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Abstract

Assignment mechanisms that do not rely on monetary transfers lead to equitable ac-

cess but may yield inefficient allocations. Theory suggests that introducing rationing

when resources are allocated repeatedly over time can mitigate this issue, while the

magnitude of the resulting efficiency gains is an empirical question in most settings.

We study a dynamic assignment mechanism used by the Michigan Department of Nat-

ural Resources to allocate bear hunting permits and find that it yields a more efficient

allocation than static mechanisms both by inducing participants to be more selective

and by allowing participants with a higher preference for hunting to obtain permits

more frequently. Our empirical analysis also highlights the importance of heterogeneity

across participants and across allocated resources for determining the efficiency of a

dynamic allocation mechanism.
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1 Introduction

Government agencies frequently face the task of regulating access to publicly provided re-

sources while satisfying their mandate of offering these resources in an equitable way, i.e.

guaranteeing that low income users are not barred from access, so that money cannot be

used as a medium of exchange. Examples include amenities such as public housing, which

is by definition offered at prices below market clearing prices; transplant organs, for which

payment is ruled out for ethical and legal reasons; and access to public schooling, which is

considered an essential right that should be tax-funded.

Resource allocation without monetary transfers is generally inefficient, in the sense of

failing to maximize total surplus, when individual valuations for the resources being allocated

are private information.1 For example, when access to one resource is being allocated and no

information is available on individual valuations for this resource, assignment mechanisms

without transfers will necessarily lead to the same expected total surplus as a simple lottery

that gives equal probability of access to all individuals who desire access. This allocation

will fail to maximize total surplus since it provides individuals with the same probability of

access regardless of their personal values for the resource. In contrast, if monetary transfers

were admissible, a Vickrey auction is predicted to yield an efficient allocation where only

individuals with the highest value for the resource are granted access, thus maximizing total

surplus.

In settings where several types of resources are assigned, or where a resource is allocated

repeatedly over time, assignment mechanisms can use opportunity costs instead of mone-

tary transfers to increase average surplus per assignment and, hence, increase total surplus.

Here we study how successful a particular assignment mechanism has been at reducing the

difference between the total surplus of an allocation obtained without relying on monetary

transfers and the maximized total surplus that would be obtained if monetary transfers were

1In this paper we call an allocation efficient if it maximizes total surplus, i.e. the sum of valuations
across all assignments.
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admissible.

We study an allocation problem where access to several types of resources (positions) is

being allocated, where each position can be assigned to a certain number of individuals, but

where each individual can be assigned to at most one position. In addition, positions can be

reallocated periodically among individuals. The assignment mechanism we study, which we

call a dynamic lottery, endows participants with a stock of “preference points” that indexes

their seniority. Every period, participants can apply to be assigned to a particular position.

After all applications have been submitted, assignment is done separately for each position

by reverse order of applicants’ stocks of preference points, with random tie-breaking. New

participants enter the lottery with zero preference points. A participant’s stock of preference

points increases by one if she is not assigned to a position in a given period and is reset to

zero upon being assigned to a position. A participant can also apply directly for an increase

in her stock of preference points instead of applying for a position.

The Michigan Department of Natural Resources (DNR) has used this dynamic assign-

ment mechanism to allocate approximately 12,000 bear hunting permits for 22 different

hunting sites every year since 2000. Because part of the mission of the DNR is to guarantee

that natural resources are accessible to all, these hunting permits are offered at very low

prices.2 The DNR therefore faces significant excess demand for permits, with around 55,000

participants in its lottery every year.

Using data on participants and applications obtained from the DNR and a dynamic

model of applicants’ choices, we find that this dynamic lottery leads to a significant increase

in total surplus compared to static alternatives, while total surplus also remains significantly

below the maximized total surplus obtained by an efficient auction. We estimate that the

average annual social surplus per applicant is $193 greater with the dynamic lottery than

2Another part of the DNR’s mission is to manage natural resources, including wildlife, which leads to
the use of permits in order to regulate access to hunting and guarantee that the bear population in the state
is stable.
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under random serial dictatorship,3 and $119 greater with the dynamic lottery than it would

have been with a static lottery that requires applicants to simultaneously choose one position

for which to apply but does not track seniority. An efficient auction would lead to an average

surplus $278 greater than the dynamic lottery.

We estimate a large degree of heterogeneity across hunters in their persistent preference

for hunting. Hunters with high or low persistent preference for hunting both benefit from

a greater average surplus under the dynamic lottery than under either static assignment

mechanism without money, but this increase in total surplus originates from two different

sources.

First, hunters with a relatively low preference for hunting are assigned to a permit less

frequently under the dynamic lottery, but their surplus per permit assigned is greater. This

is explained by the intertemporal opportunity cost of obtaining a permit elicited by the

dynamic lottery which does not appear in a static assignment mechanism. The dynamic

lottery imparts value to seniority by prioritizing applicants with higher stocks of preference

points when allocating permits. Participants in the dynamic lottery are then faced with

either obtaining a permit but seeing their seniority reset to zero or abstaining in order to

benefit from an increase in seniority and a potentially more advantageous assignment in the

future. This creates an option value of waiting for a future assignment which mimics the

effect of market clearing prices for access, forcing applicants to be more selective about when

and where to apply for assignment.

Second, hunters with a relatively high preference for hunting have an average surplus per

permit approximately equal to their average surplus per permit under the static lottery or

random serial dictatorship. However, these high-preference hunters are assigned to permits

more frequently under the dynamic lottery. This is explained by the way in which applicants’

increased selectivity and short waiting times interact with heterogeneity across participants

3Under random serial dictatorship, every year applicants are randomly assigned to a place in a queue
and choose in an unrestricted way among positions that are still available after all applicants ahead of them
have made their choices.
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and across types of resources. In the dynamic lottery, waiting times even for the most

desirable sites are kept relatively short by prioritizing applicants with the highest seniority.

As a result, applicants with low preference for hunting increase the concentration of their

applications to high desirability sites, preferring to wait for such an assignment rather than

being assigned a permit at a less desirable site immediately. This “frees up” less-desirable

sites, which are still highly valuable to applicants who have a high preference for hunting.

Using a real world application and a centralized assignment mechanism which is already

being implemented, our results provide empirical evidence on the magnitude of efficiency

gains obtained by a dynamic assignment mechanism which rations applicants’ assignments

by using a dynamically evolving budget in an artificial currency (preference points). A

large body of theoretical results points to the usefulness of leveraging opportunity costs

when facing allocation problems without monetary transfers and in the presence of private

information. Hylland and Zeckhauser (1979) show that introducing an artificial currency

can transform the static allocation of many individuals to several positions into a pseudo-

market and lead to a Pareto optimal assignment.4 Jackson and Sonnenschein (2007) show

that linking a large number of assignment problems and introducing rationing can lead to an

efficient allocation in a simplified setting.5 Guo and Hörner (2017) consider the allocation

of a good by a principal to an agent whose valuation of the good is private information and

evolves stochastically over time. They show that an optimal allocation mechanism in their

setting provides the agent with a dynamically evolving budget in an artificial currency which

decreases when the agent obtains the good and increases if the agent abstains. This feature

of their proposed mechanism is remarkably similar to the dynamic lottery we study where a

participant’s stock of preference points increases by one if the participant is not assigned and

is reset to zero otherwise. In our application we see a rich market with several participants

estimated to be of different types and several types of resources being allocated. We show

4See also He et al. (2017) for additional results and their review of existing results on no-transfer allocation
mechanisms that account for intensity of preferences.

5See also Radner (1981), Townsend (1982), Rubinstein and Yaari (1983). See also Fang and Norman
(2006) for a similar result in the context of bundling.
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that these two dimensions of heterogeneity have a first order effect on the features of the

allocation obtained by the dynamic lottery.

The repeated allocation of several resources to several individuals has been studied as a

dynamic one-sided matching problem with private information in Arnosti and Shi (2017),

Bloch and Cantala (2017), Leshno (2017), Schummer (2016), and Thakral (2016). This

prior work also shows that assignments that create intertemporal trade-offs (or, in other

words, increase the option value of waiting for a future assignment) can induce applicants

to be more selective, leading to an increase in match quality. Arnosti and Shi (2017) find

in their setting that there is necessarily a trade-off between what they refer to as matching

and targeting. In our application this would translate into mechanisms either ensuring that

participants of each type of persistent preference for hunting extract a higher average surplus

per permit (matching), or ensuring that hunters with a higher preference for hunting obtain

permits more frequently (targeting). As described above, we find in our application that

the dynamic lottery improves upon a static lottery or random serial dictatorship along both

matching and targeting. We show that this difference is explained by hunting sites being

heterogenous in our application, leading to a sorting of applicants by type across hunting

sites, and this sorting is more effective with a dynamic lottery than with a static lottery.

