender has a threshold structure, recommending action 1 with

probability one if the state is above a threshold and recommending action 0 otherwise. When

a prior common to the sender and the receiver is fixed, recommending action 1 in higher

states below the threshold of doubt a∗ yields a strictly greater benefit to the sender than

recommending action 1 in lower states, so the sender recommends action 1 in all sufficiently

high states such that the receiver’s expectation upon seeing the signal realization σ is exactly

a∗.

The threshold signal structure is not optimal when the receiver’s beliefs are unknown.

To gain an intuition as to why, consider a signal structure with two realizations, σ and σ0,

satisfying π(σ|α) = 1 and the receiver’s prior that puts a mass of β on α and a mass of

1 − β on some state ω below the threshold a∗. Then the receiver’s expectation conditional

on seeing the signal realization σ is E[ω|σ] = ω(1−β)π(σ|ω)+αβ
(1−β)π(σ|ω)+β

. In order for the receiver to

take action 1 after seeing σ, we need E[ω|σ] ≥ a∗, which turns out to be equivalent to

π(σ|ω) ≤ β(α−a∗)
(1−β)(a∗−ω)

.

Note then that Nature moves after the sender chose the signal structure and can put

a mass of 1 − β on any state ω below the threshold a∗. Thus if the probability of signal

realization σ exceeds the bound β(α−a∗)
(1−β)(a∗−ω)

at any state below the threshold, then by putting

a mass of 1 − β on this state Nature can ensure that the receiver never takes action 1.

Therefore, π(σ|ω) must be below the bound in all states. On the other hand, the sender’s

payoff is increasing in the probability that action 1 is taken, implying that it is best for

the sender to maximize π(σ|ω) subject to the constraint that it be below the bound. Thus

setting π(σ|ω) equal to the bound in all states yields the optimal signal when the receiver’s

beliefs are unknown.

If the state is below a∗, then π(σ|ω), the probability with which the optimal signal

recommends action 1, is increasing in α and β. Thus if the sender knows that the receiver’s

prior puts a positive mass on states above a higher threshold or that the mass that the

receiver’s prior puts on states above a certain threshold is higher, the sender is able to

induce the receiver to take action 1 with a higher probability.

3.1 Comparison with the Standard Model

In this section I introduce the standard model of Bayesian persuasion and compare

my results to the optimal signal in the standard model. The standard model has the same
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payoff structure as the model with unknown beliefs but the sender and the receiver have

a common prior Fs ∈ C(α, β) over the states. For simplicity, I assume that Fs admits a

density.7 I assume that the receiver takes action 0 if no information is provided, that is, that

EFs [ω] < a∗.

It is known that in this case the solution of the standard persuasion model has a

threshold structure: there is an optimal signal p with two signal realizations, σ and σ0,

such that p(σ|w) = 1 for w ∈ [a′, a], p(σ|w) = 0 for w ∈ [a0, a
′) for some action threshold

a′ ∈ [a0, a
∗) and the receiver takes action 1 if and only if the realized signal is σ.

Recall that the equilibrium probability of action 1 in the model with unknown beliefs is

given by s(w) = min
{

β(α−a∗)
(1−β)(a∗−w)

, 1
}

on states w such that w < a∗ and is given by s(w) = 1

on states w such that w ≥ a∗. Thus the function w 7→ s(w) is strictly increasing on the

states w such that β(α−a∗)
(1−β)(a∗−w)

≤ 1 and is constant on the states w such that β(α−a∗)
(1−β)(a∗−w)

> 1.

Let α denote the state such that w 7→ s(w) is strictly increasing on the states below α

and is constant on states above α. That is, define

α = a∗ − β

1− β
(α− a∗)

The optimal signal in the model with unknown beliefs recommends action 0 with a

strictly positive probability on states below α and recommends action 0 with probability

zero on states above α.

Proposition 1. α > a′.

Proposition 1 shows that we must have α > a′, that is, that the state at which the

robust signal starts recommending action 1 with probability one is higher than the state

at which the signal in the standard persuasion model starts recommending action 1 with

probability one.

This comparison highlights why the signal that is optimal in the standard model is not

optimal in the model with unknown beliefs. Because α > a′, the interval [a′, α] is non-empty.

The signal optimal in the standard model recommends action 1 with probability one on the

interval [a′, α]. On the other hand, the signal optimal in the model with unknown beliefs

recommends action 1 with probability that is strictly less than one on this interval. If instead

action 1 was recommended with a greater probability on this interval, then Nature would be

able to choose the receiver’s prior ensuring that the receiver’s expectation given the signal

7In the general case, the optimal signal may involve randomization at the threshold.
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realization σ is strictly less than a∗, causing the receiver to never take action 1.

3.2 A Simpler Model

The model in the present paper has Nature choose the receiver’s prior after the sender

commits to a signal structure but before the signal is realized. We could imagine a simpler

model, where Nature chooses the receiver’s prior after the signal is realized. This model is

simpler because if there is a feasible prior such that the receiver with this prior takes action

0 after observing a signal, Nature can choose this prior after this signal. Thus if action 1 is

taken after a signal realization in equilibrium, it must be that a receiver with any feasible

prior takes action 1 after seeing the signal realization. This implies that there is no loss in

pooling the signals after which action 1 gets taken into one signal. Therefore, there is an

optimal signal with only two signal realizations in the simpler model.

I observe that the optimal signal in the model in the present paper is the same as in the

simpler model described above. This follows from the fact that a signal that is optimal in

the model of persuasion with unknown beliefs has two realizations, σ and σ0, and a receiver

with any feasible prior takes action 1 after seeing signal realization σ and action 0 after

seeing signal realization σ0. Thus Nature cannot do any better when choosing the receiver’s

prior after, as compared to before, the signal is realized – because no matter which prior

Nature chooses, the receiver takes the same action after the signal realization, making Nature

indifferent among all feasible priors.

The equivalence need not hold in general. In particular, it is possible that with a

different set of priors and a different utility function of the sender the optimal signal and

the prior that Nature chooses are such that there is more than two signal realizations and

for some of the signal realizations there are different feasible priors such that receivers with

these priors take action 0 after seeing the signal realization. In this case, when choosing the

prior before the signal is realized, Nature may be unable to choose a prior ensuring action 0

after all of these signal realizations.

3.3 Mistakes

Persuasion with unknown beliefs has distinct implications for both the patterns of

mistakes in the receiver’s decision-making and for the strategy of evidence-gathering by the

sender, which I highlight below.
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The distinct features of robust persuasion are a strictly positive probability of the

worst possible outcome and continuity of the probability of the high action in the state.

Because the high action is recommended with a strictly positive probability given every

state, the outcome given the state is less determined in a model of persuasion with unknown

beliefs. With some probability, even the least safe drugs will be approved by the FDA. Thus

the model of robust persuasion can rationalize the occurrence of exceptionally deleterious

outcomes that the agent making the decision has the greatest incentive to prevent and that

would not occur in absence of persuasion.

Continuity of the probability of the high action in the state implies that small changes in

the state result in small changes in the probability that the high action is taken. Therefore,

robustness concerns lead the FDA to treat the firms adhering to similar safety standards

similarly.

3.4 Investigations

The optimal information policy described in Theorem 1 is not unique. The following

is an example of a different optimal information policy:

π(σ|ω) =


α−a∗
ω−a∗ if ω ∈ [α, a]

0 if ω ∈ (a∗, α)

min
{

β(α−a∗)
(1−β)(a∗−ω)

, 1
}

if ω ∈ [a0, a
∗]

π(σw|ω) =


1− α−a∗

ω−a∗ if ω = w and ω ∈ [α, a]

1 if ω = w and ω ∈ (a∗, α)

1−min
{

β(α−a∗)
(1−β)(a∗−ω)

, 1
}

if w = ω and ω ∈ [a0, a
∗]

Under this information policy, the signal reveals each state with some probability, and,

with a complementary probability, the signal provides no information. The optimality of this

information policy relies on our assumption about how the receiver updates his beliefs upon

seeing a signal that is impossible under the receiver’s prior: the receiver puts probability

one on the lowest state in which the signal is sent. If instead the receiver did not update

his beliefs in this situation, then revealing states above the threshold of doubt would not be

optimal.

When the state is low, the state is revealed with a high probability, which decreases
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Figure 3: Optimal Information Policy with Revelation

ω

π(σ|ω)

1

a∗ α

as the state increases. The probability that the state is revealed decreases to zero and stays

at zero until the state is equal to the decision maker’s threshold of doubt a∗. Then the

probability that the state is revealed jumps to one and stays at one until the state is equal

to the decision maker’s threshold of knowledge α. After this, the probability that the state

is revealed jumps to zero and then increases continuously to some number strictly less than

one.

We can interpret the probability that the state is revealed as the incidence of

transparency or as the probability that the pharmaceutical firm commissions a thorough

investigation. Under the information policy with the maximal transparency the incidence

of transparency is non-monotone in the state. In particular, the incidence of transparency

has two troughs. Thus the pharmaceutical firm is most likely to practice transparency when

the drug safety is intermediate, moderately likely to practice transparency when the drug is

either very safe or very dangerous, and is unlikely to practice transparency when the drug

safety is somewhat low or somewhat high. Figure 3 illustrates this information policy.

4 Welfare

4.1 The Value of Information

In this section I ask the following question: how does the provision of information by

the sender affect the utility of the receiver under robust persuasion? I define the value of
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information for the receiver as the difference between the receiver’s utility under persuasion

and the receiver’s utility under no information. The receiver’s expected utility is evaluated

according to his prior, so the question addressed is: what does the receiver believe the value

of information is to him?

Consider the optimal information policy π with two signal realizations, σ and σ0.

Lemma 13 in the Appendix shows that a receiver with a prior µF , F ∈ C(α, β), strictly

benefits from persuasion if and only if

EF [ω] < a∗ EF [ω|σ] > a∗

or

EF [ω] ≥ a∗
∫

Ω

π(σ0|w)dF (w) > 0

That is, the value of persuasion is strictly positive if and only if the receiver’s

expectation of the state given signal σ is strictly greater than his threshold of doubt

provided that the receiver’s expectation of the state under no information is strictly less than

the threshold of doubt, and the probability of the signal realization σ0 is strictly positive

according to the receiver’s prior provided that the receiver’s expectation of the state under

no information is weakly greater than the threshold of doubt.

It is shown in the Appendix that the optimal information policy is such that we have

EF [ω|σ] ≥ a∗ for all receiver’s priors of the form µF = (1 − β)δω + βδα, ω ∈ [a0, α). This

implies that a sufficient condition to have EF [ω|σ] > a∗ for a prior with support {ω, α} is

that the receiver’s prior puts a mass strictly greater than β on the state α.

