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1. Introduction 

Market participants’ trades are driven by either information or the search for liquidity 

(see Admati and Pfleiderer, 1988). Liquidity traders do not trade on the basis of any specific 

information; their trading strategies are therefore not directly related to future payoffs. The 

trading strategies of informed traders, on the other hand, are based on private information and 

are directly related to future payoffs. The activities of these two fundamental types of traders 

have been extensively analysed in seminal papers in the larger financial markets literature, and 

more so in market microstructure papers. For example, Kyle (1985) predicts that the volatility 

of asset prices partially reflects inside information (informed trading) and is independent of 

liquidity-driven trading effects, while Glosten and Milgrom (1985) predict that the breadth of 

the bid-ask spread is primarily driven by informed trading, which incorporates adverse 

selection costs into the spread. In both the Kyle (1985) and the Glosten and Milgrom (1985) 

models, it is assumed that traders execute their trading strategies by using marker orders; thus, 

all traders trade aggressively in both models. More recently however, Collin-Dufresne and Fos 

(2016) extend Kyle's (1985) model to show that the relationship between stock price volatility 

and informed trading depends on the aggressiveness of traders. Furthermore, in contrast to 

Glosten and Milgrom's (1985) model, Collin-Dufresne and Fos (2016) predict that informed 

trading may be negatively correlated with adverse selection if informed traders execute their 

strategies using limit orders. Using a comprehensive sample of trades from Schedule 13D 

filings by activist investors, Collin-Dufresne and Fos (2015) show that informed traders with 

long-lived information tend to use limit orders, which leads to a negative correlation between 

adverse selection and informed trading (see also Kaniel and Liu, 2006).  

This paper builds on the above predictions and findings by developing a general state 

space-based methodology for decomposing trading volume into unobservable liquidity-driven 

and information-driven components. According to Hendershott and Menkveld (2014), state 

space modelling is a natural tool to model an observed variable as the sum of two unobserved 
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variables. While the application of state space modelling for decomposing price, owing to its 

efficiency, is very common in the finance literature (see as examples Brogaard et al., 2014; 

Hendershott and Menkveld, 2014; Menkveld et al., 2007), the approach has thus far not been 

directly applied to trading volume.1 This is surprising given the preponderance of the literature 

on the strength of the relationship between price and trading volume (see as examples, Clark, 

1973; Cornell, 1981; Epps and Epps, 1976; Harris, 1986, 1987; Karpoff, 1987). The heavily 

evidenced relationship in the literature is linked to the joint dependence of price and volume 

on an underlying or set of underlying variable(s); this is the ‘mixture of distribution hypothesis’ 

(MDH) (see Clark, 1973; Harris, 1986). Harris (1986) argues that the underlying variable is 

the rate of flow of information. Hence, as new information arrives, traders act on them by 

revising their positions and consequently increase trading volume. Harris (1987), using data 

from the NYSE, provides an empirical basis for the MDH. This implies that the theoretical 

basis for the application of state space modelling to price (i.e. that price reflects both 

information and non-information components), holds for volume.2 However, it is important to 

note that while the information component of price is its permanent component, the information 

component of volume is transitory. This is simply because, although new information implies 

new permanent level of prices, it will only affect trading volume temporarily since after prices 

reflect this information, informed traders will no longer hold an informational advantage and 

will therefore cease their trading based on the exploited information (see also Fama, 1970; 

Chordia et al., 2002; Suominen, 2001).  

As discussed by Hendershott and Menkveld (2014), the state space approach holds 

significant economic value over other methods that could be appropriated for variable 

decomposition, such as autoregressive models (see as an example, Hasbrouck, 1991). Firstly, 

the estimation of the model using maximum likelihood is asymptotically unbiased and efficient. 

                                                             
1 McCarthy and Najand (1993) apply state space modelling to the analysis of price and volume dependence in 
currency futures. 
2 A second explanation for the existence of the price-volume relationship is based on the sequential information 
models proposed by Copeland (1976), Jennings et al. (1981) and Smirlock and Starks (1984). The models suggest 
that volume improves forecasts of price variability and vice versa. 



4 
 

Secondly, maximum efficiency in dealing with missing values is achieved due to the use of the 

Kalman filter, which accounts for level changes across periods with missing observations, 

employed in the maximum likelihood estimation. This is a critical argument in the use of state 

space modelling in decomposing asset prices and trading volume in a high frequency trading 

environment such as the one we examine, since standard estimation approaches do not deal 

with missing observations. For example, estimating a vector autoregression implies truncating 

the lag structure. Although standard approaches for decomposing trading volume may work 

well in a low-frequency environment, information in today’s markets travel at high speeds, 

thus leading to those approaches potentially discarding additional information that could be 

obtained from high frequency data. Thirdly, following estimation, the Kalman smoother, which 

is basically a backward recursion after a forward recursion with the Kalman filter, facilitates a 

decomposition of any realised change in the series such that the estimated permanent or 

transitory component at any interval is estimated using all past, present, and future observations 

in the series. Thus, the purpose of filtering is to ensure that estimates are updated with the 

introduction of every additional observation (see also Durbin and Koopman, 2012).  

In line with the expectation that asset price (and by extension, volume) is driven by 

informed trading and can therefore be decomposed into permanent and transitory components 

(see Brogaard et al., 2014; Menkveld et al., 2007), we demonstrate that (observable) trading 

volume is a sum of two unobserved series: a nonstationary series (expected component) and a 

stationary series (unexpected component). We argue that the unobserved expected component 

of trading volume is mainly driven by liquidity traders, whereas the unobserved unexpected 

component is primarily driven by informed traders. The expected component in the state space 

model is a nonstationary series and follows a random walk. Consistent with the literature, 

liquidity traders trade randomly (i.e. the reference to noise trading in the market microstructure 

literature), and thus we model the trading volume of liquidity traders as a random walk (see as 

examples of Admati and Pfleiderer, 1988; Kyle, 1985). In addition, in state space models, 

changes in the expected component affect the observable variable permanently, while changes 
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in the unexpected component have a transitory impact on the observable variable, in this case, 

trading volume (see Hendershott and Menkveld, 2014), hence our argument that the expected 

component is driven by liquidity traders, while the unexpected component is information 

trades-driven. 

In a test of the validity of the proposed state space-based volume decomposition 

approach, firstly, we use the estimated expected and unexpected components of trading volume 

to examine the role of liquidity and informed traders on market quality metrics, such as 

volatility, liquidity, and toxicity. This part of our analysis serves as a joint test of the empirical 

relevance of our state space model and the impact of different trader types on market quality. 

The relevance of our state space approach is underscored when our empirical findings are 

related to the model predictions in the existing relevant theoretical market microstructure 

literature. Secondly, we examine the predictive power of the estimated information-

driven/unexpected component of trading volume on short-horizon returns. This analysis 

furthers our aim of demonstrating the relevance of the state space approach to decomposing 

trading volume into informed and liquidity components. It is also a direct test of the efficiency 

of the price discovery process (see Chordia et al., 2005, 2008). Similar to the order imbalance 

metrics employed in Chordia et al. (2008), the unexpected component also signals private 

information, and we expect it to be a predictor of short-horizon returns. Thirdly, we conduct a 

direct empirical test of the ability of the unexpected component to capture information 

asymmetry. The test is simple and intuitive and involves examining the behaviour of the 

unexpected component around earnings announcements. We focus on earnings announcements 

because of two reasons. The first is that there is overwhelming evidence of information leakage 

prior to these events (see as an example Christophe et al., 2004); it implies that earnings 

announcements provides ideal ground for testing the proxy for informed trading. The second 

reason is that testing the behaviour of informed trading proxies by using earnings 

announcements is a well-established and widely accepted approach in the market 

microstructure literature (see as examples Benos and Jochec, 2007; Easley et al., 2008). 
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Consistent with the aforementioned studies, we expect that the unexpected component for the 

days preceding earnings announcements should be significantly higher than the unexpected 

component for the days after earnings announcements. 

All the results obtained are generally consistent with our expectations. Based on our 

state space-estimated information and liquidity-driven components of trading volume, we find 

that stock price volatility is independent of liquidity trading, but impacted by information-

motivated trading (see Glosten and Milgrom, 1985; Kyle, 1985). We also find that information-

motivated trading volume improves pricing efficiency by reducing price volatility and market 

toxicity and improving liquidity; the results are robust to alternative estimation frequencies, 

and volatility and liquidity proxies. This finding is in line with the theoretical model developed 

by Collin-Dufresne and Fos (2016), which predicts that the price volatility-informed trading 

relationship is influenced by two effects. On the one hand, informed trading reveals 

information, and this decreases uncertainty in financial markets, which reduces price volatility. 

On the other hand, the aggressive behaviour of informed traders could increase volatility. Thus, 

the net impact of informed trading on stock price volatility depends on which effect dominates. 

Thus, our finding in relation to volatility is linked to the period of relative calm in the S&P 500 

stocks, which we examine. Furthermore, Menkveld (2013) shows that aggressive trading is not 

profitable during normal trading periods, i.e. trading periods are considered normal if there is 

no excessive aggressiveness, such as a flash crash. This implies that informed traders do not 

tend to use aggressive orders during periods of relative calm in financial markets; thus, their 

activities could lead to a reduction of volatility in the markets, as predicted by Collin-Dufresne 

and Fos (2016). The results are also consistent with the findings of Avramov et al. (2006) and 

Collin-Dufresne and Fos (2015), who find that price volatility and adverse selection are 

negatively correlated with informed trading. The negative relationships of informed trading 

with order flow toxicity and illiquidity are linked to informed traders’ use of limit orders rather 

than (aggressive) market orders. In a large part of the market microstructure literature it is 

generally assumed that informed traders use only market orders, and therefore it is expected 
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that informed traders increase aggressiveness and widen the bid-ask spread, a proxy for 

illiquidity and, by extension, one of its components, adverse selection (or its high frequency 

equivalent, market toxicity). However, Kaniel and Liu (2006), modifying Glosten and 

Milgrom's (1985) model, demonstrate that if there is a high probability that when exploitable 

information is seen as long-lived, then informed traders tend to submit limit orders. The 

prediction of Kaniel and Liu's (2006) model is empirically confirmed by Collin-Dufresne and 

Fos (2015), who find that informed traders with long-lived information tend to use limit orders, 

which leads to a reduction in adverse selection.3 

Furthermore, we find that the unexpected component, as estimated using our state space 

approach, is a significant predictor of one-second stock returns. This implies that although 

financial markets are efficient in the long-term, there are short-term inefficiencies in markets 

because investors need time to absorb new information (see Chordia et al., 2008). However, 

we find that the horizon for short-term stock returns predictability has decreased substantially 

since the five-minute window reported by Chordia et al. (2008). The predictability of short-

horizon returns now only holds on a per second basis, and no longer at the minutes-long 

threshold reported in earlier studies. We show that high frequency trading is the driver of this 

sharp reduction in length of short-term return predictability. We also find that the unexpected 

component captures informed trading activity around earnings announcements.  

A few streams of the literature are related to this study. There are those studies 

delineating traders into liquidity-driven and information-driven traders (see as an example 

Avramov et al., 2006), and another extensive stream examining the role of the different types 

of traders on price volatility and liquidity (see as examples Avramov et al., 2006; Daigler and 

Wiley, 1999; Van Ness et al., 2016). This current paper differs from these studies in at least 

three respects. Firstly, the approach of decomposing trading volume using state space 

modelling is fundamentally different to those employed in existing studies. A major advantage 

                                                             
3 The rational expectation model developed by Wang (1993) also predicts a negative correlation between informed 
trading and stock price volatility, but via a different mechanism. Furthermore, Admati and Pfleiderer (1988) also 
argue in favour of a negative relationship between adverse selection and informed trading. 
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of this approach, as earlier stated, is the asymptotic unbiasedness and efficiency of the 

estimation approach, i.e. maximum likelihood via Kalman filter (see Brogaard et al., 2014; 

Hendershott and Menkveld, 2014). Secondly, we examine the role of informed trading activity 

in the evolution of specific market quality metrics, including for a new market quality metric, 

market toxicity. Finally, and critically, we present new evidence on the speed of price 

adjustment in the presence of information-driven order flow in financial markets.  

