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Abstract

We propose a new valuation method for private equity investments. First, we con-

struct a cash-flow replicating portfolio for the private investment, using cash-flows

on various listed equity and fixed income instruments. The second step values the

replicating portfolio using a flexible asset pricing model that accurately prices the

systematic risk in listed equity and fixed income instruments of different horizons.

The method delivers a measure of the risk-adjusted profit earned on a PE investment

as well as a time series for the expected return on PE funds. We apply the method to

real estate, infrastructure, buyout, and venture capital funds, and find only modest

average risk-adjusted profit but with substantial cross-sectional variation.
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1 Introduction

Private equity investments have risen in importance over the past twenty-five years, rel-

ative to public equity. Private funds account for $4.7 trillion in assets under management,

of which real estate funds comprise $800 billion (Preqin). Large institutional investors

now allocate substantial fractions of their portfolios to such alternative investments. For

example, the celebrated Yale University endowment has a portfolio weight of over 50% in

alternative investments. Pension funds and sovereign wealth funds have also ramped up

their allocations to alternatives. As the fraction of overall wealth that is held in the form

of private investment grows, so does the importance of developing appropriate valuation

methods. The non-traded nature of the assets and their infrequent cash-flows makes this

a challenging problem.

As with any investment, the price of a private equity (PE) investment equals the

present discounted value of its cash-flows. The general partner (GP, the fund manager)

deploys the capital committed by the limited partners (LPs, investors). The risky projects

may throw off some interim cash-flows that are distributed back to the LPs, but the bulk

of the cash flows arise when the GP sells the projects, and distributes the proceeds net

of fees (carry, promote) to the LPs. Our main question is how to adjust the profits the

investor earns for the systematic risk inherent in the PE investment. Industry practice is

to report the ratio of distributions to capital contributions and the internal rate of return.

However, neither metric takes into account the riskiness of the cash-flows.

We propose a novel methodology that centers on the nature and the timing of cash-

flow risk for PE investments. It proceeds in two steps. In a first step, we estimate the

exposure of the PE fund’s cash-flows to the cash-flows a set of liquid, publicly listed se-

curities. In our application, we consider pay-offs to Treasury bonds, the stock market,

and the publicly-traded real estate (REIT) and infrastructure markets; but the method

easily accommodates additional publicly-traded factors. By “stripping” the sequence

of PE cash-flows into individual cash-flows by horizon, and estimating the exposure to

maturity-matched cash-flows on listed securities, our method decomposes the risk of a PE

cash-flow into its different horizon components. We allow these horizon exposure profiles

to depend on the vintage of the PE funds, and to differ by broad investment category.

In a second step, we use a flexible, no-arbitrage asset pricing model that prices the

term structure of Treasury bonds, stocks, REITs, and infrastructure stocks. It postulates

the main sources of systematic risk and estimates the prices of risk that the market as-

signs to these risk exposures. With those market price of risk estimates in hand, we can
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price strips, which are claims to a single risky cash-flow at each date and at each hori-

zon in the bond, stock, REIT, and infrastructure market, inspired by Lettau and Wachter

(2011) and van Binsbergen, Brandt, and Koijen (2012). We use the shock price elasticities

of Borovička and Hansen (2014) to understand how risk prices change with horizon in the

model. The model closely matches the time series of bond yields across maturities, stock

price-dividend ratios, as well as stock and bond risk premia. It also matches the risk pre-

mium on short-maturity dividend futures from 2003-2014, calculated in the data by van

Binsbergen, Hueskes, Koijen, and Vrugt (2013), and van Binsbergen and Koijen (2017), as

well as the time series of the price-dividend ratio on 2-year cumulative dividend strips

and the share of the overall stock market they represent from 1996-2009 as backed out

from options data by van Binsbergen, Brandt, and Koijen (2012).

Combining the cash-flow replicating portfolio of strips obtained from the first step

with the prices for these strips from the asset pricing model estimated in the second step,

we obtain the fair price for the PE-replicating portfolio in each vintage and category. Each

PE investment is scaled to represent $1 of capital committed. Therefore, the replicating

portfolio must also deploy $1 of capital. Times in which the prices of stock and bond

strips are high are times in which a $1 replicating portfolio can buy a smaller quantity of

stock and bond strips. All else equal, that will make it easier for the cash flows of PE funds

started at that same time (i.e., of that vintage) to exceed those on the replicating portfolio.

Of course, the assets the PE funds acquire may be more expensive in those times as well,

so that out-performance is an empirical question. The risk-adjusted profit (RAP) of an

individual PE fund is the net present value of the idiosyncratic PE cash flows, which are

the difference between the realized cash flows on the PE fund and the realized cash flows

on the replicating portfolio in that vintage-category. Under the null hypothesis that the

asset pricing model is correct and that the average PE manager has no asset selection skill

or no timing skill in when to deploy capital and harvest assets, the risk-adjusted profit is

zero.

The model also delivers a time series for the expected return in each PE category. At

each point in time , it reflects the systematic risk exposure of the PE funds in that category

started at that point in time (vintage). That expected return can be broken down into

its various horizon components, and, at each horizon, into its exposures to the various

systematic risk factors. It helps us understand how the expected return on PE investments

changes with the state of the economy. Our method can also be used to ask what the

expected return is on all outstanding PE investments (vintages). It can be used to calculate
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the residual net asset value (NAV) of PE funds at each point during their life cycle. With

expected returns, variance, and covariances with traded securities in hand, the approach

opens the door to optimal portfolio analysis with alternative investments.

Now that trade in stock and bond strips has become feasible, our approach can be

used by investors who have no access to PE funds (say, because they are too small) to

mimic the return generating process of PE funds, possibly at lower cost. The argument

is similar to that made for hedge-fund return replicating strategies. Conversely, in the

absence of a full menu of dividend strips (say, REIT strips are not available), PE funds

may be a trading strategy that provides an investor with access to exposure to the factor

mimicking systematic cash flow risk (in say, real estate).

We use data from Preqin on all private equity funds with non-missing cash-flow in-

formation that were started between 1980 and 2017. Cash-flow data until March 2018 are

used in the analysis. Our sample includes 4,221 funds in seven investment categories.

The largest categories are Buyout, Real Estate, and Venture Capital. We are particularly

interested in the categories Real Estate and Infrastructure, but report results for all cate-

gories. The main text reports results for these four categories and relegates the results for

the other three to the appendix. Like in other papers in the literature, the PE data (here,

taken from Preqin) are usually subject to some degree of selection bias.

One of our key findings is that the risk-adjusted profit to investors in PE funds is cen-

tered slightly above zero, about 3 cents per $1 invested, but with a large cross-sectional

variation around the average. Using either a one or four-factor model, we find higher

profitability for Real Estate and Buyout funds. Infrastructure, Debt Funds, and Restuctur-

ing funds also have positive (though small) risk-adjusted profits; we find little evidence

for positive excess returns in Venture Capital. The intuition for this result is that PE cash-

flows are well-spanned by public markets, and so their cash-flows are well-replicated

ex-post through an estimated synthetic portfolio. However, we also find substantial cross-

sectional variation in the profitability of funds. In the time-series, we generally find that

more recent vintages perform worse than those in the 1990s. Despite the high apparent

profitability of recent funds, our approach would suggest that these funds deliver little

excess profit given their factor exposure and the performance of those publicly traded

factors.