Thus, for instance, a receiver with a prior µF = (1 − β)δω + βδα for ω ∈ [a0, α) such

that EF [ω] < a∗ does not strictly benefit from persuasion because EF [ω|σ] = a∗, while a

receiver with a prior µG = (1 − γ)δω + γδα for some γ ∈ (β, 1) satisfying EG[ω] < a∗ does

because EG[ω|σ] > a∗. This shows that making a receiver more optimistic in the sense of

first order stochastic dominance can change the receiver’s value of information from zero to

strictly positive.

On the other hand, a receiver with a prior µF = (1−β)δω+βδα for ω ∈ [a∗, α) does not

strictly benefit from persuasion because
∫

Ω
π(σ0|w)dF (w) = 0, while a receiver with a prior

µG = (1−β)(γδω′+(1−γ)δω)+βδα for some ω′ such that π(σ|ω′) < 1 and γ ∈ (0, 1) sufficiently

small does because
∫

Ω
π(σ0|w)dG(w) > 0 (note that we have EF [ω] > a∗ and, for γ ∈ (0, 1)

sufficiently small, EG[ω] > a∗). This shows that making a receiver less optimistic in the
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sense of first order stochastic dominance can also change the receiver’s value of information

from zero to strictly positive.

In the standard model of persuasion the receiver’s value of information is zero

because the sender is able to choose the signal structure such that, upon seeing the signal

recommending the high action, the receiver with a known prior is indifferent between taking

the high and the low action. In contrast, in a model of persuasion with unknown beliefs

there is a set of priors Nature can choose from. We can rank some of the feasible priors

by first-order stochastic dominance. Because the sender must persuade receivers with all

feasible priors to take the high action, if a receiver with some prior is indifferent between the

high and the low action, there is a feasible prior dominating it in the FOSD sense such that

a receiver with this prior strictly prefers to take the high action. This explains why greater

optimism can increase the value of information.

The receiver in the standard model of persuasion takes the low action if no information

is provided. Because there is a set of feasible priors in a model of persuasion with unknown

beliefs and, in equilibrium, Nature is indifferent among all feasible priors, Nature may choose

a prior such that the receiver with this prior takes the high action if no information is

provided. Moreover, the receiver with this prior may believe that he will always take the

high action – if he believes that the probability of seeing the signal recommending the low

action is zero. In this case, the value of information is zero for this receiver: he believes

that he will take the same action under persuasion and under no information. We can find

a feasible prior such that the first prior dominates it in the FOSD sense and the receiver

with this prior believes that there is a positive probability of seeing the signal recommending

the low action. In this case, the value of information is strictly positive for the receiver:

he believes that under persuasion he will sometimes take the low action, whereas he would

always take the high action under no information. This explains why greater optimism can

decrease the value of information. Note that the receiver’s prior not having full support on

[a0, a] is necessary for this result.

4.2 The Sender’s Welfare

Consider the optimal signal with two realizations, σ and σ0. The sender’s payoff is the

probability that the optimal signal recommends action 1 averaged across states according to

the sender’s prior Fs: ∫
Ω

π(σ|w)dFs(w)
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Recall from section 3.1 that α = a∗ − β
1−β (α − a∗) denotes the state such that w 7→

π(σ|w) is strictly increasing on the states below α and is constant on the states above α.

Given probability measures µ and m on Ω, we say that µ is a local mean-preserving

spread of m on [a0, α] if

µ = γµ1 + (1− γ)µ2 m = γm1 + (1− γ)m2

for some γ ∈ [0, 1], µ1(Ω \ [a0, α]) = m1(Ω \ [a0, α]) = 0, µ2([a0, α]) = m2([a0, α]) = 0,

µ2 = m2 and µ1 is a mean-preserving spread of m1.8

Thus µ is a local mean-preserving spread of m on [a0, α] if µ and m have the same

distribution conditional on the state being in Ω \ [a0, α], µ and m put the same mass

on Ω \ [a0, α], and the distribution of µ conditional on the state being in [a0, α] is a

mean-preserving spread of the distribution of m conditional on the state being in [a0, α].

A local mean-preserving spread is a mean-preserving spread, but not all mean-preserving

spreads are local mean-preserving spreads.

Proposition 2. If µFs is a local mean-preserving spread of µGs on [a0, α], then∫
Ω

π(σ|w)dFs(w) ≥
∫

Ω

π(σ|w)dGs(w)

Consider two priors, Fs and Gs, such that µFs is a local mean-preserving spread of µGs
on [a0, α]. Proposition 2 states that the sender’s payoff is higher under the prior Fs. The

reason for this is that the function w 7→ π(σ|w) is strictly convex on [a0, α].

Therefore, when the sender is motivated by robustness concerns, the sender benefits

when the distribution of states is more dispersed on the states below α. Because the sender

can only induce the receiver to take the high action with probability less than one in states

below α, these states are unfavorable for the sender. Thus Proposition 2 implies that,

conditional on the average unfavorable state being the same, it is better for the sender if

unfavorable states have similar probability than if some unfavorable states are more likely

than others.

8Recall that µF is a mean-preserving spread of µG if they have the same mean and G second order
stochastically dominates F . Recall also that G second order stochastically dominates F if

∫ x
0
G(y)dy ≤∫ x

0
F (y)dy for all x ∈ [0,∞).
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4.3 The Cost of Ignorance

In this section I compare the sender’s welfare in the model where the sender does not

know the receiver’s beliefs to the sender’s welfare in the model where the receiver’s beliefs

are known. In particular, I compare the sender’s welfare in the robust model conditional on

Fs ∈ C(α, β) being both the true distribution of the state of the world and the receiver’s

belief about this distribution to the sender’s welfare in a model where both the sender and

the receiver know that Fs is the true distribution of the state. As in section 3.1, I assume

that the receiver would take action 0 if no information is provided (EFs [ω] < a∗) and, for

simplicity, I assume that Fs admits a density.

As shown in section 3.1, the solution of the standard persuasion model has a threshold

structure: action 1 is recommended if and only if the state is above the threshold a′. Then∫ a
a′
dFs(w) is the sender’s payoff in the standard model, and

∫ a
a0
π(σ|w)dFs(w) is the sender’s

payoff in the robust model. Proposition 1 in section 3.1 established that we must have

α > a′, that is, that the state at which the robust signal starts recommending action 1 with

probability one is higher than the state at which the signal in the standard persuasion model

starts recommending action 1 with probability one.

Let D(w) denote the difference between the sender’s payoffs in the standard model and

in the robust model conditional on the state being w. Then, because α > a′, we have

D(w) =


−π(σ|w) if w ∈ [a0, a

′)

1− π(σ|w) if ω ∈ [a′, α)

0 if ω ∈ [α, a]

Note that the difference in the payoffs D(·) is strictly concave on the interval [a0, a
′),

strictly concave on the interval [a′, α) and is constant on the interval [α, a]. Moreover, D(·)
is decreasing on the interval [a0, a

′), decreasing on the interval [a′, a] and is discontinuous at

exactly one point, a′, where it jumps up. Figure 4 illustrates the difference in the sender’s

payoffs.

Then the cost of the sender’s ignorance is the average difference between the sender’s

payoffs in the standard model and in the robust model evaluated according to the prior Fs:∫
Ω

D(w)dFs(w)
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Figure 4: The Difference between the Sender’s Payoffs in the Standard Model and in the Robust
Model

ω

D(ω)

a′ α a∗ α

0

Proposition 3 provides comparative statics on the sender’s cost of ignorance with

respect to the distribution of the state Fs.

Proposition 3. If µFs is a local mean-preserving spread of µGs on [a0, a
′) or µFs is a local

mean-preserving spread of µGs on [a′, α), then∫
Ω

D(w)dFs(w) ≤
∫

Ω

D(w)dGs(w)

Consider two priors, Fs and Gs, such that either µFs is a local mean-preserving spread

of µGs on [a0, a
′) or µFs is a local mean-preserving spread of µGs on [a′, α). Proposition

3 states that the difference in the payoffs between the standard and the robust models is

smaller under the prior Fs.

Observe that ignorance must be costly, that is, the difference must be positive for both

priors. Thus making the distribution of states more dispersed on the states below a′ or on

the states between a′ and α reduces the cost of ignorance.

5 Generalizing the Set of Priors

In this section I show that the solution to the sender’s problem obtained in this paper

remains valid with a more general set of priors. In particular, as long as the worst prior that
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the receiver can have9 puts a mass of exactly β on the state α > a∗, the sender may have

additional information about the receiver’s prior on the region of states where the sender

and the receiver agree about the optimal action.

Given α ∈ (a∗, a] and β ∈ (0, 1), consider a CDF G satisfying G(ω) = 1−β if ω ∈ [a0, α)

and G(ω) = 1 if ω ∈ [α, a]. G is the CDF of the measure that puts a mass of 1− β on state

a0 and a mass of β on state α.

Define the following set:

A = {F : [a0, a
∗)→ [0, 1− β] such that F is increasing and right-continuous}

A is the set of all increasing and right-continuous functions on the interval [a0, a
∗) with

the codomain [0, 1− β].

Consider a set of priors A satisfying the following conditions:

1. G ∈ A,

2. A ⊆ C(α, β),

3. for all F̃ ∈ A there exists F ∈ A such that F (w) = F̃ (w) for all w ∈ [a0, a
∗).

A is a subset of the set of priors C(α, β) such that for all functions F̃ in the set A there

exists a CDF F in A that is equal to F̃ on the interval [a0, a
∗).

It can be shown that the equilibrium distribution of the induced actions and the signal

described in Theorem 1 remain optimal if the set of the receiver’s priors is A.

We can interpret this generalization as follows. The sender knows that the receiver’s

prior puts a mass of 1−β on the disagreement region [a0, a
∗) and may have more information

about the receiver’s prior on the agreement region [a∗, a]. The sender is maximally ignorant

about the receiver’s prior on the disagreement region, believing that any allocation of mass

1− β or less on the disagreement region is possible.

Figure 5 illustrates possible sets of the receiver’s priors. The plot of the left shows

C(α, β), the set of the receiver’s prior that put a mass of at least β on states above α. The

plot in the center shows the set of priors consisting of all measures such that their CDFs

are below the CDF drawn in bright blue on the interval [a0, a
∗) and coincide with the CDF

drawn in bright blue on the interval [a∗, a]. Finally, the plot on the right shows the set of

9By the worst prior of the receiver I mean the feasible prior of the receiver that minimizes the receiver’s
expectation of the state under no information.
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Figure 5: Possible Sets of Receiver’s Priors
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priors that contains all measures in the set of priors shown in the center, as well as some

additional measures, so that now the CDFs of some measures in this set do not coincide with

the CDF drawn in bright blue on the interval [a∗, a].