 

2. Theory and the previous literature 

In this paper, we decompose trading volume into liquidity and information-driven 

components, and thereafter test the empirical relevance of our model and the role of liquidity 

and informed traders in the price discovery process. Our empirical analysis is based on the 

predictions of widely accepted theories as proposed in existing studies. Thus, this paper is 

related to the stream of literature investigating the impact of asymmetric information on asset 

prices’ volatility and liquidity. Kyle (1985) presents one of the first and best-established models 

deriving equilibrium security prices when traders possess asymmetric information. The model 

assumes three types of traders in a market: a market maker, a noise trader that trades randomly, 

and an informed trader, and also provides a framework for determining the price impact of 

trading volume. The model shows that stock price volatility partially reflects inside 

information, which is independent of noise trading volatility. Furthermore, the model predicts 

that informed traders trade more actively when there is a higher level of noise trading volume 

in the markets, because the higher uninformed trading volume provides a “camouflage” for 

informed order flow. Glosten and Milgrom (1985) model the bid-ask spread and propose a then 

new explanation on why it arises in financial markets. The model predicts that adverse selection 

implies that the market maker makes losses whenever trading with insiders, and hence she is 

forced to impose different charges on buy and sell volumes in order to compensate for her 

potential losses. In other words, the model predicts that the bid-ask spread depends on informed 
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trading activity and the independence of liquidity traders. Moreover, the model predicts that 

the higher the variance of prices, the greater the impact of insiders/informed traders on the bid-

ask spread. Consistent with Glosten and Milgrom (1985), Easley and O'Hara (1987) also 

suggest that stock illiquidity should increase in the presence of informed traders, as information 

asymmetry increases adverse selection, which widens the spread.  

In both Kyle's (1985) and Glosten and Milgrom's (1985) models, the liquidity traders 

trade randomly. By contrast, Admati and Pfleiderer (1988) argue that this is a strong 

assumption and it might be more reasonable to assume that at least some liquidity traders can 

select the timing of their transactions. Consistent with the literature, this model predicts that 

the information-motivated trades increase as liquidity driven trading volumes rise, and the 

variance of price changes is independent from the variance of liquidity traders.  However, 

surprisingly, the theoretical framework predicts that adverse selection decreases with the 

number of informed traders. Admati and Pfleiderer (1988) argue that informed traders in 

possession of the same set of information will compete, and that this competition reduces 

adverse selection and increases benefits to liquidity traders.   

As already noted, generally, theoretical models examining information asymmetry in 

the price discovery process assume that informed traders execute their trading strategies by 

using market orders, i.e. they are aggressive traders (see as examples Glosten and Milgrom, 

1985; Kyle, 1985). Popular models such as the probability of informed trading (PIN) model, 

developed by Easley et al. (1996) and Easley et al. (1997), also make this assumption. In 

contrast to these models, Kaniel and Liu (2006) argue that the assumption is unnecessarily 

strong. By extending Glosten and Milgrom's (1985) model, the authors show that informed 

traders with long lived information strategically tend to use limit orders instead of market 

orders (see also Sun and Ibikunle, 2016). Collin-Dufresne and Fos (2016) also extend Kyle's 

(1985) model of insider trading and show that the impact of informed trading on the price 

discovery process is two-fold and could be explained by two mechanisms. Firstly, informed 

traders reveal information, which decreases the level of price uncertainty in the market; thus, 
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stock price volatility is negatively correlated with informed trading. Secondly, informed traders 

could trade aggressively, and this aggressive behaviour increases stock price volatility in 

financial markets; hence, stock price volatility is positively correlated with informed traders. 

Therefore, the relationship between market quality characteristics, such as price volatility, and 

informed traders depends on which effect dominates the other. The majority of market 

microstructure models predict positive correlations between informed trading and stock price 

volatility because they assume that informed traders will aim to quickly take advantage of 

private information by seeking to execute market orders based on such information. However, 

Menkveld (2013) and Rzayev and Ibikunle (2017) show that aggressive trading is not profitable 

for informed traders if there is no widespread aggression in the market. This implies that during 

calmer periods, we would expect to see a negative relationship between informed trading 

volume and stock price volatility (see also Collin-Dufresne and Fos, 2015; Kaniel and Liu, 

2006). The negative informed trading-price volatility relationship is also predicted by rational 

expectations models (see as examples Hellwig, 1980; Wang, 1993).  

While the relationship between informed trading volume and price volatility is nuanced, 

a positive relationship between aggregate trading volume (i.e. containing informed and 

uninformed volume) and stock price volatility is widely documented (see as an example the 

studies summarized in Karpoff, 1987). Generally, the impact of trading volume on stock price 

volatility is explained by some related theories. We mainly focus on two well-known and 

widely accepted theories: information theories and dispersion of beliefs theories. Information 

theories, such as a mixture of distributions models and sequential arrival of information models, 

suggest that both volatility and volume are determined by information arrivals (see Copeland, 

1976, 1977; Epps and Epps, 1976). The dispersion of beliefs theory, modelled by Harris and 

Raviv (1993) and Shalen (1993), argues that both unusual volume and volatility are associated 

with the differences in traders’ beliefs. To put it simply, the dispersion of beliefs model/theory 

incorporates the role of different types of traders into the relationship between trading volume 

and stock price volatility.  
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In most existing studies, trading activity is measured by total trading volume. However, 

as already noted, the dispersion of beliefs models argue that this relationship depends on the 

differences in traders’ beliefs, and thus linking volatility to total trading volume conceals some 

important information (see also Chordia et al., 2002). Therefore, some studies decompose 

trading volume into its components and then examine the role of different trading components 

on market quality characteristics, such as stock price volatility and market liquidity (see as 

examples Avramov et al., 2006; Bessembinder and Seguin, 1993; Daigler and Wiley, 1999).  

Avramov et al. (2006) partition trades into two components: herding (non-informed) and 

contrarian (informed) trades. Consistent with the rational expectation models, Avramov et al. 

(2006) find that herding trades increase stock price volatility, and contrarian trades reduce it. 

Collin-Dufresne and Fos (2015) directly examine the role of informed traders in the pricing 

process by using a comprehensive sample of trades from Schedule 13D filings by activist 

investors, and conclude that when informed traders can select when (they could strategically 

trade when noise trading is high) and how (they might strategically select to use limit orders) 

to trade, their trading activity decreases adverse selection in financial markets.  

We extend this study to examine the effects of informed trading on market toxicity, and 

then relate it to Van Ness et al. (2016). Van Ness et al. (2016) investigate the role of high 

frequency traders (HFTs) in order flow toxicity by employing the Easley et al. (2011, 2012) 

volume-synchronized probability of informed trading (VPIN) metric as a measure of order flow 

toxicity. Their study finds a negative correlation between HFT activity and order flow toxicity. 

It indicates that, as HFT increases, average order flow toxicity decreases. Furthermore, the 

authors observe a negative correlation between trading volume and order flow toxicity; 

specifically, as volume increases, average market toxicity decreases.  

Finally, our approach for decomposing trading volume into informed and uninformed 

components is based on state space modelling; therefore, our paper is also related to yet another 

stream of the market microstructure literature, which employs state space models. Generally, 

the existing body of literature on market microstructure uses state space modelling only for 
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decomposing price, rather than volume, into two components (see as examples Brogaard et al., 

2014; Hendershott and Menkveld, 2014; Menkveld et al., 2007). Menkveld et al. (2007) use 

the approach to analyse around-the-clock price discovery for cross-listed stocks in the 

Amsterdam exchange and NYSE. Their study finds that NYSE plays a minor role in the price 

discovery process for Dutch stocks. Similar to Menkveld et al. (2007), Brogaard et al. (2014) 

use a state space model in order to analyse the price discovery process in the US market. More 

precisely, they examine the role of high frequency trading (HFT) in the price discovery process. 

The study reports a positive role for HFT in the price discovery process. Durbin and Koopman 

(2012) provide a more detailed discussion on the advantages of state space models. 

 

3. Data and descriptive statistics  

3.1 Data 

The main dataset employed in this study consists of ultra-high frequency tick-by-tick 

data for the most active 100 S&P 500 stocks sourced from the Thomson Reuters Tick History 

(TRTH) database. The dataset includes data for trading days between October 2016 and 

September 2017. In the data, each message is recorded with a time stamp to the nearest 

millisecond. The following variables are included in the dataset: Reuters Identification Code 

(RIC), date, timestamp, price, volume, bid price, ask price, bid volume, and ask volume. We 

then follow Chordia et al. (2001) and Ibikunle (2015) in applying a standard set of exclusion 

criteria to the data, with the aim of excluding inexplicable values that may arise due to 

erroneous data entries. Table 1 presents the summary statistics of trading activities for the final 

sample of stocks.  

INSERT TABLE 1 ABOUT HERE 

We apply Lee and Ready’s (1991) algorithm to classify trades as buyer- or seller-

initiated.4 Going by the number of transactions and nominal and dollar-denominated trading 

                                                             
4 Chakrabarty et al. (2015) compare the different trades classification methods and conclude that Lee and Ready’s 
(1991) is the most accurate method. 
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volume, the sell side appears to be marginally more active than the buy side over the sample 

period. This view is further underscored by the average trade sizes for both buys and sells. The 

sellers also appear to be more aggressive, based on the average sizes of their trades.  

In order to execute additional out of sample tests of the validity of our state space 

modelling approach, we also obtain a proprietary NASDAQ-provided transactions dataset for 

120 randomly selected NASDAQ and NYSE-listed stocks trading during all the trading days 

in 2009. The data is complementary to the main dataset we employ, because it disaggregates 

transactions into those executed on the basis of orders submitted by HFTs and non-HFTs. This 

is the same dataset described in detail by Brogaard et al. (2014). The dataset contains the 

following information on each transaction included in the sample: date, time (in milliseconds), 

transaction size (shares), price, buy-sell indicator, and liquidity nature of the two sides to each 

trade (HH, HN, NH and NN). HH indicates a trade based on a HFT demanding liquidity and a 

HFT supplying the required liquidity. HN implies that a HFT demands liquidity and a non-

HFT supplies liquidity, while NH is the opposite. NN refers to trades where both counterparties 

are non-HFTs. We identify the sum of HH, HN and NH as HFT volume. This dataset is only 

employed in Section 4.5 of this paper. In that section, we present the justification for its use.  

Table 2 presents the summary statistics of trading activities for the NASDAQ-provided 

transactions dataset. The table shows that HFTs are counterparties in about 71% of all trades. 

INSERT TABLE 2 ABOUT HERE 

 

3.2 Main Variables 

One aim of this study is to examine the role of informed and liquidity traders in the 

evolution of price volatility, liquidity, and market toxicity. This inevitably translates into a joint 

test of the empirical relevance of the state space model we employ and the impact of the 

different types of traders on several market quality metrics. Specifically, we build a set of 

predictive regressions to test the impact of the expected and unexpected components of traded 

volume on price volatility, liquidity, and market toxicity. Thus, apart from the state space-
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estimated unobservable variables, our volatility, liquidity, and market toxicity measures are the 

main variables of interest. 

Consistent with the literature, we use absolute price change as a proxy for stock price 

volatility. For robustness, we also use the standard deviation of stock returns (see as examples 

Karpoff, 1987; Lamoureux and Lastrapes, 1990) as a proxy for stock price volatility. Absolute 

price change is defined as the absolute value of the differences between prices at times t and t-

1, and we use one-second, one-minute and one-hour intervals to compute the absolute price 

change(s). To compute the standard deviation of stock returns, firstly we employ the midpoint 

of the bid and ask quotes corresponding to every transaction.5 For robustness, we also compute 

the standard deviation of stock returns by computing the returns from the execution price for 

each transaction rather than the midpoint of the prevailing quotes. 

For robustness, we employ three spread measures as proxies for liquidity; the spread 

metrics are the effective spread, quoted spread, and relative spread. The relative and quoted 

spread measures are computed using the best bid and ask prices for each interval, t, which 

corresponds to one second, minute, or hour.6 The relative bid-ask spread is obtained by dividing 

the difference between ask and bid prices by the midpoint of both prices, while the quoted 

spread is simply the difference between the ask and bid prices. The effective spread is twice 

the absolute value of the difference between the last transaction price in an interval, t, which 

corresponds to one second, minute, or hour, and the midpoint of the prevailing bid and ask 

prices. 

We use the order imbalance (OIB#) metric proposed by Chordia et al. (2008) as a proxy 

for the level of order toxicity in the market. This is because existing order toxicity measures, 

such as the volume synchronised probability of informed trading (VPIN - see Easley et al., 

2012), essentially capture the essence of order imbalance in the market and thus are highly 

correlated with OIB#. OIB# is computed as the absolute value of the number of buyer-initiated 

                                                             
5 Chordia et al. (2008) and Avramov et al. (2006) employ midpoint returns to reduce bid-ask bounce. 
6 For robustness, we also employ the last bid and ask quotes for each interval. 
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trades minus the number of seller-initiated trades divided by the total number of trades during 

the interval, t. We employ the one-minute and one-hour intervals to compute market toxicity, 

because it is challenging to obtain enough trading volume for the lower volume stocks to 

compute unbiased order imbalance metrics within a one-second interval. 