Related Literature This paper contributes to a large empirical literature on performance

evaluation in private equity funds, such as Kaplan and Schoar (2005), Cochrane (2005),
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Korteweg and Sorensen (2017), Harris, Jenkinson, and Kaplan (2014), Phalippou and

Gottschalg (2009), Robinson and Sensoy (2011), and many other papers cited above. Most

of this literature focuses on Buyout and Venture Capital funds, though recent work in

valuing privately-held real estate assets includes Peng (2016) and Sagi (2017). Ammar

and Eling (2015) have studied infrastructure investments. This literature has found mixed

results regarding PE fund outperformance and persistence of performance, depending on

the data set and period in question. Our replicating portfolio approach results in a rela-

tively low estimate of risk-adjusted profits for PE funds compared with the literature.

While performance evaluation in private equity is still often expressed as an internal

rate of return or a ratio of distributions to capital committed, several important papers

have incorporated risk into the analysis. The public market equivalent (PME) approach

of Kaplan and Schoar (2005) compares the private equity investment to an appropriate

public market benchmark (the aggregate stock market) with the same magnitude and

timing of cash-flows. Sorensen and Jagannathan (2015) assess the PME approach from

a SDF perspective. The closest antecedent to our paper is Korteweg and Nagel (2016),

who propose a generalized PME approach that relaxes the assumption that the beta of

PE funds to the stock market is one. This is particularly important in their application to

venture capital funds. These approaches avoid making strong assumptions on the return-

generating process of the PE fund, because they work directly with the cash-flows. See for

example Cochrane (2005) and Korteweg and Sorensen (2010). Much of the literature as-

sumes linear beta-pricing relationships, e.g., Ljungqvist and Richardson (2003), Driessen,

Lin, and Phalippou (2012).

Several other papers have estimated beta exposures of PE funds with respect to the

stock market, particularly for categories of buyout and venture capital. These include

Gompers and Lerner (1997); Ewens, Jones, and Rhodes-Kropf (2013); Peng (2001); Wood-

ward (2009). This literature has generally estimated stock market exposures of buyout

funds above one, and even higher estimates for Venture Capital funds. Our work con-

tributes to this literature estimating the risk exposure of PE funds by allowing for a flex-

ible estimation approach across horizon and vintage; and in estimating fund exposures

to a more expansive set of publicly listed securities. We also allow for our risk exposure

estimates to differ by category, and examine a broader set of PE categories than typically

examined in this literature. Our results for VC funds have implications for the returns

on entrepreneurial activity (Moskowitz and Vissing-Jorgensen, 2002). Finally, we connect

the systematic risk exposures of funds to a rich asset pricing model, which allows us to
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estimate risk-adjusted profits and time-varying expected returns.

Like Korteweg and Nagel (2016), we estimate a stochastic discount factor (SDF) from

public securities. Our SDF contains additional risk factors, but more importantly, richer

risk price dynamics. Those dynamics are central for generating realistic risk premia on

bond and stock strips, which are the building blocks of our PE valuation method. The

SDF model extends earlier work by Lustig, Van Nieuwerburgh, and Verdelhan (2013) who

value a claim to aggregate consumption to help guide the construction of consumption-

based asset pricing models. The asset pricing model combines a vector auto-regression

model for the state variables as in Campbell (1991, 1993, 1996) with a no-arbitrage model

for the (SDF) as in Duffie and Kan (1996); Dai and Singleton (2000); Ang and Piazzesi

(2003). The SDF model needs to encompass the sources of aggregate risk that the investor

has access to in public securities markets and that PE funds are exposed to. The question

of performance evaluation then becomes whether, at the margin, PE funds add value to a

portfolio that already contains these traded assets.

In complementary work, Ang, Chen, Goetzmann, and Phalippou (2017) filter a time

series of realized private equity returns using Bayesian methods. They then decompose

that time series into a systematic component, which reflects compensation for factor risk

exposure, and an idiosyncratic component (alpha). While our approach does not recover

a time series of realized private equity returns, it does recover a time series of expected

private equity returns. At each point in time, the asset pricing model can be used to

revalue the replicating portfolio for the PE fund. Since it does not require a difficult

Bayesian estimation step, our approach is more flexible in terms of number of factors as

well as the factor risk premium dynamics. Other important methodological contributions

to the valuation of private equity include Driessen, Lin, and Phalippou (2012), Sorensen,

Wang, and Yang (2014), and Metrick and Yasuda (2010).

The rest of the paper is organized as follows. Section 2 describes our methodology.

Section 3 sets up and solves the asset pricing model. Section 4 presents the main results

on the risk-adjusted profits and expected returns of PE funds. Section 5 concludes. The

appendix provides derivations and additional results.

2 Methodology

Private equity investments are finite-horizon strategies, typically around ten to fifteen

years in duration. Upon inception of the fund, the investor (LP) commits $1 to the fund
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manager (GP). The GP deploys that capital at his discretion, but typically within the first

2-4 years. Intermediate cash-flows may accrue from the operations of the assets, for ex-

ample, net operating income from renting out an office building. Towards the end of the

life of the fund (typically in years 5-10), the GP “harvests” the assets and distributes the

proceeds to the investor after subtracting fees (including the carry or promote). These

distribution cash-flows are risky, and understanding (and pricing) the nature of the risk

in these cash-flows is the key question in this paper.

Denote this sequence of net-of-fees cash-flow distributions for fund i by {Xi
t+h}

T
h=0.

Time t is the inception date of the fund, the vintage. The horizon h indicates the number

of quarters since fund inception. We allocate all funds started in the same calendar year

to the same vintage. The maximum horizon H is set to 60 quarters to allow for “zombie”

funds that continue past their projected life span of 10 years. All cash flows observed

after quarter H are allocated to quarter H. Monthly fund cash-flows are aggregated to the

quarterly frequency. All PE cash-flows are reported for a $1 investor commitment.

2.1 Two-Step Approach

In a first step, we find the cash-flow replicating portfolio of risk-free and risky securities

for each of the PE cash-flow distributions. Let the K× 1 vector Ft+h be the vector of cash

flows on the securities in the replicating portfolio. The first element of Ft+h is a constant

equal to 1. This is the cash-flow on a nominal zero-coupon U.S. Treasury bond that pays $1

at time t + h. All other elements of Ft+h denote risky cash-flow realizations at time t + h.