6 Convincing Groups with Diverse Beliefs

Consider a problem of convincing a large group to take an action or to refrain from

taking an action. The members of the group hold diverse prior beliefs. It is known that all

members of the group have beliefs that put a mass of at least β on states above α. Every

such belief is represented in the group, so that for every prior that puts a mass of at least β

on states above α, we can find a group member which holds this belief.

The following is an example of a situation to which the above logic may apply. In

1995, the Clinton administration introduced the Project Excellence in Leadership (XL) that

provided opportunities for firms to engage in experimentation with the goal of developing

technological innovations leading to greater environmental benefits. The firms were to reach

an agreement on their experimental projects with the Environmental Protection Agency

(EPA) and stakeholders. The firms’ concern about litigation by environmental protection

groups was a salient feature of the implementation of Project XL: the firms were conscious

of the need to design their experiments in such a way as to prevent costly litigation (Fiorino

2006: 141).

This strategic situation can be described as follows. A company wishes to convince

environmental NGOs that the technology it plans to use is sufficiently environmentally

friendly. The company can design an experiment that will reveal the characteristics of the
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technology with some probability. The NGOs hold diverse prior beliefs about environmental

friendliness of the technology. If an NGO believes that the technology is sufficiently harmful,

the NGO will challenge the company’s use of the technology in court. In order to prevent

litigation, the company needs to convince all the NGOs that the technology is sufficiently

safe.

While in the model of persuasion with unknown beliefs Nature chooses the receiver’s

prior after the sender commits to a signal structure but before the signal is realized, the

model where the sender aims to convince all members of a group with diverse beliefs can be

interpreted as a model where Nature chooses the receiver’s prior after the signal is realized.

It follows from the discussion in section 3.2 that the optimal signal is the same in both

models.

7 Sketch of the Proof

In this section I sketch the proof of Theorem 1.

Given a prior F with a finite support and a signal structure π, I denote by R(F, π) the

finite set of indices of signal realizations such that the receiver with prior F takes action 1

after seeing these signal realizations. I show in lemma 1 that for all signal structures π there

exists a feasible receiver’s prior F such that the sum of the probabilities of signal realizations

with indices in R(F, π) given each state ω ∈ [a0, a
∗) is bounded above by min

{
β(α−a∗)

(1−β)(a∗−ω)
, 1
}

.

The proof of the lemma uses a fixed-point argument outlined in greater detail below.

Next, I show in lemma 2 that if there exists a signal π that achieves this bound in

all states ω ∈ [a0, a
∗) for the receiver’s prior F and, moreover, if Nature prefers to choose

the receiver’s prior F whenever the sender chooses π, then π maximizes the sender’s payoff

among all signals.

Then I show in lemmas 3 - 11 that the signal π defined in Theorem 1 satisfies the

conditions in lemma 2 and thus maximizes the sender’s payoff among all signals.

7.1 Complicated Signals do not Benefit the Sender

In the remainder of the section I provide an outline of the proof of the statement that

for all signals π (with a finite number of realizations conditional on each state) there exists
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a feasible receiver’s prior F such that the sum of the probabilities of signal realizations with

indices in R(F, π) given each state ω ∈ [a0, a
∗) is bounded above by min

{
β(α−a∗)

(1−β)(a∗−ω)
, 1
}

.

Because this bound is achieved by a simple signal that has exactly one signal realization

which recommends action 1, the lemma shows that complicated signals do not benefit the

sender.

The proof consists in constructing, given a signal structure π, a feasible prior F

satisfying the requirement above.

7.2 The Support of the Receiver’s Prior

I first construct a finite support for the receiver’s prior as follows. I denote by R the

finite set of indices of signal realizations that have a strictly positive probability under the

signal structure π given that the state is α. I define Y as the set of states in [a0, a
∗) such

that there exists at least one signal realization with an index in R that has a strictly positive

probability given the state.

For each state ω ∈ [a0, a
∗), I define C(ω), the set of all subsets A of indices in R

such that the sum of the probabilities of signals with indices in A is strictly greater than

min
{

β(α−a∗)
(1−β)(a∗−ω)

, 1
}

. I let the sets Y1, . . . , Yκ denote the coarsest partition of Y such that for

each set in the partition the signal realizations with indices in R that have strictly positive

probability under π are the same and and the sets C(ω) are the same for each ω ∈ Yi.

I choose exactly one state ωi from each element Yi of the partition and denote the

resulting set of states by W . Finally, I let Oi denote the set of states in W such that the

probability of signal realization σi given each such state is strictly positive.

∪ω∈Wω ∪ α is the support of the receiver’s prior.

7.3 The Receiver’s Prior

I next construct the receiver’s prior. Given a state ωl, I let Sl denote the set of signal

realization indices such that the signal realizations with these indices have a strictly positive

probability under π given that the state is ωl.
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Figure 6: The Construction of the Receiver’s Prior
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I suppose that Nature chooses the receiver’s prior F that places a mass of

(1− β)
∑

k∈Sl∩R

[
νkl π(σk|α)

]
on each state ωl ∈ W and places a mass of β on α. The weights ν = {νim}i∈R,m∈Oi satisfy

νkl ∈ [0, 1] and
∑

l:ωl∈Ok ν
k
l = 1.

The weights ν = {νim}i∈R,m∈Oi are defined as the fixed point of the mapping H :

×i∈R∆(Oi)→ ×i∈R∆(Oi)

Him(ν) =
π(σi|ωm)(a∗ − ωm)

[∑
k∈Sm∩R ν

k
mπ(σk|α)

]∑
l:ωl∈Oi π(σi|ωl)(a∗ − ωl)

[∑
k∈Sl∩R ν

k
l π(σk|α)

]
Figure 6 illustrates the construction of the prior. The black intervals denote the

supports of different signal realizations. ω1, ω2 and ω3 is the set W . The red selection

in figure 6 shows S1, the set of all signal indices i such that π(σi|ω1) > 0. The blue selection

in figure 6 shows O3, the set of all state indices j such that π(σ3|ωj) > 0. νij is the weight

corresponding to the state ωj and signal σi. Figure 6 shows the weights ν3
1 , ν3

2 and ν3
3

corresponding to the signal σ3 and states ω1, ω2 and ω3 respectively.

The partition induced by intersecting the supports of the signals has two elements,

one containing ω1 and ω2, and the other one containing ω3. We obtain a finer partition by

grouping the states ω for which C(ω) is the same in one partition element. In the example

in figure 6 the finer partition has three elements, each containing ω1, ω2 and ω3 respectively.
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8 Related Literature

The present paper is related to two strands of literature: the literature on Bayesian

persuasion and the literature on robust mechanism design.

Early papers on Bayesian persuasion include Brocas and Carillo (2007), Ostrovsky and

Schwarz (2010) and Rayo and Segal (2010). Kamenica and Gentzkow (2011) introduce a

general model of Bayesian persuasion and provide a characterization of the sender’s value in

this model. Alonso and Camara (2016a) consider a model of Bayesian persuasion where the

sender and the receiver have heterogeneous priors. Alonso and Camara (2016b) study the

persuasion of voters.

Kolotilin (2017) and Kolotilin et al. (2017), among others, consider models of Bayesian

persuasion with an infinite state space. Kolotilin et al. (2017) prove an equivalence result

concerning public and private persuasion of a privately informed receiver. Perez-Richet

(2014) and Hedlund (2017) consider a Bayesian persuasion model with a privately informed

sender. Ely (2017), among others, studies a dynamic Bayesian persuasion model.

In all Bayesian persuasion models to date, either the prior of the receiver is known or,

if private information is present, there is a known distribution over the receiver’s beliefs. In

contrast, in the present paper, there is a set of possible priors of the receiver but the sender

does not have a distribution over the receiver’s beliefs. Instead, the sender acts as if Nature

is choosing the receiver’s prior from this set in order to minimize the sender’s payoff.

The literature on robust mechanism design studies the design of optimal mechanisms

in the environments where the designer does not know the distribution of agents’ types and

designs a mechanism to maximize his utility in the worst case scenario.

Carroll (2015) shows that linear contracts have attractive robustness properties. Carroll

(2017) shows that the robust multidimensional screening mechanism sells objects separately.

Carrasco et al. (2017) study robust selling mechanisms under moment conditions on the

distribution of the buyer’s types. Chassang (2013) considers robust dynamic contracts. To

the best of the author’s knowledge, the present paper is the first one to consider a model of

robust Bayesian persuasion.
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9 Conclusion

This paper analyzes a model of Bayesian persuasion with unknown beliefs and

characterizes the optimal signal. The optimal signal recommends the high action with

a strictly positive probability in every state, with the probability that the high action is

recommended changing gradually as the state changes. The optimal signal may also reveal

the state with some probability.

These distinct features of the robust signal can potentially be useful for empirically

distinguishing between the senders who know the prior of the receiver and those who do not

have this knowledge.
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Appendix

B Notation and Definitions

B.1 Measures

When a measure is referred to in this paper, a measure should be understood to mean a

Borel probability measure. Moreover, any measurable spaces referred to in this paper should

be understood to be equipped with a Borel sigma-algebra.

By Theorem 12.4 in Billingsley (2012: 185), if F is a non-decreasing, right-continuous

real-valued function on R, then there exists a unique Borel measure µ such that µ((a, b]) =

F (b)−F (a) for all a, b ∈ R. Given a CDF F , I use µF to denote the unique Borel probability

measure that corresponds to the CDF F .

B.2 Signal Structures

Given Borel subsets A, B ⊆ Ω, let K(A,B) denote the set of kernels P : A× B(B)→
[0, 1] such that for every a ∈ A, C 7→ P (a, C) is a probability measure on B and for every

C ∈ B(B), a 7→ P (a, C) is B(A)-measurable.10

Let D denote the set of signal structures that have a finite number of signal realizations

conditional on each state. That is, let

D = {P ∈ K(Ω,M) : | suppP (ω, ·)| <∞ for all ω ∈ Ω}

B.3 Priors with Finite Support

Define

Gγ = {F ∈ ϕ : µF = (1− γ)δω + γδω′ , ω ∈ [a0, α), ω′ ∈ [α, a]}

Given γ ∈ [0, 1], Gγ is the set of all CDFs F such that µF is a convex combination of

a point mass on ω for some ω ∈ [a0, α) and a point mass on ω′ for some ω′ ∈ [α, a] with

10Recall that B(A) and B(B) denote the Borel sigma-algebras on A and B respectively.
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weights 1− γ and γ.

Moreover, let

F = {Gγ}γ∈[β,1]

F is the set of all CDFs F such that µF is a convex combination of a point mass on ω

for some ω ∈ [a0, α) and a point mass on ω′ for some ω′ ∈ [α, a] with weights 1 − γ and γ

respectively for γ ∈ [β, 1].

