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Abstract

This paper introduces ambiguous transfers to the problems of full surplus extraction

and implementation in finite dimensional naive type spaces. The mechanism designer

commits to one transfer rule but informs agents of a set of potential ones. Without

knowing the adopted transfer rule, agents are assumed to make decisions based on the

worst-case expected payoffs. A key condition in this paper is the Beliefs Determine

Preferences (BDP) property, which requires an agent to hold distinct beliefs about

others’ information under different types. We show that full surplus extraction can be

guaranteed via ambiguous transfers if and only if the BDP property is satisfied by all

agents. With a common prior, all efficient allocations are implementable via individu-

ally rational and budget-balanced mechanisms with ambiguous transfers if and only if

the BDP property holds for all agents. This necessary and sufficient condition is weaker

than those for full surplus extraction and implementation via Bayesian mechanisms.

Therefore, ambiguous transfers may achieve first-best outcomes that are impossible

under the standard approach. In particular, with ambiguous transfers, efficient alloca-

tions become implementable generically in two-agent problems, a result that does not

hold under a Bayesian framework.
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1 Introduction

Many transaction mechanisms have uncertain rules. For instance, Priceline Express Deals

offer travelers a known price for a hotel stay, but the exact name and location of the hotel

remain unknown until the completion of payment. Alternatively, some stores run scratch-

and-save promotions. Consumers receive scratch cards during check-out, which reveal dis-

counts, and thus the costs of their purchases remain unknown at the time they decide to

buy. As a third example, eBay allows sellers of auction-style listings to set hidden reserve

prices.

In all the above mechanisms, the mechanism designer introduces uncertainty about the

allocation and/or transfer rule without telling agents the underlying probability distribution.

The subjective expected utility model can be adopted to describe agents’ decision making

without an objective probability. However, since ?, many studies have challenged this model,

arguing that decision makers tend to be ambiguity-averse.1 Therefore, it is important to un-

derstand if and how a mechanism designer can benefit from agents’ ambiguity aversion. More

specifically, we would like to know whether engineering ambiguity on rules of mechanisms

can help the designer achieve the first-best outcome.

This paper introduces ambiguous transfers to study two problems: full surplus extrac-

tion and interim individually rational and ex-post budget-balanced implementation of any

ex-post efficient allocation rule. The analysis is based on finite dimensional naive type spaces

where each agent’s only private information is her payoff-relevant type. The problem of full

surplus extraction aims to design a mechanism in which agents transfer the entire surplus to

the designer. The efficient implementation problem constructs an incentive compatible, in-

dividually rational, and budget-balanced mechanism such that the socially optimal outcome

emerges as an equilibrium. In our model, the mechanism designer informs agents of the exact

allocation rule. She also commits to one transfer rule, but the communication is ambiguous

so that agents only know a set of potential ones. Without knowing the adopted transfer rule,

agents are assumed to be ambiguity-averse. More specifically, agents are maxmin expected

utility maximizers who make decisions based on the worst-case scenario.

In this paper, the Beliefs Determine Preferences (BDP) property is the key condition for

the existence of first-best mechanisms with ambiguous transfers. The property, introduced

by Neeman (2004), requires that an agent should hold distinct beliefs about others’ private

information under different types. Correlated information is necessary in the BDP property.

1There is a huge literature studying ambiguity aversion from the perspective of different fields, including

(but not limited to) decision theory (e.g., Gilboa and Schmeidler (1989), Klibanoff et al. (2005)), macroeco-

nomics (e.g., ??), finance (e.g. ?, ?), and experimental and behavioral economics (e.g., ?, ?).
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We focus on a finite dimensional naive type space, in which case the BDP property holds

for all agents generically.

We show that full surplus extraction can be guaranteed via ambiguous transfers if and

only if the BDP property is satisfied by all agents. In addition, under a common prior, any

efficient allocation rule is implementable via an interim individually rational and ex-post

budget-balanced mechanism with ambiguous transfers if and only if the BDP property holds

for all agents. By confining the analysis in private value common prior environments, we

further show that efficient implementation can be guaranteed if and only if the BDP property

fails for at most one agent. As an extension, we establish necessary and slightly stronger

sufficient conditions for efficient implementation under environments potentially without a

common prior. Lastly, we discuss the robustness of our sufficiency results under alternative

models of ambiguity aversion.

The BDP property is weaker than Crémer and McLean (1988)’s Convex Independence

condition, which is necessary and sufficient for full surplus extraction via a Bayesian mech-

anism. Convex Independence, together with the Identifiability condition established by

Kosenok and Severinov (2008), is necessary and sufficient for implementing any efficient

allocation rule via an interim individually rational and ex-post budget-balanced Bayesian

mechanism. Under both problems, this paper requires a strictly weaker condition to obtain

the first-best outcome compared to the Bayesian approach. As a result, when the conditions

of Crémer and McLean (1988) or Kosenok and Severinov (2008) fail, engineering ambiguity

deliberately may allow the designer to achieve first-best outcomes that are impossible under

the Bayesian mechanisms.

Admittedly, some works that we will discuss in Section 1.1 have shown that Convex

Independence is generic. But in applications, it may be of interest to study some non-

generic cases where Convex Independence fails. In particular, the BDP property imposes

weaker restrictions on the cardinality of the finite type space than Convex Independence

and Identifiability. For example, when one agent has more types than the type profiles of all

other agents, Convex Independence fails for this agent with positive probability. As another

instance, Kosenok and Severinov (2008)’s necessary and sufficient conditions can never hold

simultaneously for any common prior with only two agents, indicating an impossibility result

on two-agent implementation problems. But the BDP property and ambiguous transfers can

provide a solution to such problems generically.

In this paper, the mechanism designer announces an efficient allocation rule and intro-

duces ambiguity in transfer rules only. As the ex-post efficient allocation rule is often unique

in a finite-type framework, the mechanism designer may not have multiple allocation rules

to choose from. In a related paper, Di Tillio et al. (2017) study how second-best revenue in
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an independent private value auction can be improved if the seller introduces ambiguity in

both allocation and transfer rules. We discuss more on the relationship with this paper in

Section 1.1.

The paper proceeds as follows. We review the literature in Section 1.1 and introduce the

environment in Section 2. Our main result is presented in Section 3. Section 4 extends our

main result along two directions. The Appendix collects all proofs and some examples.

1.1 Literature review

1.1.1 Efficient mechanism design

How to implement efficient allocations is a classical topic in mechanism design theory that

has been widely studied in situations such as public good provision and bilateral trading.

Individual rationality is a natural requirement as agents can opt out of the mechanism.

Budget balance requires that agents should finance within themselves for the efficient out-

come rather than rely on an outside budget-breaker. When either individual rationality or

budget balance is required, the literature provides positive results for efficient mechanism

design in private value environments. For instance, the VCG mechanism (Vickrey (1961),

Clarke (1971), and Groves (1973)) is ex-post individually rational. The AGV mechanism

(d’Aspremont and Gérard-Varet (1979)) is ex-post budget-balanced. However, the liter-

ature documents a tension between efficiency, individual rationality, and budget balance,

when agents have independent information. For example, in a private value bilateral trad-

ing framework, Myerson and Satterthwaite (1983) prove that it is impossible to achieve

efficiency with an individually rational and budget-balanced mechanism in general. With

multi-dimensional and interdependent values, Dasgupta and Maskin (2000) and Jehiel and

Moldovanu (2001) prove that efficient allocations are generically non-implementable.

First-best mechanism design becomes possible in some correlated information environ-

ments. Crémer and McLean (1985, 1988) establish two conditions to fully extract agents’

surplus in private value auctions, among which the Convex Independence condition is nec-

essary and sufficient for full surplus extraction to be a Bayesian Nash equilibrium. In a

fixed finite-dimensional type space, if no one has more types than all others’ type profiles,

the condition holds for all agents under almost every prior. Without restricting the dimen-

sion, different notions of genericity are adopted in the literature and various conclusions on

genericity of Convex Independence (or the weaker BDP property) are made (e.g., Neeman

(2004), Heifetz and Neeman (2006), Barelli (2009), Chen and Xiong (2011, 2013), ??). With

continuous types, McAfee and Reny (1992) show that approximate full surplus extraction

can be achieved. In addition, the recent papers of Liu (2014) and Noda (2015) prove an in-
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tertemporal variant of Convex Independence is sufficient for first-best mechanism design in

dynamic environments. By introducing ambiguous transfers, Section 3 of the current paper

shows that a weaker condition, the BDP property, becomes necessary and sufficient for full

surplus extraction under a finite, naive type space.

In an implementation problem, the allocation rule is exogenously given. Thus, the mech-

anism designer constructs incentive compatible transfers to achieve the desired outcome.

Under the context of exchange economies, McLean and Postlewaite (2002, 2003a,b) propose

the notion of informational size and prove the existence of incentive compatible and approx-

imately efficient outcomes when agents have small informational size.2 Under a mechanism

design framework, McLean and Postlewaite (2004, 2015) implement efficient allocation rules

via individually rational mechanisms under the BDP property. In their mechanisms, small

outside money is needed even when agents are informationally small. Different from these

papers, our mechanism for implementation in Section 3 is exactly efficient, individually ra-

tional, and budget-balanced without imposing any informational smallness assumption.

A few papers study budget-balanced mechanisms with or without independent infor-

mation, including Matsushima (1991), Aoyagi (1998), Chung (1999), d’Aspremont et al.

(2004), ?, etc.3 Among these works, d’Aspremont et al. (2004) propose necessary and suffi-

cient conditions for budget-balanced mechanisms. None of these papers requires individual

rationality. Also, they assume that there are at least three agents. In fact, d’Aspremont

et al. (2004) indicate an impossibility result in implementing efficient allocations via budget-

balanced mechanisms with two agents under correlated information. However, we do require

individual rationality, and our mechanism with ambiguous transfers works for environments

with at least two agents.

Matsushima (2007), Kosenok and Severinov (2008), and ? among others design individ-

ually rational and budget-balanced mechanisms. Kosenok and Severinov (2008) propose the

Identifiability condition, which along with the Convex Independence condition, is necessary

and sufficient for implementing any ex-ante socially rational allocation rule via an interim

individually rational and ex-post budget-balanced Bayesian mechanism. The Identifiability

condition is generic with at least three agents and under some restrictions on the dimension

of the type space, but Convex Independence and Identifiability never hold simultaneously

in a two-agent setting. Thus Kosenok and Severinov (2008) imply an impossibility result

in efficient, individually rational, and budget-balanced two-agent mechanism design. In our

2For related results, see also Sun and Yannelis (2007, 2008).
3 Matsushima (1991), Chung (1999), d’Aspremont et al. (2004) only consider private value utility func-

tions. In this case, incentive compatibility can be achieved via a VCG mechanism, rather than via information

correlation. Thus, they allow for independent information.

5



paper, the BDP property is weaker than Convex Independence, and we do not need Identifia-

bility. Moreover, the BDP property holds generically in a finite-dimensional type space with

at least two agents, and thus we make the impossible possible for two-agent implementation

problems.

1.1.2 Mechanism design under ambiguity

In the growing literature on mechanism design with ambiguity-averse agents, most of the

works assume exogenously that agents hold ambiguous beliefs of others’ types. For exam-

ple, Bose et al. (2006), Bose and Daripa (2009), and Bodoh-Creed (2012) study optimal

mechanism design with ambiguous averse agents. ? and De Castro et al. (2017a,b) prove

that all Pareto efficient allocations are incentive compatible and thus implementable when

agents’ ambiguous beliefs are unrestricted. Under the private value assumption, Wolitzky

(2016) establishes a necessary condition for the existence of an efficient, individually ratio-

nal, and weak budget-balanced mechanism. In an environment with multi-dimensional and

interdependent values, Song (2016) quantifies the amount of ambiguity that is necessary and

sometimes sufficient for efficient mechanism design. We do not assume exogenous ambiguity

in agents’ beliefs, which is the biggest difference between the above papers and our work.

Bose and Renou (2014) and Di Tillio et al. (2017) contrast the above works in that

ambiguity is endogenously engineered by the mechanism designer. Before the allocation

stage, Bose and Renou (2014) let the mechanism designer communicate with agents via an

ambiguous device, which generates multiple beliefs. Their paper characterizes social choice

functions that are implementable under this method. Our paper is different from Bose and

Renou (2014), as we do not need multiple beliefs on other agents’ private information.

Di Tillio et al. (2017) consider the problem of revenue maximization in a private value and

independent belief auction. The seller commits to a simple mechanism, i.e., an allocation and

transfer rule, but informs agents of a set of simple mechanisms. As all the simple mechanisms

generate the same expected revenue (imposed by the Consistency condition), agents do not

know the exact rule and thus make decisions based on the worst-case scenario. Compared

to the Bayesian mechanism, their ambiguous approach yields a higher expected revenue.

In the current paper, ambiguity is engineered in a similar way to Di Tillio et al. (2017).

However, instead of studying how ambiguous mechanisms improve second-best revenues un-

der independent beliefs, our paper studies when the first-best outcome in surplus extraction

or implementation can be achieved without restricting attention to independent beliefs. The

essential factor that enables us to achieve the first-best outcome in a finite type space is the

correlation in agents’ beliefs and more particularly, the BDP property.
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As mentioned before, we fix an efficient allocation rule and only allow for ambiguity in

transfer rules, but in Di Tillio et al. (2017)’s mechanism both allocation and transfer rules

are ambiguous. Our restriction on unambiguous allocation rule is compatible with Di Tillio

et al. (2017)’s Consistency condition. In the full surplus extraction problem, each transfer

rule leaves agents zero surplus and gives the designer the full surplus on path. In the efficient

implementation problem, each transfer rule leads to the first-best efficiency on path. There-

fore, all transfer rules are credible. The restriction on unambiguous allocation rule is closely

related to two facts: (1) we aim to achieve the first-best outcome in full surplus extraction

or implementation, and (2) our argument is confined to a finite type space. Allowing for

ambiguity in allocation rules may fail full surplus extraction and implementation. To see

this, consider a finite-type environment where the total surplus is maximized by a unique

allocation rule. In this case, any other allocation rule is inefficient and has a lower surplus

level. As the efficient allocation rule must be used in the mechanisms for full surplus ex-

traction and implementation, and as agents know the designer’s objective is to extract full

surplus or maximize efficiency, any other rule with a lower surplus level is non-credible to

the agents. Hence, multiple allocation rules are not used in our environment.

In Di Tillio et al. (2017)’s optimal mechanism under independent beliefs and finitely

many types, ambiguity in allocation rules plays a role. Therefore, they cannot obtain the

first-best revenue. In fact, in a screening or an independent private value auction framework,

allowing for ambiguous transfers but not ambiguous allocations does not improve the seller’s

revenue compared to a standard unambiguous mechanism. However, according to Di Tillio

et al. (2017)’s Appendix B, their approach works for full surplus extraction with continuous

types. This is because there are infinitely many ex-ante efficient allocation rules, or infinitely

many allocation rules that are ex-post efficient almost everywhere. Among them, every two

rules are the same except in a null set of the type space. In a continuous type space, if an

efficiency-maximizing social planner wants to implement an ex-post efficient allocation rule

almost everywhere, she can follow the approach of Di Tillio et al. (2017)’s Appendix B as

well. Hence, the current paper only focuses on environments with finitely many types.

2 Environment

We study an asymmetric information environment given by E = {I, A, (Θi, ui, pi)
N
i=1}.

• Let I = {1, ..., N} be a finite set of agents. Assume N ≥ 2.