A related empirical literature studies one-sided and two-sided static matching mecha-

nisms. Abdulkadiroğlu, Agarwal, and Pathak (2017), Agarwal and Somaini (2017), Agarwal

(2015), Calsamiglia, Fu, and Güell (2017), Fack, Grenet, and He (2017), Hastings, Kane,

and Staiger (2009), He (2017), and Narita (2016) evaluate empirically two-sided matching

mechanisms used for school and medical residency assignment. Li (2017) compares the wel-

fare gains under a static lottery and an auction when allocating automobile licenses in the

presence of negative externalities.

Although to our knowledge no other empirical work evaluates the potential of an existing

dynamic assignment mechanism to mitigate the problem of inefficient resource allocation

when money cannot be used as a medium of exchange, related empirical results on dynamic
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matching are found in work contemporary to ours. Thakral (2016) studies the allocation

of affordable housing and estimates a static model of choices as in Geyer and Sieg (2013)

with data originating from assignments by a unique centralized waitlist with limited defer-

rals. He predicts that implementing an assignment mechanism where agents are placed on a

centralized waitlist and can choose between the first assignment offered to them and switch-

ing to a housing site specific waitlist would lead to a significant increase in total surplus.

Waldinger (2018) also studies the allocation of affordable housing, and uses a dynamic model

of applicants’ choices. He studies the importance of his mechanism having an intermediary

stage where information is revealed to applicants; this consideration is absent in our study.

Finally, Agarwal et al. (2018) study the allocation of donor transplant organs using a unique

centralized waitlist with deferrals. The allocation of donor transplant organs creates several

medical and ethical considerations which are considered carefully in Agarwal et al. (2018)

but are not present in our application where the only welfare function considered is total

surplus (with equal weights).6

In the following section, we provide background on bear hunting in Michigan. We then

describe our model of application choice under a dynamic lottery for bear permits and

our estimation approach. Finally we compare the dynamic lottery to alternative allocation

mechanisms.

6Apart from methodological differences, these empirical studies differ from ours because they consider
applications where new units arrive continuously over time rather than periodically. The dynamic lottery
we study here could be modified by tracking seniority continuously rather than discretely and allowing
participants to update their application choice continuously rather than periodically, while still restricting
them to apply for only one type of resource at a time. It would be interesting to evaluate the extent to which
the insights of our paper would apply in other applications. For instance, allowing participants to update
their choice of housing site at any time could increase the option value of waiting and lead to higher surplus
per assignment relative to housing site-specific waitlisting if participant valuations of different housing sites
are at least partially transient. Likewise, allowing participants to queue for organs from donors of different
ages could improve sorting and decrease waiting times relative to a unique centralized waitlist by allowing
high-need patients to queue for organs from older donors while patients who can afford to wait longer queue
for organs from younger donors.
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2 Black Bear Hunting in Michigan

Bears (and other wildlife) in the US are held in the public trust. An important implication

of managing resources under this doctrine is ensuring equitable access, regardless of socioe-

conomic status. Accordingly, resource management agencies sell permits for accessing these

resources at very low prices. Permit quotas are fixed and determined independently of price

to avoid excessive exploitation and ensure healthy resource stocks. Low prices generally

result in excess demand for permits, and many agencies rely on lotteries to allocate permits.

Since 2000, the Michigan DNR has allocated permits for black bear hunting via a dynamic

lottery. Hunts take place in late summer through mid-autumn. The black bear range in

Michigan is divided into ten bear management units (BMUs; Figure 1). The Lower Peninsula

BMUs each host a single hunt lasting one week in mid-September. Drummond Island, on the

eastern tip of the Upper Peninsula, hosts a single hunt that lasts six weeks over September

and October. The remaining Upper Peninsula BMUs each host three hunts over the course of

the autumn. There are 22 total hunts each year (Table 2). Hunt quality characteristics vary

across each hunt and BMU; Table 1 summarizes several key characteristics of each BMU,

including population, total forest land open to hunting (the sum of private commercial forest

and state forest and wildlife area acreage), the number of hunts each BMU hosts, the season

duration, and mean success rate (i.e., the proportion of hunters who took a bear).

Applicants for hunting permits pay an application fee and a license fee up front. The

application fee is $4 for all applicants except Comprehensive Lifetime License holders, for

whom the application fee is waived. License fees are $15 for Michigan residents and $150 for

nonresidents. Unsuccessful applicants are refunded the license fee, but not the application

fee. Every year, an applicant enters the drawing with a stock of preference points. Applicants

have zero preference points when entering the drawing for the first time. An unsuccessful

application increases an applicant’s stock by one, and a successful application resets this stock

to zero. Greater preference point stocks lead to greater success probabilities; we describe
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this mechanism in detail in the next section. Applicants can also apply for the “preference

point-only” option. Those who take this option are automatically awarded a preference

point for use in future drawings and pay only the $4 application fee, but cannot hunt in the

current season. With the preference-point only option, an applicant’s choice set comprises

23 options.7

The permit quota for each hunt ranges from only 6 per year in the Drummond Island

BMU to 1,850 for the Red Oak BMU (Table 2). For BMUs with multiple hunts, the quota

increases for seasons that open later in the year, and application numbers tend to decrease

for these later hunts. This is likely because bears are less active later in the autumn, and

because bears become more easily “spooked,” or more difficult to hunt, as the season wears

on. The license quota for each hunt is made available on the DNR’s website before the

drawing, along with the previous year’s drawing success rate for each hunt conditional on

one’s stock of preference points.

A total of 55,454 and 56,762 individuals participated in Michigan’s preference point lot-

tery for bear permits in 2008 and 2009, respectively. Data describing each applicant—including

hunt choices, addresses, and their preference point stock—were provided by the DNR. Fig-

ure 2a shows a histogram of applicants’ preference point stocks in 2009; most applicants

have fewer than three preference points, and only two applicants have ten—the maximum

possible. Of those who applied for the 2008 hunt, 16,021 (28.89 percent) did not apply in

2009.8

We estimate round-trip travel costs to each BMU for each applicant using US Census data

7The bear permit drawing in Michigan is actually divided into two rounds; applicants apply for a first
and second choice of hunt before the drawing takes place. If an applicant is not drawn for her first choice,
then she is entered in the drawing for her second choice if any permits for that hunt remain after the first
round. We model only a single round here. Including a second round makes estimation infeasible due to
large number of choice alternatives it implies. (The choice set balloons from 23 alternatives if considering
the first round only to 485 if considering both rounds). However, fewer than half of applicants even entered a
second choice on the 2009 application, and approximately 2 percent of those that did were awarded a permit.
Hence, ignoring the second round is unlikely to have a significant effect on our results.

8Applicants who do not apply for three consecutive years forfeit their stock of preference points. We
assume applicants who do not apply in 2009 after applying in 2008 never wish to hunt again. This is because
it is inexpensive to apply for the preference point-only option and, hence, maintain one’s stock of preference
points.
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on median annual income for each applicant’s ZIP code. We assume the opportunity cost of

travel time to be one third of each applicant’s inputed hourly wage, following Parsons (2003).

This opportunity cost is then multiplied by the travel time to the BMU, which was calculated

using PC*Miler (ALK Technologies, Inc., 2015).9 To this cost were added the application fees

and mileage costs calculated for a four-wheel drive truck (American Automobile Association,

2009). Figure 2b shows a histogram of applicants’ round-trip travel costs to each BMU. The

vast majority are less than $750 trip per trip, although the distribution is skewed by out-of-

state hunters whose costs total more than $1,500 per trip in some cases.

3 Equilibrium Application Choices

In this section, we develop a model for applicants’ choices under a dynamic lottery. Before

defining our model formally, we discuss the modeling choices we made and how they were

informed by four main patterns observed in the data (summarized in Table 3):

1. Forward looking behavior: At low levels of preference points, we observe a significant

share of applicants who could obtain a permit in the current drawing but instead

apply either for the preference-point only option or for a permit at an “impossible”

site, i.e. a site where they have no chance of obtaining a permit. We interpret this as

evidence that applicants are willing to trade current hunting opportunities for future

opportunities.

2. Hunting site heterogeneity: Some sites require several years of waiting before applicants

can obtain a permit, while other sites have an excess supply of permits. This remains

true even when only considering sites with similar numbers of allocated licenses. We

interpret this as evidence that some hunting sites may be systematically more desirable

9Our data are limited in that we do not have information on where each applicant hunted within a given
BMU. We therefore calculate travel time based on the distance between the applicant’s address and the
BMU centroid. Many of the BMUs are very large (e.g., the Red Oak BMU in the Lower Peninsula; Figure
1), and hence there is likely to be considerable error in our travel cost estimates. That said, we discretize the
travel cost data as part of our estimation procedure (described below). This should negate some (although
likely not all) of this error.
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than others.

3. Persistent heterogeneity in applicants’ preference for hunting: The share of applicants

applying for the preference point-only option increases with the stock of preference

points. This result may seem surprising since as preference points increase, so do

success probabilities, and most likely the quality of hunting sites that can be accessed.