Define

Fα = {F ∈ ϕ : µF = (1− β)µG + βδα, suppµG ⊆ [a0, a
∗), | suppµG| <∞}

Fα is the set of all CDFs F that are a convex combination of a measure on [a0, a
∗)

with a finite support and a point mass on α with weights 1− β and β respectively.

B.4 Signal Indices and the Bound

Given a signal structure π ∈ D and a state ωj, define

Sj = {k : π(σk|ωj) > 0}

Sj is the set of indices of signal realizations which have a strictly positive probability in the

state ωj under the signal structure π.

Define b(ω) = min
{

β(α−a∗)
(1−β)(a∗−ω)

, 1
}

if ω ∈ [a0, a
∗) and b(ω) = 1 if ω ∈ [a∗, a].

B.5 Expectations

EF,P [ω|σ] denotes the receiver’s expectation of the random variable ω with distribution

F after the receiver observes signal realization σ given that the signal structure (the kernel)

is P . When no confusion can result, I suppress the dependence on P and denote this

expectation by EF [ω|σ].
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B.6 Convergence

A sequence of measures {µN}N∈N is said to converge weakly to a measure µ if

lim
N→∞

∫
Ω

g(w)dµN(w) =

∫
Ω

g(w)dµ(w)

for every bounded and continuous function g.

C Proofs

Lemma 1. Fix a signal structure π ∈ D. Denote by σ1, . . . , σr the finite number of signal

realizations that have a strictly positive probability given that the state is α. Define R =

{1, . . . , r}.

Given F ∈ Fα, let R(F, π) ⊆ R denote the finite number of signal indices such that

EF,π[ω|σi] ≥ a∗ for all i ∈ R(F, π).

Then there exists F ∈ Fα such that

∑
i∈R(F,π)

π(σi|ωm) ≤ β(α− a∗)
(1− β)(a∗ − ωm)

for all ωm ∈ [a0, a
∗).

Proof of lemma 1.

Without loss of generality, suppose that, for all i ∈ R, we have π(σi|ω) > 0 for some

ω ∈ [a0, a
∗) (if for some I ⊆ R we have π(σi|ω) = 0 for all i ∈ I and for all ω ∈ [a0, a

∗), then

it is enough to show that
∑

j∈R\I π(σj|ωm) ≤ β(α−a∗)
(1−β)(a∗−ωm)

for all ωm ∈ [a0, a
∗)).

Step 1: Partitioning the set [a0, a
∗).

For each ω ∈ [a0, a
∗), define

C(ω) = {A ⊆ R :
∑
i∈A

π(σi|ω) > b(ω)}

C(ω) is the set of all sets A of indices in R such that the sum of the probabilities of
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signals with indices in A is strictly greater than b(ω).

Define a finite number11 of sets Y1, . . . , Yκ such that Yi ⊆ [a0, a
∗) for all i ∈ {1, . . . , κ}

as follows:

1. ω, ω′ ∈ Yi implies that, for all j ∈ R, if π(σj|ω) > 0, then π(σj|ω′) > 0;

2. ω, ω′ ∈ Yi implies that C(ω) = C(ω′);

3. ωi ∈ Yi, ωj ∈ Yj for i 6= j implies that

(a) either there exists a signal realization σl such that l ∈ R and either π(σl|ωi) > 0,

π(σl|ωj) = 0 or π(σl|ωj) > 0 and π(σl|ωi) = 0 or

(b) C(ωi) 6= C(ωj)

Define

Y = {ω ∈ [a0, a
∗) : there exists i ∈ R : π(σi|ω) > 0}

Y is the subset of [a0, a
∗) such that for every state ω in Y there exists a signal realization

σi with an index i ∈ R that has a strictly positive probability in state ω given the signal

structure π. The sets Y1, . . . , Yκ form the coarsest partition of Y such that for each set Yi

in the partition the signal realizations in R that have a strictly positive probability under π

given ω ∈ Yi are the same and the sets C(ω) are the same for each ω ∈ Yi.

Next, we choose a finite set of states as follows. From each Yi, i ∈ {1, . . . , κ}, choose

exactly one ωi. Let W denote the set of states {ωi}κi=1 chosen in this manner.

Step 2: Some notation and reference states.

Define

J = {j : ωj ∈ W}

J is the set of indices of the states in W .

Define also

Oi = {ω ∈ W : π(σi|ω) > 0}

Oi is the set of states in W such that the probability of signal realization σi given each

such state is strictly positive.

11The number of sets is finite because R is finite.
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Step 3: Nature’s strategy.

Suppose that Nature chooses the receiver’s prior µF that, for all i ∈ R, places a mass

of νilπ(σi|α)(1− β) on each ωl ∈ Oi such that νil ∈ [0, 1] for all l ∈ J satisfying ωl ∈ Oi and∑
l:ωl∈Oi ν

i
l = 1 and places a mass of β on α.

Note that, by construction, Oi 6= ∅ for all i ∈ R. Then we have

r∑
i=1

∑
l:ωl∈Oi

νilπ(σi|α)(1− β) =
r∑
i=1

π(σi|α)(1− β) = 1− β

so Nature places the mass of 1− β on states in [a0, a
∗). Observe that we have µF ∈ Fα.

Observe also that the Nature’s strategy as defined above implies that, given l ∈ J ,

Nature puts a mass of (1− β)
∑

k∈Sl∩R

[
νkl π(σk|α)

]
on ωl.

Step 4: EF [ω|σi] ≥ a∗ given Nature’s strategy.

Fix i ∈ R. Then, because Nature puts a mass of β on state α and puts a mass of

(1− β)
∑

k∈Sl∩R

[
νkl π(σk|α)

]
on each ωl such that l ∈ J , we have

∫
Ω

wπ(σi|w)dF (w) =
∑
ωl∈Oi

ωlπ(σi|ωl)(1− β)
∑

k∈Sl∩R

[
νkl π(σk|α)

]
+ αβπ(σi|α)

∫
Ω

π(σ|w)dF (w) = βπ(σi|α) +

∫
[a0,α)

π(σi|w)dF (w) =

βπ(σi|α) +
∑
ωl∈Oi

π(σi|ωl)(1− β)
∑

k∈Sl∩R

[
νkl π(σk|α)

]

EF [ω|σi] ≥ a∗ is equivalent to

αβπ(σi|α) +
∑

ωl∈Oi ωlπ(σi|ωl)(1− β)
∑

k∈Sl∩R

[
νkl π(σk|α)

]
βπ(σi|α) +

∑
ωl∈Oi π(σi|ωl)(1− β)

∑
k∈Sl∩R

[
νkl π(σk|α)

] ≥ a∗
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Equivalently,

1 ≤ (α− a∗) β

1− β
π(σi|α)∑

l:ωl∈Oi π(σi|ωl)(a∗ − ωl)
∑

k∈Sl∩R

[
νkl π(σk|α)

]
Given ωm ∈ Oi, we multiply both sides by π(σi|ωm) to obtain

π(σi|ωm) ≤ (α− a∗) β

1− β
π(σi|α)π(σi|ωm)∑

l:ωl∈Oi π(σi|ωl)(a∗ − ωl)
∑

k∈Sl∩R

[
νkl π(σk|α)

] (2)

Step 5: Defining the receiver’s prior.

Given m ∈ J , let

gm =
∑

k∈Sm∩R

νkmπ(σk|α)

Choose νim such that

π(σi|ωm)(a∗ − ωm)∑
l:ωl∈Oi π(σi|ωl)(a∗ − ωl)

π(σi|α)

gl
=
νimπ(σi|α)

gm
(3)

This implies that we set

νim =
π(σi|ωm)(a∗ − ωm)gm∑
l:ωl∈Oi π(σi|ωl)(a∗ − ωl)gl

(4)

Step 6: The receiver’s prior is well-defined.

Next, we will show that the collection of weights {νim}i∈R,m∈Oi is well-defined. In

particular, we will show that there exists a collection of weights satisfying (4), νim ∈ [0, 1] for

all i ∈ R and m ∈ J such that ωm ∈ Oi, and satisfying
∑

m:ωm∈Oi ν
i
m = 1.

34



Observe that ∑
m:ωm∈Oi

νim =
∑

m:ωm∈Oi

π(σi|ωm)(a∗ − ωm)gm∑
l:ωl∈Oi π(σi|ωl)(a∗ − ωm)gl

=∑
m:ωm∈Oi π(σi|ωm)(a∗ − ωm)gm∑

l:ωl∈Oi π(σi|ωl)(a∗ − ωl)gl
= 1

This shows that
∑

m:ωm∈Oi ν
i
m = 1.

Fix m ∈ J and i ∈ Sm∩R. Substituting in the formulas for gm and gl, (4) is equivalent

to

νim =
π(σi|ωm)(a∗ − ωm)

[∑
k∈Sm∩R ν

k
mπ(σk|α)

]∑
l:ωl∈Oi π(σi|ωl)(a∗ − ωl)

[∑
k∈Sl∩R ν

k
l π(σk|α)

] (5)

Let

T = ×i∈R∆(Oi)

where ∆(Oi) denotes the simplex over Oi and × denotes the Cartesian product.

Let ν = {νim}i∈R,m∈Oi . Define a mapping H : T → T by

Him(ν) =
π(σi|ωm)(a∗ − ωm)

[∑
k∈Sm∩R ν

k
mπ(σk|α)

]∑
l:ωl∈Oi π(σi|ωl)(a∗ − ωl)

[∑
k∈Sl∩R ν

k
l π(σk|α)

]
Then we can write (5) as

νim = Him(ν)

Thus the weights {νim}i∈R,m∈Oi are defined by the equation

ν = H(ν) (6)

Observe that ∆(Oi) is a compact and convex set. Because the Cartesian product of

convex sets is convex and the Cartesian product of compact sets is compact, this implies

that T = ×i∈R∆(Oi) is a compact and convex set. Thus H(·) is a continuous self-map on

a compact and convex set T . Then the Brouwer fixed point theorem implies that H has a

fixed point.

Step 7: A Useful Equality.
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We have ∑
i∈Sm∩R

π(σi|α)π(σi|ωm)∑
l:ωl∈Oi π(σi|ωl)(a∗ − ωl)gl

=
∑

i∈Sm∩R

νimπ(σi|α)

(a∗ − ωm)gm

=
1

a∗ − ωm

∑
i∈Sm∩R

νimπ(σi|α)

gm

=
1

a∗ − ωm

(7)

where the first equality follows because dividing both sides of (3) by a∗ − ωm yields
π(σi|α)π(σi|ωm)∑

l:ωl∈Oi
π(σi|ωl)(a∗−ωl)gl

= νimπ(σi|α)
(a∗−ωm)gm

and the last equality holds because
∑

i∈Sm∩R
νimπ(σi|α)

gm
= 1

by definition of gm.