• Denote the set of feasible outcomes by A.

• Let θi ∈ Θi be agent i’s type in her type space. Denote ×i∈IΘi by Θ, ×j∈I, j 6=iΘj by

Θ−i, and ×k∈I, k 6=i,jΘk by Θ−i−j. Let |Θi| be the cardinality of Θi. Assume 2 ≤ |Θi| <∞.
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• Each agent i has a quasi-linear utility function ui(a, θ) + b, where a ∈ A is a feasible

outcome, b ∈ R is a monetary transfer, and θ ∈ Θ is the realized type profile. In the

special case that ui
(
a, (θi, θ−i)

)
= ui

(
a, (θi, θ

′
−i)
)

for all θi ∈ Θi, θ−i, θ
′
−i ∈ Θ−i, and a ∈ A,

we say ui has private value and denote ui
(
a, (θi, θ−i)

)
by ui(a, θi).

• Let pi ∈ ∆(Θ) be agent i’s prior on Θ. In the special case that pi(θ) = pj(θ) for all i, j ∈ I
and θ ∈ Θ, we can drop the subscript and denote the common prior by p.

The structure of environment E is assumed to be common knowledge between the mech-

anism designer and agents, but every agent’s realized type is her private information. As a

type in this paper only concerns payoff-relevant information, such a type space is sometimes

called a “naive” type space in the literature.

Let pi(θi), pi(θj), pi(θi, θj), and pi(θ) represent the marginal distribution of pi on θi, θj,

(θi, θj), and θ respectively. Throughout this paper, we impose the following assumption.

Assumption 2.1: For all i, j ∈ I with i 6= j, and (θi, θj) ∈ Θi ×Θj, pi(θi, θj) > 0.

Type-θi agent i’s belief is derived from Bayesian updating pi: she believes that others

have type profile θ−i ∈ Θ−i with probability pi(θ−i|θi) ≡ pi(θ)
pi(θi)

, which is well-defined since

pi(θi) ≥ pi(θi, θj) > 0. For agent i 6= j and types θi, θj, type-θi agent i’s marginal belief on

θj is pi(θj|θi) ≡ pi(θi,θj)

pi(θi)
. When N ≥ 3, further define type-θi agent i’s marginal belief on

θ−i−j as p(θ−i−j|θi, θj) given that θj is the type of agent j. When p is a common prior, we

can use p(θ−i|θi), p(θj|θi), and p(θ−i−j|θi, θj) to denote these beliefs. For simplicity, let the

vector (pi(θ−i|θi))θ−i∈Θ−i be denoted by pi(·|θi).
An allocation rule q : Θ→ A is a plan to assign a feasible outcome contingent on agents’

realized type profile. An allocation rule q is said to be ex-post efficient if
∑

i∈I ui
(
q(θ), θ

)
≥∑

i∈I ui
(
q′(θ), θ

)
for all q′ : Θ→ A and θ ∈ Θ.

In this paper, a number r ∈ R is positive if r > 0. For any positive integer K, the vector

0 ∈ RK is a vector of K zeros. Let RK
+ denote {v ∈ RK |vk ≥ 0,∀k = 1, ..., K}.

Definition 2.1: A mechanism with ambiguous transfers is a pair M = (q,Φ), where

q : Θ → A is an allocation rule, and Φ is a set of transfer rules with a generic element

φ : M → RN . We call the set Φ ambiguous transfers.4

The mechanism works in the following way. The designer first commits to the allocation

rule q : M → A and an arbitrary transfer rule φ ∈ Φ secretly. Before reporting messages,

agents are informed of the allocation rule q and ambiguous transfers Φ, but not φ. Af-

4We focus on direct mechanisms. One can follow Di Tillio et al. (2017) to establish a revelation principle,

as thus the restriction on direct mechanisms is without loss of generality.
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ter agents report their messages, the mechanism designer reveals φ. Then allocations and

transfers are made according to the reported messages as well as q and φ.

As agents only know the set Φ, we follow the spirit of Gilboa and Schmeidler (1989)’s

maxmin expected utility (MEU) and assume that agents make decisions based on the worst-

case expected payoff. Hence, a type-θi agent i’s interim payoff is

inf
φ∈Φ

∑
θ−i∈Θ−i

[ui
(
q(θi, θ−i), (θi, θ−i)

)
+ φi(θi, θ−i)]pi(θ−i|θi).5

Throughout this paper, the outside option x0 is normalized to give all agents zero payoffs

at all type profiles. A mechanism with ambiguous transfers (q,Φ) is said to satisfy interim in-

dividual rationality (IR) if infφ∈Φ

∑
θ−i∈Θ−i

[ui
(
q(θi, θ−i), (θi, θ−i)

)
+φi(θi, θ−i)]pi(θ−i|θi) ≥

0 for all i ∈ I and θi ∈ Θi. It satisfies ex-post budget balance (BB) if
∑

i∈I φi(θ) = 0 for all

φ ∈ Φ and θ ∈ Θ. The mechanism is said to satisfy interim incentive compatibility (IC) if

infφ∈Φ

∑
θ−i∈Θ−i

[ui
(
q(θi, θ−i), (θi, θ−i)

)
+φi(θi, θ−i)]pi(θ−i|θi) ≥ infφ∈Φ

∑
θ−i∈Θ−i

[ui
(
q(θ′i, θ−i),

(θi, θ−i)
)

+ φi(θ
′
i, θ−i)]pi(θ−i|θi) for all i ∈ I and θi, θ

′
i ∈ Θi.

6

This paper studies two related but different objectives. One is full surplus extraction,

and the other is implementation of an efficient allocation rule via an IR and BB mechanism.

In the sense of McAfee and Reny (1992), a mechanism with ambiguous transfers M =

(q,Φ) is said to extract the full surplus if it is IR and IC, q is ex-post efficient, and∑
θ−i∈Θ−i

[ui
(
q(θ), θ

)
+ φi(θ)]p(θ−i|θi) = 0, ∀φ ∈ Φ.

The requirement that every φ ∈ Φ extracts full surplus follows from Di Tillio et al. (2017)’s

Consistency condition. In other words, since the designer’s objective is to extract full surplus,

any transfer rule that leaves agents a strictly positive surplus is not creditable.

Following Kosenok and Severinov (2008), we also want the mechanism to be BB in an

implementation problem so that outside money is not needed to finance the efficient out-

come. An allocation rule q is implementable by an IR and BB mechanism with ambiguous

transfers if there exists an IC, IR, and BB mechanism with ambiguous transfersM = (q,Φ).

5We follow Di Tillio et al. (2017) and adopt the infimum notation. In fact, the mechanisms we constructed

in Theorem 3.1 and Proposition 4.1 have only finitely many transfer rules.
6Like many mechanism design works with ambiguity aversion, e.g., Wolitzky (2016), Di Tillio et al.

(2017), Song (2016), we restrict attention to pure strategies. Depending on how the payoff of playing a

mixed strategy is formalized, the restriction could be with or without loss of generality. See Wolitzky (2016)

for more details.
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3 Main result

Our key condition, the Beliefs Determine Preferences property, is introduced by Neeman

(2004). It requires that an agent with different types should have distinct beliefs.

Definition 3.1: Given a collection of priors (pi)i∈I , the Beliefs Determine Preferences

(BDP) property holds for agent i if there does not exist θ̄i, θ̂i ∈ Θi with θ̄i 6= θ̂i such that

pi(·|θ̄i) = pi(·|θ̂i).

For the BDP property to hold, it is necessary that agents’ beliefs are correlated.

The following theorem is the main result of the paper.

Theorem 3.1: 1. Given a collection of priors (pi)i∈I , full surplus extraction under any

profile of utility functions can be achieved via a mechanism with ambiguous transfers

if and only if the BDP property holds for all agents;

2. given a common prior p, any ex-post efficient allocation rule under any profile of utility

functions is implementable via an IR and BB mechanism with ambiguous transfers if

and only if the BDP property holds for all agents;

3. given a common prior p, any ex-post efficient allocation rule under any profile of pri-

vate value utility functions is implementable via an IR and BB mechanism with am-

biguous transfers if and only if the BDP property holds for at least N − 1 agents.

We remark that the number of agents, the dimension of types, whether the utility func-

tions have private or interdependent value, and whether agents’ beliefs are drawn from a

common prior do not matter for Part 1 of the theorem.

Parts 2 and 3 of Theorem 3.1 focus on implementation via an IR and BB mechanism

with ambiguous transfers, but full surplus extraction does not require the BB condition.

To guarantee the BB condition and obtain unified necessary and sufficient conditions for

implementation, we impose the common prior condition for Parts 2 and 3.7 Part 2 does not

restrict the environment to be a private value one while Part 3 does. When restricting the

analysis on private value utility functions, Part 3 obtains a strictly weaker necessary and

sufficient for implementation compared to Part 2. According to Part 3, even if ambiguous

transfers are allowed and we confine our analysis to private value environments, we can

always find non-implementable allocations when information is independent across agents.

To prove the necessity half of the three statements, when the BDP property fails for one

7The common prior condition is used explicitly in Lemmas A.4 and A.5 and thus the sufficiency direction

of Parts 2 and 3 as well as the necessity direction of Part 3. Section 4.1 relaxes the common prior condition

and presents necessary and (stronger) sufficient conditions on implementation.
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agent, we construct a profile of utility functions under which full surplus extraction fails

and an efficient allocation rule is not implementable via an IR and BB mechanism with

ambiguous transfers.8 When the BDP property fails for two agents, we construct private

value utility functions under which efficient implementation fails.

We prove the sufficiency statements of Theorem 3.1 by constructing mechanisms consist-

ing of two transfer rules. Although there are mechanisms with more transfers to extract the

full surplus or implement efficient allocation rules, to be consistent with the spirit of minimal

mechanisms of Di Tillio et al. (2017), we only present the ones with two rules.

To prove the sufficiency direction of Part 1, the Appendix begins with several lemmas.

Lemma A.1 shows that for each i ∈ I and θ̄i 6= θ̂i, there exists a transfer rule (a lottery) ψθ̄iθ̂i

such that (1) it gives every agent zero expected value when agents truthfully report, and (2)

a type-θ̄i agent i achieves a negative expected value when she unilaterally misreports θ̂i. This

step is proven via Fredholm’s theorem of the alternative. Lemmas A.2 and A.3 construct a

linear combination of transfer rules (ψθ̄iθ̂i)i∈I,θ̄i,θ̂i∈Θi,θ̄i 6=θ̂i , denoted by ψ, such that the lottery

ψ gives all agents zero expected values on path, and gives any unilateral deviator a non-zero

expected value.

Then pick an ex-post efficient allocation rule q and let ηi(θ) = −ui(q(θ), θ) for all i ∈ I
and θ ∈ Θ. Let the set of ambiguous transfers for agent i be Φi = {ηi + cψi, ηi− cψi}. As ηi

transfers agent i’s entire surplus to the mechanism designer and that ψi has zero expected

value when every agent truthfully reports, each IR constraint binds. In addition, as ψi has

non-zero expected value whenever i misreports unilaterally, the lower expected value from

ηi + cψi and ηi − cψi is negative under a sufficiently large c. Thus, IC can be achieved.

Intuitively, with multiple transfer rules, different IC constraints can be satisfied by distinct

transfers. Namely, we do not need one transfer rule to satisfy all IC constraints, and thus

the full surplus can be extracted under a weaker condition than under Bayesian mechanisms.

For the sufficiency direction of Part 2, Lemma A.5 constructs a BB transfer rule (a lottery)

ψ that gives agents zero expected values on path, and gives any unilateral deviator a non-

zero expected value. The common prior condition is adopted to guarantee BB of ψ. Then

pick any BB and IR transfer rule η. The set of ambiguous transfers Φ = {η + cψ, η − cψ}
can implement the efficient allocation rule for a sufficiently large c. The efficiency of the

allocation rule does not play a role in the proof of Part 2.9

8The construction adopts interdependent value utility functions so that there is a unified necessity proof

for Parts 1 and 2. However, one can also follow Crémer and McLean (1988) or Example 3.1 of the current

paper to construct private value utility functions for the necessity proof of Part 1. By Part 3 of Theorem

3.1, when the BDP property fails for only one agent, efficient allocations under private value environments

are implementable so the necessity direction of Part 2 has to rely on interdependent value utility functions.
9In fact, by combining our proof with that of Kosenok and Severinov (2008), Part 2 can be extended to
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For the sufficiency direction of Part 3, since N − 1 agents satisfy the BDP property, one

can follow the previous argument and construct a lottery ψ such that IC of N − 1 agents

can be guaranteed with ambiguous transfers. Then by allocating the total surplus to the

remaining agent and aligning her incentives with the mechanism designer, the agent will

report truthfully in private value environments to maximize social surplus. Such a spirit

has shown up in the VCG mechanisms. Unlike Part 2, efficiency of q plays a role in Part

3. Example A.1 in the Appendix illustrates that an inefficient allocation rule may not be

implementable if just N − 1 agents satisfy the BDP property.

3.1 Comparison

Part 1 of Theorem 3.1 is directly comparable to the result of Crémer and McLean (1988).

Under Bayesian mechanisms, they show that full surplus extraction can be guaranteed if and

only if the Convex Independence condition, defined below, holds for all agents.

Definition 3.2: The Convex Independence (CI) condition holds for agent i ∈ I if for

any type θ̄i ∈ Θi and non-negative coefficients (cθ̂i)θ̂i∈Θi
, pi(·|θ̄i) 6=

∑
θ̂i∈Θi\{θ̄i} cθ̂ipi(·|θ̂i).

The CI condition has been proven to be generic by some papers. However, in a finite

dimensional naive type space, the CI condition fails for i with positive probability when

|Θi| > |Θ−i|. For example, when |Θ2| = 3 > |Θ1| = 2, the CI condition fails for agent 2

under every prior. As another instance, if N = 3 and (|Θ1|, |Θ2|, |Θ3|) = (5, 2, 2), it is easy

to find a non-negligible set of priors under which agent 1’s CI fails. The BDP property is

weaker than CI in two aspects. Firstly, the BDP property holds for i generically even if

|Θi| > |Θ−i|. Secondly, the BDP property can address some linear cases of correlation that

are ruled out by CI. When the BDP property holds for all agents but CI fails for someone,

ambiguous transfers can perform better than Bayesian mechanisms in full surplus extraction.

Example 3.1: This two agent example demonstrates how ambiguous transfers work. Suppose

one agent has three types and the other has two. Their beliefs are drawn from a common

prior p ∈ ∆(Θ) below. The CI condition fails for agent 2.

p θ1
2 θ2

2 θ3
2

θ1
1 0.1 0.2 0.2

θ2
1 0.2 0.1 0.2

implement any ex-ante socially rational allocation rule q, i.e., q satisfying
∑
θ∈Θ

∑
i∈I ui

(
q(θ), θ

)
p(θ) ≥ 0.
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In an auction, denote each type-θi agent i’s private value by vi(θi). Suppose v2(θ1
2) >

v2(θ2
2) > v2(θ3

2) > v1(θ1) > 0 for all θ1 ∈ Θ1. Crémer and McLean (1988) has shown that

full surplus extraction is impossible via a Bayesian mechanism.

Next, we see how ambiguous transfers can help. Let the set of ambiguous transfers be

Φ = (φ1, φ2). Transfers φ1 = (φ1
1, φ

1
2) and φ2 = (φ2

1, φ
2
2) are defined as follows.