They are the payoffs on “zero coupon equity” or “dividend strips” (Lettau and Wachter,

2011; van Binsbergen, Brandt, and Koijen, 2012). They pay one (risky) cash-flow at time

t+ h and nothing at any other date. We scale the risky dividend at t+ h by the cash flow at

fund inception time t. For example, a risky cash-flow of Ft+h(k) =
Dt+h(k)

Dt(k)
= 1.05 implies

that there was a 5% realized cash-flow growth rate between periods t and t + h on the

kth asset in the replicating portfolio. This scaling gives the strips a “face value” around 1,

comparable to that of the bond. It makes the exposures comparable in magnitude across

assets.

Let the cash flow on the replicating portfolio be denoted by βi
t+hFt+h, where the 1× K

vector βi
t+h denotes the exposure of fund i to the assets in the replicating portfolio. We

estimate the exposures from a projection of PE cash-flow at time t + h on the cash-flows
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of the risk-free and risky strips:

Xi
t+h = βi

t,hFt+h + ei
t+h. (1)

where e denotes the idiosyncratic cash-flow component, orthogonal to Ft+h. The vector

βi
t+h describes how many units of each strip are in the replicating portfolio for the fund

cash-flows. Equation (1) is estimated combining all funds in a given category, all vintages

t, and all horizons h. We impose cross-equation restrictions, as explained below.

In the second step, we use our asset pricing model, spelled out in the next section, to

price the zero coupon bond and equity strips. Denote the K × 1 price vector for strips of

horizon h by Pt,h. The first element of this price vector is the price of the zero-coupon

nominal bond which we denote by Pt,h(1) = P$
t,h. Let the one-period stochastic discount

factor (SDF) be Mt+1, then the h-period SDF is:

Mh
t+h =

h

∏
k=1

Mt+k.

The (vector of) strip prices satisfy the (system of) Euler equation:

Pt,h = Et[Mh
t+hFt+h]

Budget Feasibility The first place where we use the asset pricing model is in making

sure that the replicating portfolio for the PE fund is budget feasible. Since one dollar is

available to buy a portfolio of bond and stock strips, no more than one dollar can be spent

on the replicating portfolio. We impose that no less than one dollar should be spent.

This is without loss of generality since the replicating portfolio can always invest in a

one-period risk-free bond, which is equivalent to keeping cash. The replicating portfolio

positions βi
t+h, estimated from equation (1), do not yet impose this budget feasibility

requirement. Therefore, we define a vector of rescaled portfolio positions, qi, that costs

exactly one dollar to buy

qi
t,h =

βi
t,h

∑H
h=1 βi

t,hPt,h
⇒

H

∑
h=1

qi
t,hPt,h = 1.

Since the strip prices change over time, each vintage has its own rescaling. With the

budget feasible replicating portfolio in hand, we redefine the idiosyncratic component of
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fund cash-flows as vi:

vi
t+h = Xi

t+h − qi
t,hFt+h.

Under the joint null hypothesis of the asset pricing model and no fund outperfor-

mance, the expected present discounted value of fund cash-flow distributions must equal

the $1 initially paid in by the investor:

Et

[
H

∑
h=1

Mh
t+hXi

t+h

]
= Et

[
H

∑
h=1

Mh
t+hqi

t,hFt+h

]
=

H

∑
h=1

qi
t,hPt,h = 1, (2)

where the first equality follows from the fact that the idiosyncratic cash-flow component

vi is uncorrelated with the SDF since all priced cash-flow shocks are included in the vector

F under the null hypothesis.

Expected Returns The second place where we use the asset pricing model is to calculate

the expected return on the PE investment over the life of the investment. It equals the

expected return on the replicating portfolio of strips:

Et

[
Ri
]
=

H

∑
h=1

K

∑
k=1

wi
t,h(k)Et [Rt+h(k)] (3)

where wi is a 1×KH vector of replicating portfolio weights with generic element wi
t,h(k) =

qi
t,h(k)Pt,h(k), in which qi

t,h(k) denotes the kthelement of the 1× K vector qi
t,h and Pt,h(k)

denotes the kthelement of the K × 1 vector Pt,h. The KH × 1 vector Et[R] denotes the ex-

pected returns on the K traded asset strips at each horizon h. The asset pricing model

provides the expected returns on these strips. Equation (3) decomposes the risk premium

into compensation for exposure to the various risk factors, horizon by horizon.

Risk-Adjusted Profit Performance evaluation of PE funds requires quantifying the LP’s

profit on a particular PE investment, after taking into account its riskiness. This ex-post

realized risk-adjusted profit is the second main object of interest. Under the maintained

assumption that all the relevant sources of systematic risk are captured by the replicating

portfolio, the PE cash-flows consist of one component that reflects compensation for risk

and a risk-adjusted profit (RAP) equal to the discounted value of the idiosyncratic cash-
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flow component. The latter component for fund i in vintage t equals::

RAPi
t =

H

∑
h=1

P$
t,hvi

t+h, (4)

Since the idiosyncratic cash-flow components are orthogonal to the priced cash-flow shocks,

they are to be discounted at the risk-free interest rate. The null hypothesis is that E[RAPi
t ] =

0.

A fund with strong asset selection skills, which picks investment projects with payoffs

superior to the cash flows on the traded assets, will have a positive risk-adjusted profit.

Additionally, a fund with market timing skills, which invests at the right time (typically

constrained to a fairly narrow investment period) and sells at the right time (within the

harvesting period) will have positive risk-adjusted profit.1 When calculating our profit

measure, we exclude vintages after 2010, for which we are still missing a substantial frac-

tion of the cash-flows.

We first discuss the relationship of our approach to other well-known approaches

when valuing PE cash-flows. The rest of this section discusses implementation issues.

2.2 Connection to GPME and PME

Korteweg and Nagel (2016) define their realized GPME measure for fund i as:

GPMEi
t =

H

∑
h=0

Mh
t+hXi

t+h (5)

=
H

∑
h=0

Mh
t+h

{
qi

t,hFt+h + vi
t+h

}
= RAPi

t +
H

∑
h=0

Mh
t+h

{
qi

t,h (Ft+h −Et[Ft+h])
}

(6)

If the SDF model is correct, Et[GPMEi] = 0. The difficulty with computing (5) is that it

contains the realized SDF which is highly volatile. In KN’s implementation, the SDF is a

function of only the market return:
(
Πh

k=0Mt+k
)
= exp(0.088h − 2.65 ∑h

k=0 rm
t+k). If the

realized market return over a 10 year period is 100%, the realized SDF is 0.17. If the stock

1 The fund’s horizon is endogenous because it is correlated with the success of the fund. As noted by
Korteweg and Nagel (2016), this endogeneity does not pose a problem as long as cash-flows are observed.
“Even if there is an endogenous state-dependence among cash-flows, the appropriate valuation of a payoff
in a certain state is still the product of the state’s probability and the SDF in that state.”
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return is 30%, the SDF is 1.08. Using our SDF, which is more volatile than one considered

in KN, this approach leads to unrealistically low PE valuations, on average. Our risk-

adjusted profit avoids using the realized SDF and instead relies on strip prices, which are

expectations of SDFs multiplied by cash-flows.