Step 8: Conclusion of the proof.

Suppose that Nature chooses the weights defined by the fixed-point equation (6). By

construction, since EF [ω|σi] ≥ a∗ for all i ∈ R(F, π), we have that (2) holds for all m ∈ J
and for all i ∈ R(F, π).

Observe that (2) is equivalent to

π(σi|ωm) ≤ (α− a∗) β

1− β
π(σi|α)π(σi|ωm)∑

l:ωl∈Oi π(σi|ωl)(a∗ − ωl)gl
(8)

Then we have∑
i∈Sm∩R(F,π)

π(σi|ωm) ≤ (α− a∗) β

1− β
∑

i∈Sm∩R(F,π)

π(σi|α)π(σi|ωm)∑
l:ωl∈Oi π(σi|ωl)(a∗ − ωl)gl

≤ (α− a∗) β

1− β
∑

i∈Sm∩R

π(σi|α)π(σi|ωm)∑
l:ωl∈Oi π(σi|ωl)(a∗ − ωl)gl

(9)

where the first inequality follows from summing (8) over R(F, π) and the second inequality

follows from the fact that R(F, π) ⊆ R.

Thus (9) and (7) imply that

∑
i∈R(F,π)

π(σi|ωm) ≤ (α− a∗) β

1− β
1

a∗ − ωm
(10)
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Suppose for the sake of contradiction that for some wl ∈ [a0, a
∗) we had∑

i∈R(F,π) π(σi|wl) > (α − a∗) β
1−β

1
a∗−ωl

. By definition of C(ωl), this is equivalent to saying

that R(F, π) ∈ C(ωl).

Let Ym denote the element of the partition Y1, . . . , Yκ such that wl ∈ Ym. Then, because

C(ω) = C(ω′) for all ω, ω′ ∈ Ym, it must be the case that R(F, π) ∈ C(ωm). By definition of

C(ωm), this is equivalent to saying that
∑

i∈R(F,π) π(σi|ωm) > (α − a∗) β
1−β

1
a∗−ωm . However,

this contradicts (10).

Therefore, we must have
∑

i∈R(F,π) π(σi|ωm) ≤ (α − a∗) β
1−β

1
a∗−ωm for all ωm ∈ [a0, a

∗).

�

Lemma 2. Consider a signal π ∈ D. Let R(π) = {1, . . . , r} denote the finite subset of signal

realization indices such that σ1, . . . , σr have a strictly positive probability under π given that

the state is α. Suppose that π ∈ D is such that

1. EF,π[ω|σi] ≥ a∗ for all i ∈ R(π),

2. for all F ∈ Fα, for all ωm ∈ [a0, a
∗) we have

∑
i∈R(π) π(σi|ωm) = min

{
β

1−β
α−a∗
a∗−ωm , 1

}
,

3. if the sender chooses π, then Nature weakly prefers to choose F ∈ Fα.

Then π maximizes the sender’s payoff among all signals in D.

Proof of lemma 2.

Given π ∈ D and G ∈ Fα, let R(G, π) denote the subset of R(π) such that EG,π[ω|σi] ≥
a∗ for all i ∈ R(G, π). Suppose for the sake of contradiction that there is another signal

π′ ∈ D giving the sender a payoff strictly higher than that of signal π.

Suppose that after the sender chooses π′, Nature chooses F ∈ Fα such that

∑
i∈R(F,π′)

π′(σi|ωm) ≤ min

{
β

1− β
α− a∗

a∗ − ωm
, 1

}
(11)

for all ωm ∈ [a0, a
∗) (the fact that such F exists follows from lemma 1).

Note that if Nature chooses F ∈ Fα, then π guarantees a payoff of 1 to the sender in

states ω ∈ [a∗, a]. Thus if the sender chooses π′ and Nature chooses F ∈ Fα, then the sender’s

payoff U1 is no greater than Ũ1 =
∫

[a0,a∗)

[∑
i∈R(F,π′) π

′(σi|ωm)
]
dFs(ωm) +

∫
[a∗,a]

dFs(ωm),

while if the sender chooses π and Nature chooses F ∈ Fα, then the sender’s payoff is U2 =∫
[a0,a∗)

[∑
i∈R(F,π) π(σi|ωm)

]
dFs(ωm)+

∫
[a∗,a]

dFs(ωm) =
∫

[a0,a∗)

[∑
i∈R(π) π(σi|ωm)

]
dFs(ωm)+
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∫
[a∗,a]

dFs(ωm) =
∫

[a0,a∗)
min

{
β

1−β
α−a∗
a∗−ωm , 1

}
dFs(ωm) +

∫
[a∗,a]

dFs(ωm) (the second equality in

the expression for U2 follows from the fact that EF,π[ω|σi] ≥ a∗ for all i ∈ R(π), and

the third equality in the expression for U2 follows from the fact that
∑

i∈R(π) π(σi|ωm) =

min
{

β
1−β

α−a∗
a∗−ωm , 1

}
for all ωm ∈ [a0, a

∗)).

Observe that (11) implies that
∫

[a0,a∗)

[∑
i∈R(F,π′) π

′(σi|ωm)
]
dFs(ωm) ≤∫

[a0,a∗)

[∑
i∈R(π) π(σi|ωm)

]
dFs(ωm). Therefore, Ũ1 ≤ U2.

Moreover, if after the sender chooses π′, Nature chooses F ′ 6= F , then it must be the

case that the sender’s payoff U3 given π′ and F ′ satisfies U3 ≤ U1. If the sender chooses π

and Nature chooses F ′ 6= F , then, because Nature weakly prefers to choose F given that the

sender chooses π, the sender’s payoff Ũ2 given π and F ′ must satisfy U2 ≤ Ũ2.

Then we have U3 ≤ U1 ≤ Ũ1 ≤ U2 ≤ Ũ2. Thus π yields a weakly higher payoff to the

sender than π′, a contradiction. �

Lemma 3. Consider a signal π ∈ D such that π has exactly one realization σ satisfying

π(σ|ω′) > 0 for ω′ ∈ [α, a] and π(σ|ω) > 0 for ω ∈ [a0, a
∗). Then we have EF [ω|σ] ≥ a∗ for

all F ∈ Gγ, γ ∈ [β, 1], if and only if

π(σ|ω) ≤ π(σ|ω′) γ

1− γ
ω′ − a∗

a∗ − ω

for all ω ∈ [a0, a
∗), ω′ ∈ [α, a].

Proof of lemma 3.

Fix γ ∈ [β, 1]. If Nature puts a mass of 1 − γ on some ω ∈ [a∗, α) and puts a mass

of γ on ω′ ∈ [α, a], then it is easy to see that we have EF [ω|σ] ≥ a∗ for all π satisfying the

conditions in the lemma.

Therefore, fix ω ∈ [a0, a
∗) and suppose that Nature places a mass of 1−γ on ω. Suppose

also that Nature places a mass of γ on ω′ ∈ [α, a]. Then
∫

Ω
wπ(σ|w)dF (w) = ωπ(σ|ω)(1−γ)+

ω′γπ(σ|ω′) and
∫

Ω
π(σ|w)dF (w) = γπ(σ|ω′) +

∫
[a0,a∗)

π(σ|w)dF (w) = γπ(σ|ω′) + π(σ|ω)(1−
γ).

EF [ω|σ] ≥ a∗ is equivalent to
∫
Ω wπ(σ|w)dF (w)∫
Ω π(σ|w)dF (w)

≥ a∗, which, in turn, is equivalent

to π(σ|ω′)ω′γ+ωπ(σ|ω)(1−γ)
γπ(σ|ω′)+π(σ|ω)(1−γ)

≥ a∗. Simplifying, we obtain π(σ|ω′)ω′γ + ωπ(σ|ω)(1 − γ) ≥
a∗γπ(σ|ω′) + a∗π(σ|ω)(1− γ), which is equivalent to π(σ|ω) ≤ π(σ|ω′) γ

1−γ
ω′−a∗
a∗−ω . �
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Lemma 4. Consider the signal q ∈ D described in lemma 5. We have EF,q[ω|σ] ≥ a∗ for all

F ∈ F .

Proof of lemma 4.

By lemma 3, EF [ω|σ] ≥ a∗ for all F ∈ Gγ, γ ∈ [β, 1], is equivalent to q(σ|ω) ≤
q(σ|ω′) γ

1−γ
ω′−a∗
a∗−ω for all ω ∈ [a0, a

∗), ω′ ∈ [α, a]. Because γ ∈ [β, 1] and γ 7→ γ
1−γ is increasing,

if the preceding inequality holds for γ = β, then it holds for any γ ∈ (β, 1]. Therefore, we

have EF [ω|σ] ≥ a∗ for all F ∈ F if and only if EF [ω|σ] ≥ a∗ for all F ∈ Gβ.

By lemma 3, EF [ω|σ] ≥ a∗ for all F ∈ Gβ is equivalent to q(σ|ω) ≤ q(σ|ω′) β
1−β

ω′−a∗
a∗−ω for

all ω ∈ [a0, a
∗), ω′ ∈ [α, a].

Note that q described in lemma 5 satisfies q(σ|ω) = min
{

β
1−β

α−a∗
a∗−ω , 1

}
for all ω ∈

[a0, a
∗). Then q(σ|ω) ≤ q(σ|ω′) β

1−β
ω′−a∗
a∗−ω for all ω ∈ [a0, a

∗), ω′ ∈ [α, a] is equivalent to

min
{

β
1−β

α−a∗
a∗−ω , 1

}
≤ min

{
q(σ|ω′) β

1−β
ω′−a∗
a∗−ω , 1

}
for all ω ∈ [a0, a

∗), ω′ ∈ [α, a].

To show that the preceding inequality holds, it is enough to show that β
1−β

α−a∗
a∗−ω ≤

q(σ|ω′) β
1−β

ω′−a∗
a∗−ω for all ω ∈ [a0, a

∗), ω′ ∈ [α, a]. This is equivalent to q(σ|ω′) ≥ α−a∗
ω′−a∗ for all

ω′ ∈ [α, a]. Therefore, we need q(σ|ω′) ∈
[
α−a∗
ω′−a∗ , 1

]
for all ω′ ∈ [α, a]. Noting that q described

in lemma 5 satisfies this concludes the proof. �

Lemma 5. Define

q(σ|ω) =


α−a∗
ω−a∗ if ω ∈ [α, a]

0 if ω ∈ (a∗, α)

min
{

β(α−a∗)
(1−β)(a∗−ω)

, 1
}

if ω ∈ [a0, a
∗]

q(σw|ω) =


1− α−a∗

ω−a∗ if ω = w and ω ∈ [α, a]

1 if w = ω and ω ∈ (a∗, α)

1−min
{

β(α−a∗)
(1−β)(a∗−ω)

, 1
}

if w = ω and ω ∈ [a0, a
∗]

Suppose that π is as defined in lemma 12. For all F ∈ ϕ, if EF,q[ω|σ] ≥ a∗, then EF,π[ω|σ] ≥
a∗.