φ1
i (θ1, θ2) =

{
cψ1(θ1, θ2), if i = 1,

−v2(θ2) + cψ2(θ1, θ2), if i = 2,
φ2
i (θ1, θ2) =

{
−cψ1(θ1, θ2), if i = 1,

−v2(θ2)− cψ2(θ1, θ2), if i = 2,

where c ≥ 1.5(v2(θ1
2)− v2(θ3

2)), ψ1 : Θ→ R is given below, and ψ2 = −ψ1.

ψ1 θ1
2 θ2

2 θ3
2

θ1
1 −2 −1 2

θ2
1 1 2 −2

For each type-θ̄i agent i, ψi(θ̄i, ·) has zero expected value under belief pi(·|θ̄i). When she

unilaterally misreports θ̂i 6= θ̄i, ψi(θ̂i, ·) has non-zero expected value.

Full surplus extraction requires the good to be allocated to agent 2. Both φ1 and φ2 give

agents zero expected payoffs on path. Hence, each IR constraint binds.

When type-θ̄2 agent 2 misreports θ̂2 6= θ̄2, her worst-case expected payoff is v2(θ̄2)−v2(θ̂2)−
c|
∑

θ1∈Θ1
ψ2(θ1, θ̂2)p2(θ1|θ̄2)| < v2(θ̄2)−v2(θ̂2). Therefore, any “upward” misreport of agent 2

results in a negative expected payoff. As c ≥ 1.5(v2(θ1
2)−v2(θ3

2)) and v2(θ1
2) > v2(θ2

2) > v2(θ3
2),

it is easy to verify the three “downward” IC constraints:

IC(θ1
2θ

2
2) 0 ≥ v2(θ1

2)− v2(θ2
2)− c|1

3
× (−1) + 2

3
× 2| = v2(θ1

2)− v2(θ2
2)− c,

IC(θ1
2θ

3
2) 0 ≥ v2(θ1

2)− v2(θ3
2)− c|1

3
× 2 + 2

3
× (−2)| = v2(θ1

2)− v2(θ3
2)− 2

3
c,

IC(θ2
2θ

3
2) 0 ≥ v2(θ2

2)− v2(θ3
2)− c|2

3
× 2 + 1

3
× (−2)| = v2(θ2

2)− v2(θ3
2)− 2

3
c.

Agent 1’s IC constraints can also be verified. The ambiguous transfers extract full surplus.

Part 2 of Theorem 3.1 is comparable to the result of Kosenok and Severinov (2008), who

prove that the conditions of CI and Identifiability (defined below) are necessary and sufficient

for implementing any efficient allocation rules via an IR and BB Bayesian mechanism.

Definition 3.3: The common prior p(·) satisfies the Identifiability condition if for any

p̃(·) 6= p(·), there exists an agent i ∈ I and her type θ̄i ∈ Θi, with p̃(θ̄i) > 0, such that for

any non-negative coefficients (cθ̂i)θ̂i∈Θi
, p̃i(·|θ̄i) 6=

∑
θ̂i∈Θi

cθ̂ipi(·|θ̂i).
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In a finite, naive type space with N = 3 and |Θi| ≥ 3 for some i ∈ I or a space

with N > 3, the Identifiability condition holds generically, but it fails if the cardinality

restriction is not satisfied. In particular, Kosenok and Severinov (2008) have remarked that

only independent beliefs satisfy this condition when N = 2, and thus CI and Identifiability

can never hold simultaneously in two-agent settings. In a BB Bayesian mechanism without

the Identifiability condition, some agent i may have the incentive to misreport in a way that

makes the truthful report of some j 6= i appear untruthful. This is because by BB, i can

benefit from a low expected transfer to j, which is the punishment due to j’s (seemingly)

untruthful report. However, when the set of ambiguous transfers Φ is used, i does not have

such an incentive, because it remains ambiguous whether misreport of j would result in

a high or low expected transfer to j. Hence, with ambiguous transfers, we can relax the

Identifiability condition.

In the current paper, the BDP property is weaker than the CI condition, and the Identi-

fiability condition becomes irrelevant. When the BDP property holds for all agents, and the

CI or Identifiability condition fails, ambiguous transfers can perform better than Bayesian

mechanisms in implementing efficient allocations via IR and BB mechanisms. In particular,

ambiguous transfers provide a solution to the impossibility of two-agent IR, BB, and efficient

mechanism design in finite dimensional naive type spaces generically.

The following example illustrates how ambiguous transfers work.

Example 3.2: Consider the same prior p as in Example 3.1. Recall the CI condition fails for

agent 2. The Identifiability condition also fails. Following Kosenok and Severinov (2008),

one can construct utility functions under which an efficient allocation rule is not Bayesian

implementable. However, the rule is implementable via ambiguous transfers.

Let the feasible set of alternatives A be {x0, x1, x2}. The outcome x0 gives both agents

zero payoffs at all type profiles. The payoffs given by x1 and x2 are presented below, where

the first component denotes agent 1’s payoff and the second denotes 2’s. Assume 0 < a < B.

x1 θ1
2 θ2

2 θ3
2

θ1
1 a, 0 a, a a, a

θ2
1 a, 0 a, a a, a

x2 θ1
2 θ2

2 θ3
2

θ1
1 a, a a− 2B, a+B a, 0

θ2
1 a, a a− 2B, a+B a, 0

The efficient allocation rule is q(θ1, θ
1
2) = x2 and q(θ1, θ

2
2) = q(θ1, θ

3
2) = x1 for all θ1 ∈ Θ1.

Suppose by contradiction that a BB transfer rule φ = (−φ2, φ2) implements q. Then

IC(θ1
1θ

2
1) a− 0.2φ2(θ1

1, θ
1
2)− 0.4φ2(θ1

1, θ
2
2)− 0.4φ2(θ1

1, θ
3
2)

≥ a− 0.2φ2(θ2
1, θ

1
2)− 0.4φ2(θ2

1, θ
2
2)− 0.4φ2(θ2

1, θ
3
2),
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IC(θ2
1θ

1
1) a− 0.4φ2(θ2

1, θ
1
2)− 0.2φ2(θ2

1, θ
2
2)− 0.4φ2(θ2

1, θ
3
2)

≥ a− 0.4φ2(θ1
1, θ

1
2)− 0.2φ2(θ1

1, θ
2
2)− 0.4φ2(θ1

1, θ
3
2),

IC(θ1
2θ

2
2) a+ 1

3
φ2(θ1

1, θ
1
2) + 2

3
φ2(θ2

1, θ
1
2) ≥ 0 + 1

3
φ2(θ1

1, θ
2
2) + 2

3
φ2(θ2

1, θ
2
2),

IC(θ2
2θ

1
2) a+ 2

3
φ2(θ1

1, θ
2
2) + 1

3
φ2(θ2

1, θ
2
2) ≥ a+B + 2

3
φ2(θ1

1, θ
1
2) + 1

3
φ2(θ2

1, θ
1
2).

Multiply the inequalities by 0.5, 0.5, 0.3, and 0.3 respectively and sum up. We have 1.6a ≥
1.3a+ 0.3B, a contradiction.

For each i ∈ I and θ ∈ Θ, define φ1
i (θ) = cψi(θ) and φ2

i (θ) = −cψi(θ), where ψ = (ψ1, ψ2)

is defined in Example 3.1 and c ≥ B. Let Φ = {φ1, φ2} be ambiguous transfers.

Both φ1 and φ2 satisfy the BB condition. Each type-θ̄i agent i obtains an interim payoff

of a > 0 on path, and thus the IR condition holds. Suppose type-θ2
2 agent 2 misreports θ1

2,

her worst-case expected payoff is a + B − c|2
3
× (−2) + 1

3
× (1)| = a + B − c ≤ a. Thus, we

have established IC(θ2
2θ

1
2). The other IC constraints can be verified similarly. Therefore, the

ambiguous transfers implement q.

This example can also demonstrate the necessity of the BDP property. Suppose the beliefs

satisfy p̃2(·|θ1
2) = p̃2(·|θ2

2) and an IR and BB mechanism with ambiguous transfers (q, Φ̃)

implements q. By adding the following expressions

IC(θ1
2θ

2
2) inf

φ̃∈Φ̃
{a+

∑
θ1∈Θ1

φ̃2(θ1, θ
1
2)p̃2(θ1|θ1

2)} ≥ inf
φ̃∈Φ̃

∑
θ1∈Θ1

φ̃2(θ1, θ
2
2)p̃2(θ1|θ1

2),

IC(θ2
2θ

1
2) inf

φ̃∈Φ̃
{a+

∑
θ1∈Θ1

φ̃2(θ1, θ
2
2)p̃2(θ1|θ2

2)} ≥ inf
φ̃∈Φ̃
{a+B +

∑
θ1∈Θ1

φ̃2(θ1, θ
1
2)p̃2(θ1|θ2

2)},

and taking into account p̃2(·|θ1
2) = p̃2(·|θ2

2), we have 2a ≥ a + B, a contradiction. Hence,

implementation via ambiguous transfers cannot be guaranteed without the BDP property.

To compare ambiguous transfers with Bayesian mechanisms in the context of Part 3

of Theorem 3.1, we present the following necessary condition for Bayesian implementation

under private value environments.

Proposition 3.1: Given a common prior p, if any ex-post efficient allocation rule q under

any profile of private value utility functions is implementable via an IR and BB Bayesian

mechanism, then the CI condition holds for at least N − 1 agents.

The necessary condition of Proposition 3.1 is stronger than the necessary and sufficient

one in Part 3 of Theorem 3.1. Hence, there are cases when ambiguous transfers perform

strictly better than Bayesian mechanisms in implementation under private value environ-

ments. The example below shows how ambiguous transfers work.
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Example 3.3: Consider a three-by-three bilateral trading example with a common prior p.

Agent 1’s BDP property fails and agent 2’s holds. We demonstrate that the efficient allocation

rule is implementable via ambiguous transfers in a private value environment.

Suppose agent 1 is the seller of one unit of good and 2 is the buyer. A type-θi agent i’s

private evaluation of trading is vi(θi). Assume that v2(θ1
2) > −v1(θ1

1) > v2(θ2
2) > −v1(θ2

1) >

v2(θ3
2) > −v1(θ3

1) ≥ 0. Outcomes in A = {x0, x1} are feasible, where x0 represents no trade

and x1 represents trading. The efficient allocation rule q, to trade whenever the total surplus

is positive, is summarized below.

p θ1
2 θ2

2 θ3
2

θ1
1 0.1 0.1 0.1

θ2
1 0.1 0.1 0.1

θ3
1 0.2 0.15 0.05

q θ1
2 θ2

2 θ3
2

θ1
1 x1 x0 x0

θ2
1 x1 x1 x0

θ3
1 x1 x1 x1

Since both agents’ CI conditions fail, from the proof of Proposition 3.1, there exist func-

tions v1 and v2 such that q is not implementable via an IR and BB Bayesian mechanism.

To see how ambiguous transfers work, let Φ = {φ1, φ2}. Define

φ1
i (θ) =

{
η(θ) + cψ1(θ), if i = 1,

−η(θ) + cψ2(θ), if i = 2,
φ2
i (θ) =

{
η(θ)− cψ1(θ), if i = 1,

−η(θ)− cψ2(θ), if i = 2,

where c is a sufficiently large number, and functions η and ψ1 = −ψ2 are given below.

η θ1
2 θ2

2 θ3
2

θ1
1 v2(θ1

2) 0 0

θ2
1 v2(θ1

2) v2(θ2
2) 0

θ3
1 v2(θ1

2) v2(θ2
2) v2(θ3

2)

ψ1 θ1
2 θ2

2 θ3
2

θ1
1 9 −18 9

θ2
1 −3 6 −3

θ3
1 −3 8 −12

It is easy to verify the conditions of IR and BB for Φ. For simplicity, we only establish

IC(θ1
1θ

2
1) and IC(θ2

1θ
1
1) below and omit the details of verifying other IC constraints.

IC(θ1
1θ

2
1) 1

3
v1(θ1

1)+1
3
v2(θ1

2)−c|1
3
(9)+1

3
(−18)+1

3
(9)| = 1

3
v1(θ1

1)+1
3
v2(θ1

2) >

2
3
v1(θ1

1)+1
3
v2(θ1

2)+1
3
v2(θ2

2)−c|1
3
(−3)+1

3
(6)+1

3
(−3)| = 2

3
v1(θ1

1)+1
3
v2(θ1

2)+1
3
v2(θ2

2),

IC(θ2
1θ

1
1) 2

3
v1(θ2

1)+1
3
v2(θ1

2)+1
3
v2(θ2

2)−c|1
3
(−3)+1

3
(6)+1

3
(−3)| = 2

3
v1(θ2

1)+1
3
v2(θ1

2)+1
3
v2(θ2

2) >

1
3
v1(θ2

1)+1
3
v2(θ1

2)−c|1
3
(9)+1

3
(−18)+1

3
(9)| = 1

3
v1(θ2

1)+1
3
v2(θ1

2).

The strict inequalities above follow from the fact that v1(θ1
1)+v2(θ2

2) < 0 and v1(θ2
1)+v2(θ2

2) >

0. Therefore, the IR and BB mechanism with ambiguous transfers implements q.
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4 Extension

4.1 No common prior

In this section, we study implementation via ambiguous transfers when agents do not neces-

sarily have a common prior. We also demonstrate with examples that ambiguous transfers

may implement Bayesian non-implementable allocation rules when there is no common prior.

The common prior condition is used in Parts 2 and 3 of Theorem 3.1. In fact, without

a common prior, the following example shows that the BDP property is no longer sufficient

for implementation via an IR and BB mechanism with ambiguous transfers.

Example 4.1: Consider an adaptation of Example 3.2 where each agent has two types. In

A = {x0, x1, x2}, the payoffs of x1 and x2 are presented below. Assume 0 < 16a < B.

x1 θ1
2 θ2

2

θ1
1 a, 0 a, a

θ2
1 a, 0 a, a

x2 θ1
2 θ2

2

θ1
1 a, a a− 2B, a+B

θ2
1 a, a a− 2B, a+B

The efficient allocation rule is q(θ1
1, θ

1
2) = q(θ2

1, θ
1
2) = x2 and q(θ1

1, θ
2
2) = q(θ2

1, θ
2
2) = x1.

Let the beliefs satisfy p1(θ1
2|θ1

1) = 0.75, p1(θ1
2|θ2

1) = 0.25, p2(θ1
1|θ1

2) = 0.7, and p2(θ1
1|θ2

2) = 0.3,

which cannot be generated from a common prior. The BDP property holds for both agents.

Suppose by contradiction that an IR and BB mechanism with ambiguous transfers (q,Φ)

implements q. By IC(θ2
2θ

1
2) and the IR condition, for all ε > 0, there exists a BB transfer

rule φ = (−φ2, φ2) ∈ Φ such that:

IC(θ2
2θ

1
2) a+ 0.3φ2(θ1

1, θ
2
2) + 0.7φ2(θ2

1, θ
2
2) + ε ≥ a+B + 0.3φ2(θ1

1, θ
1
2) + 0.7φ2(θ2

1, θ
1
2),

IR(θ1
1) a− 0.75φ2(θ1

1, θ
1
2)− 0.25φ2(θ1

1, θ
2
2) ≥ 0,

IR(θ2
1) a− 0.25φ2(θ2

1, θ
1
2)− 0.75φ2(θ2

1, θ
2
2) ≥ 0,

IR(θ1
2) a+ 0.7φ2(θ1

1, θ
1
2) + 0.3φ2(θ2

1, θ
1
2) ≥ 0,

IR(θ2
2) a+ 0.3φ2(θ1

1, θ
2
2) + 0.7φ2(θ2

1, θ
2
2) ≥ 0.