However, this pattern is consistent with some hunters being persistently less interested

in hunting than others. Hunters with a lower preference for hunting would rarely apply

for a permit and thus accumulate preference points. Hunters with a higher preference

for hunting would apply for and obtain a permit more often, thus resetting their stock

of preference points to zero more frequently.10

4. Equilibrium sorting: At low levels of preference points, a significant share of applicants

applies for permits at sites that have low demand and, hence, a positive probability

of success. At high levels of preference points, these sites draw a very small share of

applications. We interpret this as evidence that applicants evaluate both the desirabil-

ity of a site and their probability of success when applying. In particular, applicants

apply more frequently for less-desirable permits when having no chance of winning

other, more desirable permits, but tend to shun these less desirable permits when they

have a positive success probability for other sites.

We model persistent heterogeneity in preferences for hunting by classifying applicants into

discrete “types,” denoted τ = 1, . . . , τ̄ .11 The utility that a type-τ applicant i receives from

hunt j ∈ {1, ..., J} = J in year t is assumed to be

χ0j + η0τ + µ0TCij + εijt (3.1)

10Note that since the cost of staying in the lottery is very small, and exiting the lottery would reset an
applicant’s stock of preference points to zero, it can be optimal for a hunter to stay in the lottery without
applying for a permit for a long period of time.

11The use of discrete types to capture persistent unobserved heterogeneity in dynamic discrete choice
models has been advocated for in Heckman and Singer (1984) and subsequent papers.
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where χ0j represents the baseline utility from hunt j; η0τ is the type-specific utility from

hunting, where η01 is normalized to zero; −µ0 is the marginal utility of income; TCij is the

travel cost of applicant i to site j ; εijt is an independent and identically distributed (i.i.d.)

type-1 extreme value preference shock for hunting at site j.

In order to simplify notation, and since we will assume that the environment is stationary

over time, we suppress the indexing by time and write the utility of type-τ applicant i for

hunt j as χ0j + η0τ + µ0TCij + εij.

An applicant choosing to apply for a permit at site j faces a probability of obtaining a

permit that is determined by her stock of preference points p; we denote this probability

φjp. We collect success probabilities across all sites and preference point stocks and define

φ = {φjp}j∈J ,∀p. The expected flow utility that applicant i derives from applying for hunt

j is

φjp (χ0j + η0τ + µ0TCij + εij) = viτjp (θ0) + φjpεij (3.2)

where θ0 =
{
{χ0j}j∈J , {η0τ}τ=2,...,τ̄ , µ0

}
collects the unknown parameters of the model and

we define viτjp (θ0) = φjp (χ0j + η0τ + µ0TCij).

Once applications have been submitted by all participants, the success probability φjp is

determined by an allocation of permits by reverse order of preference points among applicants

for hunt j, with random tie-breaking if needed. Formally, let Np be the number of applicants

with p preference points and σjp be the share of participants with p preference points who

apply for site j. Success probabilities are then

φjp =1

(∑
p′≥p

Np′σjp′ ≤ qj

)

+ 1

(∑
p′=p

Np′σjp′ > qj,
∑

p′≥p+1

Np′σjp′ ≤ qj

)
qj −

∑
p′≥p+1Np′σjp′

Npσjp
(3.3)

where qj is the permit quota for hunt j and 1(·) is an indicator function that takes a value

of one if the argument is true and zero otherwise. Consider an applicant with p preference
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points. If the number of applicants with p or more preference points, given by
∑

p′≥pNp′σjp′ ,

is less than the quota for hunt j, then the first right-hand side term in (3.3) evaluates to one

and the second indicator function evaluates to zero, so that the applicant receives a permit

with certainty. If the number of applicants with p or more preference points is greater than

the quota, but the number of applicants with more than p preference points is less than the

quota (so that the second right-hand side indicator function evaluates to one and the first

indicator function evaluates to zero), then tie-breaking is performed by a simple lottery for

all permits that remain after the applicants with more than p points are issued permits.

The probability of winning a permit is then
(
qj−

∑
p′≥p+1Np′σjp′

)
/Npσjp. If neither of these

conditions hold, then the probability the applicant wins a permit is zero.

Since in our application we observe many applicants (> 55, 000 in any year) choosing

over relatively few sites (22), the success probabilities calculated using realized application

shares in (3.3) are approximately equal to the ex-ante success probabilities that are obtained

by taking the expectation of the success probabilities in (3.3) with respect to the distribution

of application shares. This allows us to treat the success probabilities defined in (3.3) as the

success probabilities used by each agent to inform their choice, and simplifies the estimation

procedure described in the next section. Observing many participants across relatively few

sites also allows us to treat applicants as “probability takers,” i.e. making their application

choice taking φjp as given.

We assume that the environment is stationary over time. This implies that quotas qj ∀j,

application shares σj ∀ j, p, the number of applicants per preference points stock Np ∀p, and

success probabilities φ are constant over time and known by applicants. To evaluate the

assumption of stationarity, we study the change in success probabilities across the two years

observed in our data (2008 and 2009). To do so, we define preference-point “cut-offs” for

each site as the expected minimum level of preference points required to obtain a permit

at each site. For instance if a site j only yields a positive probability of success starting at

three preference points, i.e. φj2 = 0 and φj3 > 0 and φj4 = 1, its cut-off would be given by
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3 ·φj3 + 4 · (1−φj3), reflecting the fact that for a fraction of applicants with three preference

points the cut-off is three preference points, while for the rest of these applicants the cut-off

is four preference points (and hence above their current stock of preference points, so that

they will not be successfully drawn this year). These cut-offs contain all of the information

contained in φ and can heuristically be interpreted as the expected minimum “price” in

preference points of each site. Table 4 shows these expected cut-offs for each site and

each year in our data. We see that the cut-offs remain approximately constant across both

years, supporting the assumption of stationarity. The assumption that applicants know their

success probabilities for each site also seems realistic given that the DNR posts results from

past drawings every year.

We normalize the flow utility from applying for the preference point-only option to zero;

we denote this choice as j = 0.12 The applicant’s full choice set is then J̄ = {0} ∪ J .

We assume that each applicant chooses the application path that maximizes the present

value of expected utility. Formally, a type-τ applicant with p preference points chooses site

j in the current period if Viτjp(·) ≥ Viτj′p(·) ∀j′ ∈ J̄ , where

Viτjp (θ0) = viτjp (θ0) + ρE

(
max
j′∈J̄

Viτj′p′ (θ0)

)
+ φjpεij (3.4)

where the expected value is taken with respect to the joint distribution of future preference

shocks
{
ε
′

ij′

}
j′∈J and the distribution of next year preference points, p′, conditional on having

a stock of preference points p and on having chosen option j, and ρ is a discount factor.

In order for the definition of the value functions in (3.4) to be notationally correct for

j = 0, we set φ0p = 0 so that viτ0p (θ0) + φ0pεij = 0. This corresponds to the probability of

obtaining a permit being zero if the applicant chooses the preference-point only option.

An applicant’s preference points either (i) increase by one if she chooses the preference

point-only option (j = 0) or is unsuccessful in her application for a permit (j ∈ J ) or (ii)

12Note that the flow utility from not hunting for a type-τ applicant could equivalently be denoted −ητ
— as long this term is then not included in the value of hunting — so that our model allows for applicants
to have heterogeneous outside options.
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are reset to zero if she receives a permit. Let Πjpp′ denote the probability that an applicant

with p preference points who chooses option j transitions to having p′ preference points the

following year, we have:

Πjpp′ =


φjp for p′ = 0

1− φjp for p′ = p+ 1

0 otherwise.

(3.5)

Define Riτp (θ0) = E
(
maxj∈J̄ Viτjp (θ0)

)
, where the expectation is now only taken with

respect to the joint distribution of {εij}j∈J . Then we can write

Viτjp (θ0) = viτjp (θ0) + ρ
∑
p′

Πjpp′Riτp′ (θ0) + φjpεij (3.6)

The second right-hand side term in (3.6) captures the present value of expected future utility

for each choice j. The term Riτp′ is the conditional value term, which measures the expected

maximized value of i ’s lifetime utility from hunting conditional on her updated stock of

preference points, p′.

Define V b
iτjp (θ0) to be the baseline value function associated with choice j:

V b
iτjp (θ0) = viτjp (θ0) + ρ

∑
p′

Πjpp′Riτp′ (θ0) (3.7)

Given V b
iτjp (θ0), the probability an applicant chooses j is:

Pr (Viτjp ≥ Viτj′p ∀ j′) = Pr
(
V b
iτjp + φjpεij ≥ V b

iτj′p + φj′pεij′ ∀ j′
)

= Pr
(
V b
iτjp − V b

iτj′p ≥ φj′pεij′ − φjpεij ∀ j′
)

(3.8)

where we suppress the value function arguments for conciseness.