Proof of lemma 5.

We want to show that if
∫
[a0,a

∗] wq(σ|w)dF (w)+
∫
(a∗,a] wq(σ|w)dF (w)∫

[a0,a
∗] q(σ|w)dF (w)+

∫
(a∗,a] q(σ|w)dF (w)

≥ a∗, then∫
[a0,a

∗] wπ(σ|w)dF (w)+
∫
(a∗,a] wπ(σ|w)dF (w)∫

[a0,a
∗] π(σ|w)dF (w)+

∫
(a∗,a] π(σ|w)dF (w)

≥ a∗. The first inequality is equivalent
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to
∫

[a0,a∗]
wq(σ|w)dF (w) − a∗

∫
[a0,a∗]

q(σ|w)dF (w) ≥ a∗
∫

(a∗,a]
q(σ|w)dF (w) −∫

(a∗,a]
wq(σ|w)dF (w) and the second inequality is equivalent to

∫
[a0,a∗]

wπ(σ|w)dF (w) −
a∗
∫

[a0,a∗]
π(σ|w)dF (w) ≥ a∗

∫
(a∗,a]

π(σ|w)dF (w)−
∫

(a∗,a]
wπ(σ|w)dF (w).

Observe that we can write these inequalities as
∫

[a0,a∗]
q(σ|w)(w − a∗)dF (w) ≥∫

(a∗,a]
q(σ|w)(a∗ − w)dF (w) and

∫
[a0,a∗]

π(σ|w)(w − a∗)dF (w) ≥
∫

(a∗,a]
π(σ|w)(a∗ − w)dF (w)

respectively.

We have ∫
[a0,a∗]

π(σ|w)(w − a∗)dF (w) ≥
∫

[a0,a∗]

q(σ|w)(w − a∗)dF (w)

≥
∫

(a∗,a]

q(σ|w)(a∗ − w)dF (w)

≥
∫

(a∗,a]

π(σ|w)(a∗ − w)dF (w)

(12)

where the first inequality follows because w−a∗ ≤ 0 for w ∈ [a0, a
∗] and π(σ|w) ≤ q(σ|w) for

w ∈ [a0, a
∗], the second inequality follows from the fact that

∫
[a0,a∗]

π(σ|w)(w − a∗)dF (w) ≥∫
(a∗,a]

π(σ|w)(a∗−w)dF (w), and the third inequality follows because a∗−w ≤ 0 for w ∈ (a∗, a]

and π(σ|w) ≥ q(σ|w) for w ∈ (a∗, a].

(12) implies that we have
∫

[a0,a∗]
π(σ|w)(w − a∗)dF (w) ≥

∫
(a∗,a]

π(σ|w)(a∗ − w)dF (w),

as required. �

Lemma 6. If ai > 0, bi > 0 for all i ∈ {1, . . . , N} and
aj
bj
≤ ai

bi
for all i ∈ {1, . . . , N} and

some j ∈ {1, . . . , N}, then
aj
bj
≤

∑N
i=1 ai∑N
i=1 bi

.

Proof of lemma 6.

We have that ai
bi
≥ aj

bj
= c for all i ∈ {1, . . . , N} and some c > 0. Then ai ≥ cbi for all

i ∈ {1, . . . , N}. Thus
∑N
i=1 ai∑N
i=1 bi

≥
∑N
i=1 cbi∑N
i=1 bi

= c
∑N
i=1 bi∑N
i=1 bi

= c =
aj
bj

. �

Lemma 7. Given A1 = [α, a], A2 = (a∗, α), A3 = [a0, a
∗], for all µF such that F ∈ C(α, β),

there exist probability measures µG1, µG2 and µG3 such that µG1(Ω\A1) = 0, µG2(Ω\A2) = 0,

µG3(Ω \ A3) = 0 and

µF = α1µG1 + α2µG2 + α3µG3

for αi = µF (Ai), i = 1, 2, 3.12

12Moreover, because the measures µGi , i = 1, 2, 3, are conditional probabilities, they are unique up to
almost sure equality.
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Proof of lemma 7.

Define the probability measures µG1 , µG2 and µG3 as follows. Fix B1 ∈ B(A1), B2 ∈
B(A2), B3 ∈ B(A3).13 Observe that we must have µF (A1) > 0 because F ∈ C(α, β).

Let µG1(B1) = µF (B1)
µF (A1)

. Let µG2(B2) = µF (B2)
µF (A2)

if µF (A2) > 0 and let µG3(B3) = µF (B3)
µF (A3)

if

µF (A3) > 0. If µF (A2) = 0, let µG2 be arbitrary, and if µF (A3) = 0, let µG3 be arbitrary. �

Lemma 8. Any probability measure µF =
∑n

i=1 γiδωi such that γi ∈ [0, 1],
∑n

i=1 γi = 1

and µF ∈ C(α, β), can be written as µF =
∑N

i=1 αiµi for some probability measures µi =

(1 − γ)δωi + γδvi, γ ∈ [β, 1], ωi ∈ [a0, α), vi ∈ [α, a], and weights αi ∈ [0, 1] such that∑N
i=1 αi = 1 for some N ∈ N.

Proof of lemma 8.

Fix µF =
∑n

i=1 γiδωi such that γi ∈ [0, 1],
∑n

i=1 γi = 1 and µF ∈ C(α, β). An argument

similar to the proof of lemma 7 implies that there exist measures µG1 and µG2 such that

µG1(Ω \ [a0, α)) = 0, µG2(Ω \ [α, a]) = 0 and µF = (1− γ)µG1 + γµG2 for some γ ∈ [β, 1].

Let L = {i : ωi ∈ suppµF , ωi ∈ [a0, α)} and H = {i : ωi ∈ suppµF , ωi ∈ [α, a]} denote

the sets of the indices of the states that are in the support of µF and are respectively below

and above α. For all i ∈ L, define mi = (1−γ)δωi+γµG2 . Note that, because
∑

j∈L γj = 1−γ
and

∑
i∈L

γi∑
j∈L γj

= 1, we have µF =
∑

i∈L
γi∑
j∈L γj

mi.

Given i ∈ L and j ∈ H, let µij = (1 − γ)δωi + γδωj . Note that, because
∑

k∈H γk = γ

and
∑

j∈H
γj∑
k∈H γk

= 1, we have mi =
∑

j∈H
γj∑
k∈H γk

µij.

Thus µF =
∑

i∈L
γi∑
l∈L γl

(∑
j∈H

γj∑
k∈H γk

µij

)
, which implies that µF =

∑
i∈L,j∈H αijµij

with αij given by αij = γi∑
l∈L γl

γj∑
k∈H γk

. �

Lemma 9. Let A1 = [α, a], A2 = (a∗, α), A3 = [a0, a
∗]. Consider a signal y ∈ D such that

y(σ|·) is continuous on each interval A1, A2 and A3 and EF [ω|σ] ≥ a∗ for all F ∈ F . Then

EF [ω|σ] ≥ a∗ for all F ∈ C(α, β).

Proof of lemma 9.

In the argument that follows, I suppress the dependence of the conditional expectation

on y, using EF [ω|σ] to denote EF,y[ω|σ].

Claim 9.1. EF [ω|σ] ≥ a∗ for all F ∈ C(α, β) such that µF =
∑n

i=1 γiδωi for γi ∈ [0, 1],∑n
i=1 γi = 1.

13Recall that B(Ai) denotes the Borel sigma-algebra on Ai.
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Proof of claim 9.1.

We know that EF [ω|σ] ≥ a∗ is true for all F ∈ F . That is, EF [ω|σ] ≥ a∗ is true for

all F such that µF is a convex combination of a Dirac measure on ω′ for some ω′ ∈ [α, a]

and a Dirac measure on ω for some ω ∈ [a0, α), with weights γ and 1− γ for some γ ∈ [β, 1]

respectively. In particular, we have∫
Ω
wy(σ|w)dµi(w)∫

Ω
y(σ|w)dµi(w)

≥ a∗ (13)

for any probability measure µi such that µi = (1 − γ)δω + γδω′ , γ ∈ [β, 1], ω ∈ [a0, α) and

ω′ ∈ [α, a].

Lemma 8 shows that any µF =
∑n

i=1 γiδωi such that γi ∈ [0, 1],
∑n

i=1 γi = 1, µF ∈
C(α, β), can be written as µF =

∑N
i=1 αiµi for some probability measures µi = (1− γ)δωi +

γδvi , γ ∈ [β, 1], ωi ∈ [a0, a
∗), vi ∈ [a∗, a], and weights αi ∈ [0, 1] such that

∑N
i=1 αi = 1 for

some N ∈ N.

Let F ∈ C(α, β) such that µF =
∑n

i=1 γiδωi , γi ∈ [0, 1],
∑n

i=1 γi = 1, be given. Then∫
Ω
wy(σ|w)dµF (w)∫

Ω
y(σ|w)dµF (w)

=

∑n
i=1 γi

∫
Ω
wy(σ|w)dδwi∑n

i=1 γi
∫

Ω
y(σ|w)dδwi

=∑N
i=1 αi

∫
Ω
wy(σ|w)dµi(w)∑N

i=1 αi
∫

Ω
y(σ|w)dµi(w)

≥

min
i∈{1,...,N}

αi
∫

Ω
wy(σ|w)dµi(w)

αi
∫

Ω
y(σ|w)dµi(w)

=

min
i∈{1,...,N}

∫
Ω
wy(σ|w)dµi(w)∫

Ω
y(σ|w)dµi(w)

≥ a∗

(14)

where the first inequality follows from lemma 6 and the second inequality follows from

(13). �

Claim 9.2. Given F ∈ C(α, β), we have
∫
Ω wy(σ|w)dµF (w)∫
Ω y(σ|w)dµF (w)

= limn→∞

∑n
i=1 γi

∫
Ω wy(σ|w)dδwi∑n

i=1 γi
∫
Ω y(σ|w)dwi

.

Proof of claim 9.2.

By lemma 7, for each µF such that F ∈ C(α, β) there exist measures G1, G2, G3 such

that µF = α1µG1 + α2µG2 + α3µG3 , µG1(Ω \ A1) = 0, µG2(Ω \ A2) = 0 and µG3(Ω \ A3) = 0,

αi = µF (Ai) for i = 1, 2, 3.