Multiply the expressions by 4, 18, 14, 21, and 11 respectively, add them up, and let ε go to

zero. It follows that 0 ≥ 4B − 64a > 0, a contradiction.

Hence, q is not implementable via an IR and BB mechanism with ambiguous transfers.

In the Bayesian mechanism design literature, Bergemann et al. (2012), Smith (2010),

and Börgers et al. (2015) have documented results related to ex-post efficiency maximization

without a common prior. Without requiring IR and BB, Bergemann et al. (2012) show
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that the BDP property is sufficient for Bayesian implementation of efficient allocations, but

the current paper requires the conditions of IR and BB. Smith (2010) compares the welfare

of two mechanisms on public good provision, and Börgers et al. (2015) provide a sufficient

condition on when agents’ interim payoffs can be arbitrarily increased in an IC mechanism.

Different from Smith (2010) and Börgers et al. (2015), the current section provides a general

condition on when the first-best efficiency is implementable via an IR and BB mechanism.

Below we introduce two properties to generalize Parts 2 and 3 of Theorem 3.1 to poten-

tially non-common prior environments. For all i 6= j, θi, and θj, by slightly abusing notations,

we let pj(θi, ·|θj) be the |Θ−i−j|-dimensional vector
(
pj(θi, θ−i−j|θj)

)
θ−i−j∈Θ−i−j

when N ≥ 3,

and be the number pj(θi|θj) when N = 2.

Definition 4.1: Given a collection of priors (pi)i∈I , an agent i ∈ I, two types θ̄i 6= θ̂i, a

prior µ ∈ ∆(Θ), and two constants C̄, Ĉ, define two conditions below:

Condition N1: µ(θj) > 0 and µ(θ−j|θj) = pj(θ−j|θj) for all (j, θj) 6= (i, θ̂i) and θ−j;

Condition N2: Ĉpi(θj, ·|θ̂i) = pi(θj, ·|θ̄i) + C̄
pi(θj |θ̄i)
pj(θ̄i|θj)

pj(θ̂i, ·|θj) for all j 6= i and θj.

The priors (pi)i∈I satisfy the Weak No Common Prior* (WNCP*) property for agent

i if there do not exist types θ̄i 6= θ̂i, a prior µ ∈ ∆(Θ), and constants C̄ ≥ 1 and Ĉ > 1 such

that Conditions N1 and N2 hold.

The priors (pi)i∈I satisfy the No Common Prior* (NCP*) property for agent i if there

do not exist types θ̄i 6= θ̂i, a prior µ ∈ ∆(Θ), and constants C̄ > 0 and Ĉ > 1 such that

Conditions N1 and N2 hold.

Note that both sides of the equation in Condition N2 are |Θ−i−j|-dimensional vectors or

numbers. In the definitions of the WNCP* and NCP* properties, the only difference is the

size of C̄. The NCP* property is stronger than the WNCP* property.

When the properties fail for agent i, Condition N1 requires the existence of types θ̄i 6= θ̂i

such that beliefs of all agents except the one of θ̂i can be generated by a common prior. To

see the requirement of Condition N2 more clearly, when agents have full-support priors, we

can divide both sides of the equation in Condition N2 by pi(θj · |θ̄i) and take into account

Condition N1. Then the equation in Condition N2 becomes Ĉ pi(θ−i|θ̂i)
pi(θ−i|θ̄i)

= 1+C̄ µ(θ̂i,θ−i)
µ(θ̄i,θ−i)

,∀θ−i ∈
Θ−i, i.e., the ratio of i’s beliefs under types θ̂i and θ̄i has a linear relationship with the ratio

of the prior µ at types θ̂i and θ̄i.

Let (i, θ̄i, θ̂i) = (2, θ2
2, θ

1
2), µ(θ1

1, θ
1
2) = 27

64
, µ(θ1

1, θ
2
2) = 9

64
, µ(θ2

1, θ
1
2) = 7

64
, µ(θ2

1, θ
2
2) = 21

64
,

C̄ = 15
4

, and Ĉ = 21
4

, one can see that both WNCP* and NCP* properties fail for agent 2 in

Example 4.1.
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In the special case that agents have a common prior, we have the following lemma.

Lemma 4.1: Given a common prior p, the following three statements are equivalent:

1. the BDP property holds for agent i;

2. the NCP* property holds for agent i;

3. the WNCP* property holds for agent i.

When N = 2, for Condition N1 to hold for agent i, we must have Ĉ
pi(θj |θ̂i)
pi(θj |θ̄i)

= 1+ C̄
pj(θ̂i|θj)
pj(θ̄i|θj)

for all θj ∈ Θj. There are |Θj| linear equations. When |Θj| > 2, it is generically impossible

to find C̄ and Ĉ satisfying all |Θj| equations, and thus, the NCP* and WNCP* properties

hold for agent i under almost all priors (pi ∈ ∆(Θ))i∈I over a finite, naive type space.

When N ≥ 3, we say the NCP** property holds if there are agents i 6= j and types

θ̄i 6= θ̂i, and θ̄j 6= θ̂j, such that the marginal beliefs over Θ−i−j satisfies pi(·|θ̄i, θ̄j) 6= pj(·|θ̄i, θ̄j)
and pi(·|θ̂i, θ̂j) 6= pj(·|θ̂i, θ̂j). Namely, there should be two agents whose marginal beliefs

towards the rest of the agents are different at two type profiles. Notice this property is

stated across agents instead of for a particular agent. Without imposing the common prior

condition, the NCP** property holds for almost all priors (pi ∈ ∆(Θ))i∈I over a finite naive

type space. When the NCP** property holds, for any agent, there does not exist µ such that

Condition N1 holds, and thus the NCP* and WNCP* properties are satisfied by all agents.

In view of Lemma 4.1, the following proposition generalizes Parts 2 and 3 of Theorem 3.1

to the case when there may not exist a common prior. Since Theorem 3.1 is more elegant

and only involves the BDP property in the characterization, we leave it as the main result

and Proposition 4.1 as an extension.

Proposition 4.1: Given a collection of priors (pi)i∈I ,

1. if the BDP or WNCP* property fails for some agent, then there exists a profile of utility

functions under which an efficient allocation rule is not implementable via an IR and

BB mechanism with ambiguous transfers; if the BDP and NCP* properties hold for all

agents, then any ex-post efficient allocation rule under any profile of utility functions

is implementable via an IR and BB mechanism with ambiguous transfers;

2. if there exist agents i 6= j such that the WNCP* property fails for i and the BDP

property fails for j, then there exists a profile of private value utility functions un-

der which an ex-post efficient allocation rule is not implementable via an IR and BB

mechanism with ambiguous transfers; if there do not exist agents i 6= j such that the

WNCP* property fails for i and the BDP property fails for j, then any ex-post efficient

allocation rule under any profile of private value utility functions is implementable

via an IR and BB mechanism with ambiguous transfers.
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When the BDP property holds for all agents, the necessary and (stronger) sufficient

conditions in Part 2 of the proposition hold. Hence, when the BDP property holds for all

agents, with or without a common prior, efficient implementation via ambiguous transfers

can be guaranteed under private value environments.

Similar to Theorem 3.1, the efficiency of an allocation rule q does not play a role in

the proof of Part 1 of Proposition 4.1, but plays a role in Part 2. The non-common prior

condition is used explicitly when we prove the sufficiency direction of Part 2.

In Example 4.2, the first group of sufficiency conditions of Theorem 4.1 holds. As a result,

any efficient allocation rule is implementable via ambiguous transfers. Since we find an

efficient allocation rule that is not implementable via Bayesian mechanisms, we demonstrate

that ambiguous transfers may perform better than Bayesian mechanisms.

Example 4.2: Under the following beliefs without a common prior, the efficient allocation

rule q is not Bayesian implementable, but it is implementable via ambiguous transfers.

p1(θ̃2|θ̃1) θ1
2 θ2

2 θ3
2

θ1
1

7
28

12
28

9
28

θ2
1

13
28

12
28

3
28

p2(θ̃1|θ̃2) θ1
2 θ2

2 θ3
2

θ1
1

1
3

1
2

2
3

θ2
1

2
3

1
2

1
3

The feasible set of outcomes, payoffs, and the efficient allocation rule are identical to those

in Example 3.2, except that 0 < 8.5a < B is imposed. Suppose by contradiction that there

exists a BB Bayesian transfer rule φ = (−φ2, φ2) : Θ→ R2 implementing q. As in Example

3.2, by multiplying IR(θ1
1), IR(θ2

1), IR(θ1
2), IR(θ2

2), IR(θ3
2), IC(θ1

1θ
2
1), IC(θ2

1θ
1
1), IC(θ1

2θ
2
2),

IC(θ1
2θ

3
2), IC(θ2

2θ
1
2), and IC(θ3

2θ
2
2) by 7, 7, 3, 8, 3, 3.5, 3.5, 3, 3, 4, and 3, and summing up,

we obtain 0 ≥ 4B − 34a, a contradiction. Hence, q is not Bayesian implementable.

It is easy to see that both agents satisfy the BDP property. We demonstrate below that

the NCP* property holds for agent 1 and omit the verification for agent 2. When N = 2,

Condition N2 becomes Ĉ
pi(θj |θ̂i)
pi(θj |θ̄i)

= 1+ C̄
pj(θ̂i|θj)
pj(θ̄i|θj)

for all θj. Consider (i, θ̄i, θ̂i) = (1, θ1
1, θ

2
1), the

NCP* property holds because there does not exist C̄ > 0 and Ĉ > 1 such that Ĉ(13
7
, 1, 1

3
) =

(1, 1, 1) + C̄(2, 1, 0.5). A symmetric argument applies to (i, θ̄i, θ̂i) = (1, θ2
1, θ

1
1).

By Part 1 of Proposition 4.1, q is implementable via ambiguous transfers.

In the following private value bilateral trading example, there exists an efficient allocation

rule q that is not Bayesian implementable. However, the second group of sufficient conditions

of Proposition 4.1 holds, and thus q is implementable via ambiguous transfers. Hence, when

we confine our analysis to private value environments without a common prior, ambiguous

transfers may perform better than Bayesian mechanisms.
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Example 4.3: Agent 1 is the seller of a unit of indivisible good and 2 is the buyer. Outcomes

in A = {x0, x1} are feasible. The outcome x0 represents no trade. The payoffs of x1, trading,

are given below. The efficient allocation rule is q(θ1
1, θ

2
2) = x0 and q(θ) = x1 for all other θ.

x1 θ1
2 θ2

2

θ1
1 -3.5, 4 -3.5, 1

θ2
1 -0.5, 4 -0.5, 1

Let the beliefs satisfy p1(θ1
2|θ1

1) = 0.3, p1(θ1
2|θ2

1) = 0.25, p2(θ1
1|θ1

2) = 0.3, and p2(θ1
1|θ2

2) =

0.2, which cannot be generated by a common prior.

Suppose by way of contradiction that there exists an IR and BB Bayesian transfer rule

φ = (−φ2, φ2) : Θ → R2 that implements q. As in Example 3.2, multiply IR(θ1
1), IC(θ2

1θ
1
1),

IC(θ1
2θ

2
2), IR(θ2

2), and IC(θ2
2θ

1
2) by 10, 8, 4, 10, and 1 respectively and add them up. We

obtain 0 ≥ 0.9, a contradiction. Therefore, q is not Bayesian implementable.

However, as the BDP property holds for both agents, by Part 2 of Proposition 4.1, q is

implementable via an IR and BB mechanism with ambiguous transfers.

4.2 Other ambiguity aversion preferences

To check the robustness of our result, we look at alternative preferences of ambiguity aversion

in this subsection. One is the α-maxmin expected utility (α-MEU) as in Ghirardato and

Marinacci (2002), and the other is the smooth ambiguity aversion preferences of Klibanoff

et al. (2005). Even though these preferences differ from Gilboa and Schmeidler (1989), the

mechanism designer can still benefit from agents’ ambiguity aversion.

Ghirardato and Marinacci (2002) introduce the α-MEU, which is a generalization of the

MEU. Under an environment described in Section 2, a type-θi agent i with α-maxmin

expected utility has the following interim utility level from participating and reporting

truthfully when Φ is the set of ambiguous transfers:

α inf
φ∈Φ
{
∑

θ−i∈Θ−i

ui
(
q(θi, θ−i), (θi, θ−i)

)
pi(θ−i|θi) +

∑
θ−i∈Θ−i

φi(θi, θ−i)pi(θ−i|θi)}

+ (1− α) sup
φ∈Φ
{
∑

θ−i∈Θ−i

ui
(
q(θi, θ−i), (θi, θ−i)

)
pi(θ−i|θi) +

∑
θ−i∈Θ−i

φi(θi, θ−i)pi(θ−i|θi)},

where α ∈ [0, 1]. An agent is said to be ambiguity-averse if α > 0.5. All previous sections

adopt the MEU preferences, which correspond to the case α = 1.

Alternatively, an agent i with smooth ambiguity aversion has a utility function of∫
π∈∆(Φ)

v

(∫
φ∈Φ

( ∑
θ−i∈Θ−i

[ui
(
q(θi, θ−i), (θi, θ−i)

)
+ φi(θi, θ−i)]pi(θ−i|θi)

)
dπ

)
dµ,
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where

• for each distribution π ∈ ∆(Φ), π(φ) measures the subjective density that φ is the true

transfer rule chosen by the mechanism designer;

• for each distribution µ ∈ ∆(∆(Φ)), µ(π) measures the subjective density that π ∈ ∆(Φ)

is the right density function the mechanism designer uses to choose the transfer rule;

• v : R→ R is a strictly increasing function that characterizes ambiguity attitude, where

a strictly concave v implies ambiguity aversion.

Under the α-MEU preferences with α > 0.5 or the smooth ambiguity aversion preferences

with a strictly concave v, the sufficiency part of Theorem 3.1 still holds. We can construct

ambiguous transfers in the same way as those under MEU except for choosing a potentially

different multiplier c.

As an illustration, we demonstrate with the Example 3.2. Let v be a strictly increasing

and strictly concave function. Consider the same transfers as φ1 and φ2 except for a po-

tentially different multiplier c. Then it is easy to verify individual rationality and budget

balance. A generic element of ∆(Φ) is a Bernoulli distribution between φ1 and φ2. Let µ

be the uniform distribution over ∆(Φ) for example. As an illustration, we check IC(θ2
2θ

1
2).

Truth-telling always gives agent 2 an expected utility of∫ 1

0

v(µa+ (1− µ)a)dµ = v(a).

By misreporting from θ2
2 to θ1

2, agent 2 gets an interim utility of∫ 1

0

v
(
µ(a+B + c) + (1− µ)(a+B − c)

)
dµ.

For v sufficiently concave or c sufficiently large, the above expression has a value no more

than v(a), implying that IC(θ2
2θ

1
2) holds. One can verify other IC constraints as well.

A Appendix

Lemma A.1: Given a collection of priors (pi)i∈I , if the BDP property holds for agent i,

then for all θ̄i, θ̂i ∈ Θi with θ̄i 6= θ̂i, there exists a transfer rule ψθ̄iθ̂i : Θ→ RN such that

1.
∑

θ−j∈Θ−j

ψθ̄iθ̂ij (θj, θ−j)pj(θ−j|θj) = 0 for all j ∈ I and θj ∈ Θj;

2.
∑

θ−i∈Θ−i

ψθ̄iθ̂ii (θ̂i, θ−i)pi(θ−i|θ̄i) < 0.