Apart from the main variables discussed above, there are a few other variables that are 

critical to our analysis. In our state space model, trading volume is an observable variable, 

which is decomposed into two unobservable variables – the expected/uninformed/liquidity and 

unexpected/informed components. Thus, the unexpected and expected components should be 

mechanically correlated with trading activity and volume. This implies that we need to include 

at least one proxy for trading volume and activity in our secondary models to control for 

volume. To this end, we employ the natural logarithm of trading volume as the first and main 

control for trading volume, since the state space-estimated components are driven by the 

evolution of trading volume (see also Chordia et al., 2002).7 Our second trading activity-related 

proxy is the absolute value of buyer-less seller-initiated trades, which should adequately proxy 

trading activity because of Chordia et al.'s (2002) argument that the metric strongly affects 

prices and liquidity (see also Collin-Dufresne and Fos, 2015). Table 3 presents the summary 

statistics for the above variables. The descriptive statistics for the estimated unobservable 

expected and unexpected components of trading volume are presented in Table 4 and discussed 

in Section 4. The methodological approach form estimating the unobservable variables is also 

motivated in Section 4.  

INSERT TABLE 3 ABOUT HERE  

Table 3 presents the descriptive statistics for measures of liquidity, volatility and return 

computed over one-second intervals; market toxicity, constructed over one-minute intervals, is 

also presented. The average effective, relative, and quoted spreads are about 0.009, 0.0004, and 

0.018, respectively. Average returns are weakly negative from October 2016 to September 

                                                             
7 For robustness, we also use the level of trading volume as a proxy for trading activities and obtain completely 
consistent results. 
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2017. The mean and median for the absolute price change are about 0.0092 and 0.009 

respectively. Average market toxicity (based on the order imbalance measure developed by 

Chordia et al. (2008)) is high at 0.54067, since it is computed over one-minute intervals. 

 
4. Trading volume and the state space model 

4.1. Motivating the application of state space modelling to trading volume 

Transactions in financial markets are motivated either by the need for liquidity or the 

need to exploit information (see Admati and Pfleiderer, 1988). As predicted by the theoretical 

models of Kyle (1985) and Glosten and Milgrom (1985), liquidity and informed order flows 

have different impacts on price changes and the bid-ask spread (see also Collin-Dufresne and 

Fos, 2016; Wang, 1993). Avramov et al. (2006) empirically measure the relative impact of 

informed and liquidity traders on financial instruments and document the different impacts of 

these traders (see also Collin-Dufresne and Fos, 2015). In this paper, we aim to disentangle 

liquidity and informed trading volume using state space modelling and examine their relative 

impacts on price volatility, liquidity, and market toxicity. State space models are a natural tool 

for modelling an observed variable as the sum of two unobserved variables, and the asymptotic 

unbiasedness and efficiency of the models’ estimation, i.e. maximum likelihood using Kalman 

filter (see Brogaard et al., 2014; Hendershott and Menkveld, 2014), make them best suited to 

analysing high frequency time series.  

 In our setting, the local level model decomposes trading volume into two parts. The 

first is a smoothed (level, constant) component of trading volume, which is driven by liquidity-

seeking order flow, while the second is an irregular component of trading volume, which 

deviates from the smoothed (level) component and is therefore driven by informed order flow. 

This is a natural starting point, since the volume of liquidity order flow can be expected to 

remain relatively constant, while informed traders are not inclined to trade smoothly. These 

expectations are consistent with the predictions of the models of Easley and O'Hara (1992), 

Kyle (1985) and Huberman and Stanzl (2005). Firstly, in the Easley and O'Hara (1992) model, 
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liquidity traders trade with a constant level of intensity; however, informed traders only trade 

when new information enters the market. These predictions demonstrate that liquidity trading 

can be modelled as a smoothed (constant) part of trading volume, and informed trading can be 

modelled as a deviation from this smoothed level; this is exactly what state space estimation 

does efficiently. Similar to Easley and O'Hara (1992), Huberman and Stanzl (2005) show that 

liquidity traders tend to trade a fairly fixed (constant) number of shares, because it helps them 

to minimise the mean and variance of the costs of trading; this again implies that liquidity-

motivated trading volume can be considered as the smoothed (constant) part of trading volume. 

Furthermore, in Kyle's (1985) model, informed traders are not predisposed to trade smoothly 

when their trades would have no effect on execution price, which means that informed traders 

would not normally trade a constant number of shares. Therefore, their trading activity can be 

modelled as a deviation from the smoothed component of the trading volume. These factors 

strongly suggest that indeed, state space models are a natural and efficient tool for decomposing 

trading volume into liquidity and informed components.  

Our approach involves modelling observable high frequency trading volume series as 

the sum of an unobservable nonstationary series (the expected component) and a stationary 

series (the unexpected component). Our argument that the expected component is primarily 

driven by liquidity trades and the unexpected component is mainly driven by information-

motivated trades is based on the following reasons. Firstly, consistent with the literature, 

liquidity-motivated traders trade randomly (see as examples Glosten and Milgrom, 1985; Kyle, 

1985). In the state space representation, the expected component is modelled as a 

(nonstationary) random walk, and hence it is reasonable to argue that liquidity traders drive the 

expected component, since if the random walk holds, all available information would have 

been incorporated into stock prices. Secondly, in state space models, the nonstationary (random 

walk) series, or the expected component, has a permanent impact on the observable variable. 

This implies that in our setting, liquidity-seeking order flow constitutes the permanent 

component of trading volume. While trading may not be informationally efficient in the 
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absence of informed trades, they can still occur. This is not the case when liquidity-seeking 

order flow is lacking in the market. This is in line with the literature. The permanent character 

of liquidity order flow is confirmed by the no trade theorems. For example, both the Kyle 

(1985) and the Glosten and Milgrom (1985) models predict a breakdown of the price discovery 

process in the absence of liquidity traders, or when there is an excessive level of informed 

traders in the market relative to liquidity traders. This is simply because when there is a dearth 

of liquidity traders, market makers will aim to protect themselves against being adversely 

selected by setting the bid price low and the ask price high enough so as to preclude any trade. 

Furthermore, high levels of informed orders relative to liquidity orders  implies that orders will 

cluster on one side of the order book, leading to no trade scenarios. In a related study, Morris 

(1994) shows that in order to solve no trade problems, the priority is to add liquidity traders to 

the market. This implies that without liquidity traders, trading in markets breaks down. Hence, 

liquidity traders are a critical permanent feature of financial markets (see also Brunnermeier, 

2001; Milgrom and Stokey, 1982). 

Information-motivated traders drive the unexpected component of trading volume for 

two reasons. Firstly, the information arrival process is an ‘unexpected’ process, and hence 

simple intuition suggests that information-motivated trades should be modelled as an 

unexpected component of trading volume. Secondly, according to Chordia et al. (2002), private 

information impacts liquidity temporarily in financial markets. Although information is a 

permanent component of stock prices (see Menkveld et al., 2007), it has a temporary impact 

on trading volume. One reason is that, according to the Efficient Market Hypothesis (EMH), 

any new information is simultaneously absorbed by traders, and hence it can only cause 

transitory (short-term) changes in trading volume (see Fama, 1970). The temporary character 

of informed traders is also predicted by the theoretical model of Suominen (2001). Suominen 

(2001) shows that after trading reveals the private information held by informed traders, 

liquidity traders will revise their pricing and thus become more cautious. This may result in a 

decrease of informed trading in the market. Thus, any changes in the information-driven 
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component of trading volume, while having a durable impact on price, should only affect 

trading volume temporarily. Specifically, the implication here is that in our state space 

representation, the unexpected component has a transitory impact on the observable trading 

volume variable (see Hendershott and Menkveld, 2014).  

Another stream of the finance literature lends further support to our methodological 

approach. When investigating trading behaviour in financial markets, modelling may focus on 

the duration between transactions as a means of capturing trading intentions, such that the time 

stamp may be used as an explanatory variable in the mean function of durations. In addition, a 

cubic spline may be used to smooth out huge variations in the duration effects. Such a model 

is often regarded as a state space counterpart of the autoregressive conditional duration (ACD) 

model of Engle and Russell (1998) (see also Durbin and Koopman, 2012).8 The ACD is suitable 

for analysing trading data with transactions at irregular intervals, and the model is extensively 

used in the market microstructure literature to test hypotheses about duration and transaction 

clustering. In our state space representation, the permanent characteristics of the expected 

component imply constant duration, whereas the transitory structure of the unexpected 

component requires non-constant duration between transactions. Since the expected and 

unexpected components of trading volume are motivated by liquidity and information trades 

respectively, there should be constant (non-constant) duration in liquidity (informed) trading 

activity. For example, as transactions duration decreases, we would expect an increase in the 

speed of price adjustment to new information (see Dufour and Engle, 2000). Specifically, if 

indeed our state space representation is empirically relevant, then we would expect that non-

constant duration or duration clustering is driven by informed trading. The empirical findings 

in the literature (see as examples Dufour and Engle, 2000; Engle, 2000; Russell and Engle, 

2005; Zhang et al., 2001) are in line with this expectation, and therefore provide an additional 

set of robust arguments to further underscore the empirical relevance of our state space 

                                                             
8 Pacurar (2008) provides a review of the duration modelling literature. 
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approach. The empirical findings can be explained by the predictions of the Easley and O'Hara 

(1992) model. However, ultimately, the ACD is an autoregressive model and is therefore less 

efficient for decomposing an observed variable into unobserved components than the state 

space modelling approach with maximum likelihood estimation and using Kalman filter (see 

Brogaard et al., 2014; Durbin and Koopman, 2012; Hendershott and Menkveld, 2014). 

 
4.2. The state space equation and estimation 

We model trading volume as the sum of a non-stationary expected (liquidity-driven) 

component and a stationary unexpected (information-driven) component.9 In its simplest form, 

the structure of the state space model for trading volume can be expressed as: 

 

                                            !"# = %"# + '"#                                                                 (1) 

and 

                                                    %"# = %"#() + *"#                                                               (2) 

where 

                                                    !"# = +,(./0+*%1"#),                                                                (3) 
      
./0+*%1"#	is the volume traded in stock i at time t, %"# is a non-stationary expected component 

of the volume traded in stock i at time t, '"# is a stationary unexpected component of the volume 

traded in stock i at time t, and *"# is an idiosyncratic disturbance error. '"# and *"# are assumed 

to be mutually uncorrelated and normally distributed.  Time, t, equals one-second, one-minute 

or one-hour. Although a one-second interval is a suitable frequency to investigate high-

frequency trading activity, it is a very short interval for trade-based measures such as trading 

volume, hence we employ one-minute and one-hour interval analysis for robustness. 

Furthermore, any interval that has fewer than three transactions is excluded from the sample. 

                                                             
9 In addition to modelling natural logarithm of trading volume as an observable variable in the state space 
representation, for robustness, we also employ percentage changes in trading volume and simple changes in 
trading volume. Our inferences are unchanged irrespective of the approach we employ, indeed all the estimates 
obtained are qualitatively similar. 
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The structure of the model shows that only changes on *"# affect the trading volume 

permanently; '"# is temporary because it affects trading volume only at a particular time. By 

using maximum likelihood (likelihood is constructed using the Kalman filter),10 we can easily 

estimate 5"#
67  and 5"#

68. According to the structure of our state space model, the expected 

component of trading volume is due to the activity of the fraction of the market populated by 

liquidity traders, while the other fraction of the market populated by informed traders reflect 

the unexpected component of trading volume. It implies that our estimated coefficients (5"#
67  

and 5"#
68) can be used as proxies for the two fractions of the market’s trading volume, i.e. 5"#

67 

is a proxy for liquidity-motivated traders and 5"#
68  is a proxy for information-motivated traders. 

In order to jointly test the empirical relevance of the state space model and the role of informed 

and liquidity traders in functionality and the efficiency of financial markets, we employ 

predictive multivariate regressions as presented in the next section. 

 The model captured in Equations (1) – (3) is a special case of the general state space 

representation. The standard state space model is formulated for a vector of time series 9:	with 

a frequency/time period ; and is given by: 

						9: = 	<:d+ =:>: + ?:,                  >:@A = 	B:>: + C:D:,			; = 1, . . , G,                          (4) 

where disturbances  ?:	~	G(I, J:) and D:	~	G(I, K:) are mutually and serially uncorrelated 

(we ignore the stock notation L for simplicity). Furthermore, the initial state vector  >A	~	G(M,

N) is uncorrelated with the disturbances. The mean vector M and variance matrix N are usually 

implied by the dynamic process for >: in Equation (4) (see Durbin and Koopman, 2012). The 

remaining terms,  <:, =:, B:, C:, J: and  K: are called system matrices and generally are 

                                                             
10 The Kalman filter evaluates the conditional mean and variances of the state vector  >: given past observations 
/#() = {9A, . . , 9:(A}:  

M:|:(A = E(>:|/#()),               N:|:(A = var(>:|/#()),      ; = 1, . . , G.                            
In order to initialize the Kalman filter, we further have MA|I = 	M and NA|I = 	N, where >A	~	G(M, N). This 
initialization works only if >: is a stationary process. However, as in our case, often >: is not a stationary process. 
Hence, “diffuse initialization” should be done and estimated by numerically maximizing the log-likelihood, which 
may be evaluated by the Kalman filter due to prediction error decompositions. It can be shown that when the 
model is correctly specified the standardized prediction errors are normally and independently distributed with a 
unit variance (see Durbin and Koopman, 2012 for further details). 
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assumed fixed for ; = 1, . . , G. The elements of these system matrices are usually known; 

however, some elements that are functions of the fixed parameter vector need to be estimated.  