Multiplying the εij terms in (3.8) by the success probabilities implies a form of structural

heteroscedasticity in our model. Hence, the composite error terms φjpεij are not i.i.d. type-1

15



extreme value, and the choice probability (3.8) cannot be written using the standard closed-

form expression for a conditional logit.13 Under our distributional assumption on the εij

terms, the probability that a type-τ applicant i with p preference points applies for a permit

at site j with φjp > 0 is

Piτjp (θ0) = Pr
(
V b
iτjp − V b

iτj′p ≥ φj′pεiτj′p − φjpεiτjp ∀ j′
)

=

∫
ε≥

V b
iτ0p

−V b
iτjp

φjp

∏
j′∈J :j′ 6=j,φj′p>0

Λ

(
V b
iτjp − V b

iτj′p + φjpε

φj′p

)
λ(ε) dε (3.9)

where Λ(x) = e−e
−x

and λ(x) = e−xe−e
−x

are the cumulative distribution function and

probability density function of the type-1 extreme value distribution.

Note that for any stock of preference points p, sites for which φjp = 0 yield the same

present value of expected utility as the preference point-only option (j = 0). Hence, we treat

these choices as corresponding to the same alternative and write the probability of applying

for the preference point-only option or for a permit at a site with φjp = 0 as

Piτ0p (θ0) =
∏

j∈J :φjp>0

Λ

(
V b
iτ0p − V b

iτjp

φjp

)
(3.10)

Finally, we can write the conditional value term as

Riτp (θ0) = E

(
max
j∈J̄

V b
iτjp + φjpεij

)
= V b

iτ0pPiτ0p+∫
r>V bi0p

r
∑

j∈J :φjp>0

1

φjp
λ

(
r − V b

iτjp

φjp

) ∏
j′∈J :j′ 6=j,φj′p>0

Λ

(
r − V b

iτj′p

φj′p

)
dr (3.11)

Equations (3.7) and (3.9)–(3.11) comprise our model of applicants’ choices in the dynamic

lottery. The unknown parameters that enter the functions Piτjp, V
b
iτjp, and Riτp are those

contained in θ0: χ0j ∀j, µ0, and η0τ ∀ τ . The observed data entering these functions are

13Bhat (1995) obtains similar formulae for choice probabilities. In his setting the variances of shocks
across alternatives are parameters to be estimated. Here, it is agents choosing over uncertain lotteries that
leads to a heteroscedastic formulation.
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individual travel costs and the success probabilities φ, which are calculated from application

shares, quotas, and the number of applicants at each level of preference points using equation

(3.3). We take the discount factor ρ as known. Brookshire, Eubanks, and Randall (1983) find

evidence of discount factors for big game hunting opportunities ranging from ρ ∈ [0.95, 0.99].

We therefore assume ρ = 0.975. The next section describes estimation of these parameters

and of the distribution of unobserved types in the population.

3.1 Estimation

Let π0τ denote the probability that applicants are of type τ , τ = 1, ..., τ̄ and define π0 =

{π0τ}τ=1,...,τ̄ . We make three more assumptions in order to propose an estimation method

for the unknown parameters of the model θ0 and the distribution of applicant types in

the population π0. First, we assume that the probability that an applicant is of type τ is

independent of her travel costs: P (i’s type = τ |TCij ∀ j) = π0τ . Second, we assume that

the distribution of applicants’ types across stocks of preference points corresponds to the

steady state of the environment. Finally, recall that we observe some applicants leaving the

lottery between 2008 and 2009 and approximately the same number of applicants entering

the lottery in 2009 for the first time. We model this phenomenon as attrition and renewal

at random and define the attrition rate α as

α =
# of applicants present in 2008 but not in 2009

# of applicants present in 2008
.

Section A of the online appendix shows that the model of applicants’ choices developed

in Section 3 can be used to define the likelihood function corresponding to each agent i’s

choices in the lottery in 2008 and 2009 conditional on her travel costs and stock of preference

points in 2008. This likelihood function is composed of the choice probabilities (3.9) and

(3.10), for which the value functions are calculated using a fixed-point algorithm as in Rust

(1987), a law of motion for preference points from 2008 to 2009, and the probability that an
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applicant is of each type τ = 1, ..., τ̄ given her travel costs and stock of preference points in

2008. We therefore estimate the parameters θ0 and π0 by maximum likelihood estimation.

All details are provided in Section A of the online appendix.

Our parameter estimates are presented in Table 5. We assume three different types of

applicants, denoted τ = 1, 2, 3. The type with the highest preference for hunting is type

τ = 1, for which η01 is normalized to zero. For this type, the baseline site utility χ0j is

estimated to be positive for all sites. Type τ = 2 has a lower preference for hunting and

for this type the baseline site utility χ0j + η02 is positive for the most desirable sites and

negative for the less desirable sites. Type τ = 3 has a very low preference for hunting, indeed

guaranteeing that the estimated probability that an applicant of type τ = 3 applies for a

permit is approximately zero. The marginal utility of income is estimated to be positive

— the expected sign — and statistically significant at the 1% level. We estimate that the

majority (79.8%) of applicants are of type τ = 2, with 6.6% of applicants having a high

preference for hunting (type τ = 1) and 13.6% of applicants having a very low preference for

hunting (type τ = 3).

The estimated heterogeneity in hunting sites aligns well with observed site characteristics

that are expected to make some hunting sites more desirable than others. For instance, the

sites that are estimated to yield the greatest baseline utility tend to have the greatest hunters’

success rates (see Table 1). Early seasons also seem to be favored by hunters, as well as sites

with more land available and with larger human populations (likely because these areas

offer more amenities to visiting hunters). In ongoing work, we use a model similar to the

one developed here to estimate applicants’ willingness-to-pay for sites to remain open rather

than closing given that permits are allocated by the dynamic lottery, and we study the

importance of different features of our model for calculating these measures accurately. Here

we are interested in the welfare implication of using the dynamic lottery to allocate permits

instead of a static assignment mechanism. Before presenting our results on the efficiency of

the dynamic lottery, we discuss the advantages and shortcomings of our model to study this
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question.

3.2 Discussion of the Model

The main advantage of the model outlined above for the analysis of a dynamic matching

mechanism is that it separates transitory heterogeneity (εij in the equations above), which

is drawn every period, from persistent heterogeneity (ητ for applicants of type τ in the

equations above), which is constant over time. The next section discusses in detail how

intertemporal trade-offs leveraged in dynamic matching mechanisms induce participants to

only request access when their valuation for the resource being allocated is high, while

abstaining when it is low. A simple example of this phenomenon is found in Jackson and

Sonnenschein (2007). They consider a setting where there is only one type of agent (i.e.

no persistent heterogeneity), and where transitory heterogeneity is binary. With only one

type of resource and no discounting, they show that agents endowed with a budget for

access over relatively many time periods would approximately only request the resource when

their valuation for it is high. The presence of persistent unobserved heterogeneity across

participants would lead to an inefficient allocation since participants with a low valuation

for the resource would have an incentive to report being of a high preference type in order to

obtain more frequent access. Therefore using an empirical model with both persistent and

transitory unobserved heterogeneity is key for evaluating the efficiency of dynamic matching

mechanisms, particularly given the observed patterns discussed above that are indicative of

persistent heterogeneity among participants. This is discussed in more details in the next

section.

From an econometric perspective, the distribution of persistent heterogeneity is identi-

fied with our data because i) applicants are observed making choices repeatedly over two

time periods, and ii) we observe the applicants’ stock of preference points, which provides

information on their unobserved preference type. An applicant’s stock of preference points

evolves according to a known and simple law of motion: the stock increases by one if an
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applicant is not assigned a permit and is reset to zero otherwise. Therefore applicants with a

high preference for hunting, who will tend to apply for a license more frequently, will see their

stock of preference points reset to zero more frequently, while applicants with a low prefer-

ence for hunting will tend to accumulate more preference points. Consequently comparing

choice probabilities at high stocks of preference points with choice probabilities at low stocks

of preference points will allow one to learn both about the choice probability of each type and

the probability of participants being of each type in the population. The assumption that

the environment is stationary and in its steady state is important for our ability to estimate

a dynamic discrete choice model using only two time periods, but seems to be supported by

the data as discussed previously.14 Section A of the online appendix discusses identification

in more detail. The sources of identification here highlight the importance of using data

from an existing dynamic matching mechanism to evaluate its efficiency, or the efficiency of

alternative dynamic matching mechanisms, rather than extrapolating from static matching

mechanisms.

Another advantage of our model is that it accounts for heterogeneity across the resources

being allocated. Arnosti and Shi (2017) derive theoretical results in a setting with heteroge-

nous participants but homogenous resources. The next section discusses the interaction

between heterogeneity across resources and across participants, and the importance of ac-

counting for both dimensions of heterogeneity simultaneously.