A second difference between the two approaches is that the realized GPME can be

high (low) because the factor payoffs Ft+h are unexpectedly high (low); the second term in

equation (6). Our risk-adjusted profit measure does not credit the GP for this unexpected

systematic cash-flow component. It removes a “factor timing” component of performance

that is due to taking risk factor exposure. Like our approach, the simple PME does not

credit the GP with factor timing.

Third, our approach credits the GP for “investment timing” skill while the GPME

approach does not. Because it assumes that the replicating portfolio deploys the entire

capital right away, a manager who successfully waits a few periods to invests will have a

positive RAP. If the GP harvests at a more opportune time than the replicating portfolio,

whose harvesting timing is determined by the average PE fund in that vintage and cat-

egory, this also contributes to the RAP. The GPME as well as the simple PME approach

do not credit the manager for investment timing because they assume that the replicating

portfolio follows the observed sequence of PE capital calls and distributions.

Fourth, our approach accommodates heterogeneity in systematic risk exposure across

PE funds that differ by vintage and category. In the standard PME approach, the market

beta of each fund is trivially the same and equal to 1. In the GPME approach, PE funds are

allowed to have a market beta that differs from 1, but the beta is the same for all funds. We

allow for multiple risk factors, and the exposures differ for each vintage nd for each fund

category. Appendix D provides more detail on the KN approach and more discussion on

the points of differentiation.

2.3 Identifying and Estimating Cash-Flow Betas

The replicating portfolio must be rich enough that it spans all priced (aggregate) sources

of risk, yet it must be parsimonious enough that its exposures can be estimated with suf-

ficient precision. Allowing every fund in every category and vintage to have its own

unrestricted cash-flow beta profile leads to parameter proliferation and lack of identifica-

tion. We impose cross-equation restrictions to aid identification.
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One-factor Model To fix ideas, we start with a simple model in which all private equity

cash-flows are assumed to only have interest rate risk. We refer to this as the one-factor

model. The empirical model assumes that the cash-flows X of all funds i in the same

category c (category superscripts are omitted for ease of notation) and vintage t have the

same bond betas at each horizon h:

Xi∈c
t+h = βb

t,h + ei
t+h = qb

t,h + vi
t+h = atbh + vi

t+h. (7)

We estimate (7) using a random effects model, category by category, with vintage times

horizon effects as dependent variables. The estimation equally weights all funds. We

scale the resulting bond exposures in each vintage so that they are budget-feasible. The

resulting bond positions qb
t+h are the product of a vintage effect at and a horizon effect bh.

With T vintages and H horizons, we estimate T + H parameters using N f × T × H ob-

servations. Identification is achieved both from the cross-section (N f funds in category c)

and from the time series (T). Specifically, the vintage effects (the “a’s”) are only allowed

to shift the horizon effects (the “b”-profiles) up and down in parallel fashion. The vintage

effects are normalized to be 1 on average across vintages, and the horizon effects corre-

spondingly rescaled. We include all available vintages that have at least eight quarters

of cash flows because the extra information may be useful to better identify the first few

elements of bh.

One can test the null hypothesis that the vintage effects are the same: H0 : at =

as, ∀t 6= s. If the null cannot be rejected, imposing the equality of vintage effects may

lead to efficiency gains in estimation.

With the portfolio weights qb
t,hP$

t,h in hand, we can calculate the expected return on

the PE investment as a weighted average of the expected returns on the bond strips per

equation (3). We can also calculate the remaining value of the PE fund at any point in its

life by valuing the remaining replicating portfolio of zero-coupon bonds, using the bond

prices prevailing at that point. Finally, we can calculate the risk-adjusted profit from

equation (4), using the residuals from equation (7).

Four-factor Model Our main model is a four-factor model where we add to the bond

factor a stock market factor, a traded real estate factor, and a traded infrastructure factor.

We price these four assets in the model described in section 3. The model can easily be

extended to an arbitrary number of K > 4 risk factors.

The empirical model assumes that the cash-flows X of all funds i in the same category

12



c and vintage t have the same vector of cash-flow betas at each horizon h. The betas on

the bond, stock, real estate, and infrastructure factors are allowed to be different from one

another, and to shift in different ways across vintages:

Xi∈c
t+h = qb

t,h + qmkt
t,h Fm

t+h + qreit
t,h Freit

t+h + qin f ra
t,h Fin f ra

t+h + vi
t+h

= a1
t b1

h + a2
t b2

hFm
t+h + a3

t b3
hFreit

t+h + a4
t b4

hFin f ra
t+h + vi

t+h. (8)

We estimate the 4T vintage effects
{

a1
t , a2

t , a3
t , a4

t
}T

t=1 and the 4H horizon profiles
{

b1
h, b2

h, b3
h, b4

h
}H

h=1

using a random effects model which contains vintage times horizon times cash-flows

(F) as dependent variables. In total, there are 4T + 4H coefficients to estimate using

N f × T × H observations. The key identifying assumption is that the each vintage ef-

fect only shifts the corresponding horizon profile up and down in parallel fashion, rather

than allowing for arbitrary shifting.

One can test the null hypothesis that the vintage effects are the same across risky

assets: H0 : a1
t = a2

t = a3
t = a4

t . If the null cannot be rejected, imposing this condition may

lead to efficiency gains in estimation.

3 Asset Pricing Model

The second main challenge is to price the replicating portfolio. If the only sources of risk

were the risks inherent in the term structure of interest rates, this step would be straight-

forward. After all, on each date t, we can infer the prices of zero-coupon bonds of all

maturities j from the observed yield curve. However, interest rate risk is not the only and

(arguably) not even the main source of risk in the cash-flows of private equity funds. If

stock market risk were the only other source of aggregate risk, then we could in principle

use price information from dividend strips. Those prices can either be inferred from op-

tions and stock markets (van Binsbergen, Brandt, and Koijen, 2012) or observed directly

from dividend strip futures markets (van Binsbergen, Hueskes, Koijen, and Vrugt, 2013).

However, the available time series is too short for our purposes. Moreover, these strips

are not available in one-quarter horizon increments. Third, there are no dividend strip

data for publicly listed real estate or infrastructure assets, two additional traded factors

we wish to include in our analysis given our special interest in real estate and infrastruc-

ture funds. Fourth, we do not observe expected returns on those strips, only realized

excess returns over relatively short time series, and would need to obtain expected re-
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turns from an asset pricing model anyway. For all those reasons, we rely on a standard

asset pricing model to obtain the time series of Pt,h and the corresponding expected re-

turns. But we insist that this asset pricing model be consistent with the available dividend

strip evidence.

The asset pricing model must correctly price the assets whose cash-flows F are used in

the cash-flow replication. We propose a reduced-form asset pricing model rather than a

structural model that starts from preferences, since it is more important for our purposes

to price the replicating portfolio of publicly traded assets correctly than to understand the

deeper sources of macro-economic risk that underly the prices of stocks and bonds. Our

approach builds on Lustig et al. (2013), who price a claim to aggregate consumption and

study the properties of the price-dividend ratio of this claim, the wealth-consumption

ratio.