Our basic equations, (1) and (2), can be represented as the state space Equation (4) by choosing 

9: as a single time series, where <: = 0, =: = 	B: = C: = 1, J: = sW6, and K: = sX6. We 

observe that sW6 and sX6 vary for each frequency ; for ; = 1, . . , G. 

Unlike standard variable decomposition approaches, this model naturally deals with 

missing observations since the Kalman filter is used for its estimation. This is critical in a high 

frequency analysis. Recall the estimation principles of the Kalman filter (see Footnote 10): the 

estimation process in the case of missing observations is similar to that when we estimate with 

a full dataset. However, some adjustments are required. As can be deduced from Equations (1) 

– (2), the state space model consists of the measurement equation (Equation 1) and the 

transition equation (Equation 2). When we have missing observations in 9: the Kalman filter 

is not able to use the measurement equation, however the transition equation can be used since 

it depends on the previous estimated state (>:@Adepends on >:) (see Equation 2). Specifically, 

the Kalman filtering implies that with missing observations in 9:, the best estimation for >: is 

simply the evaluation of the transition equation (see Durbin and Koopman, 2012). 

We now report the estimates of the general state space model as presented in Equations 

(1) – (3). 

INSERT TABLE 4 ABOUT HERE  

Table 4 presents the cross-sectional mean estimated values of the expected (liquidity-

driven) and unexpected (information-driven) components of trading volume as decomposed 

using the state space model. The results are presented for mean estimates based on one-second, 

one-minute, and one-hour estimations. For clarity, we divide our sample into quartiles 

according to their level of trading activity/activeness; trading activity is measured by trading 

volume. The stocks in Quartile 1 are the least active ones, whereas Quartile 4 contains the most 

active stocks. As expected, the mean of the variance of the unexpected component is 
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consistently higher than the mean variance of the expected component, irrespective of the data 

frequency the model is estimated with. In addition, the estimates for the unexpected 

component’s variance in each quartile is higher than the corresponding estimates for the 

expected component. There are at least two reasons for this distribution in the estimates. Firstly, 

consistent with the structure of our state space approach, informed trades are more informative 

than the liquidity trades. Secondly, according to the literature, liquidity traders tend to trade 

consistently for liquidity reasons (see as examples Easley and O'Hara, 1992; Huberman and 

Stanzl, 2005). By contrast, informed traders are likely to trade only if they have an 

informational advantage over other traders. It implies a higher variance for informed traders 

and our results are consistent with this expectation.  

Informed traders strategically trade more actively when trading volume and liquidity 

trading is high, as higher trading volumes provide better “camouflage” for informed trades. 

The estimates presented in Table 4 are consistent with this widely held view in the market 

microstructure literature. The mean variance of liquidity-motivated trades in Quartile 4 is 

higher than the mean variance of liquidity traders in all of the other quartiles and is lowest in 

Quartile 1. This suggests that informed traders should be more active in Quartile 4 and least 

active in Quartile 1; the unexpected component estimates in Table 4 are completely in line with 

this expectation. The mean variance of the unexpected component in Quartile 4 are 1.51, 1.88 

and 1.96 for the one-second, one-minute and one-hour estimations respectively. These 

estimates are 48%, 55.37% and 46.27% larger than the one-second, one-minute, and one-hour 

frequencies mean estimated values for Quartile 1 stocks at 1.02, 1.21, and 1.34 respectively. 

The above estimates underscore the significance of liquidity and informed order flows in 

financial markets. Inferring from the Kyle (1985) and Glosten and Milgrom (1985) models, 

when uninformed traders are scarce in the market, the price discovery process becomes 

impaired or even breaks down. When the opportunities of being compensated for gathering 

information are reduced, as happens in the market environment with few uninformed traders, 

fewer than optimal potential informed traders are incentivised to acquire information. The 
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absence of informed traders in the markets impairs the price discovery process, since their 

trades convey information to the market. Thus, both liquidity and informed traders are critical 

to the price discovery process. An approach that allows us to directly estimate the proportion 

of trading volume that can be attributed to both types of traders is therefore valuable in several 

contexts, not least in market reporting activities, investment management, and 

policy/regulations development. For example, firm managers’ responses to the so-called 

speeding ticket (Price and Volume Query) often issued by some exchanges, such as the 

Australian Securities Exchange, focuses mainly on explaining the evolution of trading volume, 

rather than attempt explanations of the information drivers of price.  

 

4.3. A joint test of the empirical relevance of the state space model and the impact of trading 

volume components on market quality 

In order to establish the empirical relevance of our state space approach for 

decomposing trading volume, we estimate a series of multivariate regressions to test whether 

the estimated components of trading volume’s impact on market quality variables are 

consistent with the predicted and established patterns in the literature. 

Kyle (1985) presents a theoretical model for deriving equilibrium security prices when 

traders’ information sets are asymmetric. The model predicts that price volatility depends only 

on the informed trading volume and is independent of liquidity-based trading volume. In an 

associated work, Collin-Dufresne and Fos (2016) extend and generalize Kyle's (1985) model 

to show that informed trading-induced price volatility depends on the aggressiveness of 

informed traders. Thus, motivated by the predictions of the above-mentioned models, we 

jointly test the empirical relevance of the state space model and the roles of informed and 

liquidity traders in inducing price volatility by estimating the following regression:11 

                                                             
11Although we employ Pooled OLS (with panel corrected standard errors) for the primary estimations, for 
robustness, we also use fixed effects (stock and date) estimations with qualitatively similar outcomes/results 
obtained.  
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|∆Z"#| = [ +	\)]'Z^1_`"#() + \6./"#() + \abcd"#() + \e5"#()
68 + \f5"#()

67 + g",#	             (5)                                                                                                                     

where |∆Z"#| is the absolute value of price changes for stock i at time t-1, ]'Z^1_`"#() is the 

effective spread, measured as twice the absolute value of the difference between the last 

transaction price at time t-1 minus the prevailing bid-ask spread at the transaction time for stock 

i at time t-1, ./"#()is the natural logarithm of trading volume for stock i at time t-1, bcd"#() is 

the absolute difference between buyer- and seller-initiated trades for stock i at time t-1. 5"#()
68  is 

the proxy for informed trading volume for stock i at time t-1 and 5"#()
67  is the proxy for liquidity 

trading volume for stock i at time t-1; both variables are obtained by maximum likelihood and 

from the state space estimation described in Section 4.2. The model is estimated at one-second, 

one-minute, and one-hour intervals. Consistent with literature, we use absolute price changes 

to measure price volatility and employ effective spread for controlling liquidity. As stated, we 

use the natural logarithm of trading volume as the observable variable in the state space model. 

This implies that our proxies for informed and liquidity trading are mechanically correlated 

with trading volume. We control for trading volume in the framework; the correlation 

coefficients in Table 5 show that the inclusion of the variable does not lead to multicollinearity 

concerns. Chordia et al. (2002) argue that prices and liquidity in financial markets are strongly 

affected by the difference between buyer- and seller-initiated trades. Therefore, we use the 

absolute difference between buyer- and seller-initiated trades as the additional proxy to control 

for the effect of trading volume, in addition to the natural logarithm of trading volume. 5"#()
68  

and 5"#()
67  are the most important variables in the regression. If indeed our state space model 

correctly decomposes trading volume into liquidity and informed traders, we expect to see an 

insignificant relationship between 5"#()
67  and price volatility after controlling for volume and 

liquidity, as Kyle (1985) argues that price volatility is not affected by liquidity traders. 5"#()
68  

on the other hand should be negatively and significantly correlated with price volatility, due to 

the absence of excessive aggressiveness in our sample period (see Collin-Dufresne and Fos, 
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2016). We also use a  second proxy for volatility, i.e. the standard deviation of stock returns, 

which is a widely employed proxy in the literature (see as an example Lamoureux and 

Lastrapes, 1990). Consistent with the literature, we include the lagged value of the standard 

deviation of stock returns as an additional explanatory variable (see as examples, Justiniano 

and Primiceri, 2008; Schwert, 1989): 

 5"#
h = [ +	\)5"#()

h + \6]'Z^1_`"#() + \a./"#() + \ebcd"#() + \f5"#()
68 + \i5"#()

67 + g",# (6)                                    

Glosten and Milgrom's (1985) model is based on the idea that the extent of the adverse 

selection problem facing specialists when they trade with informed traders is one of the factors 

influencing the bid-ask spread. The model predicts that the bid-ask spread is positively 

correlated with informed trading; however, it is independent of the liquidity trading. The model 

is based on the assumption that informed traders exploit their information sets through the 

submission of market orders, i.e. they trade aggressively. However, Kaniel and Liu (2006) 

modify the Glosten and Milgrom (1985) model and show that informed traders with long-lived 

information tend to use limit orders rather than market orders (see also Menkveld, 2013). This 

implies that by submitting limit orders, informed traders might improve liquidity. In addition, 

the theoretical model presented by Admati and Pfleiderer (1988) shows that informed traders 

who observe the same signal will compete against each other in exploiting the information 

signal, and this may lead to the market maker facing a smaller adverse selection problem. When 

faced with reduced adverse selection risk, market makers will respond with tighter spreads. 

Motivated by the predictions of the above-mentioned theoretical models, we jointly test the 

empirical relevance of the state space model and the role of informed and liquidity traders in 

liquidity provision by using the following regression: 

      cZ^1_`"# = [ +	\)5"#()
h + \6./"#() + \abcd"#() + \e5"#()

68 + \f5"#()
67 + g",#      (7)                 

where cZ^1_`"# corresponds to one of relative, quoted, or effective spread. Quoted spread is 

the last ask price minus the last bid price at time t, while the relative spread is the quoted spread 

divided by the last mid-point at time t. Effective spread, ./"#(), bcd"#(), and 5"#()
h  are as 



27 
 

previously defined and included to control for trading volume, order flow dynamics and 

volatility respectively. 5"#()
68  and 5"#()

67  are the key variables in the model and are as previously 

defined. The model is estimated at one-second, one-minute, and one-hour intervals. If indeed 

our state space model correctly decomposes trading volume into liquidity and informed traders, 

then we would expect to see no significant relationship between 5"#()
67  and the various bid-ask 

spread metrics we use as dependent variables after controlling for volume, since Glosten and 

Milgrom (1985) argue that the bid-ask spread is not affected by liquidity-induced trading 

activity. By contrast, 5"#()
68  should be significantly and negatively related to the bid-ask spread 

variables, because informed trading induces adverse selection, which is the major determinant 

of how wide the market maker spread is. A negative relationship between 5"#()
68  and the spread 

is expected also because there is no evidence of excessive aggressiveness in our sample period 

(see Collin-Dufresne and Fos, 2015, 2016; Menkveld, 2013). 

 Finally, we investigate the role the informed trader plays in the creation of a toxic 

trading environment in the market. This is because the relationship between informed trading 

and market toxicity is a flipside question of the impact of informed traders on the functionality 

and efficiency of financial markets. In other words, questions about the role of informed traders 

in the inducement of market efficiency and the impact of informed traders on market toxicity 

are natural extensions of each other and one may not be fully explored without the other. Thus, 

we employ the following model to examine the relationship between market toxicity and 

informed trading: 

     j."# = [ +	\)]'Z^1_`"#() + \6./"#() + \abcd"#() + \e5"#()
68 + \f5"#()

67 + g",#     (8)          

where is the proxy for market toxicity and all of the other variables are as previously 

defined. We use the nominal order imbalance (OIB#) developed by Chordia et al. (2008), which 

captures buying and selling pressure, as a proxy for order flow toxicity. The Lee and Ready 

(1991) algorithm is used to classify trading volume into buys and sells. Thus, j."# is calculated 

itMT
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as the absolute value of the difference between the numbers of buy and sell trades, divided by 

the total number of trades: 

                                            j. =	 |#lXm	nopqrW(#srtt	nopqrW	|
#lXm	nopqrW@#srtt	nopqrW

                                                            (9) 

In a departure from the other models already presented, we estimate this model only at 

the one-minute and one-hour frequencies. This is because it is difficult to obtain enough trading 

volume to compute j."# within the one-second intervals in an unbiased manner. According to 

Collin-Dufresne and Fos (2016) and Kaniel and Liu (2006), informed traders strategically 

choose to trade more when noise in trading is high. They also execute their trading strategies 

by submitting limit orders (passive orders) (see also Menkveld, 2013), which leads to a 

negative relationship between informed trading volume and market toxicity during normal 

trading sessions (see also Admati and Pfleiderer, 1988). Thus, we expect to see a negative 

correlation between 5"#()
68  and market toxicity (see also Collin-Dufresne and Fos, 2015). 