On the other hand, our model makes many simplifying assumptions. We assume that

the disutility of traveling to a hunting site is equal to the disutility of income decreasing by

the monetary cost of traveling to the site, calculated as the sum of the direct travel cost

and of the opportunity cost of travel time. In the next section, we use this assumption

to calculate total surplus in dollars by calculating compensating variations as in Small and

14As discussed in Section A of the online appendix, assuming that the environment is in its steady-state
allows us to infer the probability of each applicant type conditional on the applicant’s stock of preference
points solely from the choice probabilities of each type and the unconditional probability of applicant type
in the entire population. See e.g. Kasahara and Shimotsu (2009), Hu and Shum (2012) and Arcidiacono and
Miller (2017) for a discussion of identification in dynamic discrete choice models without stationarity.
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Rosen (1981). This assumption that participants could be compensated for traveling to a

hunting site by receiving a payment equal to their travel cost is standard in the valuation

of natural resources (see .e.g. Haab and McConnell (2002)), so that we adopted it here as

well.15

From an econometric standpoint, the disutility of travel cost is identified separately from

site heterogeneity because applicants are distributed geographically, so that we can compare

the choice probabilities of applicants across space. As discussed above, we estimate a negative

and statistically significant disutility of travel cost, reflecting that applicants’ choices vary

geographically and tend to favor nearby sites.

The assumption that travel cost is independent of preference type is made for simplicity.

Correlation between travel cost and preference type could be accommodated by allowing type

probabilities to vary across space. Modeling attrition as unexpected and at random is also

done for simplicity. Results when attrition is expected are similar to the results presented

here.

4 Efficiency of the Dynamic Lottery as an Assignment Mechanism

In this section we evaluate the relative efficiency of the dynamic lottery as an assignment

mechanism by comparing its equilibrium allocation with the equilibrium allocation obtained

by two alternative static assignment mechanisms without money and with the equilibrium

allocation obtained by an efficient auction.

Section B of the appendix discusses how our estimated choice model can be used to calcu-

late characteristics of the equilibrium allocation of the dynamic lottery such as total surplus,

or probabilities that applicants of each type obtain a permit. The next three subsections

introduce the alternative assignment mechanisms we consider, and we conclude this section

15In contrast Abdulkadiroğlu, Agarwal, and Pathak (2017) reported welfare results in terms of “willingness
to travel” rather than willingness to pay when evaluating a two-sided static matching mechanism used to
assign students to schools. It is possible that, among high-school students, the willingness to pay for shorter
travel times may not be accurately captured by foregone income since these students are not active in the
labor force. Reporting welfare results in terms of willingness to pay seems more plausible in our empirical
application where the majority of applicants (85%) is of working age.
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with a comparison of the four resulting equilibrium allocations.

4.1 Efficient Allocation by Auction

We start by defining an efficient auction which leads to an equilibrium allocation that maxi-

mizes total surplus. Given (3.2) and our marginal utility estimates from Section 3.1, we can

write applicant i’s willingness to pay (WTP) for a permit to hunt j as:

wij =
χ0j + η0τi + εij

−µ0

− TCij (4.1)

where τi denotes the applicant’s type. Let {aij}i∈N ,j∈J denote some sequence of assignments

of applicants to permits such that aij = 1 if applicant i obtains a permit for hunt j and

aij = 0 otherwise. This assignment is efficient if it solves:16

max
{aij}i∈N ,j∈J

∑
i,j∈N×J

aijwij (4.2)

s.t.
∑
j∈J

aij ≤ 1 and
∑
i∈N

aij ≤ qj (4.3)

A social planner cannot solve for this optimal allocation directly since applicants’ valua-

tions wij are private information. Leonard (1983) shows that an assignment mechanism that

is incentive compatible and solves problem (4.2)–(4.3) can be achieved with an extension

of a Vickrey (second bid price) auction. Demange, Gale, and Sotomayor (1986) show that

the efficient allocation can be approximated arbitrarily well through a sequential procedure

whereby prices are gradually increased until the market clears. We use simulations to obtain

results for the equilibrium allocation of the efficient auction as well as for the other two

alternative static mechanisms introduced below. We provide the details of our calculations

16We impose the constraint that each participant receive at most one permit as this constraint is imposed
by the Michigan DNR when allocating bear hunting permits. (A participant cannot enter the dynamic
lottery twice.) Similarly the number of permits assigned to each site may not exceed the quota set for
this site by the Michigan DNR. Koopmans and Beckmann (1957) show that the solution to the constrained
maximization problem (4.2)–(4.3) necessarily sets aij = 0 or aij = 1 so that we do not need to explicitly
impose the constraint that assignment be a binary variable.
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in Section B of the appendix.

4.2 Allocation by Random Serial Dictatorship

As a benchmark for evaluating allocation mechanisms without monetary transfers, we con-

sider an assignment mechanism that has been widely studied in theoretical work called

random serial dictatorship, see e.g. Abdulkadiroğlu and Sönmez (1998) for a review. This

assignment mechanism is similar to the random assignment of one type of resource discussed

in Section 1 but takes into account that several types of resources are allocated in our ap-

plication and that each participant can be assigned at most one permit. Every year, all

participants are assigned a place in a centralized queue at random. The first participant

chooses any permit among all the permits being allocated. Subsequent participants choose

any permit among those that remain after participants ahead of them have made their choice.

This process continues until all permits have been allocated. A participant can also choose

not to receive a permit, in which case the assignment mechanism simply moves on to the

next participant. This mechanism is a static mechanism, i.e. the allocation of permits in

any given year with this mechanism is independent of the allocation in other years.

4.3 Allocation by Static Lottery

As another alternative to the dynamic lottery used by the DNR, we consider a static lottery

that does not track seniority among applicants. As in the dynamic lottery, applicants decide

whether to apply for a permit for hunt j or whether to abstain from entering a drawing. In

contrast to the dynamic lottery, however, the problem faced by applicants is static, i.e. their

choice environment is not affected by past outcomes.17

For each hunt j, applicants face a probability of success φj which depends on the share of

applicants that apply for this permit, σj. The success probability at each hunt is determined

17This assignment mechanism is similar to the mechanism described in Hylland and Zeckhauser (1979)
except that here participants are required to choose one site for which to apply instead of being endowed
with a budget of application weights that they can divide between several sites.
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by φj = min
{

qj
σjN

, 1
}

, where qj is the quota for hunt j (as before) and N is the total number

of participants, so that σjN is the number of participants who apply for site j.

Applicant i will apply for hunt j if it maximizes her expected welfare, i.e. if φjwij ≥

φj′wij′ ∀ j′, where wij is applicant i’s WTP for a permit to hunt at site j. Let

bij(φ) =


1 if φjwij ≥ φj′wij′ ∀j′

0 otherwise

denote applicant i’s choice to enter the lottery for permit j given the success probabilities

φ = {φj}j∈J .

We can use applicants’ best responses to success probabilities to define equilibrium success

probabilities in the static lottery as

φ? =

{
qj
σ?jN

}
j∈J

(4.4)

σ?j =
1

N

∑
i

bij(φ
?)∀ j ∈ J (4.5)

from which the equilibrium allocation is obtained via an iterative procedure described in the

appendix.

4.4 Comparison of Equilibrium Allocations

Table 6 compares expected total surplus for each assignment mechanism. It also compares

average total surplus by applicant type, the probability of obtaining a permit unconditionally

and by applicant type, average surplus per permit unconditionally and by applicant type,

average waiting time before obtaining a permit unconditionally and by applicant type, and

the probability of winning a permit for different quality sites under each mechanism. We

summarize our results by categorizing each hunt into one of three tiers. The first tier includes

permits for hunting sites that we estimate to have the highest baseline utility (the first season

24



in the Newberry, Red Oak, and Baldwin BMUs). The third tier includes the permits we

estimate to be the least desirable (the second and third seasons in the Bergland, Baraga,

Amasa, Gwinn, and Carney BMUs and the third season in the Newberry and Gladwin

BMUs). The second tier contains the remaining permits.

Note from Table 6 that type-3 applicants (with the lowest taste for hunting) neither

apply for nor obtain permits for any hunt regardless of the assignment mechanism. Hence,

the remainder of our discussion concentrates on type-1 and type-2 applicants.

Random serial dictatorship leads to the equilibrium allocation with the lowest annual

average total surplus ($575), followed by the static lottery ($649) and the dynamic lottery

($768). The maximized total surplus achieved by the efficient auction is $1,046. The prob-

ability that a participant obtains a permit is slightly lower in the dynamic lottery (0.21)

than in the other assignment mechanisms (0.22) because a few permits at the least desirable

sites go unclaimed in the dynamic lottery. This difference is small enough that comparing

assignment mechanisms in terms of average surplus or in terms of average surplus per per-

mit is approximately equivalent. Average surplus per permit is $2,603 under random serial

dictatorship, $2,942 in the static lottery, $3,578 in the dynamic lottery, and $4,742 in the

efficient auction.

Average surplus per permit is obtained by weighting average surplus per permit for each

type of applicant by the fraction of permits allocated to each type. The average surplus

per permit of type-1 participants will generally be greater than that of type-2 participants.