As emphasized by Korteweg and Nagel (2016), the objective is not to test the asset

pricing model, but rather to investigate whether a potential PE investment adds value to

an investor who already has access to securities whose sources of risk are captured by the

SDF.

3.1 Setup

3.1.1 State Variable Dynamics

Time is denoted in quarters. We assume that the N × 1 vector of state variables follows a

Gaussian first-order VAR:

zt = Ψzt−1 + Σ
1
2 εt, (9)

with shocks εt ∼ i.i.d.N (0, I) whose variance is the identity matrix. The companion

matrix Ψ is a N × N matrix. The vector z is demeaned. The covariance matrix of the

innovations to the state variables is Σ; the model is homoscedastic. We use a Cholesky

decomposition of the covariance matrix, Σ = Σ
1
2 Σ

1
2 ′, which has non-zero elements only on

and below the diagonal. The Cholesky decomposition of the residual covariance matrix

allows us to interpret the shock to each state variable as the shock that is orthogonal to

the shocks of all state variables that precede it in the VAR. We discuss the elements of the

state vector and their ordering below.

For now, we note that the (demeaned) one-month bond nominal yield is one of the

elements of the state vector: y$
t,1 = y$

0,1 + e′ynzt, where y$
0,1 is the unconditional average

1-quarter nominal bond yield and eyn is a vector that selects the element of the state vector
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corresponding to the one-quarter yield. Similarly, the (demeaned) inflation rate is part of

the state vector: πt = π0 + e′πzt is the (log) inflation rate between t− 1 and t. Lowercase

letters denote logs.

3.1.2 SDF

We specify an exponentially affine stochastic discount factor (SDF), similar in spirit to

the no-arbitrage term structure literature (Ang and Piazzesi, 2003). The nominal SDF

M$
t+1 = exp(m$

t+1) is conditionally log-normal:

m$
t+1 = −y$

t,1 −
1
2

Λ′tΛt −Λ′tεt+1. (10)

Note that y$
t,1 = Et[−m$

t+1]. The real SDF is Mt+1 = exp(mt+1) = exp(m$
t+1 + πt+1); it

is also conditionally Gaussian. The innovations in the vector εt+1 are associated with a

N × 1 market price of risk vector Λt of the affine form:

Λt = Λ0 + Λ1zt.

The N× 1 vector Λ0 collects the average prices of risk while the N×N matrix Λ1 governs

the time variation in risk premia. Asset pricing in this model amounts to estimating the

market prices of risk (Λ0, Λ1). We specify the restrictions on the market price of risk

vector below.

3.1.3 Bond Pricing

Proposition 1 in Appendix A shows that nominal bond yields of maturity τ are affine in

the state variables:

y$
t,τ = −1

τ
A$

τ −
1
τ

B$′
τ zt.

The scalar A$(τ) and the vector B$
τ follow ordinary difference equations that depend on

the properties of the state vector and on the market prices of risk. The appendix also

calculates the real term structure of interest rates, the real bond risk premium, and the

inflation risk premium on bonds of various maturities. We will price a large cross-section

of nominal bonds that differ by maturity, paying special attention to the one- and twenty-

quarter bond yields since those are part of the state vector.
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3.1.4 Equity Pricing

The present-value relationship says that the price of a stock equals the present-discounted

value of its future cash-flows. By value-additivity, the price of the stock, Pm
t , is the sum of

the prices to each of its future cash-flows. These future cash-flow claims are the so-called

dividend strips or zero-coupon equity (Wachter, 2005). Dividing by the current dividend

Dm
t :

Pm
t

Dm
t

=
∞

∑
τ=1

Pd
t,τ (11)

exp
(

pd + e′pdm zt

)
=

∞

∑
τ=0

exp
(

Am
τ + Bm′

τ zt
)

, (12)

where Pd
t,τ denotes the price of a τ-period dividend strip divided by the current dividend.

Proposition 2 in Appendix A shows that the log price-dividend ratio on each dividend

strip is affine in the state vector and provides recursions for the coefficients (Am
τ , Bm

τ ).

Since the log price-dividend ratio on the stock market is an element of the state vector,

it is affine in the state vector by assumption. Equation (12) restates the present-value

relationship from equation (11). It articulates a non-linear restriction on the coefficients

{Am
τ , Bm

τ }
∞
τ=1 at each date (for each state zt), which we impose in the estimation. Anal-

ogous present value restrictions holds for traded real estate and infrastructure strips,

whose price-dividend ratios are also included in the state vector, and are also imposed

on the estimation.

If dividend growth were unpredictable and its innovations carried a zero risk price,

then dividend strips would be priced like real zero-coupon bonds. The dividend strips’

dividend-price ratios would equal yields on real bonds with the coupon adjusted for de-

terministic dividend growth. In this special case, all variation in the price-dividend ra-

tio would reflect variation in the real yield curve. In reality, the dynamics of real bond

yields only account for a small fraction of the variation in the price-dividend ratio, imply-

ing large prices of risk associated with shocks to dividend growth that are orthogonal to

shocks to bond yields.

3.1.5 Dividend Futures

The model readily implied the price of a futures contract that received the single realized

nominal dividend at some future date, D$
t+k. That futures price, Fd

t,τ, scaled by the current
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nominal dividend D$
t , is:

Fd
t,τ

D$
t

= Pd
t,τ exp

(
τy$

t,τ

)
,

The one-period realized return on this futures contract for k > 1 is:

R f ut,d
t+1,τ =

Fd
t+1,τ−1

Fd
t,τ

− 1.

The appendix shows that log(1 + R f ut,d
t+1,τ) is affine in the state vector zt and in the shocks

εt+1. It is straightforward to compute average realized returns over any subsample, and

for any portfolio of futures contracts. Appendix A provides the expressions and details.

3.2 Estimation

3.2.1 State Vector Elements

The state vector contains the following demeaned variables, in order of appearance: (1)

GDP price inflation, (2) real per capita GDP growth, (3) the nominal short rate (3-month

nominal Treasury bill rate), (4) the spread between the yield on a five-year Treasury note

and a three-month Treasury bill,2 (5) the log price-dividend ratio on the CRSP stock mar-

ket, (6) the log real dividend growth rate on the CRSP stock market, (7) the log price-

dividend ratio on the NAREIT All Equity REIT index of publicly listed real estate com-

panies, (8) the corresponding log real dividend growth rate on REITs, (9) the log price-

dividend ratio on a listed infrastructure index, and (10) the corresponding log real divi-

dend growth rate of infrastructure stocks:

zt = [πt, xt, y$
t,1, y$

t,20 − y$
t,1, pdm

t , ∆dm
t , pdreit

t , ∆dreit
t , pdin f ra

t , ∆din f ra
t ]′.