INSERT TABLE 5 ABOUT HERE  

 Table 5 presents a correlation matrix with all the variables featured in the above-

presented models. The low correlation coefficient estimates among the variables (except for 

the liquidity proxies, which is expected) suggest that we do not have multicollinearity issues 

with the regression models. The results obtained from the estimation of Equations (5) – (8) are 

presented in Tables 6 – 8. Firstly, we discuss the one-second, one-minute, and one-hour 

frequency regression estimates for Equations (5) and (6). These are presented in Table 6.   

INSERT TABLE 6 ABOUT HERE  

The inferences drawn from the estimates in Table 6 are consistent across all frequency 

estimations. The coefficient estimates show that the lagged unexpected (information-driven) 

component of trading volume is a significant predictor of absolute price changes; all 

coefficients are statistically significant at the 0.01 level. In contrast, the liquidity/expected 

component is not a significant predictor of absolute price changes once we control for volume 

and liquidity. This is unsurprising since the latter component is liquidity driven and it is 
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‘expected’ in the sense that the trading activity generating it is based on information already 

incorporated into the price of the traded financial instruments. The results hold for both 

measures of price volatility that we employ, i.e. absolute price changes (presented in Panel A) 

and the standard deviation of stock returns (Panel B), although the unexpected component 

coefficient is generally larger in Panel A across all estimated frequencies. The negative 

coefficient estimates indicate that increases in information-motivated trades reduces price 

volatility in financial markets. This result is consistent with the result of the empirical study of 

Avramov et al. (2006), who find that stock price volatility is negatively correlated with 

informed traders. The significant unexpected component and the insignificant expected 

component estimates imply a validation of the empirical relevance of our state space approach 

to decomposing trading volume into informed and liquidity-driven components. As predicted 

by Kyle's (1985) model, the informed trading volume captured by our state space approach is 

significantly related to price volatility, however, the liquidity trading component is not. 

We also note that while the coefficient estimates are consistent for all estimation 

frequencies across both panels, the impact of the unexpected component is stronger for lower 

frequencies. For example, in Panel A (B), the effect of the unexpected component on volatility 

proxies for the one-hour frequency estimation is 6.65 (124.28) and 98.80 (1,249) times larger 

than that of the one-minute and one-second frequency estimations respectively. These 

differences are due to more information being typically released over longer durations. It is 

plausible to expect that the market learns more about the developments relevant to an 

instrument over an hour than over a second or a minute, or at the very least, comes to terms 

more with the series of information over a longer time horizon. The estimated coefficients for 

all the other explanatory variables are consistent with the existing literature; trading volume 

and the effective spread are both positively and significantly correlated with price volatility 

(see Epps and Epps, 1976; Glosten and Milgrom, 1985).  
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The above-outlined results are consistent with the model presented by Collin-Dufresne 

and Fos (2016). The relationship between informed trading and price volatility is impacted by 

two factors. Firstly, informed traders’ activity in the market leads to the revelation of 

information and this new information reduces price uncertainty in financial markets. The 

reduction in price uncertainty in turn spurs a reduction in price volatility. Secondly, informed 

traders may trade aggressively in a liquidity-constrained environment and thereby increase 

aggressiveness in financial markets, and this may increase price volatility. Thus, the 

relationship between informed traders and price volatility depends on the aggressiveness of 

informed traders. The relationship will be positive if informed traders use aggressive orders 

(market orders) and create excessive aggressiveness in the market. Interestingly, in related 

papers, Menkveld (2013) and Rzayev and Ibikunle (2017) show that aggressive orders are not 

profitable during normal trading periods, i.e. if there is no extreme volatility in financial 

markets, then the use of aggressive market orders offers no trading advantage to informed 

traders. The implication here is that informed traders seldom submit aggressive orders during 

normal trading days. Hence, as we do not observe any instance of excessive aggressiveness in 

our sample for the period we focus on, we would expect to find the negative impact of informed 

trading on stock price volatility reported in Table 6 (see also Wang, 1993). 

The explanatory powers of the one-second regressions are low, with the Adjusted R2 

being only about 0.40% for absolute price changes in Panel A and 0.92% for standard deviation 

of stock returns in Panel B. This is unsurprising and is due to our employment of a one-second 

frequency for the models' estimations, with very little information being released throughout 

the duration (see Chordia et al., 2008). Consequently, the Adjusted R2 estimates are larger for 

the one-minute and one-hour frequencies, which are 1.71% and 5.27% respectively in Panel B.   

INSERT TABLE 7 ABOUT HERE  

 We now turn to the relationship between liquidity and the decomposed trading volume 

components. We estimate Equation (7) for this purpose. In Table 7, we present the model’s 
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estimates, and Panels A, B, and C show the results with relative, quoted, and effective spread 

measures as respective proxies for liquidity. For each liquidity proxy, we estimate Equation (7) 

at one-second, one-minute, and one-hour frequencies. The estimates show that, consistent with 

the predictions of Glosten and Milgrom's (1985) model predictions, the lagged unexpected 

component is a significant predictor of liquidity. The estimates for the lagged unexpected 

component of trading volume are negative and statistically significant at the 0.01 level 

irrespective of which liquidity proxy we employ. By contrast, the expected component is not 

significantly related with bid-ask spread after controlling for volume and order flow dynamics. 

The results in all of Table 7’s panels indicate that the state space model we employ in this study 

appropriately decomposes trading volume into liquidity- and information-driven components. 

Consistent with the results in Table 6, our results show that the information-driven component 

is negatively (positively) correlated with the bid-ask spread (liquidity). Negative coefficients 

indicate that informed traders are more likely to consume liquidity in financial markets rather 

than provide it; in this case, they are liquidity consumers. The results are consistent with the 

findings of Collin-Dufresne and Fos (2015). The coefficients of all control variables are in line 

with the consistent literature. Similar to the price volatility model, Adjusted R2 values in Panels 

A, B, and C are generally small for the one-second and one-minute high frequency estimations, 

with estimates ranging from 0.49% to 1.45%. The low Adjusted R2 values are due to the 

estimation frequencies. Hence, the one-hour frequency models have much higher levels of 

explanatory powers. In Panels A, B, and C, the Adjusted R2 values are 14.01%, 11.15% and 

10.18% respectively.    

INSERT TABLE 8 ABOUT HERE  

Finally, in this section, we examine the regression estimates based on an investigation 

of the impact of liquidity and informed traders on market toxicity (as shown in Equation 8). 

Table 8 presents the estimated coefficients for the model estimated at one-minute and one-hour 

frequencies. Consistent with the results in Tables 6 and 7, the lagged unexpected component 

of trading volume is negatively and statistically significantly related with market toxicity at the 



32 
 

0.01 level; however, the expected component is not, after we control for volume and liquidity. 

The inverse relationship between the market toxicity proxy and the unexpected component 

suggests that information-motivated trading volume reduces order flow toxicity in financial 

markets, even after controlling for the overall impact of trading volume and liquidity. At least 

two mechanisms could explain this observed effect. Firstly, theoretical models like that of 

Glosten and Milgrom (1985) assume that informed traders use aggressive orders (market 

orders) to execute their trading strategies, and hence they increase the bid-ask spread and 

induce adverse selection risk/market toxicity. However, upon the modification of Glosten and 

Milgrom's (1985) model, Kaniel and Liu (2006) show that informed traders with long-loved 

information tend to use limit orders rather than market orders during normal trading periods 

(see also Menkveld, 2013). The prediction of Kaniel and Liu's (2006) model is empirically 

confirmed by Collin-Dufresne and Fos (2015). Thus, informed traders might use limit orders, 

which contribute to a reduction of the bid-ask spread by removing uncertainty in instruments’ 

prices, as long as the trading period is not aggressive. In addition, the theoretical model 

presented by Admati and Pfleiderer (1988) shows that informed traders who observe the same 

signal will compete against each other in exploiting the information signal, and this may lead 

to the market maker facing a smaller adverse selection problem. When faced with reduced 

adverse selection, market makers will respond with tighter spreads, implying a reduction in 

toxic order flow. 

Although all other control variables are significant in the one-minute frequency model 

estimation, the explanatory power of the regression is small with the Adjusted R2 being only 

about 0.12%, again owing to the short horizon over which the model is estimated. This is 

underscored by the larger Adjusted R2 value for the one-hour frequency estimation at 2.84% 
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4.4.Predicting short-horizon returns using the unexpected (information-driven) component of 

trading volume 

According to Fama (1970), (developed) financial markets are largely informationally 

efficient over a daily horizon. Chordia et al. (2008) argue that although markets are quite 

efficient over a long-horizon, there are inefficiencies in markets at shorter horizons because 

traders need time to act on new information. Motivated by this, Chordia et al. (2008) examine 

the predictability of short-term returns from past order imbalance and find that, indeed, markets 

are inefficient over short periods. In their study, Chordia et al. (2008) employ order imbalance 

as an explanatory variable because order imbalance signals private information, due to its 

capturing of buying and selling pressure. They show that short horizon returns predictability is 

smaller when markets experience periods of relative liquidity. The elimination of short horizon 

predictability is driven by the information-driven component of the order flow rather than 

increased order flow as a whole. Thus, we expect our estimated information-driven component 

of trading volume to be negatively correlated with short-horizon returns. This is because 

informed trading eliminates arbitrage opportunities. In addition to eliminating short horizon 

return predictability, informed trading decreases price volatility as long as there is no case of 

excessive aggressiveness in financial markets. Therefore, the risk premium demanded by the 

traders should decrease with the volume of information-motivated traders in the market (see 

Wang, 1993). This analysis serves as a further test of the empirical relevance of the state space 

modelling approach for estimating liquidity and informed trading components of trading 

volume. The estimated regression model is as follows: 

   u"# = [ +	\)5"#()
h + \6]'Z^1_`"#() + \a./"#() + \ebcd"#() + \f5"#()

68 + g",#       (10)                

where is the midpoint return for stock i at time t; all of the other variables are as 

previously defined. All variables are computed over a one-second frequency. It could be 

insightful to estimate the model over a lower frequency, such as the one-minute interval, as 

well. The reason for this is that the trading volume in our sample appears to be mainly driven 

itR
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by HFTs, given the sample period and market we focus on (see Brogaard et al., 2014). Thus, if 

HFTs are responsible for driving a substantial proportion of the informed trading volume, the 

predictability of return should be greatly diminished over a one-minute interval, since a one-

minute interval cannot be considered a short-horizon for an HFT-driven market. Thus, we 

estimate the following regression at a one-minute frequency; the only difference to Equation 

(10) is the addition of , which can only be validly computed at a minimum frequency of 

about one minute: 

 u"# = [ + \)5"#()
h +	\6]'Z^1_`"#() + \a./"#() + \ebcd"#() + \f5"#()

68 +

\ij."#() + g",#     (11) 

 5"#()
68  is the most important variable in both Equations (10) and (11) regression; we 

expect to see a significant and inverse relationship between informed trading and future short-

horizon return for Equation (10), estimated at the one-second frequency. In Equation (11), we 

expect that both j."#() and 5"#()
68  should be insignificant at the one-minute interval because of 

the superfast trading systems of HFTs trading in S&P 500 stocks. 

INSERT TABLE 9 ABOUT HERE  

Table 9 presents the estimated coefficients for Equation (10). All of the coefficients, 

including the unexpected component variable, are statistically significant at the 0.01 level. The 

unexpected component estimate is negative; this suggests that an increase in the level of 

informed trading eliminates/reduces return predictability/arbitrage. Thus, the unexpected 

component of trading volume, as obtained using the state space model approach, signals private 

information similar to the order imbalance metrics developed by Chordia et al. (2008). The 

Adjusted R2 is 0.06%. As already discussed, the low Adjusted R2 is linked to the estimation 

frequency of the regression model, which is one second in this case.  