Hence, an allocation mechanism can increase average surplus per permit—and thus average

surplus—compared to an alternative mechanism by yielding an allocation with either (i) a

higher average surplus per permit for participants of a given type (improved selectivity) or

(ii) a larger fraction of permits assigned to type-1 participants (improved targeting).18 In

the next sections we compare the equilibrium choice environments of each mechanism. In

18We choose to use the terms selectivity and targeting to refer to these two sources of efficiency gains.
Arnosti and Shi (2017) use the term matching instead of selectivity, while we use the term matching to
denote the general problem of allocating several individuals to several positions.
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particular, we explain how the allocation efficiency of each mechanism is determined by the

selectivity and targeting originating from these choice environments.

4.4.1 Improved Selectivity via Equilibrium Sorting

Compared to random serial dictatorship, the static lottery allocates a smaller fraction of

permits to type-1 participants (0.21 instead of 0.22), but nevertheless yields a higher average

surplus by allocating permits to type-2 participants for a higher surplus per permit ($2,278

instead of $1,710).19 This efficiency-improving increase in selectivity follows from the static

lottery eliciting a trade-off between site desirability and equilibrium success probability.

With random serial dictatorship, the first applicant in the queue simply chooses the site

that provides her with the highest welfare. The rest of the applicants face the same choice

but only across sites for which permits remain. This leads to participants towards the front of

the queue selecting sites with high baseline utility too frequently, crowding out participants

further down the queue who might have a higher value for these sites but do not have a chance

to obtain access. The static lottery mitigates this inefficiency by associating more desirable

sites with lower success probabilities than less desirable sites. This leads applicants to be

more selective about applying for more desirable sites than under random serial dictatorship.

To understand this phenomenon more precisely, consider the simplified case where only

two sites are available and ignore all sources of persistent heterogeneity (i.e. applicant types

and travel costs). Set the baseline utility of the first site to zero, and the baseline utility of

the second site to χ0,2 > 0. The willingness to pay of participant i for each site is then given

in this simplified example by:

wi1 =
1

−µ0

εi1, wi2 =
1

−µ0

χ0,2 +
1

−µ0

εi2

where as before εi1 and εi2 are independent of each other and i.i.d. type-1 extreme value

19The average surplus per permit for type-1 participants is lower under the static lottery than under
random serial dictatorship because they avoid high quality sites, with all of their applications concentrated
on third tier sites.
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distributed. Suppose for simplicity that the permit quotas are equal at both sites and take

value q1 = q2 = P (max(εi1, εi2) ≥ 0)N
2

where N is the total number of applicants and is

considered to be relatively large.

The efficient auction prices p?1 and p?2 in this simplified example satisfy approximately

p?2 − p?1 = 1
−µ0χ0,2 and p?1 = 0 so that a participant chooses site j = 2 if εi2 − εi1 ≥ 0 and

εi2 ≥ 0.

Under random serial dictatorship, as long as permits at both sites are still available,

applicants choose site j = 2 if εi2−εi1 ≥ −χ0,2 and εi2 ≥ −χ0,2. This will lead to an allocation

with a lower total surplus than the allocation obtained by the efficient auction since we are

likely to find an applicant i who chose site j = 2 and who has 0 ≤ εi2 < εi1 and an applicant

i
′

further down the queue who has εi′2 ≥ εi′1 ≥ 0 but for whom no site 2 permits remain,

leading applicant i
′

to obtain a permit at site j = 1. Reassigning applicant i to site j = 1

and applicant i
′

to site j = 2 would increase total surplus by 1
−µ0 (εi1− εi2 + εi′2− εi′1) > 0.20

The static lottery mitigates this issue to some extent by requiring that all applicants

submit an application for either site simultaneously. Applicant i chooses which site to apply

for in order to maximize her expected welfare. She chooses site j = 2 if εi2 − εi1 ≥ (φ1
φ2
−

1)εi1−χ0,2 and εi2 ≥ −χ0,2, where φ1 and φ2 are the equilibrium success probabilities of each

site. Because the baseline utility of site j = 2 (χ0,2) is strictly positive, there will be a higher

demand for permits at site j = 2, so that φ1
φ2
> 1. As a result, among participants who have

εi1 > 0, an applicant will only apply for site j = 2 if εi2 − εi1 ≥ (φ1
φ2
− 1)εi1 − χ0,2 > −χ0,2,

i.e. applicants will be more selective about applying to from site j = 2 than they would be

under random serial dictatorship.21

20An additional source of inefficiency arises from the possibility that applicant i with −χ0,2 ≤ εi2 < 0

might choose site j = 2 while an applicant i
′

further down the queue might have εi2 > 0 but might not have
access to permits for site j = 2, leading her to choose the outside option j = 0 either because no permit
remains or because εi′1 < 0. Reassigning applicant i to the outside option and applicant i

′
to site j = 2

would increase total surplus by 1
−µ0

(εi′2 − εi2) > 0. This source of inefficiency is not addressed by the static
lottery but is addressed by the dynamic lottery by using intertemporal opportunity costs as discussed in the
next subsection.

21Participants who have εi1 ≤ 0 face the same choice under random serial dictatorship and the static
lottery of choosing to apply for site j = 2 if εi2 ≥ −χ0,2 or choosing the outside option j = 0 otherwise.
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4.4.2 Intertemporal Opportunity Costs as Prices

The dynamic lottery improves selectivity compared to the static lottery, with average surplus

per permit being greater in the dynamic lottery for both types of participants.22 Average

surplus per permit for type-2 participants is $2,887 under the dynamic lottery instead of

$2,278 under the static lottery, and average surplus per permit for type-1 participants is

$5,597 under the dynamic lottery instead of $5,421 in the static lottery. The dynamic

lottery yields an allocation with higher average surplus per permit for both types of active

participants by rationing assignment over time, so that obtaining a permit today leads to a

smaller chance of obtaining a permit in the future. This intertemporal trade-off results in

participants being more selective about when and where to apply for a permit, preferring to

abstain from applying for a permit if their value for hunting today is relatively low compared

to their expected value of hunting in the future.

The increase in selectivity elicited by the dynamic lottery can be understood by consid-

ering first a simplified case. Suppose there is a single hunt. Set the baseline utility of this

hunting site to zero and ignore all sources of persistent heterogeneity (i.e. applicant types

and travel costs). Then applicant i’s value for a permit is wi = εi
−µ0 , where {εi}i∈N is i.i.d.

type-1 extreme value. Let q be the permit quota for this single hunt.

The efficient auction in this simplified setting becomes a Vickrey auction which would

lead to an equilibrium price for access of p∗ = w(q+1), where w(1), . . . , w(N) are the order

statistics of {wi}i∈N and are assumed to be known to the auctioneer (since, in a Vickrey

auction, participants are predicted to reveal their true valuations for the resource being

allocated). This auction is efficient since applicants who obtain a permit have the greatest

values for the hunt, w(1), ..., w(q).
23

In the static lottery, applicants will apply for the permit as long as wi ≥ 0. Winning

22The dynamic lottery also obtains efficiency gains by improving targeting, i.e. increasing the fraction of
permits allocated to type-1 participants. We discuss this second source of efficiency in the next subsection.

23Here we consider the case where more than q applicants have wi ≥ 0. Doing so implies excess demand,
which is the only interesting case. If fewer than q applicants have value wi ≥ 0 for the permit, then all
applicants interested in hunting can obtain a permit and any assignment mechanism would be efficient.

28



applicants will be randomly drawn from the pool w(1), ..., w(r), where r is such that w(r) ≥ 0

and w(r+1) < 0. This assignment mechanism will therefore lead to inefficiency by possibly

assigning permits to applicants with value for hunting less than w(q).

The dynamic lottery mitigates this issue by creating a “price” for obtaining a permit in

the form of lost continuation value. An applicant with p preference points chooses between

applying for a permit, with expected present value utility φp(εi + ρR0) + (1 − φp)ρRp+1, or

waiting to apply in the following period, with expected present value utility ρRp+1. Here,

φp is the success probability with p preference points and Rp is the applicant’s continuation

value with p preference points (as before). For simplicity, assume that no applicant with

zero preference points can obtain a permit. There will be some preference point stock p > 0

such that φp > 0. Applicants with p preference points can obtain a permit, but they will

only apply for a permit if wi ≥ ρ
−µ0 (Rp+1 − R0) > 0. The last inequality holds as long as

ρ > 0 since φp+1 ≥ φp > 0. Hence, a dynamic lottery will necessarily lead to a more selective

assignment than a static lottery. The degree of selectivity depends on the loss of continuation

value associated with having a stock of preference points reset to zero, ρ
−µ0 (Rp+1−R0). This

selectivity will translate into a welfare-improving sorting where applicants with large draws

of εi will be assigned to the resource while applicants with lower draws of εi will exclude

themselves from consideration, preferring to wait for a future assignment.24

In our application the dynamic lottery allocates permits to several sites, which are esti-

mated to have large differences in baseline utility. The option value of waiting for a future

assignment in the dynamic lottery is therefore combined with a sorting of types of resources

across levels of seniority to yield heterogeneous opportunity costs for different types of re-

sources.