By Theorem 15.10 in Aliprantis and Border (2006: 513), the set of probability measures

on Ω with finite support is dense in the set of all Borel probability measures on Ω (with the
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topology of weak convergence). Then, given any measure µ supported on Ai and any bounded

continuous function g, we have that limN→∞
∫
Ai
g(w)dµN(w) =

∫
Ai
g(w)dµ(w) where, for

all N ∈ N, µN =
∑N

i=1 ηiδωi , {δωi}Ni=1 is a finite collection of Dirac probability measures,

ηi ∈ [0, 1] for i = 1, . . . , N and
∑N

i=1 ηi = 1.

Then∫
Ω
wy(σ|w)dµF (w)∫

Ω
y(σ|w)dµF (w)

=

∑3
i=1 αi

∫
Ai
wy(σ|w)dµGi(w)∑3

i=1 αi
∫
Ai
y(σ|w)dµGi(w)

=∑3
i=1 αi limN→∞

∫
Ai
wy(σ|w)dµNGi(w)∑3

i=1 αi limN→∞
∫
Ai
y(σ|w)dµNGi(w)

=∑3
i=1 αi limN→∞

∫
Ai
wy(σ|w)d(

∑N
j=1 ηjδωj(w))∑3

i=1 αi limN→∞
∫
Ai
y(σ|w)d(

∑N
j=1 ηjδωj(w))

=

lim
N→∞

∑N
j=1

∑3
i=1 αiηj

∫
Ai
wy(σ|w)dδωj(w)∑N

j=1

∑3
i=1 αiηj

∫
Ai
y(σ|w)dδωj(w)

=

lim
n→∞

∑n
i=1 γi

∫
Ω
wy(σ|w)dδωi(w)∑n

i=1 γi
∫

Ω
y(σ|w)dδωi(w)

where the first equality follows from the fact that µF = α1µG1 + α2µG2 + α3µG3 , the second

equality follows from the fact that {µNGi}N∈N converges weakly to µGi for i = 1, 2, 3 and the

function y(σ|·) is bounded and continuous on each of the intervals A1, A2 and A3, and the

third equality follows from the definition of µNGi . �

Claim 9.3. EF [ω|σ] ≥ a∗ for all F ∈ C(α, β).

Proof of claim 9.3.

(14) implies that limn→∞

∑n
i=1 γi

∫
Ω wy(σ|w)dδwi∑n

i=1 γi
∫
Ω y(σ|w)dwi

≥ a∗. Because, by claim 9.2, given

F ∈ C(α, β), we have
∫
Ω wy(σ|w)dµF (w)∫
Ω y(σ|w)dµF (w)

= limn→∞

∑n
i=1 γi

∫
Ω wy(σ|w)dδwi∑n

i=1 γi
∫
Ω y(σ|w)dwi

, this implies that∫
Ω wy(σ|w)dµF (w)∫
Ω y(σ|w)dµF (w)

≥ a∗. � �

Lemma 10. Let π be the signal defined in lemma 12. Then EF [ω|σ] ≥ a∗ for all F ∈ C(α, β).

Proof of lemma 10.

Consider the signal q defined in lemma 5. By lemma 5, for all F ∈ ϕ, if EF,q[ω|σ] ≥ a∗,

then EF,π[ω|σ] ≥ a∗. We will show that EF,q[ω|σ] ≥ a∗ for all F ∈ C(α, β). By lemma 5,

this will imply that EF,π[ω|σ] ≥ a∗ for all F ∈ C(α, β).

By lemma 4, EF,q[ω|σ] ≥ a∗ is true for all F ∈ F .
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Let A1 = [α, a], A2 = (a∗, α), A3 = [a0, a
∗]. Because the signal q ∈ D is such that

q(σ|·) is continuous on each interval A1, A2, A3 and EF,q[ω|σ] ≥ a∗ is true for all F ∈ F ,

lemma 9 applies. By lemma 9, we have EF,q[ω|σ] ≥ a∗ for all F ∈ C(α, β).

Therefore, we have EF,π[ω|σ] ≥ a∗ for all F ∈ C(α, β), as required. �

Lemma 11. The signal π specified in lemma 12 satisfies the conditions in lemma 2.

Proof of lemma 11.

Given π ∈ D, let R(π) = {1, . . . , r} denote the finite subset of signal realization indices

such that σ1, . . . , σr have a strictly positive probability under π given that the state is α.

Then the statement of the lemma is equivalent to the following. π ∈ D specified in

lemma 12 is such that EF,π[ω|σi] ≥ a∗ for all i ∈ R(π) and for all F ∈ Fα, for all ωm ∈ [a0, a
∗),

we have
∑

i∈R(π) π(σi|ωm) = min
{

β
1−β

α−a∗
a∗−ωm , 1

}
and whenever the sender chooses π, Nature

prefers to choose some F ∈ Fα.

Lemma 10 implies that π specified in lemma 12 is such that EF [ω|σ] ≥ a∗ for all

F ∈ C(α, β).

Moreover, by construction, given ωm ∈ [a0, a
∗), we have

∑
i∈R(π) π(σi|ωm) = π(σ|ωm) =

min
{

β
1−β

α−a∗
a∗−ωm , 1

}
.

Observe that the signal structure π is such that if the signal realization is not σ, then

the signal reveals the state. If the signal reveals that the state is ω, then the receiver’s belief

is δω regardless of the receiver’s prior, which implies that Nature’s choice of the receiver’s

prior affects the sender’s payoff only by determining EF [ω|σ].

Note that if F is such that EF [ω|σ] ≥ a∗, then u(EF [ω|σ]) = u(a∗) because u is constant

on [a∗, a]. Therefore, because EF [ω|σ] ≥ a∗ for all F ∈ C(α, β) and because, if the signal

realization is not σ, then the signal reveals the state, Nature is indifferent when choosing

among the receiver’s priors F ∈ C(α, β). It follows that Nature weakly prefers to choose

F ∈ Fα. �

Lemma 12 proves the optimality of an information policy that is more general than

the policy described in Theorem 1. Lemma 12 implies both the result in Theorem 1 and the

result about an optimal information policy with revelation in section 3.4.

Lemma 12. There exists an optimal signal that induces a distribution over the receiver’s
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actions where the probability of action 1 in state ω is given by

s(ω) =

1 if ω ∈ (a∗, a]

min
{

β(α−a∗)
(1−β)(a∗−ω)

, 1
}

if ω ∈ [a0, a
∗]

If there exists an optimal signal that induces a distribution over the receiver’s actions

where the probability of action 1 is given by s′ and s′ 6= s, then s′(ω) = s(ω) µFs-a.e.

An optimal signal inducing the distribution s over the receiver’s actions is given by

π(σ|ω) =


p(ω) ∈

[
α−a∗
ω−a∗ , 1

]
if ω ∈ [α, a]

t(ω) ∈
[
0, 1
]

if ω ∈ (a∗, α)

min
{

β(α−a∗)
(1−β)(a∗−ω)

, 1
}

if ω ∈ [a0, a
∗]

π(σw|ω) =


1− p(ω) if ω = w and ω ∈ [α, a]

1− t(ω) if ω = w and ω ∈ (a∗, α)

1−min
{

β(α−a∗)
(1−β)(a∗−ω)

, 1
}

if w = ω and ω ∈ [a0, a
∗]

where ω 7→ p(ω) and ω 7→ t(ω) are measurable functions.

Proof of lemma 12.

We first show that an optimal signal is given by π specified in the lemma.

Given π ∈ D, let R(π) = {1, . . . , r} denote the finite subset of signal realization indices

such that σ1, . . . , σr have a strictly positive probability under π given that the state is α.

By lemma 2, if there exists a signal π ∈ D such that EF,π[ω|σi] ≥ a∗ for all i ∈ R(π)

and for all F ∈ Fα, if for all ω ∈ [a0, a
∗), we have

∑
i∈R(π) π(σi|ωm) = min

{
β

1−β
α−a∗
a∗−ω , 1

}
,

and if it is the case that whenever the sender chooses π, Nature prefers to choose F ∈ Fα,

then π maximizes the sender’s payoff among all signals in D.

Lemma 11 shows that the signal π specified in lemma 12 satisfies the conditions in

lemma 2. Then lemma 2 implies that π maximizes the sender’s payoff among all signals in

D.

Next, we show that if an optimal signal induces a distribution s′ 6= s over the receiver’s

actions, then s′(ω) = s(ω) µFs-a.e.

It is easy to see that π induces s. We will show that there does not exist an equilibrium
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in which the sender chooses a signal that induces action 1 with probability strictly greater

than s(ω) for all ω ∈ A, where A ⊆ Ω is some set satisfying µFs(A) > 0.

Given π′ ∈ D and F ∈ C(α, β), let R(F, π) denote the finite number of signal indices

such that EF,π′ [ω|σi] ≥ a∗ and π(σi|α) > 0 for all i ∈ R(F, π′). By lemma 1, for all

π′ ∈ D there exists a feasible receiver’s prior F ∈ C(α, β) such that
∑

i∈R(F,π′) π
′(σi|ω) ≤

min
{

β(α−a∗)
(1−β)(a∗−ω)

, 1
}

= s(ω) for all ω ∈ [a0, a
∗).

Suppose for the sake of contradiction that there is an equilibrium in which the sender

chooses π′ ∈ D and Nature chooses F ′ 6= F such that action 1 is induced with probability

strictly greater than s(ω) for all ω ∈ A for some set A ⊆ Ω satisfying µFs(A) > 0.

Let U∗ denote the sender’s equilibrium payoff if the sender chooses the signal π. Because

the sender can guarantee a payoff of U∗ by choosing π, if the sender chooses π′, then π′ must

yield a payoff of at least U∗ to the sender.

Therefore, the sender who chooses π′ receives a payoff of at least U∗ if Nature chooses

F or F ′. The fact that the sender who chooses π′ receives a payoff of at least U∗ if Nature

chooses F implies that
∑

i∈R(F,π′) π
′(σi|ω) = min

{
β(α−a∗)

(1−β)(a∗−ω)
, 1
}

= s(ω) µFs-a.e. on [a0, a
∗).

This implies that the induced distribution over actions cannot be such that action 1 is induced

with probability strictly greater than s(ω) for all ω ∈ A with µFs(A) > 0, a contradiction.

Thus if an optimal signal induces a distribution s′ 6= s over the receiver’s actions,

then s′(ω) ≤ s(ω) µFs-a.e. Moreover, if a signal π′ induces a distribution s′ 6= s such

that s′(ω) ≤ s(ω) µFs-a.e. and s′(ω) < s(ω) for all ω ∈ A for some set A ⊆ Ω satisfying

µFs(A) > 0, then the signal π′ gives the sender a strictly lower payoff than the signal π

inducing the distribution s, so the signal π′ cannot be optimal.