We next estimate a similar regression model (Equation 11) over a longer time frequency 

of one-minute; the results are presented in the final column of Table 9. As predicted, the 

unexpected component is not statistically significant, owing to the lack of return predictability 

itMT
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over a time period stretching into a minute. However, the Adjusted R2 coefficient at 0.09% is 

larger than for the one-second frequency estimation in Equation (10). The lack of statistical 

significance for the unexpected component in the one-minute frequency regression model is 

due to the prevalence of HFT activity in the data we use, and the ability of HFTs to eliminate 

arbitrage opportunities very quickly, leading to the elimination of return predictability at low 

frequencies. We also include the order imbalance metric used by Chordia et al. (2008) in the 

regression model and, in contrast to the results presented by Chordia et al. (2008), the metric 

is not significant here. This shows that while one-second stock return is predictable from lagged 

metrics that signal private information, one-minute stock returns are not predictable in financial 

markets dominated by HFTs. 

A key finding here is that although the lag of the unexpected component predicts one-

second stock returns, one-minute stock returns are not predictable using either the unexpected 

component or the order imbalance metric based on Chordia et al. (2008) model. Thus, the latter 

part of the findings is not consistent with the results presented by Chordia et al. (2008), who 

show that even five-minute stock returns can be predicted from past order imbalance. The 

inconsistency here is linked to the data period employed by both studies. While Chordia et al. 

(2008) employ a dataset covering the years 1993 to 2002, when HFTs were not the main drivers 

of trading in financial markets, we employ a much more recent dataset from 2016 to 2017. For 

example, based on an analysis of data, which predates ours by seven years, Brogaard et al. 

(2014) show that at least fifty percent of New York’s trading volume is driven by HFTs. It 

implies that the speed of price adjustment through the incorporation of new information has 

become much lower. Specifically, HFTs do not need a full minute to absorb and act on new 

information. Furthermore, Brogaard et al. (2014) show that HFTs are more active in large 

stocks. As our sample consists of the most active and largest stocks in U.S. financial markets, 

we expect that HFTs are the dominant traders in our sample period. Thus, the definition of 

short-horizon has shifted since the period investigated by Chordia et al. (2008); the one or five-

minute (as in the case of Chordia et al., 2008) horizons cannot be considered as short-horizons 
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for the purpose of predicting short-horizon returns. The negative relationship between the 

unexpected component and the one-second short-horizon return documented above is due to a 

decrease in the risk premium demanded by the traders when informed trading reduces volatility 

in the absence of excessive aggressiveness in the market. 

 

4.5.Does fast trading drive the elimination of return predictability?12 

Further to the above findings, we address the role of HFTs in the elimination of return 

predictability.  In comparison with non-HFTs, HFTs could be viewed as being informed, 

simply on the basis that they trade with either private or public information (e.g. the sudden 

arrest of a firm’s CEO for fraudulent activities) at a faster pace than non-HFTs. This is what is 

referred to as latency arbitrage; it involves the exploitation of a trading time disparity between 

fast and slow traders, when that trade is executed solely because of a latency advantage. 

Ibikunle (2018) argues that this speed advantage is tantamount to an information advantage 

when traders trade at different speeds, since the end result remains the same – a set of traders 

exploit information (whether private or public) ahead of a different set of traders. Thus, 

exchanges with infrastructures that especially accommodate HFTs tend to display efficient 

prices ahead of others when instruments are simultaneously traded across those exchanges. 

This is the case with the analysis of price leadership in the London equity market conducted 

by Ibikunle (2018). Chaboud et al. (2014) and Brogaard et al. (2014) also show that HFTs 

enhance informational efficiency by speeding up price discovery and eliminating arbitrage 

opportunities. This property is consistent with what the classical informed trader in the market 

microstructure literature does with her trading activity.  

In order to capture the transitory nature of informed trading volumes as encapsulated 

by HFT activity, we design a test to capture transitory informed trading in the market when 

arbitrageurs observe that instruments’ prices have deviated from their underlying values. It is 

                                                             
12 We thank an anonymous referee for suggesting this analysis. 
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critical to note that while HFTs could be considered informed in comparison with non-HFTs, 

not all HFTs employ arbitrage strategies. Menkveld (2013) and Hagströmer and Nordén (2013) 

show that the majority of HFTs (about 80%) tend to apply market making strategies. 

Furthermore, in a market dominated by algorithmic traders (ATs) the speed advantage will not 

consistently confer appreciable advantages over the also fast competition. Thus, our test is 

designed to capture the changes in HFT volumes attributable to informed HFT activity.  

For this test, we employ the transactions dataset for 120 NASDAQ and NYSE stocks 

provided to us by NASDAQ. The data disaggregates transactions into HFT and non-HFT 

transactions for the year 2009. Employing the dataset, we re-estimate Equations (10) and (11) 

with one additional variable, vwxn,#() ∗ 5"#()
68 : 

u"# = [ +	\)5"#()
h + \6d++Lz"#() + \a./"#() + \ebcd"#() + \f5"#()

68 + \ivwxn,#() ∗ 5"#()
68 +

g",#       (12) 

u"# = [ + \)5"#()
h +	\6d++Lz"#() + \a./"#() + \ebcd"#() + \f5"#()

68 + \ij."#() +

\{vwxn,#() ∗ 5"#()
68 + g",#     (13) 

 vwxn,#() ∗ 5"#()
68  is obtained by interacting a new variable, DHFT, with the unexpected 

component variable. DHFT is a dummy equalling one during periods of high HFT activity. 

d++Lz"# is a proxy for illiquidity and corresponds to the Amihud (2002) illiquidity ratio in both 

Equation (12) and Equation (13) when the NASDAQ-provided data is employed (results 

presented in Panel A of Table 10) and the Effective spread when the TRTH data is employed 

(results presented in Panel B of Table 10). In order to determine intervals of high HFT activity, 

we compute the proportion of HFT trades to non-HFT trades using the designations (HFT/non-

HFT) for the transactions in the NASDAQ data. A one-second or one-minute interval is 

designated as an interval of high HFT activity if the proportion of HFT trades for that interval 

is one standard deviation higher than the mean for the surrounding -60, +60 corresponding 

intervals. We employ only one-second and one-minute frequencies because the existing 
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literature (see as an example, Chordia et al., 2008) shows that short horizon predictability is 

eliminated within minutes. The NASDAQ data, as pointed out by Brogaard et al. (2014), does 

not identify all HFTs. Hence, for robustness, we employ an alternative measure of HFT activity 

in our analysis; this is the widely deployed proxy based on the ratio of messages to the number 

of transactions (see as examples, Boehmer et al., 2015; Malceniece et al., 2018). As in 

Equations (10) and (11), Equations (12) and (13) are estimated at one-second and one-minute 

frequencies respectively. If the interaction variable’s coefficient is negative and statistically 

significant, it implies that an unexpected (transitory) rise in HFT activity is informed and 

reduces return predictability. This conclusion will be especially strengthened if the unexpected 

component is not statistically significant in Equations (12) and (13), since it would mean that 

the reduction in return predictability is primarily driven by unexpected HFT volumes. A result 

of this nature would be in line with the assumptions underlying our state space modelling 

approach. Informed trading volume is transitory and only arises to exploit deviations in the 

price of an instrument from its fundamental value. If the interaction variable in Equations (12) 

and (13), which captures periods of HFT spurts, is negative and statistically significant, it 

would show that HFT activity above the (expected) mean indicates transitory informed trading 

volumes. 

INSERT TABLE 10 ABOUT HERE 

We present the results based on the two approaches for estimating DHFT in Table 10; 

Panel A shows the results using the NASDAQ-defined HFT/non-HFT transactions, while Panel 

B shows the results using the ratio of messages to transactions HFT proxy. Contrary to the 

results in Table 9, although it remains negative, the unexpected component coefficients for the 

one-second frequency estimation in both panels are not statistically significant. However, when 

the unexpected component variable is interacted with an HFT dummy, it is highly statistically 

significant, while retaining its negative sign. This implies that the reduction in the return 

predictably observed in the earlier analysis is driven by informed HFT activity. Consistent with 
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the assumption underlying our state space modelling approach, unexpected trading volume, i.e. 

an increase in HFT volume above the mean, aids the speedy incorporation of information into 

instruments’ prices and leads to the elimination of arbitrage opportunities. 

 

4.6.The evolution of the unexpected (information-driven component) around earnings 

announcements 

In this section, we conduct a final test of the information relevance of our state space 

model-based informed trading proxy. Specifically, we examine the behaviour of the informed 

trading proxy (unexpected/transitory component of trading volume) before and after earnings 

announcements. We focus on earnings announcements as information events for two reasons. 

Firstly, there is an overwhelming set of evidence on information leakage prior to these events 

(see as an example Christophe et al., 2004); this implies that earnings announcements provide 

an ideal basis for testing our estimated proxy for informed trading. Secondly, testing the 

behaviour of informed trading proxies by using earnings announcements is a well-established 

and widely accepted approach in the market microstructure literature (see as examples Benos 

and Jochec, 2007; Easley et al., 2008). To the extent that the unexpected component (proxy for 

informed trading) is successful at estimating the existence of asymmetric information, we 

expect that the unexpected component estimates for the days preceding earnings 

announcements would be significantly higher than the unexpected component estimates for the 

days after earnings announcements. This is due to the effects of information leakage prior to 

earnings announcements. We obtain earnings announcement dates from CompuStat. During 

our sample period, there is a total of 397 earnings announcements for the stocks in our sample. 

We compute the cross sectional averages of the unexpected component for 21 working days 

before and after each earnings announcement day, and test the null that the unexpected 
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component before and after earnings announcements are equal. The null is tested using a two-

sample t-test and pairwise Wilcoxon-Mann-Whitney U test.13 

This section presents and discusses the results on the analysis of the evolution of the 

unexpected component around earnings announcements. Consistent with the literature (see as 

an example Christophe et al., 2004), the unexpected component should be higher in the lead 

up to earnings announcements than following such announcements, due to information leakage.   

INSERT TABLE 11 ABOUT HERE  

 Table 11 presents the cross-sectional averages of the unexpected component prior to 

and after earnings announcements. We compute the cross sectional means of the unexpected 

components over two different event windows: [-21, -1], the pre-event window, and [+1, +21], 

the post-event window. As expected, the cross sectional mean of the value of the unexpected 

component before earnings announcements is 1.8% higher than its value after earnings 

announcements, and both two-sample t-tests and pairwise Wilcoxon-Mann-Whitney U tests 

show that the difference between these two periods is statistically significant at the <0.001 

level.  

 Since our proxies for informed and liquidity trading are derived from trading volume, 

there is a mechanical correlation between the proxies and trading volume. This implies that the 

variation in trading volume before and after earnings announcements is the sole driver of the 

evolution of the unexpected component around the earnings announcements. Therefore, in 

order to eliminate the possibility that our proxy for informed trading works because of the 

correlation between the unobservable (unexpected and expected) components and the 

observable (trading volume) variable in state space representation, we examine the behaviour 

of trading volume before and after earnings announcements as well. As seen in Table 11, in 

contrast to the evolution of the unexpected component, trading volume is statistically 

significantly higher after the earnings announcement days than prior to those days. This is 

                                                             
13 We also employ a 15-day event window for this analysis, i.e. seven days before and after each earnings 
announcement. The results are consistent with the ones we report in Table 11. 
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unsurprising; when investors have time to evaluate the information contained in earnings 

announcements, trading activity increases because they act on it. However, at that time the 

information will no longer have profit value or drive price because informed traders would 

have exploited it in the run up to the official announcements. In summary, the results in this 

section show that our state space-based informed trading proxy captures information prior to 

earnings announcements, which is in line with the information leakage literature’s findings. 

Thus, the results bolster the empirical relevance of our state space approach to estimating 

informed and liquidity trading proxies from trading volume. 

  

5. Conclusion 

In this paper, we develop a state space model for decomposing trading volume into 

liquidity-driven (expected) and information-driven (unexpected) components. There are two 

central assumptions underlying the specification of the state space approach we use. Firstly, 

we argue that the expected component from the model is mainly driven by liquidity-seeking 

order flow, and secondly, that the unexpected component as motivated is primarily driven by 

information-motivated order flow. In addition to providing a robust set of arguments grounded 

in the literature to back up our claims, we further develop a set of univariate analysis and 

multivariate regression models to formally test these arguments. Firstly, we find that the 

unexpected component obtained from the state space model is significantly correlated with 

volatility, liquidity and toxicity, even after controlling for volume (and in the case of volatility 

and toxicity, we also control for liquidity in addition to volume), whereas the expected 

component is not significantly related to them once volume and liquidity are controlled for. 

These results are consistent with the theoretical models presented in Kyle (1985) and Glosten 

and Milgrom (1985); the consistency therefore implies that the expected and unexpected 

components can be viewed as encapsulating the liquidity- and information-motivated trades in 

our sample, respectively. The findings can also be linked to informed traders not using market 



42 
 

(aggressive) orders during normal trading periods, when there are no upheavals or extreme 

liquidity constraints in the market, as predicted by Kaniel and Liu (2006) and Menkveld (2013).  