This state vector is observed at quarterly frequency from 1974.Q1 until 2017.Q4 (176 ob-

servations). This is the longest available time series for which all variables are available.3

Our PE cash flow data starts shortly thereafter in the early 1980s. While most of our PE

fund data are after 1990, we deem it advantageous to use the longest possible sample to

more reliably estimate the VAR dynamics and especially the market prices of risk.

2All yields we use are the average of daily Constant Maturity Treasury yields within the quarter.
3The first observation for REIT dividend growth is in 1974.Q1. We seasonally adjust dividends, which

means we lose the first 8 quarters of data in 1972 and 1973. The seasonal adjustment is the same for the
overall stock market and the infrastructure stock index.
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The VAR is estimated by OLS in the first stage of the estimation. We recursively zero

out all elements of the companion matrix Ψ whose t-statistic is below 1.96. Appendix B.1

contains the resulting point estimates for Ψ and Σ
1
2 .

3.2.2 Market Prices of Risk

The state vector contains both priced sources of risk as well as predictors of bond and

stock returns. We estimated 8 parameters in the constant market price of risk vector Λ0

and 40 elements of the matrix Λ1 which governs the dynamics of the risk prices. The point

estimates are listed in Appendix B.2. We use the following target moments to estimate the

market price of risk parameters.

First, we match the time-series of nominal bond yields for maturities of one quarter,

one year, two years, five years, ten years, twenty years, and thirty years. They constitute

about 7× T moments, where T = 176 quarters.4

Second, we impose restrictions that we exactly match the average five-year bond yield

and its dynamics. This delivers 11 additional restrictions:

−A$
20/20 = y$

0,20

−B$
20/20 = [0, 0, 1, 1, 0, 0, 0, 0, 0, 0]

Because the five-year bond yield is the sum of the third and fourth element in the state

vector, the market prices of risk must be such that −B$
20/20 has a one in the third and

fourth place and zeroes everywhere else.

Third, we match the time-series of log price-dividend ratios on stocks, real estate, and

infrastructure which are included in the state vector. The model-implied price-dividend

ratios are built up from 3,500 quarterly dividend strips according to equation (11). Thus,

we impose the present-value relationship for all three stock prices at each date. They

constitute 3× T moments.

Fourth, we impose that the equity risk premia for the overall stock market, REITs,

and infrastructure in the model match those given by the VAR, both in terms of the un-

conditional average and the dependence on the state variables. As usual, the expected

excess return in logs (including a Jensen adjustment) must equal minus the conditional

covariance between the log SDF and the log return. For example, for the overall stock

4The 20-year bond yield is missing prior to 1993.Q4 while the 30-year bond yield data is missing from
2002.Q1-2005.Q4. In total 107 observations are missing, so that we have 1232-107=1125 bond yields to
match.
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market:

Et

[
rm,$

t+1

]
− y$

t,1 +
1
2

Vt

[
rm,$

t+1

]
= −Covt

[
m$

t+1,r
m,$
t+1

]
rm

0 + π0 − y$
0(1) +

[
(edivm + κm

1 epd + eπ)
′Ψ− e′pd − e′yn

]
zt

+
1
2
(
edivm + κm

1 epd + eπ

)′ Σ (edivm + κm
1 epd + eπ

)
=

(
edivm + κm

1 epd + eπ

)′ Σ 1
2 Λt

The left-hand side is given by the VAR (data), while the right-hand side is determined by

the market prices of risk Λ0 and Λ1 (model). Similar restrictions apply to the expected

excess return for REITS and Infrastructure. This provides 29 additional restrictions. These

moments dictate which elements of the 6th, 8th, and 10th rows of Λ1 must be non-zero.

Fifth, we impose that the model match the realized price-dividend ratio time series on

short-maturity strips on the stock market as well as the share of the overall market value

that these short-maturity strips represent. Specifically, we consider a claim that pays the

first eight quarters of realized nominal dividends. This claim can be priced in the model

as the sum of the prices to the first eight dividend strips. Data for the price-dividend

ratio and the share in the overall stock market (S&P500) on this claim are obtained from

van Binsbergen, Brandt, and Koijen (2012) for the period 1996.Q1-2009.Q3 (55 quarters).

This delivers 2× 55 moments. We also want to make sure our model is consistent with

the high average realized returns on short-horizon dividend futures, first documented by

van Binsbergen, Hueskes, Koijen, and Vrugt (2013). Table 1 in van Binsbergen and Koijen

(2017) reports the observed average monthly return on one- through seven-year U.S. SPX

dividend futures over the period Nov 2002 - Jul 2014 . That average portfolio return is

0.726% per month or 8.71% per year. We construct an average return for the same short

maturity futures portfolio (paying dividends 2 to 29 quarters from now) in the model:

R f ut,port f
t+1 =

1
28

29

∑
τ=2

R f ut,d
t+1,τ

We average the realized return on this dividend futures portfolio between 2003.Q1 and

2014.Q2, and annualize it. We target 8.71% for this return. This results in one additional

restriction. We free up the market price of risk associated with the market price-dividend

ratio (fifth element of Λ0 and first six elements of the fifth row of Λ1) to help match the

dividend strip evidence.

Sixth, we impose a good deal bound on the standard deviation of the log SDF, the

maximum Sharpe ratio, in the spirit of Cochrane and Saa-Requejo (2000).
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Seventh, we impose regularity conditions on bond yields. We impose that very long-

term real bond yields have average yields that weakly exceed average long-run real

growth, which is 1.65% per year in our sample. Long-run nominal yields must exceed

long-run real yields by 2% inflation. These constraints are satisfied at the final solution.

Not counting the regularity conditions, we have 1, 750 moments to estimate 48 param-

eters. Thus, the estimation is massively over-identified.

3.2.3 Model Fit

Figure 1 plots the bond yields on bonds of maturities 3 months, 1 year, 5 years, and 10

years. Those are the most relevant horizons for the private equity cash-flows. The model

matches the time series of bond yields in the data closely. It matches nearly perfectly the

one-quarter and 5-year bond yield which are part of the state space.

Figure 1: Dynamics of the Nominal Term Structure of Interest Rates

The figure plots the observed and model-implied 1-, 4-, 20-, 40-quarter nominal bond yields.
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The top panels of Figure 2 show the model’s implications for the average nominal (left

panel) and real (right panel) yield curves at longer maturities. These long-term yields are

well behaved. The bottom left panel shows that the model matches the dynamics of the

nominal bond risk premium, defined as the expected excess return on five-year nominal

bonds, nearly perfectly. The bottom right panel shows a decomposition of the nominal

bond yield on a five-year bond into the five-year real bond yield, annual expected in-

flation inflation over the next five years, and the five-year inflation risk premium. On

average, the 6.0% five-year nominal bond yield is comprised of a 1.7% real yield, a 3.3%

expected inflation rate, and a 1.0% inflation risk premium. The graph shows that the im-

portance of these components fluctuates over time. The inflation risk premium has been

shrinking over time, consistent with the findings in the term structure literature.