24As discussed in Section 3.2, note that the efficiency gain of a dynamic assignment mechanism relies on
at least part of the preference heterogeneity being transitory. For instance, in this simplified example, εi
is assumed to be drawn independently every year. In order to quantify the efficiency gains of a dynamic
assignment mechanism it is therefore important to use models which account for persistent heterogeneity in
preferences (the unobserved types in our choice model in Section 3) and to use data from a natural choice
experiment that allow for separately identifying persistent and transitory preference heterogeneity, i.e. data
that contain information on applicants’ choices repeatedly, such as the dynamic lottery we study here.
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With different types of resources, an efficient allocation is obtained by having participants

choose to obtain a permit for a hunting site (or choose to abstain) in order to maximize their

net welfare wij − p?j across choices j ∈ J̄ , where as before wij is the value of a permit at site

j to applicant i, p?j is the equilibrium price of a permit for site j in the efficient auction, and

J̄ is the augmented choice set J̄ = J ∪ {0} which includes all sites j ∈ J and the outside

option j = 0.25.

As discussed above, the static lottery does not charge any price for obtaining a permit, but

requires that applicants submit applications for permits simultaneously, so that applicants

choose the site that maximizes their expected utility φjwij across choices j ∈ J̄ where φj

are equilibrium success probabilities.

Using the notation developed in Section 3, an applicant i of type τ in the dynamic lottery

will incur an intertemporal opportunity cost cip = ρ
−µ0 (Riτp+1−Riτ0) for hunting today rather

than abstaining and waiting for a future assignment. This opportunity cost will generally

still lead to some excess demand, so that an applicant will choose the site that maximizes

her expected net welfare φjp(wij − cip) across all choices j ∈ J̄ , given equilibrium success

probabilities φjp.
26

Figure 3 plots the average intertemporal opportunity cost of hunting (cip) for each type

of participant against the average auction prices of the permits allocated by the dynamic

lottery at each level of preference point stock. The intertemporal opportunity cost of hunting

elicited by the dynamic lottery is significant for both types of participants under the dynamic

lottery, ranging from $727 to $3,412 for type-2 participants and from $1,477 to $5,417 for

type-1 participants. More desirable sites are in higher demand, so that they become available

at higher levels of preference points than less desirable sites in the dynamic lottery. Figure 3

provides a representation of this sorting of sites by preference point stocks by showing that the

average auction price of sites increases with preference point stock. This sorting also results

25The value of abstaining is normalized to zero, wi0 = 0, and the price of abstaining is zero as well, p0 = 0
26As before, the success probability of abstaining is set to zero, φj0 = 0, so that this representation is

notationally correct for j = 0.
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in the intertemporal opportunity cost of hunting increasing with preference point stock. This

is because hunting in the current period always leads to being deprived of access to the most

desirable sites for several years. A participant with a high stock of preference points who

chooses to abstain in a given year would have immediate access to these sites in the following

year (and hence a large opportunity cost of hunting today), whereas an applicant with zero

preference points would have to wait several years before gaining access to the most desirable

sites regardless of whether she hunts today or not (and hence a small opportunity cost of

hunting today). The dynamic lottery is therefore able to associate higher opportunity costs

with more desirable sites in a similar way as the efficient auction associates higher prices

with more desirable sites. Having participants choosing to maximize φjp(wij − cip) across all

choices j ∈ J̄ in a dynamic lottery mimics to some extent their choice to maximize wij − p?j

across all choices j ∈ J̄ in an efficient auction and leads to improved selectivity compared

to static assignment mechanisms.

4.4.3 Improved Targeting in the Dynamic Lottery

The relative efficiency of the dynamic lottery also originates from the fraction of permits

assigned to type-1 participants being higher in the dynamic lottery than in the static lottery

(0.27 instead of 0.21). This originates from a separation of hunter types across preference

point stocks and hunting site quality. Compared to a static lottery, type-2 applicants can

aim for the more desirable sites and still benefit from low waiting times because a dynamic

lottery results in success probabilities that increase sharply with waiting time (i.e. with

preference point stock). Therefore type-2 applicants concentrate on obtaining permits for

the more desirable first and second tier sites. This frees up less-desirable third tier sites,

allowing type-1 applicants to obtain permits for these sites in larger proportions. Under both

mechanisms, type-1 participants obtain virtually all of their permits from third tier sites,

but in the dynamic lottery they benefit from a greater probability of obtaining a permit to

one of these sites (0.87 under the dynamic lottery versus only 0.71 in the static lottery).
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Figure 3 provides a representation for this efficiency gain by showing the maximized value

of hunting for sites that are available under the dynamic lottery at each level of preference

point stock. We find that type-1 participants have a value of hunting that is significantly

above their opportunity cost, so that they apply for hunting with a probability that is

approximately one. On the other hand, a significant share of the distribution of value of

hunting for type-2 applicants is below their intertemporal opportunity cost of hunting. This

leads these applicants to apply for the preference-point only option in the dynamic lottery,

“freeing up” permits for type-1 participants.

4.4.4 Inefficiency of the Dynamic Lottery

While the dynamic lottery achieves efficiency gains compared to a static lottery through the

two channels described above, it leads to a total surplus that is still significantly lower than

the total surplus achieved by an efficient auction.

With one type of participant and one type of resource, Jackson and Sonnenschein (2007)

show that an efficient allocation can be obtained by rationing access over time when agents

value their future utility without discounting. In the same environment but with agents who

discount their future utility, Guo and Hörner (2017) show that the total surplus achieved by

the optimal mechanism in the class of mechanisms that do not rely on monetary transfers

is lower than the maximized total surplus. In our application, discounting and attrition will

prevent assignment mechanisms without money from achieving an efficient allocation. This

can also be understood by considering the extreme case where there is full discounting (i.e.

where agents are myopic), and where the attrition rate is one (i.e. all applicants are replaced

every year), since in this case rationing access over time would be impossible.

Additionally, the heterogeneity estimated to exist across participants implies that mech-

anisms that rely on opportunity costs rather than monetary transfers to elicit selectivity will

necessarily reach either over-selectivity among type-1 participants or under-selectivity among

type-2 participants. Figure 3 shows that type-1 applicants are roughly as selective as they
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would be in an efficient auction (their opportunity cost of hunting is approximately equal to

the auction price of the corresponding permits), but type-2 applicants have an opportunity

cost that is significantly lower than the efficient prices. An applicant’s opportunity cost for

obtaining a permit today originates from a decrease in the probability of obtaining a permit

in the future. Therefore the magnitude of the resulting opportunity cost depends on an

applicant’s expected future utility from obtaining a permit. Consequently this opportunity

cost will necessarily be lower among type-2 applicants than among type-1 applicants. This

leads type-2 applicants to apply for permits more frequently than they would in an efficient

auction, which in turn leads to a lower surplus per permit assigned than would arise in an

efficient auction. This also crowds out type-1 applicants, with fewer permits at fewer sites

being allocated to type-1 applicants in a dynamic lottery compared to an efficient auction.

Finally, we also estimate that there exists a large degree of heterogeneity across sites, but

at a given stock of preference points the dynamic lottery charges a uniform “price” for hunting

across all sites. The dynamic lottery charges an applicant with p preference points a price for

hunting, denominated in preference points, of p+1. This price is independent of the site from

which the applicant chooses to obtain a permit. In contrast, an efficient auction leads to very

heterogeneous prices across sites, estimated to range from $82 to $10, 122.27 As discussed

above, the dynamic lottery still leads to heterogenous opportunity costs across sites because

access to sites of different desirability and scarcity is distributed across different levels of

seniority, but at high levels of seniority the dynamic lottery results in the effective choice set

of applicants being needlessly narrow. Indeed at high levels of preference points the choices

of applicants are concentrated around the few most desirable sites and the choice probability

for sites with low baseline desirability are approximately zero. This is a symptom of an

inefficient allocation since applicants that might have relatively low draws of idiosyncratic

preference shocks εij for sites j with high baseline utility χ0j receive assignments for these

27While a predicted auction price of $10,000 for a single permit at the most desirable sites may seem high,
we note that other U.S. states have implemented auctions for big game hunting permits, yielding similar or
significantly higher prices, see e.g. Branch (2017).
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sites, crowding out other participants who have higher draws of preference shocks for these

sites.

We provide additional details on the role of these two dimensions of heterogeneity in

determining the relative efficiency of the dynamic lottery in Section C of the online appendix,

where in particular we explore the potential of a simple modification to the dynamic lottery

to mitigate the last source of inefficiency raised above.