Proof. We first define vectors pθjθ′j for all j ∈ I and θj, θ
′
j ∈ Θj. Each pθjθ′j has N × |Θ|

dimensions and every dimension corresponds to an agent and a type profile. For any j ∈ I
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and θj, θ
′
j ∈ Θj, whenever there exists θ−j ∈ Θ−j such that a dimension of pθjθ′j corresponds

to agent j and type profile (θ′j, θ−j), let this dimension be pj(θ−j|θj). Thus we have defined

|Θ−j| dimensions of the vector pθjθ′j . Let all other dimensions of pθjθ′j be 0.10

Suppose by way of contradiction that the BDP property holds for agent i, but there exist

different types θ̄i, θ̂i ∈ Θi, such that no ψθ̄iθ̂i satisfies the two conditions. By Fredholm’s

theorem of the alternative, there exist coefficients (aθj)j∈I,θj∈Θj such that

pθ̄iθ̂i =
∑
j∈I

∑
θj∈Θj

aθjpθjθj .

By focusing on each dimension of pθ̄iθ̂i that corresponds to agent i and type profile

(θ̂i, θ−i), we know that pi(θ−i|θ̄i) = aθ̂ipi(θ−i|θ̂i) for all θ−i ∈ Θ−i. Adding this expression

over θ−i ∈ Θ−i yields aθ̂i = 1. Hence, pi(·|θ̄i) = pi(·|θ̂i), contradicting the BDP property.

Lemma A.2: For any K ×K matrix X = (xkk̃) whose diagonal elements are all negative,

there exists a vector λ ∈ RK
+\{0} such that

∑K
k̃=1 xkk̃λk̃ 6= 0 for all k = 1, ..., K.

Proof. We prove the result by induction.

When K = 1. Pick an arbitrary λ1 > 0. As x11 < 0, the statement holds for 1.

Suppose the statement holds for K − 1, where K ≥ 2. Consider any K ×K matrix X

with negative diagonal elements. By the supposition for the northwest K−1 by K−1 block,

there exists a non-zero vector (λ1, ..., λK−1) ∈ RK−1
+ \{0} such that

∑K−1

k̃=1
xkk̃λk̃ 6= 0 for all

k = 1, ..., K − 1.

Case 1. Suppose
∑K−1

k̃=1
xKk̃λk̃ 6= 0. Let λK = 0, and thus the statement holds for K.

Case 2. Suppose
∑K−1

k̃=1
xKk̃λk̃ = 0 and there exists k0 ∈ {1, ..., K−1} such that xKk0λk0 6=

0. Let (λ′1, ..., λ
′
K−1) = (λ1, ..., λk0−1, λk0 + ε, λk0+1, ..., λK−1) for ε > 0. Then

∑K−1

k̃=1
xKk̃λ

′
k̃
6=

0. When ε is sufficiently close to zero, as
∑K−1

k̃=1
xkk̃λk̃ 6= 0 for all k = 1, ..., K − 1, we also

have
∑K−1

k̃=1
xkk̃λ

′
k̃
6= 0 for all k = 1, ..., K − 1. Thus, we can replace (λ1, ..., λK−1) with

(λ′1, ..., λ
′
K−1) and go back to Case 1.

Case 3. Suppose xKk̃λk̃ = 0 for all k̃ = 1, ..., K − 1. Pick any λK > 0 such that

λK 6=−
∑K−1

k̃=1
xkk̃λk̃

xkK
for all k = 1, ..., K−1 with xkK 6= 0. The statement thus holds for K.

Lemma A.3: Given a collection of priors (pi)i∈I , if the BDP property holds for all agents,

then there exists a transfer rule ψ : Θ→ RN such that

1.
∑

θ−i∈Θ−i

ψi(θi, θ−i)pi(θ−i|θi) = 0 for all i ∈ I and θi ∈ Θi;

10As an illustration, consider I = {1, 2} and Θ = {(θ1
1, θ

1
2), (θ1

1, θ
2
2), (θ2

1, θ
1
2), (θ2

1, θ
2
2)}. For each pθjθ′j , its

first (last) four dimensions correspond to agent 1 (2) and the type profile (θ1
1, θ

1
2), (θ1

1, θ
2
2), (θ2

1, θ
1
2), and (θ2

1, θ
2
2)

respectively. Then for example, pθ22θ12 = (0, 0, 0, 0, p2(θ1
1|θ2

2), 0, p2(θ2
1|θ2

2), 0).
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2.
∑

θ−i∈Θ−i

ψi(θ̂i, θ−i)pi(θ−i|θ̄i) 6= 0 for all i ∈ I and θ̄i, θ̂i ∈ Θi with θ̄i 6= θ̂i.

Proof. Let K be the cardinality of the set K = {(θ̄i, θ̂i)|i ∈ I, θ̄i, θ̂i ∈ Θi, θ̄i 6= θ̂i}. Let

f : K → {1, ..., K} be a one-to-one mapping, which allows us to index the elements of K.

For all k, k̃ ∈ {1, ..., K} (k, k̃ may be equal), where f−1(k) = (θ̄i, θ̂i) and f−1(k̃) = (˜̄θj,
˜̂
θj),

define a number xkk̃ =
∑

θ−i∈Θ−i
ψ

˜̄θj
˜̂
θj

i (θ̂i, θ−i)pi(θ−i|θ̄i), where each transfer rule ψ
˜̄θj

˜̂
θj is

defined and proved to exist in Lemma A.1. Recall the second condition of ψ
˜̄θj

˜̂
θj implies that

xk̃k̃ < 0 for all k̃ = 1, ..., K. Then X ≡ (xkk̃) is a K × K matrix. By Lemma A.2, there

exists λ ∈ RK
+\{0} such that

∑K
k̃=1 xkk̃λk̃ 6= 0 for all k = 1, ..., K. Hence, for all (θ̄i, θ̂i) ∈ K,

K∑
k̃=1

[
∑

θ−i∈Θ−i

ψ
f−1(k̃)
i (θ̂i, θ−i)pi(θ−i|θ̄i)]λk̃ =

∑
θ−i∈Θ−i

[
K∑
k̃=1

λk̃ψ
f−1(k̃)
i (θ̂i, θ−i)]pi(θ−i|θ̄i) 6= 0. (1)

Define a new transfer rule ψ by making a linear combination of the rules (ψf
−1(k̃))k̃=1,...,K

such that ψ ≡
∑K

k̃=1 λk̃ψ
f−1(k̃). Thus by expression (1), the transfer rule ψ satisfies the

second condition of this lemma. The first condition also holds for ψ because each ψf
−1(k̃)

satisfies this condition.

Lemma A.4: Given a common prior p, if the BDP property holds for agent i, then for all

θ̄i, θ̂i ∈ Θi with θ̄i 6= θ̂i, there exists a transfer rule ψθ̄iθ̂i : Θ→ RN such that,

1.
∑
j∈I

ψθ̄iθ̂ij (θ) = 0 for all θ ∈ Θ;

2.
∑

θ−j∈Θ−j

ψθ̄iθ̂ij (θj, θ−j)pj(θ−j|θj) = 0 for all j ∈ I and θj ∈ Θj;

3.
∑

θ−i∈Θ−i

ψθ̄iθ̂ii (θ̂i, θ−i)pi(θ−i|θ̄i) < 0.

Proof. For each θ ∈ Θ, define a N × |Θ|-dimensional vector eθ below. Every dimension

corresponds to an agent and a type profile. Let all dimensions of eθ that correspond to an

agent and type profile θ be 1 and other dimensions be 0.11 Vectors (pθjθ′j)j∈I,θj ,θ′j∈Θj has been

defined in Lemma A.1.

Suppose by way of contradiction that the BDP property holds for agent i, but there exist

types θ̄i 6= θ̂i, such that no transfer rule ψθ̄iθ̂i satisfies the three conditions. By Fredholm’s

theorem of the alternative, there exist coefficients (aθj)j∈I,θj∈Θj and (bθ)θ∈Θ such that

pθ̄iθ̂i =
∑
j∈I

∑
θj∈Θj

aθjpθjθj +
∑
θ∈Θ

bθeθ. (2)

11As an illustration, recall the same example as in footnote 10. One has e(θ21 ,θ
1
2) = (0, 0, 1, 0, 0, 0, 1, 0).
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Fix any agent j 6= i. All elements of pθ̄iθ̂i corresponding to agent j are zero. All those

corresponding to agent i and θ̄i are zero. Those corresponding to agent i and θ̂i may not be

zero. The three observations, along with expression (2), imply that

0 = aθjpj(θ−j|θj) + bθ,∀θ ∈ Θ, (3)

0 = aθ̄ipi(θ−i|θ̄i) + bθ̄i,θ−i ,∀θ−i ∈ Θ−i, (4)

pi(θ−i|θ̄i) = aθ̂ipi(θ−i|θ̂i) + bθ̂i,θ−i ,∀θ−i ∈ Θ−i. (5)

Choosing θi = θ̄i in expression (3) and cancelling bθ̄i,θ−i in expressions (3) and (4) yield

aθjpj(θ̄i, θ−i−j|θj) = aθ̄ipi(θ−i|θ̄i) for all θ−i. We remark that when N = 2, this expres-

sion abuses notations slightly as the left-hand side should be aθjpj(θ̄i|θj). Summing across

all θ−i−j ∈ Θ−i−j when N ≥ 3 or ignoring any θ−i−j when N = 2 yields aθjpj(θ̄i|θj) =

aθ̄ipi(θj|θ̄i). As p is a common prior, we further know aθj = aθ̄i
p(θj)

p(θ̄i)
for all θj ∈ Θj.

By choosing θi = θ̂i in expression (3) and plugging in aθj derived in the previous para-

graph, we know bθ̂i,θ−i=− aθ̄i
p(θj)

p(θ̄i)
pj(θ̂i, θ−i−j|θj) = −aθ̄i

p(θ̂i)

p(θ̄i)
pi(θ−i|θ̂i) for all θ−i.

Plugging bθ̂i,θ−i above into expression (5) yields pi(θ−i|θ̄i) = (aθ̂i − aθ̄i
p(θ̂i)

p(θ̄i)
)pi(θ−i|θ̂i) for

all θ−i. Hence, aθ̂i − aθ̄i
p(θ̂i)

p(θ̄i)
= 1 and pi(·|θ̄i) = pi(·|θ̂i), a contradiction.

Lemma A.5: When there is a common prior p, if the BDP property holds for all agents,

then there exists a transfer rule ψ : Θ→ RN such that

1.
∑
i∈I

ψi(θ) = 0 for all θ ∈ Θ;

2.
∑

θ−i∈Θ−i

ψi(θi, θ−i)pi(θ−i|θi) = 0 for all i ∈ I and θi ∈ Θi;

3.
∑

θ−i∈Θ−i

ψi(θ̂i, θ−i)pi(θ−i|θ̄i) 6= 0 for all i ∈ I and θ̄i, θ̂i ∈ Θi with θ̄i 6= θ̂i.

Proof. One can construct a linear combination of transfer rules developed in Lemma A.4 such

that the combination satisfies the three conditions here. The detailed argument is omitted

as it is analogous to Lemma A.3.

Proof of Theorem 3.1. Necessity of Parts 1 and 2. Suppose there exists i ∈ I and θ̄i 6=
θ̂i such that pi(·|θ̄i) = pi(·|θ̂i). Consider an adaptation of the utility functions constructed by

Kosenok and Severinov (2008). Let the set of feasible outcomes be A = {x0, x1, x2}, where

agents’ payoffs of consuming x0 are zero. The payoffs for agent i and all j 6= i to consume

x1 and x2 are given below with 0 < a < B.
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ui
(
x1, (θi, θj)

)
uj
(
x1, (θi, θj)

)
ui
(
x2, (θi, θj)

)
uj
(
x2, (θi, θj)

)
θi = θ̄i a a a+B a-2B

θi = θ̂i 0 a a a

θi 6= θ̄i, θ̂i a a 0 a

The efficient allocation rule is q(θ) = x2 if θi = θ̂i and q(θ) = x1 elsewhere.

Suppose by way of contradiction that full surplus extraction can be achieved by a mech-

anism with ambiguous transfers (q,Φ). By IC(θ̄iθ̂i) and IC(θ̂iθ̄i),

inf
φ∈Φ
{a+

∑
θ−i∈Θ−i

φi(θ̄i, θ−i)pi(θ−i|θ̄i)} ≥ inf
φ∈Φ
{a+B +

∑
θ−i∈Θ−i

φi(θ̂i, θ−i)pi(θ−i|θ̄i)},

inf
φ∈Φ
{a+

∑
θ−i∈Θ−i

φi(θ̂i, θ−i)pi(θ−i|θ̂i)} ≥ inf
φ∈Φ
{0 +

∑
θ−i∈Θ−i

φi(θ̄i, θ−i)pi(θ−i|θ̂i)}.

Recall that pi(·|θ̄i) = pi(·|θ̂i). Adding these two inequalities gives 2a ≥ a+B, a contradiction.

Therefore, the condition that the BDP property holds for all agents is necessary to guarantee

full surplus extraction via a mechanism with ambiguous transfers.

To prove that the same condition is necessary for IR and BB implementation via a

mechanism with ambiguous transfers, we can adopt the same argument.

Necessity of Part 3. In view of Lemma 4.1, this result is a corollary of the necessity

result of Part 2 of Proposition 4.1.

Sufficiency of Part 1. Pick an arbitrary ex-post efficient allocation rule q. Define two

transfer rules φ and φ′ by φi = −ηi + cψi and φ′i = −ηi− cψi for all i ∈ I, where ψ is defined

and proved to exist in Lemma A.3, ηi(θ) = ui(q(θ), θ) for all θ ∈ Θ, and c is no less than

max
i∈I,θ̄i,θ̂i∈Θi,

θ̄i 6=θ̂i

∑
θ−i∈Θ−i

[ui
(
q(θ̂i, θ−i), (θ̄i, θ−i)

)
− ui

(
q(θ̂i, θ−i), (θ̂i, θ−i)

)
]pi(θ−i|θ̄i)

|
∑

θ−i∈Θ−i
ψi(θ̂i, θ−i)pi(θ−i|θ̄i)|

.

Define Φ = {φ, φ′}. All IR constraints bind because −ηi extracts agent i’s full surplus on

path, and cψi has zero interim expected value under agent i’s belief. The choice of c gives

any unilateral deviator a non-positive worst-case expected payoff, and thus the IC condition

also holds. Hence, (q,Φ) extracts the full surplus.

Sufficiency of Part 2. In view of Lemma 4.1, sufficiency of Parts 2 and 3 can be viewed

as a corollary of the sufficiency results of Proposition 4.1. However, with a common prior,

we are able to construct mechanisms with two transfer rules to fulfill our goal, which are

particularly simple and make the robustness check in Section 4.2 easier. As a result, we

present the proofs of sufficiency direction of Parts 2 and 3 of Theorem 3.1 here.
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Pick any BB transfer rule η : Θ → RN such that
∑

θ−i∈Θ−i
[ui
(
q(θi, θ−i), (θi, θ−i)

)
+

ηi(θi, θ−i)]pi(θ−i|θi) ≥ 0 for all i ∈ I and θi ∈ Θi. For example, we can choose ηi(θ) =
1
N

∑
j∈I uj(q(θ), θ)− ui(q(θ), θ) for all i ∈ I and θ ∈ Θ so that all agents have equal surplus.