Figure 2: Long-term Yields and Bond Risk Premia

The top panels plot the average bond yield on nominal (left panel) and real (right panel) bonds for maturities ranging from 1 quarter
to 200 quarters. The bottom left panel plots the nominal bond risk premium in model and data. The bottom right panel decomposes
the model’s five-year nominal bond yield into the five-year real bond yield, the five-year inflation risk premium and the five-year real
risk premium.
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Figure 3 shows the equity risk premium, the expected excess return, in the left panels

and the price-dividend ratio in the right panels. The top row is for the overall stock

market, the middle row for REITs, and the bottom row for infrastructure stocks. The

dynamics of the risk premia in the data are dictated by the VAR. The model chooses the

market prices of risk to fit these risk premium dynamics as closely as possible.5 The price-

dividend ratios in the model are formed from the price-dividend ratios on the strips of

maturities ranging from 1 to 3500 quarters, as explained above. The figure shows a good

fit for price-dividend levels and for risk premium dynamics. Some of the VAR-implied

risk premia have outliers which the model does not fully capture. This is in part because

the good deal bounds restrict the SDF from becoming too volatile and extreme. The model

generates a 5.4% equity risk premium on the market with a standard deviation of the risk

premium of 8.1%. The VAR implies an equity risk premium of 6.8% with a standard

deviation of 11.2%. By its nature, the VAR may imply excessive movement in equity risk

premia, especially on the stock market as a whole. A model that does not match every

wiggle in the risk premium dynamics may in fact be the more realistic one.

3.3 Temporal Pricing of Risk

Zero-Coupon Bond and Zero-Coupon Equity Prices The first key output from the model,

and input in the private equity valuation exercise, is a nominal bond price for zero-

coupon bonds with maturities ranging from one to approximately 60 quarters. The sec-

ond key output from the model, and input in the private equity valuation exercise, is

the price for dividend strips with maturities ranging from one to 60 quarters. We scale

this price by the current dividend. Figure 4 plots the time series for prices of nominal

zero-coupon bonds and dividend strips on the overall stock market, REITs, and infras-

tructure stocks. We plot three maturities: one-month, five-years, and ten-years. We use

these prices to value the replicating portfolio for private equity cash-flows in our main

valuation equation (3). The model implies substantial time variation in dividend strip

prices over time, as well as across risky assets.

As part of the estimation, the model fits the observed time series of the price-dividend

ratio on a claim to the first 8 quarters of dividends, as well as the share of the total stock

5The quarterly risk premia are annualized by multiplying them by 4 for presentational purposes only.
We note that the VAR does not restrict risk premia to remain positive. The VAR-implied equity risk pre-
mium is negative in 21% of the quarters. For REITS this is 10% and for infrastructure only 5% of quarters.
The most negative value of the risk premium on the overall stock market is -8% quarterly. For REITS, the
most negative value for the risk premium is -2.9% quarterly, while it is -1.2% for infrastructure.
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Figure 3: Equity Risk Premia and Price-Dividend Ratios

The figure plots the observed and model-implied equity risk premium on the overall stock market, REIT market, and infrastructure
sector, in the left panels, as well as the price-dividend ratio in the right panels.
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market value that these first eight quarters of dividends represent. Figure 5 shows the

result for the price-dividend ratio in the left panel and the share in the right panel. The

model generates the right level for the price-dividend ratio for the short-horizon claim.

The average in the model, for the 55 quarters for which the data are available, is 7.74. The

average in the data is 7.65. The model also generates the entire drop in the PD ratio in the

financial crisis. However, it misses the equally large drop in 2000.Q4-2001.Q1. The model

implies that the first 8 quarters of dividends represent 4.5% of the overall stock market

value (the claim to all future quarters) over the period in which we have data. That

same number in the data is 3.4%. The model mimics the observed dynamics of the share

quite well, including the sharp decline in 2000.Q4-2001.Q1 when the short-term strips

falls by more than the overall stock market. This reflects the market’s perception that the
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Figure 4: Zero Coupon Bond Prices and Dividend Strip Prices

The figure plots the model-implied prices on zero-coupon Treasury bonds in the first panel, and price-dividend ratios for dividend
strips on the overall stock market, REIT market, and infrastructure sector in the next three panels, for maturities of 4, 20, and 40
quarters. The prices/price-dividend ratios are expressed in levels and each claim pays out a single cash flow.
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recession would be short-lived. In contrast, the share of short-term strips increases in the

Great Recession, both in the data and in the model in recognition of the persistent nature

of the crisis.

The model generates rich patterns in the temporal pricing of risk. Figure 6 plots the av-

erage risk premium on nominal zero coupon bond yields (top left panel) and on dividend

strips (other three panels) of various maturities ranging from 1 to 60 quarters. Those are

the relevant maturities for the private equity investments. Risk premia on nominal bonds

are increasing with maturity from 0 to 3.5%. The second panel shows the risk premia

on dividend strips on the overall stock market (solid blue line). It also plots the divi-

dend futures risk premium. The difference between the dividend strip and the dividend

futures risk premium is approximately equal to the nominal bond risk premium. The un-

conditional dividend futures risk premium (pink line with circles) is downward sloping

in maturity at the short end, consistent with the empirical findings of van Binsbergen,

Hueskes, Koijen, and Vrugt (2013), and van Binsbergen and Koijen (2017). The graph also
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Figure 5: Short-run Cumulative Dividend Strips

The left panel plots the model-implied price-dividend ratio on a claim that pays the next eight quarters of dividends on the aggregate
stock market. The right panel plots the share that this claim represents in the overall value of the stock market. The data are from van
Binsbergen, Brandt, and Koijen (2012) and available from 1996.Q1-2009.Q3.
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plots the dividend futures risk premium, averaged over the period 2003.Q1-2014.Q2 (yel-

low dash-dotted line). It is substantially more downward sloping at the short end than

the risk premium averaged over the entire 1974-2017 sample. Indeed, the model does a

good job matching the realized portfolio return on dividend futures of maturities 1-7 years

over the period 2003.Q1-2014.Q2, which was 8.71% in the data and 8.70% in the model.6

Risk premia on dividend futures peak at maturity of 70 quarters (not shown), and slowly

decline thereafter stabilizing at 0.5% per year.

The average term structure of dividend strip risk premia for REITs (bottom left panel)

starts at 6% at the short end, and is uniformly upward sloping , with risk premia growing

to 10% per annum at the 60-quarter horizon. The futures risk premia are downward

sloping at shorter horizons and essentially flat thereafter, suggesting that the upward

slope in the spot risk premia is inherited from the nominal bond risk premia. The risk

premium curve on public infrastructure assets (bottom right panel) shows a small hump

at the short end and is much flatter than for the other two risky assets. It also is lower

on average. The dividend futures risk premia on infrastructure are downward sloping,

6As an aside, the conditional risk premium, which is the expected (as opposed to realized) return on the
dividend futures portfolio over the 2003.Q1-2014.Q2 period is 4.32% per year in the model. The uncondi-
tional risk premium on the dividend futures portfolio (over the full sample) is 3.81%.
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similar to the overall stock market.