Therefore, if an optimal signal induces a distribution s′ 6= s over the receiver’s actions,

then we must have s′(ω) = s(ω) µFs-a.e., as required. �

Theorem 1. There exists an optimal signal that induces a distribution over the receiver’s

actions such that the probability of action 1 in state ω is given by

s(ω) =

1 if ω ∈ (a∗, a]

min
{

β(α−a∗)
(1−β)(a∗−ω)

, 1
}

if ω ∈ [a0, a
∗]

If there exists an optimal signal that induces a distribution over the receiver’s actions

where the probability of action 1 is given by s′ and s′ 6= s, then s′(ω) = s(ω) µFs-a.e.
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An optimal signal inducing the distribution s over the receiver’s actions is given by

π(σ|ω) = s(ω), π(σ0|ω) = 1− s(ω) for all ω ∈ Ω.

Proof of theorem 1.

Follows from lemma 12. �

Lemma 13. Consider the optimal information policy with two signal realizations, σ and σ0,

described in Theorem 1. Then a receiver with a prior µF , F ∈ C(α, β), strictly benefits from

persuasion if and only if either

EF [ω] < a∗ EF [ω|σ] > a∗

or

EF [ω] ≥ a∗
∫

Ω

π(σ0|w)dF (w) > 0

Proof of lemma 13.

Note that, because F ∈ C(α, β), we must have
∫

Ω
π(σ|w)dF (w) > 0.

So far we have conducted the analysis by writing the utility of the sender in terms of the

receiver’s expectation of the state and assuming that the receiver takes the high action if and

only if the receiver’s expectation is above the threshold a∗. In order to analyze the receiver’s

welfare, it is now necessary to specify the utility function of the receiver. Let x ∈ {0, 1}
denote the actions available to the receiver and let uR(x,w) : {0, 1} × Ω → R denote the

utility function of the receiver. Without loss of generality, we let uR(x,w) = w if x = 1 and

let uR(x,w) = a∗ if x = 0. Then EF [uR(1, w)|σ] = EF [w|σ] and EF [uR(0, w)|σ] = a∗, so a

receiver seeing signal σ takes action x = 1 if and only if EF [w|σ] ≥ a∗.

Because in equilibrium under the optimal information policy with two signal

realizations described in Theorem 1 the receiver takes action 1 if and only if he sees signal

realization σ, the receiver’s equilibrium payoff is∫
Ω

[
π(σ|w)uR(1, w) + π(σ0|w)uR(0, w)

]
dF (w)

Suppose that EF [ω] < a∗ and EF [ω|σ] > a∗. Thus if no information is provided, the

receiver takes action 0 and gets a payoff of
∫

Ω
uR(0, w)dF (w).
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Because EF [ω|σ] > a∗ and
∫

Ω
π(σ|w)dF (w) > 0, it must be the case that∫

Ω

[
π(σ|w)uR(1, w) + π(σ0|w)uR(0, w)

]
dF (w) =∫

Ω

π(σ|w)wdF (w) +

∫
Ω

π(σ0|w)uR(0, w)dF (w) =∫
Ω

π(σ|w)dF (w)EF [w|σ] +

∫
Ω

π(σ0|w)dF (w)a∗ >∫
Ω

π(σ|w)dF (w)a∗ +

(
1−

∫
Ω

π(σ|w)dF (w)

)
a∗ =

a∗ =

∫
Ω

uR(0, w)dF (w)

Therefore, the receiver strictly benefits from persuasion.

Next, suppose that EF [ω] ≥ a∗ and
∫

Ω
π(σ0|w)dF (w) > 0. Thus if no information is

provided, the receiver takes action 1 and gets a payoff of
∫

Ω
uR(1, w)dF (w).

Because EF [ω|σ0] < a∗ and
∫

Ω
π(σ0|w)dF (w) > 0, it must be the case that∫

Ω

[
π(σ|w)uR(1, w) + π(σ0|w)uR(0, w)

]
dF (w) =∫

Ω

π(σ|w)wdF (w) +

∫
Ω

π(σ0|w)uR(0, w)dF (w) =∫
Ω

π(σ|w)dF (w)EF [w|σ] +

∫
Ω

π(σ0|w)dF (w)a∗ >∫
Ω

π(σ|w)dF (w)EF [w|σ] +

(
1−

∫
Ω

π(σ|w)dF (w)

)
EF [w|σ0] =∫

Ω

uR(0, w)dF (w)

Therefore, the receiver strictly benefits from persuasion.

Note that we must have EF [ω|σ] ≥ a∗, so if it is not the case that EF [ω|σ] > a∗,

then we must have EF [ω|σ] = a∗. Thus suppose that EF [ω] < a∗ and EF [ω|σ] = a∗. Then

EF [ω] < a∗, so if no information is provided, the receiver takes action 0 and gets a payoff of∫
Ω
uR(0, w)dF (w).
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Because EF [ω|σ] = a∗, it must be the case that∫
Ω

[
π(σ|w)uR(1, w) + π(σ0|w)uR(0, w)

]
dF (w) =∫

Ω

[
π(σ|w)uR(0, w) + π(σ0|w)uR(0, w)

]
dF (w) = a∗ =

∫
Ω

uR(0, w)dF (w)

Therefore, the receiver’s utility is the same under persuasion and when no information is

provided.

If
∫

Ω
π(σ0|w)dF (w) = 0, then it is easy to see that the receiver’s payoff under persuasion

is the same as in the case when no information is provided because in this case the receiver

takes the high action when no information is provided and believes that under persuasion

only the signal realization σ inducing him to take the high action is possible. �

Proof of Proposition 2.

Because π(σ|w) = 1 for all w > α, we have∫
Ω

π(σ|w)dFs(w) =

∫
[a0,α]

π(σ|w)dFs(w) +

∫
(α,a]

dFs(w)

∫
Ω

π(σ|w)dGs(w) =

∫
[a0,α]

π(σ|w)dGs(w) +

∫
(α,a]

dGs(w)

Because µFs is a local mean-preserving spread of µGs on [a0, α], we have µFs = γµ1 +

(1−γ)µ2, µGs = γm1+(1−γ)m2 for some γ ∈ [0, 1], µ1((α, a]) = m1((α, a]) = 0, µ2([a0, α]) =

m2([a0, α]) = 0. Therefore,
∫

(α,a]
dFs(w) =

∫
(α,a]

dGs(w) = 1− γ.

Moreover, we have
∫

[a0,α]
π(σ|w)dFs(w) = γ

∫
[a0,α]

π(σ|w)dµ1(w) and∫
[a0,α]

π(σ|w)dGs(w) = γ
∫

[a0,α]
π(σ|w)dm1(w)

Then
∫

Ω
π(σ|w)dFs(w) ≥

∫
Ω
π(σ|w)dGs(w) is equivalent to

∫
[a0,α]

π(σ|w)dFs(w) ≥∫
[a0,α]

π(σ|w)dGs(w), which is equivalent to
∫

[a0,α]
π(σ|w)dµ1(w) ≥

∫
[a0,α]

π(σ|w)dm1(w).∫
[a0,α]

π(σ|w)dµ1(w) ≥
∫

[a0,α]
π(σ|w)dm1(w) holds because the function w 7→ π(σ|w) is

strictly convex on [a0, α] and µ1 is a mean-preserving spread of m1. �

Lemma 14. Suppose that Fs ∈ C(α, β) admits a density and that EFs [ω] < a∗. Consider the

standard persuasion model such that Fs is the common prior of the sender and the receiver.

Given a ∈ Ω, let pa denote the signal with two realizations, σ and σ0, satisfying pa(σ|w) = 1

if w ≥ a and p(σ|w) = 0 if w < a. Let a′ denote the threshold that is optimal in the standard
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persuasion model, let π a signal with two realizations, σ and σ0, that is optimal in the model

with unknown beliefs, and let α = a∗ − β
1−β (α− a∗). Then α > a′.

Proof of lemma 14.

Suppose for the sake of contradiction that α ≤ a′.

Note that, because Fs ∈ C(α, β), we have µFs((a
∗, a]) > 0. Then the signal pa′ optimal

in the standard persuasion model must be such that EFs,pa′ [ω|σ] = a∗.

Next, note that the fact that EFs [ω] < a∗ and EFs,pa′ [ω|σ] = a∗ implies that

µFs([a0, a
′)) > 0.

We have

a∗ = EFs,pa′ [ω|σ] ≥ EFs,pα [ω|σ] > EFs,π[ω|σ]

where the equality follows from the form of the optimal solution in the standard persuasion

model, the first inequality follows from the assumption that α ≤ a′, and the second inequality

follows from the formula for the signal π and from the fact that µFs([a0, a
′)) > 0.

Therefore, we have EFs,π[ω|σ] < a∗, which is a contradiction because the optimal signal

π must satisfy EF,π[ω|σ] ≥ a∗ for every feasible prior F ∈ C(α, β). �

Proof of Proposition 1. Follows from lemma 14. �

Proof of Proposition 3.

Without loss of generality, suppose that µFs is a local mean-preserving spread of µGs
on [a0, a

′).

We have ∫
Ω

D(w)dFs(w) =

∫
[a0,a′)

D(w)dFs(w) +

∫
Ω\[a0,a′)

D(w)dFs(w)

∫
Ω

D(w)dGs(w) =

∫
[a0,a′)

D(w)dGs(w) +

∫
Ω\[a0,a′)

D(w)dGs(w)

Because µFs is a local mean-preserving spread of µGs on [a0, a
′), we have µFs = γµ1 +

(1− γ)µ2, µGs = γm1 + (1− γ)m2 for some γ ∈ [0, 1], µ1(Ω \ [a0, a
′)) = m1(Ω \ [a0, a

′)) = 0,

µ2([a0, a
′)) = m2([a0, a

′)) = 0 and µ2 = m2. Therefore, we have
∫

Ω\[a0,a′)
D(w)dFs(w) =∫

Ω\[a0,a′)
D(w)dGs(w).
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Moreover, we have
∫

[a0,a′)
D(w)dFs(w) = γ

∫
[a0,a′)

D(w)dµ1(w) and∫
[a0,a′)

D(w)dGs(w) = γ
∫

[a0,a′)
D(w)dm1(w).

Then
∫

Ω
D(w)dFs(w) ≥

∫
Ω
D(w)dGs(w) is equivalent to

∫
[a0,a′)

D(w)dFs(w) ≥∫
[a0,a′)

D(w)dGs(w), which is equivalent to
∫

[a0,a′)
D(w)dµ1(w) ≥

∫
[a0,a′)

D(w)dm1(w).∫
[a0,a′)

D(w)dµ1(w) ≥
∫

[a0,a′)
D(w)dm1(w) holds because the function w 7→ D(w) is strictly

convex on [a0, a
′) and µ1 is a mean-preserving spread of m1. �
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