By Lemma A.5, there exists a BB transfer rule ψ which gives all agents zero expected values

on path and gives any unilateral deviator a non-zero expected value.

Pick any c that is no less than∑
θ−i∈Θ−i

[ui
(
q(θ̂i, θ−i), (θ̄i, θ−i)

)
+ ηi(θ̂i, θ−i)− ui

(
q(θ̄i, θ−i), (θ̄i, θ−i)

)
− ηi(θ̄i, θ−i)]pi(θ−i|θ̄i)

|
∑

θ−i∈Θ−i
ψi(θ̂i, θ−i)pi(θ−i|θ̄i)|

for all i and θ̄i 6= θ̂i, where the denominator is positive. Let M be (q, {η + cψ, η − cψ}).
The IR condition follows from the choice of η and the fact that ψ gives agents zero

expected values on path. For all i and θ̄i 6= θ̂i, the choice of c indicates that∑
θ−i∈Θ−i

[ui
(
q(θ̄i, θ−i), (θ̄i, θ−i)

)
+ ηi(θ̄i, θ−i)]pi(θ−i|θ̄i) ≥

min{
∑

θ−i∈Θ−i

[ui
(
q(θ̂i, θ−i), (θ̄i, θ−i)

)
+ ηi(θ̂i, θ−i)± cψi(θ̂i, θ−i)]pi(θ−i|θ̄i)},

and thus M satisfies the IC condition. The BB condition of M follows from BB of η and

ψ. Therefore, M is an IR and BB mechanism with ambiguous transfers that implements q.

Sufficiency of Part 3. Given a collection of common prior p, when the BDP property

holds for all agents, the sufficiency part has been proven in Part 2. When there is exactly

one agent, i, for whom the BDP property fails, following a similar argument as Lemmas A.4

and A.5, one can prove that there exists a transfer rule ψ : Θ→ RN such that

1.
∑
j∈I

ψj(θ) = 0 for all θ ∈ Θ;

2.
∑

θ−j∈Θ−j

ψj(θj, θ−j)pj(θ−j|θj) = 0 for all j ∈ I and θj ∈ Θj;

3.
∑

θ−j∈Θ−j

ψj(θ̂j, θ−j)pj(θ−j|θ̄j) 6= 0 for all j 6= i and θ̄j, θ̂j ∈ Θj satisfying θ̄j 6= θ̂j.

Notice that the third statement is different from the one in Lemma A.5, as the BDP property

fails for agent i here.

We construct a mechanism where agent i obtains all the surplus on path. For all θ ∈ Θ

and j ∈ I with j 6= i, let ηj(θ) = −uj(q(θ), θj), and ηi(θ) = −
∑

j 6=i ηj(θ).

Pick any c that is no less than

max
j 6=i,θ̄j ,θ̂j∈Θj ,

θ̄j 6=θ̂j

∑
θ−j∈Θ−j

[uj
(
q(θ̂j, θ−j), θ̄j

)
− uj

(
q(θ̂j, θ−j), θ̂j

)
]pj(θ−j|θ̄j)

|
∑

θ−j∈Θ−j
ψj(θ̂j, θ−j)pj(θ−j|θ̄j)|

.
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Let the set of ambiguous transfers be Φ = {η + cψ, η − cψ}, which is IR and BB. The

choice of η, ψ, and c implies that agent j 6= i obtains zero worst-case expected payoffs in

the interim stage and a unilateral misreporting gives her non-positive ones. Therefore, j’s

IC constraints are satisfied.

For any θ̄i, θ̂i ∈ Θi with θ̄i 6= θ̂i, the argument below verifies IC(θ̄iθ̂i):

min{
∑

θ−i∈Θ−i

[ui
(
q(θ̄i, θ−i), θ̄i

)
+ ηi(θ̄i, θ−i)± cψi(θ̄i, θ−i)]pi(θ−i|θ̄i)}

= min{
∑

θ−i∈Θ−i

[ui
(
q(θ̄i, θ−i), θ̄i

)
+
∑
j 6=i

uj
(
q(θ̄i, θ−i), θj

)
± cψi(θ̄i, θ−i)]pi(θ−i|θ̄i)}

=
∑

θ−i∈Θ−i

[ui
(
q(θ̄i, θ−i), θ̄i

)
+
∑
j 6=i

uj
(
q(θ̄i, θ−i), θj

)
]pi(θ−i|θ̄i)

≥
∑

θ−i∈Θ−i

[ui
(
q(θ̂i, θ−i), θ̄i

)
+
∑
j 6=i

uj
(
q(θ̂i, θ−i), θj

)
]pi(θ−i|θ̄i)

≥min{
∑

θ−i∈Θ−i

[ui
(
q(θ̂i, θ−i), θ̄i

)
+
∑
j 6=i

uj
(
q(θ̂i, θ−i), θj

)
± cψi(θ̂i, θ−i)]pi(θ−i|θ̄i)},

where the first equality comes from the definition of η, the second equality follows from the

second property of ψ, the first inequality comes from ex-post efficiency of q at each type

profile (θ̄i, θ−i), and the second inequality comes from the minimization operation.

Therefore, the IR and BB mechanism with ambiguous transfers implements q.

Example A.1: In this private value example, the BDP property holds for N − 1 agents.

But an inefficient allocation rule q is not implementable via an IR and BB mechanism with

ambiguous transfers.

Define a common prior p by p(θ3
1, θ

2
2) = 2/7, and p(θ) = 1/7 for all other θ. Only agent

2 satisfies the BDP property. Let feasible allocations be A = {x0, x1, x2}. The payoffs of x1

and x2 are presented below.

x1 θ1
2 θ2

2

θ1
1 0,0 0,0

θ2
1 2,0 2,0

θ3
1 0,0 0,0

x2 θ1
2 θ2

2

θ1
1 2,0 2,0

θ2
1 0,0 0,0

θ3
1 0,0 0,0

Consider an allocation rule q(θ) = x2 if θ1 = θ2
1, and q(θ) = x1 elsewhere. Suppose by

way of contradiction that q is implemented by M = (q,Φ). Let Uθ1
1

and Uθ2
1

denote type-θ1
1

and type-θ2
1 agent 1’s worst-case expected payoff from participation.

As IR(θ1
1) and IC(θ2

1θ
1
1) hold, for any ε > 0, there exists φ1 ∈ Φ such that

IR(θ1
1) 0.5φ1

1(θ1
1, θ

1
2) + 0.5φ1

1(θ1
1, θ

2
2) ≥ Uθ1

1
,
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IC(θ2
1θ

1
1) Uθ2

1
+ ε ≥ 2 + 0.5φ1

1(θ1
1, θ

1
2) + 0.5φ1

1(θ1
1, θ

2
2).

Similarly, by IR(θ2
1) and IC(θ1

1θ
2
1), for any ε > 0, there exists φ2 ∈ Φ such that

IR(θ2
1) 0.5φ2

1(θ2
1, θ

1
2) + 0.5φ2

1(θ2
1, θ

2
2) ≥ Uθ2

1
,

IC(θ1
1θ

2
1) Uθ1

1
+ ε ≥ 2 + 0.5φ2

1(θ2
1, θ

1
2) + 0.5φ2

1(θ2
1, θ

2
2).

Add the above inequalities pairwise and let ε go to zero. Thus we have Uθ2
1
≥ 2 + Uθ1

1
and

Uθ1
1
≥ 2 + Uθ2

1
. These two expressions imply 0 ≥ 4, which is a contradiction.

Proof of Proposition 3.1. For each i ∈ I, let θi be a generic element of Θi. By rela-

beling the indices, we assume without loss of generality there are non-negative coefficients

(βθ1)θ1 6=θ1
1
, (βθ2)θ2 6=θ2

2
such that p1(·|θ1

1) =
∑

θ1 6=θ1
1
βθ1p1(·|θ1) and p2(·|θ2

2) =
∑

θ2 6=θ2
2
βθ2p2(·|θ2),

and
βθ1

2

p(θ1
2)
≥ βθ2
p(θ2)

, ∀θ2 6= θ1
2, θ

2
2. (6)

Now we construct a profile of private value utility functions (vi(·))i∈I and an efficient

allocation rule q such that q is not implementable via a Bayesian mechanism. In this way

we can prove the necessity of the condition in the current proposition.

Let agent 1 own a unit of private good and all others be potential buyers. For each

agent i ∈ I, assume that type-θi agent i’s private value of trading is vi(θi), where the

parameters satisfy that v2(θ1
2) > −v1(θ1

1) > v2(θ2
2) > −v1(θ2

1) > ... > v2(θ
min{|Θ1|,|Θ2|}
2 ) >

−v1(θ
min{|Θ1|,|Θ2|}
1 ). When |Θ2| ≥ |Θ1|, let −v1(θ

|Θ1|}
1 ) > vi(θi) > 0 for any other agent-type

pair (i 6= 1, θi) not in the ranking. When |Θ2| < |Θ1|, let −v1(θ
|Θ2|
1 ) > −v1(θ1) > vi(θi)

for any other agent-type pairs (1, θ1) and (i 6= 2, θi) not in the ranking. No trade gives all

agents zero payoffs. The efficient allocation rule q is that at a type profile θ, agent 1 should

sell the good to agent 2 if and only if v1(θ1) + v2(θ2) > 0 (note that v1(θ1) + v2(θ2) 6= 0 by

construction).

Suppose by way of contradiction there exists an IR and BB Bayesian transfer φ that

implements q. Then by IR and IC, for all i ∈ I, θ̄i 6= θ̂i,

IR(θ̄i)
∑
θ−i

φi(θ̄i, θ−i)pi(θ−i|θ̄i) ≥ −
∑
θ−i

ui(q(θ̄i, θ−i), θ̄i)pi(θ−i|θ̄i),

IC(θ̄iθ̂i)
∑
θ−i

φi(θ̄i, θ−i)pi(θ−i|θ̄i)−
∑
θ−i

φi(θ̂i, θ−i)pi(θ−i|θ̄i)

≥ −
∑
θ−i

ui(q(θ̄i, θ−i), θ̄i)pi(θ−i|θ̄i) +
∑
θ−i

ui(q(θ̂i, θ−i), θ̄i)pi(θ−i|θ̄i).

Notice there is a common prior p. We choose a constant δ > 0 sufficiently large such that

δβθ1
2
p(θ2

2)

p(θ1
2)

≥ βθ1p(θ
1
1)

p(θ1)
,∀θ1 6= θ1

1, (7)
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and then denote the left-hand-side term by γ. Now we compute the weighted sum of the

above individual rationality and incentive compatibility constraints where (1) the weight of

IR(θ1
1) is p(θ1

1)(γ + 1), (2) for each θ1 6= θ1
1 the weight of IR(θ1) is p(θ1)γ − βθ1p(θ1

1), (3) the

weight of IR(θ2
2) is p(θ2

2)(γ+δ), (4) for each θ2 6= θ2
2 the weight of IR(θ2) is p(θ2)γ−δβθ2p(θ2

2),

(5) for each i 6= 1, 2 and θi ∈ Θi the weight of IR(θi) is p(θi)γ, (6) for each θ1 6= θ1
1 the

weight of IC(θ1θ
1
1) is p(θ1

1)βθ1 , (7) for each θ2 6= θ2
2 the weight of IC(θ2θ

2
2) is δβθ2p(θ

2
2), and

(8) every other inequality has weight zero. From expressions (6) and (7), we know all the

weights are non-negative.

By the BB condition, the left-hand side of the weighted sum is zero. On the right-hand

side, the coefficients of v1(θ1
1) and v2(θ1

2) are −(γ + 1)p(θ1
1, θ

1
2) and −γp(θ1

1, θ
1
2) respectively.

Let −v1(θ1
1) and v2(θ1

2) approach each other and let all other vi(θi) approach zero. Then the

weighted sum implies that 0 ≥ −v1(θ1
1)p(θ1

1, θ
1
2) > 0 (due to Assumption 2.1), a contradiction.

Hence, q cannot be implemented by an IR and BB Bayesian mechanism.

Lemma A.6: Given a collection of priors (pi)i∈I , there exist a collection of coefficients

(bθ)θ∈Θ and non-negative coefficients (aθj)j∈I,θj∈Θj such that equation

pθ̄iθ̂i =
∑
j∈I

∑
θj∈Θj

aθjpθjθj −
∑
θ∈Θ

bθeθ (8)

holds if and only if pi(·|θ̄i) = pi(·|θ̂i) or there exists µ ∈ ∆(Θ), C̄ > 0, and Ĉ > 1 such that

1. µ(θj) > 0 and µ(θ−j|θj) = pj(θ−j|θj) for all (j, θj) 6= (i, θ̂i);

2. Ĉpi(θj, ·|θ̂i) = pi(θj, ·|θ̄i) + C̄
pi(θj |θ̄i)
pj(θ̄i|θj)

pj(θ̂i, ·|θj) for all j 6= i and θj.
12

Proof. Necessity. Expression (8) implies

0 = aθipi(θ−i|θi)− bθ,∀θi 6= θ̂i, θ−i, (9)

pi(θ−i|θ̄i) = aθ̂ipi(θ−i|θ̂i)− bθ̂i,θ−i ,∀θ−i, (10)

0 = aθjpj(θ−j|θj)− bθ,∀j 6= i, θ. (11)

If N = 2, we ignore any term θ−i−j to avoid introducing additional notations.

Case 1. Suppose aθ̃i = 0 for some θ̃i 6= θ̂i. The argument below shows that aθ̂i = 1,

aθj = 0 for all (j, θj) 6= (i, θ̂i), bθ = 0 for all θ, and pi(·|θ̄i) = pi(·|θ̂i).
Canceling bθ̃i,θ−i in (9) and (11) yields 0 = aθ̃ipi(θ−i|θ̃i) = aθjpj(θ̃i, θ−i−j|θj) for all j 6= i

and θ−i ∈ Θ−i. For all j 6= i and θj, it follows that aθj = 0 by Assumption 2.1.

By expression (11), the previous paragraph implies bθ = 0 for all θ. From expression (9),

we further know aθi = 0 for all θi 6= θ̂i.

12Vectors (pθjθ′j )j∈I,θj ,θ′j∈Θj
and (eθ)θ∈Θ are defined in Lemmas A.1 and A.4.
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By canceling bθ̂i,θ−i in (10) and (11), we have aθ̂ipi(θ−i|θ̂i)−pi(θ−i|θ̄i) = aθjpj(θ̂i, θ−i−j|θj) =

0 for all θ−i. Summing the equation across all θ−i, we get aθ̂i = 1 and thus pi(·|θ̄i) = pi(·|θ̂i).
Case 2. Suppose aθi > 0 for all θi 6= θ̂i. Similar to the argument of the previous case, we

know aθ̂i > 1 and aθj > 0 for all (j, θj) 6= (i, θ̂i). Subsequently, we will establish that there

exists µ ∈ ∆(Θ), C̄ > 0, and Ĉ > 1 such that both conditions in Definition 4.1 hold so that

the NCP* property fails for i.