Furthermore, we demonstrate that the unexpected component is a significant predictor 

of short-horizon returns. This again shows that the unexpected component signals private 

information, which is due to its capturing information-motivated trading volume. The 

estimated and statistically significant negative relationship between the lag unexpected 

component of trading volume (informed trading) and one-second short-horizon return is linked 

to a reduction in the risk premium demanded by the traders, given that increased informed 

trading is linked with a reduction in price volatility during the normal trading period, i.e. in the 

absence of excessive aggressiveness in trading. However, in contrast to Chordia et al. (2008), 

we find that one-minute returns cannot be predicted using either the unexpected component 

metric or the order imbalance, as employed by Chordia et al. (2008) for a five-minute return. 

This implies that in today’s high frequency trading environment, arbitrage opportunities are 

eliminated at a much faster rate than in the early 2000s period examined by the latter study. 

We show that this sharp decline in the window for return predictability is driven by informed 

HFT activity. 

Finally, we show that, in line with expectations based on the information leakage 

literature, on average the unexpected component before earnings announcements is statistically 

and significantly higher than its value after earnings announcements. 
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Table 1. Summary of trading activity 

The table presents trading summary statistics for the most active 100 S&P 500 stocks from October 1, 2016 
through to September 30, 2017. The Lee and Ready (1991) algorithm is used to classify trades as buyer- and 
seller-initiated.  
 
 

Buyer-initiated               
(000,000s)  

Seller-initiated               
(000,000s) 

Total trades 

(000,000s) 

                     106.89                  109.48                    216.37 

 
Buyer-initiated  
(00,000,000s) 

Seller-initiated 
(00,000,000s) 

Total trading volume 

(00,000,000s) 

347.71 375.61 723.32 

 
Buyer-initiated  

 

Seller-initiated  Average trade sizes 

 

325.30 343.09 334.30 

 
 Buyer-initiated 

($'0,000,000,000) 
Seller-initiated 

($'0,000,000,000) 
Total USD volume 

($'0,000,000,000) 

156.70 171.66 328.36 
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Table 2. High frequency trading activity 

The table presents the trading summary statistics for 120 randomly selected NASDAQ and NYSE-listed stocks 
traded for all dates in 2009. HH indicates a trade based on a HFT demanding liquidity and a HFT supplying 
liquidity. HN implies that a HFT demands liquidity and a non-HFT supplies liquidity, while NH is the opposite. 
NN refers to trades where both counterparties are non-HFTs. We compute HFT volume as the sum of HH, HN 
and NH. 

Type 

HH 
(0,000,000s) 

HN 
(0,000,000s) 

NH 
(0,000,000s) 

NN 
(0,000,000s) 

HFT 
(0,000,000s) 

Non-HFT 
(0,000,000s) 

HFT % 

Sell Side 

400.27 505.53 691.26 640.87 1597.07 640.87 71.3% 

Buy Side 

398.04 512.48 689.20 642.37 1599.73 642.37 71.3% 

Total 

798.32 1018.02 1380.46 1283.24 3196.8 1283.24 71.3% 
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Table 3. Summary statistics for variables 

The table presents the descriptive statistics for variables of interest. Espread is the effective spread, computed as 
twice the absolute value of the difference between the last execution price for each interval and the midpoint of 
the prevailing bid and ask prices. Rspread is the relative spread, and is obtained by dividing the difference between 
the best ask and bid prices for each interval by the midpoint of both prices. Qspread is the quoted spread, and is 
simply the difference between the best ask and bid prices for each interval. BSI is the absolute difference between 
buyer- and seller-initiated traders, |Δp| is absolute value of price change, R is the one-second midpoint return, σp 
is the standard deviation of mid-price returns, and MT is the proxy for market toxicity, calculated as the absolute 
value of the difference between the numbers of buy and sell trades divided by the sum of the numbers of buy and 
sell trades. One-second frequency is used for all variables, except MT. MT is computed by using one-minute 
frequency. The sample contains the most active 100 S&P 500 stocks traded between October 1, 2016 through to 
September 30, 2017 on NYSE and NASDAQ. 
 
 

Variables Mean Median Standard deviation 

Espread 0.00906 0.01000 0.04625 
Rspread 0.00039 0.00028 0.00090 
Qspread 0.01863 0.01000 0.05640 

BSI 1584.05 424.00 35771 
|∆Z| 0.00918 0.00900 0.06707 

R  -0.412x10-6 0.00 0.00139 
5h 0.92x10-4 0.59x10-4 0.00091 
MT  0.54067 0.50375 0.34194 
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Table 4. State Space Estimates 

The table contains mean cross-sectional estimates of unexpected (information-driven) and expected (liquidity-
driven) components of trading volume for the most active 100 S&P 500 stocks trading between October 1, 2016 
and September 30, 2017. Stocks are divided into quartiles according to their level of trading activity; trading 
activity is based on trading volume. Quartile 1 contains the least active companies, while Quartile 4 contains the 
most active stocks. The estimates are based on the following state space model for decomposing trading volume: 

!"# = 	%"# +	'"#	; %"# = 	%"#() +	*"# 
where !"# = +,(./0+*%1"#), ./0+*%1"# corresponds to trading volume of stock i at time t , %"#is a non-stationary 
expected component of stock i at time t, '"# is a stationary unexpected component for stock i at time t and *"# is an 
idiosyncratic disturbance error. 568  and 567  are the variance estimates of the unexpected and expected 
components of trading volume respectively, estimated by maximum likelihood (constructed using the Kalman 
filter). Estimations are presented for one-second, one-minute, and one-hour frequencies. 
 

Stock quartiles 

Variable Least active 2 3 Most active 

One-second frequency 
568 1.02 1.24 1.37 1.51 
567 0.46 0.49 0.53 0.78 

One-minute frequency 
568 1.21 1.36 1.63 1.88 
567 0.49 0.55 0.72 0.85 

One-hour frequency 
568 1.34 1.65 1.77 1.96 
567 0.51 0.59 0.76 0.97 
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Table 5. Correlation matrix for variables 
The table plots the correlation matrix of the variables employed in this study’s models. Espread is the effective spread, computed as twice the absolute value of the difference 
between the last execution price for each interval and the midpoint of the prevailing bid and ask prices. Rspread is the relative spread, and is obtained by dividing the difference 
between the best ask and bid prices for each interval by the midpoint of both prices. Qspread is the quoted spread, and is simply the difference between the best ask and bid prices 
for each interval. TV is the natural logarithm of trading volume, BSI is the absolute difference between buyer- and seller-initiated traders, |Δp| is absolute value of price change, !" 
is the standard deviation of mid-price returns, and !#$  and !#%  are the state space model-estimated proxies for informed and liquidity trading volumes respectively. The sample 
contains the most active 100 S&P 500 stocks traded between October 1, 2016 and September 30, 2017 on NYSE and NASDAQ. 
 
 

 Qspread Rspread Espread TV BSI !#$  
 

!#%	 |∆)| !" 

 1         

 0.79909 1        

 0.90722 0.72476 1       

*+ 

 

-0.04144 -0.06261 -0.01673 1      

 0.00133 0.01265 0.00284 0.11090 1     

!#$ 0.00000 0.00013 0.00007 0.00326 0.44342 1    

!#% 0.00000 -0.00001 0.00005 0.00021 -0.00001 -0.00000 1   

|∆)| 0.08621 0.05052 0.06789 0.01904 0.01101 0.00004 0.00008 1  

!" 0.12381 0.16384 0.11483 0.01700 0.01050 0.00004 0.00001 0.42911 1 

 
 
 
 
 
 
 

Qspread
Rspread
Espread

BSI
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Table 6. Predictive power of lagged expected and unexpected components of trading volume on 
market volatility 
The predictive power of one-second expected and unexpected components of trading volume is estimated using 
the following models: 

|∆#$%| = ' +	*+,-#./01$%2+ + *345$%2+ + *6789$%2+ + *:;$%2+
3< + *=;$%2+

3> + ?$,% 
;$%
A = ' +	*+;$%2+

A + *3,-#./01$%2+ + *645$%2+ + *:789$%2+ + *=;$%2+
3< + *B;$%2+

3> + ?$,% 
where |∆#$%| is the absolute value of price change, ,-#./01$%2+ is the effective spread, computed as twice the 
absolute value of the difference between the last execution price for each interval and the midpoint of the 
prevailing bid and ask prices.	;$%2+

A is the standard deviation of stock returns, 	45$%2+ is the natural logarithm of 
trading volume, 789$%2+ is the absolute difference between buyer- and seller-initiated traders, ;$%2+

3< and ;$%2+
3>  are the 

state space model-based proxies (estimated using Kalman filter constructed maximum likelihood) for informed 
and uninformed trading. The sample contains the most active 100 S&P 500 stocks traded between October 1, 2016 
and September 30, 2017 on NYSE and NASDAQ. ***, ** and * correspond to statistical significance at the 0.01, 
0.05 and 0.10 levels, respectively. 
 
Panel A 

Dependent Variable: |∆#$%| 
 One-second frequency One-minute frequency One-hour frequency 
9CD/.E/#D  0.847x10-2*** 

(681.52) 
0.198x10-1*** 

(138.29) 
0.110x10-1*** 

(26.05) 
,-#./01$%2+  0.742x10-1*** 

(280.32) 
0.457x10-1*** 

(76.42) 
0.287x10-1*** 

(15.34) 
45$%2+  0.967x10-3*** 

(14.98) 
0.410x10-2*** 

(6.45) 
0.177x10-2*** 

(4.07) 
789$%2+  0.100x10-6*** 

(152.25) 
0.134x10-6*** 

(130.21) 
0.758x10-6*** 

(13.66) 
;$%2+
3<   -0.334x10-4*** 

(-12.89) 
-0.496x10-3*** 

(-7.95) 
-0.330x10-2*** 

(-4.87) 
;$%2+
3>   0.842x10-5 

(0.15) 
-0.211x10-4 

(-0.07) 
-0.863x10-4 

(-0.03) 
Sample size (n) 29959938 8880028 204354 
Adjusted R2 0.40 % 0.86 % 3.17 % 

 
Panel B 

Dependent Variable: ;$%
A 

 One-second frequency One-minute frequency One-hour frequency 
9CD/.E/#D  0.741x10-4*** 

(426.41) 
0.740x10-4*** 

(256.55) 
0.789x10-4*** 

(14.75) 
;$%2+
A   0.133x10-1*** 

(86.44) 
0.377x10-1*** 

(50.32) 
0.6191*** 

(86.09) 
,-#./01$%2+  0.147x10-2*** 

(394.72) 
0.158x10-2*** 

(59.77) 
0.414x10-4 

(1.50) 
45$%2+  0.839x10-5*** 

(9.30) 
0.865x10-5*** 

(8.83) 
0.115x10-4*** 

(5.55) 
789$%2+  0.221x10-8*** 

(265.98) 
0.222x10-8*** 

(135.22) 
0.204x10-8*** 

(29.48) 
;$%2+
3<   -0.721x10-6*** 

(-19.92) 
-0.725x10-5*** 

(-16.76) 
-0.901x10-3*** 

(-12.71) 
;$%2+
3>   0.761x10-7 

(0.01) 
0.687x10-6 

(0.03) 
-0.575x10-3 

(-0.01) 
Sample size (n) 29959938 8880028 204354 
Adjusted R2 0.92% 1.71% 5.27% 
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Table 7. Predictive power of lagged expected and unexpected components of trading volume on 
market liquidity 
The predictive power of one-second expected and unexpected components of trading is estimated using the 
following model: 

8#./01$% = ' +	*+;$%2+
A + *345$%2+ + *6789$%2+ + *:;$%2+

3< + *=;$%2+
3> + ?$,% 

where 8#./01$% corresponds to one of effective, quoted and relative spreads respectively. Effective spread is 
computed as twice the absolute value of the difference between the last execution price for each interval and the 
midpoint of the prevailing bid and ask prices. Relative spread is obtained by dividing the difference between the 
best ask and bid prices for each interval by the midpoint of both prices. Quoted spread is simply the difference 
between the best ask and bid prices for each interval. ;$%2+

A  is the standard deviation of stock returns, 45$%2+ is the 
natural logarithm of trading volume, BSI is the absolute difference between buyer- and seller-initiated transactions, 
and ;$%2+

3< and ;$%2+
3>  are the state space model-based proxies (estimated using Kalman filter constructed maximum 

likelihood) for informed and uninformed trading. The sample contains the most active 100 S&P 500 stocks traded 
between October 1, 2016 and September 30, 2017 on NYSE and NASDAQ. ***, ** and * correspond to statistical 
significance at the 0.01, 0.05 and 0.10 levels, respectively. 
 