5 Conclusion

Our results show that dynamically evolving budgets in an artificial currency (preference

points) can lead to allocations that are more efficient than allocations obtained with static

mechanisms. More generally, our results point to the importance of two sources of efficiency

gains. First, mechanisms that increase the option value of waiting can yield efficiency gains

by making participants more selective. Second, the heterogeneity in the resources being

allocated can be leveraged to yield a separation by applicants’ types, so that applicants with

a high value for the resource can benefit from obtaining an assignment with a shorter waiting

time, which in turn allows applicants with lower value to concentrate on more desirable

resources (and vice versa). It is likely that the design of many assignment mechanisms for

repeated allocation of heterogenous resources could benefit from incorporating these aspects,

as we noted in our introduction for the examples of affordable housing or transplant organ

donation.

On the other hand we find that the degrees of heterogeneity among participants and

across the resources being allocated are also key in determining the social efficiency of the

dynamic lottery relative to an efficient auction. While simple recommendations can be

made to address heterogeneity across resources, which we discuss in the online appendix, the

efficiency frontier of allocation mechanisms without monetary transfers and with persistently

heterogeneous participants is, to our knowledge, unknown. We consider this to be evidence

that additional empirical and theoretical results are needed to form a more complete picture
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of how specificities of each application should guide the design of assignment mechanisms.
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Figure 1: Michigan bear management units (source: DNR 2015a; 2015b)

Figure 2: Histograms of applicants’ a) preference point stocks and b) travel costs in dollars
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(a) Probability distribution of preference points
for participants of each type

(b) Intertemporal opportunity cost of hunting for
participants of each type and auction prices of
allocated permits

(c) Intertemporal opportunity cost of hunting
and first and ninth deciles of the maximized value
of hunting for participants of type-1

(d) Intertemporal opportunity cost of hunting
and first and ninth deciles of the maximized value
of hunting for participants of type-2

Figure 3: Characteristics of the equilibrium allocation with dynamic lottery

Table 1: Bear Management Unit Characteristics and Summary Statistics (Source: DNR
2009; 2015a)

BMU Population
Forest

land (ac) Hunts /yr

Mean
success

rate

Season
duration
(days)

Bergland 16,452 340,020 3 0.28 47
Baraga 78,327 974,399 3 0.26 47
Amasa 23,636 500,823 3 0.33 47
Gwinn 48,954 574,025 3 0.24 47
Carney 57,362 436,796 3 0.21 47
Newberry 60,591 1,333,215 3 0.26 47
Drummond Island 457 22,550 1 0.65 42
Red Oak 294,981 1,394,083 1 0.28 7
Baldwin 467,081 288,297 1 0.50 7
Gladwin 303,693 231,582 1 0.17 7
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Table 2: Michigan Bear Hunting Seasons and Quotas, 2008–9 (Source: DNR 2010)

Hunt BMU Season Avg. quota Avg. applicants

1 Bergland 9/10–10/21 480 1348
2 9/15–10/26 613 680
3 9/25–10/26 675 528
4 Baraga 9/10–10/21 440 2073
5 9/15–10/26 770 1172
6 9/25–10/26 1415 1159
7 Amasa 9/10–10/21 170 1220
8 9/15–10/26 235 593
9 9/25–10/26 420 681
10 Carney 9/10–10/21 215 1250
11 9/15–10/26 388 593
12 9/25–10/26 545 422
13 Gwinn 9/10–10/21 250 1682
14 9/15–10/26 375 809
15 9/25–10/26 800 774
16 Newberry 9/10–10/21 388 4274
17 9/15–10/26 495 1992
18 9/25–10/26 1480 2027
19 Drummond Is. 9/10–10/21 6 285
20 Red Oak 9/18–9/26 1850 12337

(10/2–10/8 archery)
21 Baldwin 9/18–9/26 (all) 63 2647

9/11–9/26 (north area)
22 Gladwin 9/18–9/26 163 848
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Table 3: Application shares and success probabilities by levels of preference points

preference points 0 1 2 3 4 5 6 7 8 9

Share of applicants p.p.-only 0.20 0.30 0.34 0.36 0.40 0.51 0.59 0.63 0.76 0.89
tier-1 sites 0.31 0.34 0.36 0.40 0.43 0.35 0.29 0.26 0.17 0.05
tier-2 sites 0.17 0.19 0.20 0.18 0.14 0.11 0.10 0.08 0.06 0.06
tier-3 sites 0.32 0.17 0.10 0.06 0.03 0.02 0.02 0.02 0.01 0.00

Shares excluding p.p.-only tier-1 sites 0.39 0.48 0.55 0.63 0.72 0.72 0.71 0.72 0.70 0.46
tier-2 sites 0.22 0.27 0.30 0.28 0.23 0.23 0.23 0.23 0.25 0.50
tier-3 sites 0.40 0.25 0.16 0.09 0.06 0.05 0.06 0.05 0.04 0.04

Average success probability tier-1 sites 0.00 0.00 0.00 0.06 0.33 0.56 0.67 0.68 1.00 1.00
tier-2 sites 0.00 0.03 0.24 0.57 0.79 0.86 0.86 0.86 0.93 1.00
tier-3 sites 0.57 0.86 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p.p.-only stands for the preference point-only option. In order to summarize information, the 22 hunting sites were divided
into three tiers. These tiers are defined in Section 3.1. Tier-1 contains sites which are estimated to be the most desirable.
Tier-3 contains sites which are estimated to be the least desirable.
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Table 4: Expected preference-points cut-
offs for each hunt in years 2008 and 2009

Hunt cut-off 2008 cut-off 2009

1 1.70 1.89
2 0.08 0.17
3 0.00 0.00
4 2.91 3.17
5 0.40 0.60
6 0.00 0.00
7 4.14 4.75
8 1.75 1.73
9 0.52 0.77
10 2.94 3.37
11 0.62 0.42
12 0.00 0.00
13 3.78 3.83
14 0.90 0.99
15 0.01 0.00
16 5.24 5.42
17 2.40 2.23
18 0.30 0.44
19 7.83 8.94
20 3.70 3.93
21 7.63 8.40
22 2.38 2.62

Cut-offs correspond to the expected mini-
mum stock of preference points required to
obtain a permit at each hunt in each year.
For instance in 2008, 30% of applicants with
one preference point could obtain a permit
for hunt 1, while the cut-off for 70% of these
applicants was two preference points (i.e.
they were not successfully drawn).
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Table 5: Maximum Likelihood Estimates of Marginal Utility Parameters

Parameter Estimate Std. Error

Marginal utility parameters
µa –0.206 0.0063
η2 –6.725 0.0122
η3 –21.987 744.42

Type probabilities
π2 0.798 0.0016
π3 0.136 0.0015

Baseline utility from hunt j
χ1 5.30 0.0302
χ2 3.41 0.0286
χ3 2.85 0.0313
χ4 6.69 0.0375
χ5 4.63 0.0213
χ6 3.58 0.0236
χ7 6.94 0.0531
χ8 4.38 0.0455
χ9 4.24 0.0263
χ10 5.97 0.0522
χ11 3.85 0.0297
χ12 2.56 0.0363
χ13 6.60 0.0408
χ14 4.32 0.0258
χ15 3.14 0.0274
χ16 8.62 0.0358
χ17 5.88 0.0331
χ18 4.77 0.0176
χ19 5.25 0.2168
χ20 8.65 0.0165
χ21 10.49 0.0493
χ22 4.85 0.0566

Log-likelihood –87239.8
a Travel costs are discretized into units of $200. The marginal

utility of income in unscaled dollars per util is –0.206/200 =
–0.00103.
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Table 6: Welfare Comparison across Different Assignment Mechanisms

Random serial
dictatorship

Static lottery Dynamic lottery Auction

Expected total surplus ($)a 31.9M 36.0M 42.6M 58.0M

Average total surplus per applicant ($) 575 649 768 1,046
Average applicant surplus 575 649 768 526
State revenue per applicant — — — 520

Average total surplus by applicant type ($)b 1 4,277 3,846 4,914 7,947
2 367 496 557 656
3 0 0 0 0

Probability of obtaining a permit 0.221 0.221 0.212 0.221
by applicant type 1 0.746 0.710 0.878 1

2 0.215 0.218 0.193 0.194
3 0 0 0 0

Average surplus per permit ($) 2,603 2,942 3,578 4,742
by applicant type 1 5,731 5,421 5,597 7,947

2 1,710 2,278 2,887 3,383

Average years before obtaining a permit 2.93 2.89 1.74 3.31
by applicant type 1 0.34 0.41 0.10 0

2 3.65 3.59 1.88 4.15

Probability of winning permit to tier-1 site 0.041 0.041 0.041 0.041
by applicant type 1 0.048 0 0 0.189

2 0.048 0.052 0.052 0.036

Probability of winning permit to tier-2 site 0.037 0.037 0.037 0.037
by applicant type 1 0.052 0 0.006 0.168

2 0.042 0.046 0.046 0.033

Probability of winning permit to tier-3 site 0.142 0.142 0.133 0.142
by applicant type 1 0.646 0.709 0.872 0.644

2 0.124 0.120 0.095 0.125

a We normalize total surplus absent hunting to $0.
b The proportions of type-1, -2, and -3 applicants are 0.066, 0.798, and 0.136, respectively.
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