Define µ ∈ ∆(Θ) by µ(θ) = bθ∑
θ̃∈Θ bθ̃

for all θ ∈ Θ. Then from expressions (9) and

(11), we know µ(·|θj) = pj(·|θj) and µ(θj) =
aθj∑
θ̃∈Θ bθ̃

> 0 for all (j, θj) 6= (i, θ̂i). Hence,

Condition N1 in Definition 4.1 holds. By canceling bθ̂iθ−i in expressions (10) and (11), we have

aθ̂ipi(θj, ·|θ̂i) = pi(θj, ·|θ̄i) + aθjpj(θ̂i, ·|θj) for all j 6= i and θj, where aθj = µ(θj)
∑

θ̃∈Θ bθ̃ =

µ(θ̄i)
µ(θj |θ̄i)
µ(θ̄i|θj)

∑
θ̃∈Θ bθ̃ = aθ̄i

pi(θj |θ̄i)
pj(θ̄i|θj)

. Recall aθ̄i > 0 and aθ̂i > 1. Thus by defining C̄ = aθ̄i and

Ĉ = aθ̂i , Condition N2 in Definition 4.1 holds. Hence, the NCP* property fails for i.

Sufficiency. When pi(·|θ̄i) = pi(·|θ̂i), define (1) aθ̂i = 1, (2) aθj = 0 for all (j, θj) 6= (i, θ̂i),

and (3) bθ = 0 for all θ ∈ Θ. When Conditions N1 and N2 hold for i, θ̄i, θ̂i, µ, C̄ > 0,

and Ĉ > 1, define (1) aθ̄i = C̄, aθ̂i = Ĉ, (2) bθ = C̄ µ(θ)

µ(θ̄i)
, ∀θ, and (3) aθk = C̄ µ(θk)

µ(θ̄i)
,

∀(k, θk) 6= (i, θ̄i), (i, θ̂i). For both cases, it is easy to verify expression (8).

Lemma A.7: Given a collection of priors (pi)i∈I , if the BDP and NCP* properties hold for

agent i , then for all θ̄i, θ̂i ∈ Θi with θ̄i 6= θ̂i, there exists a transfer rule ψθ̄iθ̂i : Θ→ RN such

that

1.
∑
j∈I

ψθ̄iθ̂ij (θ) = 0 for all θ ∈ Θ;

2.
∑

θ−j∈Θ−j

ψθ̄iθ̂ij (θj, θ−j)pj(θ−j|θj) ≥ 0 for all j ∈ I, θj ∈ Θj;

3.
∑

θ−i∈Θ−i

ψθ̄iθ̂ii (θ̂i, θ−i)pi(θ−i|θ̄i) < 0.

Proof. We prove by contraposition. Suppose there exists θ̄i 6= θ̂i such that no ψθ̄iθ̂i satisfies

these conditions. By Motzkin’s theorem of the alternative, there exist coefficients (bθ)θ∈Θ

and non-negative coefficients (aθj)j∈I,θj∈Θj such that expression (8) holds. By Lemma A.6,

the BDP property or the NCP* property fails.

Lemma A.8: Given a collection of priors (pi)i∈I , if the BDP property holds for all agents,

then the NCP* property holds for at least N − 1 agents.

Proof. Let all agents satisfy the BDP property. Suppose by way of contradiction that

there are agents i 6= j, types θ̄i 6= θ̂i, and types θ̄j 6= θ̂j such that for both (i, θ̄i, θ̂i)

and (j, θ̄j, θ̂j) the NCP* property fails. By the two-case argument in the proof of Lemma
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A.6, there exist coefficients (aθk > 0)k∈I,θk∈Θk where aθ̂i > 1, (bθ)θ∈Θ, (cθk > 0)k∈I,θk∈Θk

where cθ̂j > 1, and (dθ)θ∈Θ such that pθ̄iθ̂i =
∑

k∈I
∑

θk∈Θk
aθkpθkθk −

∑
θ∈Θ bθeθ and pθ̄j θ̂j =∑

k∈I
∑

θk∈Θk
cθkpθkθk −

∑
θ∈Θ dθeθ. Thus, the following equations hold.

0 = aθipi(θ−i|θi)− bθ,∀θi 6= θ̂i and θ−i, 0 = cθjpj(θ−j|θj)− dθ,∀θj 6= θ̂j and θ−j,

pi(θ−i|θ̄i) = aθ̂ipi(θ−i|θ̂i)− bθ̂i,θ−i ,∀θ−i, pj(θ−j|θ̄j) = cθ̂jpj(θ−j|θ̂j)− dθ̂j ,θ−j ,∀θ−j,

0 = aθjpj(θ−j|θj)− bθ,∀θ, 0 = cθipi(θ−i|θi)− dθ, ∀θ.

In the argument below, we ignore θ−i−j ifN = 2 to avoid introducing additional notations.

Canceling all bθ, dθ, and pj(θ−j|θj) in the above equations yields:

[
aθi
aθj
− cθi
cθj

]pi(θ−i|θi) = 0,∀θi 6= θ̂i, θj 6= θ̂j, and θ−i−j, (12)

[
aθ̂i
aθj
−
cθ̂i
cθj

]pi(θ−i|θ̂i) =
pi(θ−i|θ̄i)

aθj
,∀θj 6= θ̂j and θ−i−j, (13)

[
aθi
aθ̂j
− cθi
cθ̂j

]pi(θ̂j, θ−i−j|θi) =
cθipi(θ̄j, θ−i−j|θi)

cθ̂jcθ̄j
,∀θi 6= θ̂i and θ−i−j, (14)

[
aθ̂i
aθ̂j
−
cθ̂i
cθ̂j

]pi(θ̂j, θ−i−j|θ̂i) =
pi(θ̂j, θ−i−j|θ̄i)

aθ̂j
+
cθ̂ipi(θ̄j, θ−i−j|θ̂i)

cθ̂jcθ̄j
, ∀θ−i−j. (15)

Step 1. We want to prove for all θ−i−j ∈ Θ−i−j, either all the four numbers pi(θ̄j, θ−i−j|θ̄i),
pi(θ̄j, θ−i−j|θ̂i), pi(θ̂j, θ−i−j|θ̄i), and pi(θ̂j, θ−i−j|θ̂i) are positive, or they are all equal to zero.

By Assumption 2.1, there exists θ̃−i−j such that pi(θ̄j, θ̃−i−j|θ̄i) > 0. Hence, expressions

(13) and (14) imply
aθ̂i
aθ̄j
−

cθ̂i
cθ̄j
,
aθ̄i
aθ̂j
− cθ̄i

cθ̂j
> 0. Thus for each θ−i−j, either pi(θ̄j, θ−i−j|θ̄i),

pi(θ̄j, θ−i−j|θ̂i), pi(θ̂j, θ−i−j|θ̄i) > 0, or pi(θ̄j, θ−i−j|θ̄i) = pi(θ̄j, θ−i−j|θ̂i) = pi(θ̂j, θ−i−j|θ̄i) = 0.

In the previous case, expression (15) implies that we also have pi(θ̂j, θ−i−j|θ̂i) > 0.

In the latter case, we must have pi(θ̂j, θ−i−j|θ̂i) = 0. Because otherwise expression (15)

would imply
aθ̂i
aθ̂j

=
cθ̂i
cθ̂j

, which further implies that pi(θ̂j, ·|θ̄i) = pi(θ̄j, ·|θ̂i) = 0, a contradiction

to Assumption 2.1.

Step 2. We want to prove that for all θ−i−j ∈ Θ−i−j such that pi(θ̄j, θ−i−j|θ̄i) > 0,

pi(θ̄j, θ−i−j|θ̄i)
pi(θ̂j, θ−i−j|θ̄i)

=
pi(θ̄j, θ−i−j|θ̂i)
pi(θ̂j, θ−i−j|θ̂i)

.

When pi(θ̄j, θ−i−j|θ̄i) > 0, canceling aθ̂j , cθ̂j , and cθ̂i in expressions (12) through (15)

yields

cθ̄jpi(θ̂j, θ−i−j|θ̄i) + pi(θ̄j, θ−i−j|θ̄i)
cθ̄jpi(θ̂j, θ−i−j|θ̂i) + pi(θ̄j, θ−i−j|θ̂i)

=
aθ̂i −

pi(θ̄j ,θ−i−j |θ̄i)
pi(θ̄j ,θ−i−j |θ̂i)

aθ̂i −
pi(θ̂j ,θ−i−j |θ̄i)
pi(θ̂j ,θ−i−j |θ̂i)

× pi(θ̂j, θ−i−j|θ̄i)
pi(θ̂j, θ−i−j|θ̂i)

.
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By Condition N2, we also know that aθ̂i−
pi(θ̄j ,θ−i−j |θ̄i)
pi(θ̄j ,θ−i−j |θ̂i)

≥ 0 and aθ̂i−
pi(θ̂j ,θ−i−j |θ̄i)
pi(θ̂j ,θ−i−j |θ̂i)

≥ 0. Suppose

pi(θ̄j ,θ−i−j |θ̄i)
pi(θ̄j ,θ−i−j |θ̂i)

> (<)
pi(θ̂j ,θ−i−j |θ̄i)
pi(θ̂j ,θ−i−j |θ̂i)

. The left-hand side of the above equation is greater (less) than

pi(θ̂j ,θ−i−j |θ̄i)
pi(θ̂j ,θ−i−j |θ̂i)

and the right-hand side is less (greater) than
pi(θ̂j ,θ−i−j |θ̄i)
pi(θ̂j ,θ−i−j |θ̂i)

, a contradiction. Hence,

pi(θ̄j ,θ−i−j |θ̄i)
pi(θ̄j ,θ−i−j |θ̂i)

=
pi(θ̂j ,θ−i−j |θ̄i)
pi(θ̂j ,θ−i−j |θ̂i)

. Rearranging terms yields the desired result.

Step 3. We want to prove that pi(·|θ̄i) = pi(·|θ̂i), which contradicts the BDP property.

Expression (12) implies that
aθ̄i
aθj

=
cθ̄i
cθj

for all θj 6= θ̂j. Plugging it into expression (13)

yields (
aθ̂i
aθ̄i
−

cθ̂i
cθ̄i

)pi(θ−i|θ̂i) = 1
aθ̄i
pi(θ−i|θ̄i) for all θj 6= θ̂j and θ−i−j. Hence,

pi(θj, θ̃−i−j|θ̄i)
pi(θ̄j, θ−i−j|θ̄i)

=
pi(θj, θ̃−i−j|θ̂i)
pi(θ̄j, θ−i−j|θ̂i)

,∀θj 6= θ̂j, θ−i−j s.t. pi(θ̄j, θ−i−j|θ̄i) > 0, and θ̃−i−j.

Combining this expression with Step 1 and Step 2, we have established the desired result.

Lemma A.9: Let q be an efficient allocation rule under a private value environment. For any

i ∈ I, Θ̃i ⊆ Θi with |Θ̃i| ≥ 2, and distribution π ∈ ∆(Θ−i), there exist values (Uθi ≥ 0)θi∈Θ̃i

such that Uθi − Uθ′i ≥
∑

θ−i∈Θ−i
[ui(q(θ

′
i, θ−i), θi)− ui(q(θ′i, θ−i), θ′i)]π(θ−i) for all θi, θ

′
i ∈ Θ̃i.

Proof. Let a loop be a sequence (θ1
i , θ

2
i , ..., θ

K
i ) in Θ̃i with length K ≥ 2 and θ1

i = θKi . As

q is ex-post efficient, ui(q(θ
k+1
i , θ−i), θ

k+1
i ) +

∑
j 6=i uj(q(θ

k+1
i , θ−i), θj) ≥ ui(q(θ

k
i , θ−i), θ

k+1
i ) +∑

j 6=i uj(q(θ
k
i , θ−i), θj) for all k = 1, ..., K−1 and θ−j ∈ Θ−j. Summing the inequalities across

k = 1, ..., K−1 and taking into account θ1
i = θKi , we obtain that

∑K−1
k=1 [ui(q(θ

k
i , θ−i), θ

k+1
i )−

ui(q(θ
k
i , θ−i), θ

k
i )] ≤ 0. This is the “cyclical monotonicity” condition is the literature.

Fix an arbitrary θ̃i ∈ Θ̃i. For each (θi, θ−i) ∈ Θ̃i × Θ−i, define the function Vi(·) :

Θ̃i ×Θ−i → R by:

Vi(θi, θ−i) ≡ sup
(θ1
i
,...,θk

i
) is any finite sequence

starting with θ̃i and ending with θi

K−1∑
k=1

[ui(q(θ
k
i , θ−i), θ

k+1
i )− ui(q(θki , θ−i), θki )].

Then by Theorem 1 of ? or Proposition 5.2 of Börgers et al. (2015), Vi(·) is a well-defined

function satisfying

Vi(θi, θ−i)− Vi(θ′i, θ−i) ≥
∑

θ−i∈Θ−i

ui(q(θ
′
i, θ−i), θi)− ui(q(θ′i, θ−i), θ′i), ∀θi, θ′i ∈ Θ̃i.

When C > 0 is sufficiently large, we have Uθi ≡
∑

θ−i∈Θ−i
Vi(θi, θ−i)πi(θ−i)+C is non-negative

for all θi ∈ Θ̃i. The values (Uθi ≥ 0)θi∈Θ̃i
satisfy the desired condition.

Proof of Lemma 4.1. Suppose there is a common prior p. Then the equation in Condition

N2 can be rewritten as
(
Ĉ − C̄ p(θ̂i)

p(θ̄i)

)
p(·|θ̂i) = p(·|θ̄i).
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1 =⇒ 2. We prove by contrapositive. Suppose the NCP* property fails for i. Then

there exists i ∈ I, θ̄i 6= θ̂i, µ ∈ ∆(Θ), C̄ > 0, and Ĉ > 1 such that Conditions N1 and N2

hold. By the common prior condition, it is easy to see that the only µ satisfying Condition

N1 is µ = p. The equation in Condition N2 implies that the BDP property fails for agent i.

2 =⇒ 3. This step is trivial.

3 =⇒ 1. We prove by contrapositive. Suppose the BDP property fails for agent i as

p(·|θ̄i) = p(·|θ̂i). Define a prior µ = p, which makes Condition N1 hold. Pick any C̄ ≥ 1

and define Ĉ = 1 + C̄ p(θ̂i)

p(θ̄i)
. We know Ĉ > 1 from Assumption 2.1. Thus Conditions N2 also

holds. Hence, the WNCP* property fails for agent i.

Proof of Proposition 4.1. Necessity of Part 1. Suppose there exists an agent i ∈ I
for whom the BDP property fails. The same construction as in the necessity proof of Parts

1 and 2 of Theorem 3.1 can establish the necessity of the BDP property.

To prove the necessity of the WNCP* property, suppose there exists i ∈ I, θ̄i 6= θ̂i,

µ ∈ ∆(Θ), C̄ ≥ 1, and Ĉ > 1 such that the two conditions in Definition 4.1 hold so that the

WNCP* property fails for i. Fix any agent j 6= i. Consider the same construction except

that 0 < [Ĉ + C̄
∑

(k,θk)6=(i,θ̂i)
pi(θj |θ̄i)
pj(θ̄i|θj)

pj(θ−j |θj)
pk(θ−k|θk)

− 1]a < B. Suppose by way of contradiction

an IR and BB mechanism with ambiguous transfers (q,Φ) implements q. Then for all ε > 0

there exists φ ∈ Φ such that:

IR(θk)
∑

θ−k∈Θ−k

φk(θk, θ−k)pk(θ−k|θk) ≥ −a,∀k ∈ I and θk ∈ Θk

BB(θ) −
∑
k∈I

φk(θ) = 0,∀θ ∈ Θ

IC(θ̄iθ̂i)
∑

θ−i∈Θ−i

φi(θ̄i, θ−i)pi(θ−i|θ̄i)−
∑

θ−i∈Θ−i

φi(θ̂i, θ−i)pi(θ−i|θ̄i) + ε ≥ B.