Panel A 

Dependent Variable: F8#./01$% 
 One-second frequency One-minute frequency One-hour frequency 
9CD/.E/#D  0.385x10-3*** 

(240.73) 
0.435x10-3*** 

(181.54) 
0.497x10-3*** 

(47.93) 
;$%2+
A   0.608x10-1*** 

(241.98) 
0.199x10-3*** 

(57.72) 
0.203x10-1*** 

(71.57) 
45$%2+  0.677x10-5 

(0.80) 
0.927x10-4 

(1.41) 
-0.492x10-4 

(-0.12) 
789$%2+  0.252x10-8*** 

(387.31) 
0.246x10-8*** 

(231.72) 
0.825x10-8*** 

(61.22) 
;$%2+
3<   -0.902x10-5*** 

(-26.48) 
-0.979x10-4*** 

(-15.25) 
-0.349x10-4*** 

(-12.23) 
;$%2+
3>   -0.352x10-6 

(-0.05) 
-0.258x10-4 

(-0.08) 
-0.615x10-4 

(-0.08) 
Sample size (n) 29959938 8880028 204354 
Adjusted R2 1.09% 1.45% 14.01% 

 
Panel B 

Dependent Variable: G8#./01$% 
 One-second frequency One-minute frequency One-hour frequency 
9CD/.E/#D  0.182x10-1*** 

(181.80) 
0.179x10-1*** 

(93.45) 
0.230x10-1*** 

(31.74) 
;$%2+
A   2.767*** 

(230.62) 
2.24*** 

(101.94) 
128*** 

(55.54) 
45$%2+  -0.918x10-3* 

(-1.74) 
-0.145x10-3 

(-0.35) 
-0.385x10-2 

(-1.37) 
789$%2+  0.921x10-7*** 

(182.69) 
0.968x10-7*** 

(143.04) 
0.352x10-7*** 

(37.42) 
;$%2+
3<   -0.329x10-4*** 

(-15.50) 
-0.386x10-4*** 

(-9.44) 
-0.155x10-3*** 

(-6.22) 
;$%2+
3>   0.116x10-6 

(0.03) 
0.310x10-6 

(0.02) 
-0.284x10-5 

(-0.05) 
Sample size (n) 29959938 8880028 204354 
Adjusted R2 0.49% 1.08% 11.15% 

 
Panel C 

Dependent Variable: ,8#./01$% 
 One-second frequency One-minute frequency One-hour frequency 
9CD/.E/#D  0.874x10-2*** 0.882x10-2*** 0.981x10-2*** 
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(107.46) (67.52) (15.54) 
;$%2+
A   2.009*** 

(127.41) 
13.34*** 

(71.03) 
107.66*** 

(14.92) 
45$%2+  -0.160x10-3*** 

(-3.74) 
-0.102x10-3 

(-0.28) 
-0.197x10-2 

(-0.80) 
789$%2+  0.604x10-7*** 

(118.35) 
0.634x10-7*** 

(89.80) 
0.240x10-6*** 

(29.34) 
;$%2+
3<   -0.216x10-4*** 

(-12.55) 
-0.254x10-4*** 

(-11.23) 
-0.107x10-3*** 

(-12.80) 
;$%2+
3>   -0.758x10-4 

(-0.20) 
-0.186x10-4 

(-0.11) 
-0.208x10-4 

(-0.04) 
Sample size (n) 29959938 8880028 204354 
Adjusted R2 0.37% 1.09% 10.18% 
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Table 8. Predictive power of lagged expected and unexpected components of trading volume on 
market toxicity 
The predictive power of one-minute expected and unexpected components of trading volume is estimated using 
the following model: 

H4$% = ' +	*+,-#./01$%2+ + *345$%2+ + *6789$%2+ + *:;$%2+
3< + *=;$%2+

3> + ?$,% 
where H4$% is a proxy for market toxicity, which is computed as the absolute value of the difference between the 
numbers of buy and sell trades over a one-minute interval, divided by the total number of trades for that interval. 
,-#./01$%2+ is the effective spread, computed as twice the absolute value of the difference between the last 
execution price for each interval and the midpoint of the prevailing bid and ask prices. 45$%2+ is the natural 
logarithm of trading volume, 789$%2+ is the absolute difference between buyer- and seller-initiated transactions, 
and ;$%2+

3< 	and  ;$%2+
3>  are the state space model-based proxies (estimated using Kalman filter constructed maximum 

likelihood) for informed and uninformed trading. The sample contains the most active 100 S&P 500 stocks traded 
between October 1, 2016 and September 30, 2017 on NYSE and NASDAQ. ***, ** and * correspond to statistical 
significance at the 0.01, 0.05 and 0.10 levels, respectively. 
 

Dependent Variable: H4$% 
 One-minute frequency One-hour frequency 
9CD/.E/#D  0.539*** 

(465.44) 
0.598*** 

(125.92) 
,8#./01$%2+  0.767x10-1*** 

(57.21) 
0.821x10-1*** 

(40.30) 
45$%2+  0.128x10-3*** 

(8.96) 
0.440x10-2 

(1.61) 
789$%2+  0.153x10-6*** 

(66.13) 
0.354x10-6*** 

(65.56) 
;$%2+
3<   -0.578x10-2*** 

(-4.14) 
-0.234x10-2*** 

(-22.76) 
;$%2+
3>   -0.396x10-3 

(-0.57) 
-0.670x10-3 

(-0.29) 
Sample size (n) 8880028 204354 
Adjusted R2 0.12% 2.84% 
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Table 9. Predictive power of lagged unexpected component of trading volume on short horizon 
stock returns 
The predictive power of one-second/minute expected and unexpected components of trading volume is estimated 
using the following model: 

F$% = ' + *+;$%2+
A +	*3,-#./01$%2+ + *645$%2+ + *:789$%2+ + *=;$%2+

3< + *BH4$%2+ + ?$,% 
where F$%is the midpoint one-minute return, ;$%2+

A is the standard deviation of stock returns, ,-#./01$%2+ is the 
effective spread, computed as twice the absolute value of the difference between the last execution price for each 
interval and the midpoint of the prevailing bid and ask prices. 45$%2+ is the natural logarithm of trading volume, 
789$%2+ is the absolute difference between buyer- and seller-initiated trades. H4$%2+ is a proxy for market toxicity, 
which is computed as the absolute value of the difference between the numbers of buy and sell trades over a one-
minute interval, divided by the total number of trades for that interval, and ;$%2+

3<  is the state space model-based 
proxy (estimated using Kalman filter constructed maximum likelihood) for informed trading. The sample contains 
the most active 100 S&P 500 stocks traded between October 1, 2016 and September 30, 2017 on NYSE and 
NASDAQ. ***, ** and * correspond to statistical significance at the 0.01, 0.05 and 0.10 levels, respectively. 
 
 

Dependent Variable: F$% 
 One-second frequency One-minute frequency 

9CD/.E/#D  -0.535x10-5*** 

(-20.14) 
-0.774x10-4*** 

(-8.19) 
;$%2+
A   0.524x10-3** 

(2.22) 
-0.106x10-4 

(-1.30) 
,8#./01$%2+  0.440x10-3*** 

(77.59) 
0.871x10-3*** 

(59.59) 
45$%2+  0.108x10-6*** 

(7.89) 
0.838x10-5*** 

(7.75) 
789$%2+  0.540x10-9*** 

(51.12) 
0.123x10-8*** 

(47.22) 
;$%2+
3<   -0.153x10-6*** 

(-27.71) 
-0.417x10-4 

(-1.52) 
H4$%   0.265x10-5 

(0.69) 
Sample size (n) 29959938 8880028 
Adjusted R2 0.06% 0.09% 
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Table 10. Predictive power of lagged unexpected component of trading volume and lagged 
unexpected component of trading volume interacted with a dummy variable for high frequency 
trading on short horizon stock returns 
The predictive power of one-second/minute expected and unexpected components of trading volume, as well as 
unexpected component, interacted with a dummy variable for HFT is estimated using the following model: 

F$% = ' + *+;$%2+
A +	*39IIJK$%2+ + *645$%2+ + *:789$%2+ + *=;$%2+

3< + *BH4$%2+ + *LMNOP,%2+ ∗ ;$%2+
3< + ?$,% 

where F$%is the midpoint one-minute return, ;$%2+
A is the standard deviation of stock returns, 9IIJK$%2+ is the Amihud 

illiquidity proxy in Panel A and the effective spread in Panel B. The Amihud illiquidity proxy is computed as 
absolute return divided by trading volume for each interval and the effective spread is computed as twice the 
absolute value of the difference between the last execution price for each interval and the midpoint of the 
prevailing bid and ask prices. 45$%2+ is the natural logarithm of trading volume, 789$%2+ is the absolute difference 
between buyer- and seller-initiated trades. H4$%2+ is a proxy for market toxicity, which is computed as the absolute 
value of the difference between the numbers of buy and sell trades over a one-minute interval, divided by the total 
number of trades for that interval, and ;$%2+

3<  is the state space model-based proxy (estimated using Kalman filter 
constructed maximum likelihood) for informed trading. DHFT is a dummy equalling one during periods of high 
HFT activity. A one-second or one-minute interval is designated as an interval of high HFT activity if HFT trades 
for that interval is one standard deviation higher than the mean for the surrounding -60, +60 corresponding 
intervals. The sample for Panel A contains 120 NASDAQ and NYSE stocks traded for all dates in 2009. The 
sample for Panel B contains the most active 100 S&P 500 stocks traded between October 1, 2016 and September 
30, 2017 on NYSE and NASDAQ. ***, ** and * correspond to statistical significance at the 0.01, 0.05, and 0.10 
levels, respectively. 

Panel A 

Dependent Variable: F$% 
 One-second frequency One-minute frequency 

9CD/.E/#D  -0.311x10-3*** 

(-6.76) 
0.423x10-2** 

(2.06) 
;$%2+
A   0.630*** 

(8.86) 
0.049x10-1 

(1.64) 
RSJℎU1$%2+  -3.668*** 

(-4.60) 
-1.405 

(-0.25) 
45$%2+  0.240x10-4*** 

(3.96) 
0.385x10-3** 

(2.52) 
789$%2+  0.01x10-9* 

(1.74) 
0.01x10-6* 

(1.85) 
;$%2+
3<   -0.097x10-6 

(-1.58) 
0.556x10-4 

(1.49) 
MNOP,%2+ ∗ ;$%2+

3<   -0.346x10-4*** 

(-3.38) 
-0.170x10-3 

(-1.51) 
H4$%2+   -0.153x10-2 

(-1.32) 
Adjusted R2 0.09% 0.25% 

 
 
Panel B 

Dependent Variable: F$% 
 One-second frequency One-minute frequency 

9CD/.E/#D  -0.258x10-5*** 

(-3.19) 
-0.107x10-4* 

(-1.85) 
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;$%2+
A   0.242x10-2** 

(2.45) 
-0.650x10-4 

(-1.02) 
,8#./01$%2+  0.287x10-3*** 

(17.44) 
0.566x10-3*** 

(2.99) 
45$%2+  0.234x10-6** 

(2.07) 
0.217x10-5*** 

(11.17) 
789$%2+  0.264x10-10 

(0.87) 
0.492x10-8*** 

(13.49) 
;$%2+
3<   -0.284x10-8 

(-0.01) 
-0.267x10-7 

(-1.08) 
MNOP,%2+ ∗ ;$%2+

3<   -0.264x10-5*** 

(-3.51) 
-0.128x10-10 

(-1.45) 
H4$%2+   0.114x10-5 

(0.29) 
Adjusted R2 0.04% 0.11% 
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Table 11. The behaviour of unexpected component around earnings announcements 
The table displays the cross-sectional mean and statistical tests of differences of the unexpected component and 
trading volume between the periods of the before and after earnings announcements. The statistical tests conducted 
are two-sample t-tests and pairwise Wilcoxon-Mann-Whitney U tests. Unexpected component is the state space 
model-based proxy (estimated using Kalman filter constructed maximum likelihood) for informed trading and 
trading volume is the natural logarithm of trading volume. The sample contains the most active 100 S&P 500 
stocks traded between October 1, 2016 and September 30, 2017 on NYSE and NASDAQ. ***, ** and * 
correspond to statistical significance at the 0.01, 0.05, and 0.10 levels, respectively 
 

                                                            Variables 
Periods Unexpected component Trading Volume 

Before earnings announcements 1.2538 6.5194 
After earnings announcements  1.2315 6.5363 

Difference 0.0222 -0.0169 
p value for t-test <0.001*** 0.0123** 

P value for Wilcoxon-Mann-Whitney U 
test 

<0.001*** 0.0077*** 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