Multiply IR(θ̄i) by C̄ − 1, IR(θ̂i) by Ĉ, each IR(θk) where (k, θk) 6= (i, θ̄i), (i, θ̂i) by

C̄
pi(θj |θ̄i)
pj(θ̄i|θj)

pj(θ−j |θj)
pk(θ−k|θk)

, each BB(θ) by C̄
pi(θj |θ̄i)pj(θ−j |θj)

pj(θ̄i|θj)
, and IC(θ̄iθ̂i) by 1. Add up and let ε

go to zero. We have 0 ≥ B − [Ĉ + C̄
∑

(k,θk)6=(i,θ̂i)
pi(θj |θ̄i)
pj(θ̄i|θj)

pj(θ−j |θj)
pk(θ−k|θk)

− 1]a > 0, a contradiction.

Necessity of Part 2. Suppose the WNCP* property fails for one agent and the BDP

property fails for another. By relabelling the indices, assume without loss of generality that

p2(·|θ1
2) = p2(·|θ2

2) and there exists µ ∈ ∆(Θ), C̄ ≥ 1, and Ĉ > 1 such that the two conditions

in the WNCP* property hold for (i, θ̄i, θ̂i) = (1, θ2
1, θ

1
1). Consider the same private value

functions (vi(·))i∈I and efficient allocation rule q as in the necessity direction of Proposition

3.1. We will prove that q is not implementable via an IR and BB mechanism with ambiguous

transfers, which establishes the necessity of the condition in Part 2 of Proposition 4.1.
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Suppose by contradiction that q is implementable by an IR and BB mechanism with

ambiguous transfers (q,Φ). Hence, for each i ∈ I and θi ∈ Θi, there exists an equilibrium

interim payoff of participation Uθi ≥ 0, such that for all ε > 0, there exists a transfer rule

φ ∈ Φ such that

IR(θi)
∑

θ−i∈Θ−i

φi(θi, θ−i)pi(θ−i|θi) ≥ Uθi −
∑

θ−i∈Θ−i

ui(q(θi, θ−i), θi)pi(θ−i|θi),∀i ∈ I, θi ∈ Θi,

BB(θ) −
∑
i∈I

φi(θ) = 0,∀θ ∈ Θ,

IC(θ2
1θ

1
1) Uθ2

1
+ ε ≥

∑
θ−1∈Θ−1

φ1(θ1
1, θ−1)p1(θ−1|θ2

1) +
∑

θ−1∈Θ−1

u1(q(θ1
1, θ−1), θ2

1)p1(θ−1|θ2
1).

Multiply IR(θ1
1) by Ĉ, each IR(θi) where (i, θi) 6= (1, θ1

1) by C̄
p1(θ2|θ2

1)

p2(θ2
1 |θ2)

p2(θ−2|θ2)
pi(θ−i|θi) , each BB(θ)

by C̄
p1(θ2|θ2

1)p2(θ−2|θ2)

p2(θ2
1 |θ2)

, and IC(θ2
1θ

1
1) by 1. Add them up and let ε go to zero. Since the

WNCP* property fails, we have

Uθ2
1
≥

∑
(i,θi)6=(1,θ1

1)

[Uθi −
∑

θ−i∈Θ−i

ui(q(θi, θ−i), θi)pi(θ−i|θi)]C̄
p1(θ2|θ2

1)

p2(θ2
1|θ2)

p2(θ−2|θ2)

pi(θ−i|θi)

[Uθ1
1
−
∑

θ−1∈Θ−1

u1(q(θ1
1, θ−1), θ1

1)p1(θ−1|θ1
1)]Ĉ +

∑
θ−1∈Θ−1

u1(q(θ1
1, θ−1), θ2

1)p1(θ−1|θ2
1). (16)

From IC(θ1
2θ

2
2), we know for all ε > 0, there exists a transfer rule φ̃ ∈ Φ such that

IR(θ2
2)

∑
θ−2∈Θ−2

φ̃2(θ2
2, θ−2)p2(θ−2|θ2

2) ≥ Uθ2
2
−

∑
θ−2∈Θ−2

u2(q(θ2
2, θ−2), θ2

2)p2(θ−2|θ2
2)

IC(θ1
2θ

2
2) Uθ1

2
+ ε ≥

∑
θ−2∈Θ−2

φ̃2(θ2
2, θ−2)p2(θ−2|θ1

2) +
∑

θ−2∈Θ−2

u2(q(θ2
2, θ−2), θ1

2)p2(θ−2|θ1
2).

In view of p2(·|θ1
2) = p2(·|θ2

2), add up the two inequalities and let ε approach zero. We obtain

the following inequality.

Uθ1
2
≥ Uθ2

2
+

∑
θ−2∈Θ−2

[u2(q(θ2
2, θ−2), θ1

2))− u2(q(θ2
2, θ−2), θ2

2)]p2(θ−2|θ1
2).

Plug the above expression into expression (16). Since the coefficient of IR(θ2
1) is C̄ ≥ 1 and

each Uθi ≥ 0, we have

0 ≥−
∑

(i,θi)6=(1,θ1
1),(2,θ1

2)

[
∑

θ−i∈Θ−i

ui(q(θi, θ−i), θi)pi(θ−i|θi)]C̄
p1(θ2|θ2

1)

p2(θ2
1|θ2)

p2(θ−2|θ2)

pi(θ−i|θi)

+
∑

θ−2∈Θ−2

[u2(q(θ2
2, θ−2), θ1

2)−u2(q(θ2
2, θ−2), θ2

2)−u2(q(θ1
2, θ−2), θ1

2)]p2(θ−2|θ1
2)C̄

p1(θ1
2|θ2

1)

p2(θ2
1|θ1

2)
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−
∑

θ−1∈Θ−1

u1(q(θ1
1, θ−1), θ1

1)p1(θ−1|θ1
1)Ĉ +

∑
θ−1∈Θ−1

u1(q(θ1
1, θ−1), θ2

1)p1(θ−1|θ2
1).

Plug the explicit form of q (agent 1 sells to 2 if and only if v1(θ1)+v2(θ2) > 0) and Condition

N2 into the above expression. By letting −v1(θ1
1) and v2(θ1

2) approach each other and letting

all other vi(θi) approach zero, we have 0 ≥ −v1(θ1
1)p(θ1

2|θ2
1), which is impossible in view of

Assumption 2.1.

Therefore, q is not implementable via an IR and BB mechanism with ambiguous transfers.

Sufficiency of Part 1. Suppose the BDP and NCP* properties hold for all agents. For

all i and θ̄i 6= θ̂i, there exists ψθ̄iθ̂i : Θ→ RN satisfying the conditions of Lemma A.7.

Let η be any IR and BB transfer rule. Define Φ = {η, η + cψθ̄j θ̂j : j ∈ I, θ̄j, θ̂j ∈
Θj, θ̄j 6= θ̂j}, where c is sufficiently large such that for all j ∈ I and θ̄j 6= θ̂j, the expres-

sion
∑

θ−j∈Θ−j
[uj(q(θ̂j, θ−j), (θ̄j, θ−j)) − uj(q(θ̄j, θ−j), (θ̄j, θ−j)) + ηj(θ̂j, θ−j) − ηj(θ̄j, θ−j) +

cψ
θ̄j θ̂j
j (θ̂j, θ−j)]pj(θ−j|θ̄j) is non-positive.

For any type-θ̄i agent i, the inequality below shows that misreporting θ̂i is not profitable:

min
φ∈Φ

∑
θ−i∈Θ−i

[ui(q(θ̄i, θ−i), (θ̄i, θ−i)) + φi(θ̄i, θ−i)]pi(θ−i|θ̄i)

=
∑

θ−i∈Θ−i

[ui(q(θ̄i, θ−i), (θ̄i, θ−i)) + η(θ̄i, θ−i)]pi(θ−i|θ̄i)

≥
∑

θ−i∈Θ−i

[ui(q(θ̂i, θ−i), (θ̄i, θ−i)) + η(θ̂i, θ−i) + cψθ̄iθ̂ii (θ̂i, θ−i)]pi(θ−i|θ̄i)

≥min
φ∈Φ

∑
θ−i∈Θ−i

[ui(q(θ̂i, θ−i), (θ̄i, θ−i)) + φi(θ̂i, θ−i)]pi(θ−i|θ̄i),

where the equality follows from the second requirement of Lemma A.7 and the composition

of ambiguous transfers, the first inequality comes from the choice of c, and the second

inequality comes from the composition of ambiguous transfers again. The conditions of IR

and BB follow from corresponding properties of η and each φ ∈ Φ.

Sufficiency of Part 2. We focus on the non-common prior case. In view of Lemma 4.1,

the common prior case has been established by Part 3 of Theorem 3.1.

Suppose there do not exist agents i 6= j such that the NCP* property fails for i and the

BDP property fails for j. Then either of the following is true. Case 1: there are at least

N − 1 agents satisfying both the BDP and NCP* properties. Note by Lemma A.8, a special

situation in this case is that all agents satisfy the BDP property. Case 2: all agents satisfy

the NCP* property.

Case 1. Suppose there are at least N − 1 agents satisfying both the BDP and NCP*

properties. By Lemma A.7, there exists I ′ ⊆ I with |I ′| ≥ N − 1 such that for all i ∈ I ′ and

θ̄i 6= θ̂i, there exists ψθ̄iθ̂i : Θ→ RN satisfying the three conditions in the lemma.
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Pick an agent i ∈ I, where {i} = I\I ′ if I\I ′ is a singleton and i ∈ I is arbitrary if

I\I ′ = ∅. As in the proof of Part 3 of Theorem 3.1, let η be an IR and BB transfer rule

such that agent i obtains all the surplus. Define Φ = {η} ∪ {η + cψθ̄j θ̂j : j ∈ I, j 6= i, θ̄j, θ̂j ∈
Θj, θ̄j 6= θ̂j}, where c is sufficiently large such that for all j 6= i and θ̄j 6= θ̂j,

0 ≥
∑

θ−j∈Θ−j

[uj(q(θ̂j, θ−j), θ̄j)− uj(q(θ̂j, θ−j), θ̂j) + cψ
θ̄j θ̂j
j (θ̂j, θ−j)]pj(θ−j|θ̄j).

For agent j 6= i with type θj, truthfully reporting gives her a worst-case expected utility

level of zero because the worst transfer rule, η, extracts all her surplus. Thus, j’s IR condition

binds. The choice of c makes misreporting unprofitable. Therefore, her IC condition holds.

When all agents truthfully report, a type-θ̄i agent i obtains a worst-case expected pay-

off of minφ∈Φ

∑
θ−i∈Θ−i

[ui(q(θ̄i, θ−i), θ̄i) + φi(θ̄i, θ−i)]pi(θ−i|θ̄i) =
∑

θ−i∈Θ−i
[ui(q(θ̄i, θ−i), θ̄i) +∑

j 6=i uj(q(θ̄i, θ−i), θj)]pi(θ−i|θ̄i) ≥ 0. Hence, agent i’s IR condition holds. By efficiency of q,

this term is weakly higher than
∑

θ−i∈Θ−i
[ui(q(θ̂i, θ−i), θ̄i) +

∑
j 6=i uj(q(θ̂i, θ−i), θj)]pi(θ−i|θ̄i)

for all θ̂i 6= θ̄i. Note the latter expression is weakly higher than the worst-case expected

payoff of misreporting θ̂i, minφ∈Φ

∑
θ−i∈Θ−i

[ui(q(θ̂i, θ−i), θ̄i) +φi(θ̂i, θ−i)]pi(θ−i|θ̄i). Hence, we

have also verified agent i’s IC constraints.

The BB condition is easy to see. Therefore, the IR and BB mechanism with ambiguous

transfers implements q.

Case 2. Suppose all agents satisfy the NCP* property. For any j ∈ I, let Pj be the

partition of Θj such that pj(·|θj) = pj(·|θ′j) if and only if θj and θ′j are in the same Θ̃j ∈ Pj.
For each Θ̃j with |Θ̃j| ≥ 2 and θj ∈ Θ̃j, define Uθj according to Lemma A.9. For a singleton

Θ̃j ∈ Pj and {θj} = Θ̃j, define Uθj = 0.

We will demonstrate that for each i and θ̄i 6= θ̂i the following system has a solution φθ̄iθ̂i .

IR(θ̄i)
∑

θ−j∈Θ−j

φθ̄iθ̂ii (θ̄i, θ−i)pi(θ−i|θ̄i) = Uθ̄i −
∑

θ−i∈Θ−i

ui(q(θ̄i, θ−i), θi)pi(θ−i|θ̄i),

IR(θj)
∑

θ−j∈Θ−j

φθ̄iθ̂ij (θj, θ−j)pj(θ−j|θj) ≥ Uθj −
∑

θ−j∈Θ−j

uj(q(θj, θ−j), θj)pj(θ−j|θj),∀(j, θj) 6= (i, θ̄i),

BB(θ) −
∑
j∈I

φθ̄iθ̂ij (θ) = 0, ∀θ ∈ Θ,

IC(θ̄iθ̂i) −
∑

θ−j∈Θ−j

φθ̄iθ̂ii (θ̂i, θ−i)pi(θ−i|θ̄i) ≥ −Uθ̄i +
∑

θ−i∈Θ−i

ui(q(θ̂i, θ−i), θ̄i)pi(θ−i|θ̄i).

Suppose by way of contradiction that the system does not have a solution. By Gale’s

theorem of the alternative, there exist coefficients aθ̄i of IR(θ̄i), aθj ≥ 0 of IR(θj) for each

(j, θj) 6= (i, θ̄i), bθ of BB(θ) for each θ ∈ Θ, and γθ̄iθ̂i ≥ 0 of IC(θ̄iθ̂i), that are not all zero,
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such that the weighted sum of the left-hand sides of the expressions is cancelled and the

weighted sum of the right-hand sides is positive.13

Suppose γθ̄iθ̂i = 0. Following the argument of Lemma A.7, we know (1) (aθj > 0)j∈I,θj∈Θj

and (2) (bθ ≥ 0)θ∈Θ is a non-zero vector. Define µ(θ) = bθ∑
θ̃∈Θ bθ̃

for all θ, which is a common

prior, contradicting the non-common prior assumption stated at the beginning of this part

of the proof.

Suppose γθ̄iθ̂i > 0. From Lemma A.7 and that the NCP* property holds for all agents,

we know: (1) pi(·|θ̄i) = pi(·|θ̂i), and (2) among all the coefficients, aθ̂i = γθ̄iθ̂i > 0 and

everything else is zero. According to Lemma A.9, the choice of Uθ̄i and Uθ̂i satisfies Uθ̂i −
Uθ̄i +

∑
θ−i∈Θ−i

[ui(q(θ̂i, θ−i), θ̄i)− ui(q(θ̂i, θ−i), θ̂i)]pi(θ−i|θ̄i) ≤ 0. Hence, the weighted sum of

the right-hand sides is non-positive, a contradiction.

Therefore, for each i and θ̄i 6= θ̂i, the system has a solution φθ̄iθ̂i . Let the set of ambiguous

transfers be Φ = {φθ̄iθ̂i ,∀i, θ̄i, θ̂i ∈ Θi, θ̄i 6= θ̂i}. It is easy to see that (q,Φ) is an IR and BB

mechanism with ambiguous transfers that implements q.
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