The difference in the level and the horizon-dependence of the three strip risk premia

will generate differences in the risk premia on private equity investments if their cash-

flows display differential exposure to the traded asset cash-flows.

Figure 6: Zero Coupon Bond Prices and Dividend Strip Prices

The figure plots the model-implied average risk premia on nominal zero-coupon Treasury bonds in the first panel, and on dividend
strips on the overall stock market, REIT market, and infrastructure sector in the next three panels, for maturities ranging from 1 to 180
months.
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Shock Exposure and Shock-Price Elasticities Borovička and Hansen (2014), building

on earlier work by Hansen and Scheinkman (2009), provide a dynamic value decomposition,

the asset pricing counterpart to an impulse response function. It allows a researcher to

decompose the risk premium an investor requires for exposure to a shock into the prod-

uct of the exposure (shock exposure elasticity) and the risk price (shock price elasticity),

horizon by horizon. Appendix C applies their analysis to our VAR setting.
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Figure 7 plots the shock-exposure elasticities of dividend growth on the market (blue),

dividend growth of REITs (red), and dividend growth of infrastructure stocks (green) to

a one-standard deviation shock to inflation (top left), to real per capital GDP growth (top

second), to the short rate (top third), to the slope factor (top right), to the dividend growth

rate on the market (bottom left), to the dividend growth rate on REITs (bottom middle),

and to the dividend growth rate on infrastructure (bottom right). The shock exposure

elasticities are essentially impulse-responses to the original (non-orthogonalized) VAR

innovations. They describe properties of the VAR, not of the asset pricing model. Since

our private equity cash-flows are linear combinations of the dividends on stocks, REITs,

and infrastructure, the PE cash flow exposures to the VAR shocks will be linear com-

binations of the shock exposure elasticities of these three dividend growth rates. There

is interesting heterogeneity in the three cash flow exposures to the various VAR shocks.

For example, the top left panel shows that dividend growth on infrastructure responds

positively to an inflation shock while the dividend growth responses for the aggregate

stock market and especially for REITS are negative. This points to the inflation hedging

potential of infrastructure assets and the inflation risk exposure of REITS and the market

as a whole. The second panel shows that REIT dividend growth responds positively to

GDP growth, while cash flow growth on the market responds negatively. All cash flows

respond negatively to an increase in interest rates in the long-run, but the response of

REIT cash flows is positive for the first five years. REIT cash flows are rents which can be

adjusted upwards when rates increase, which typically occurs in a strong economy (see

the GDP panel). The market dividend growth shows a substantial positive response to a

steepening yield curve. The bottom three panels show that the dividend growth shock on

the market is nearly permanent, while the other two cash flow shocks are mean reverting.

A positive shock to infrastructure cash flows also has a positive effect on REIT cash flows,

which grows over time (bottom right).

Figure 8 plots the shock-price elasticities to a one-standard deviation shock to each

of the same (non-orthogonalized) VAR innovations. These shock price elasticities are a

property of the (cumulative) SDF process, and therefore depend on the estimated market

price of risk parameters. They quantify the compensation investors demand for horizon-

dependent risk exposure. The price of inflation risk is negative, consistent with increases

in inflation being bad states of the world. GDP growth risk is naturally priced positively,

and more so at longer horizons. Level risk is negatively priced, consistent with standard

results in the term structure literature that consider high interest rate periods bad states
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Figure 7: Shock Exposure Elasticities

The figure plots the shock-exposure elasticities of dividend growth on the market, dividend growth of REITs, and dividend growth
of infrastructure shocks to a one-standard deviation shock to the inflation factor (top left), real GDP growth (top second), the short
rate (top third), the slope factor (top right), the price-dividend ratio on the market (bottom left), dividend growth rate on the market
(bottom second), the dividend growth rate on REITs (bottom third), and the dividend growth rate on infrastructure (bottom right).
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of the world. The price of level risk becomes less negative at longer horizons. The price of

slope risk is positive. All cash-flow shocks in the bottom three panels naturally have pos-

itive risk prices since increases in cash-flow growth are good shocks to the representative

investor. Those three dividend shock risk price elasticities are nearly flat across horizons.
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Figure 8: Shock Price Elasticities

The figure plots the shock-price elasticities to a one-standard deviation shock to the inflation factor (top left), real GDP growth (top
second), short rate (top third), the slope factor (top right), the price-dividend ratio on the market (bottom left), dividend growth rate
on the market (bottom second), the dividend growth rate on REITs (bottom third), and the dividend growth rate on infrastructure

(bottom right). The shocks whose risk prices are plotted are the (non-orthogonalized) VAR innovations Σ
1
2 ε.
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4 Expected Returns and Risk-adjusted Profits on Private

Equity Funds

In this section, we combine the cash-flow exposures from section 2 with the asset prices

from section 3 to obtain risk-adjusted profits on private equity funds.

4.1 Summary Statistics

Our fund data cover the period January 1981 until Dec 2017. The data source is Pre-

qin. We group private equity funds into seven categories: Buyout (LBO), Venture Capital

(VC), Real Estate (RE), Infrastructure (IN), Fund of Funds (FF), Debt Funds (DF), and Re-

structuring (RS). Our FF category contains the Preqin categories Fund of Funds, Hybrid

Equity, and Secondaries. The Buyout category is commonly referred to as Private Equity,

whereas we use the PE label to refer to the combination of all investment categories. One

may be able to further enrich the analysis by defining categories more granularly. For

example, real estate strategies are often subdivided into opportunistic, value-add, core

plus, and core funds. Infrastructure could be divided into greenfield and brownfield, etc.

Additionally, one may be able to estimate a firm fixed effect as (larger) firms often have

several funds in the data set.

We include all funds with non-missing cash-flow information. We group funds also

by their vintage, the year in which they first appear in the data set. The last vintage we

consider in the analysis is the 2017 vintage. Table 1 reports the number of funds and

the aggregate AUM in each vintage-category pair. In total, we have 4,215 funds in our

analysis and an aggregate of $4.1 trillion in assets under management. There is clear

business cycle variation in when funds funds get started as well as in their size (AUM).

Buyouts are the largest category by AUM, followed by Real Estate, and then Venture

Capital.

Figure 9 shows the average cash-flow profile in each category for distribution events,

pooling all funds and vintages together and equally weighting them. We combine all

monthly cash-flows into one quarterly cash-flow for each fund. Quarter zero is the quar-

ter in which the first capital call takes place. The last bar is for the last quarter of year 15

(quarter 60). For the purposes of making this figure and in the cash-flow beta estimation,

we include all observed cash-flows until 2017.Q4. Thus, the 2010 vintage funds have at

most 32 quarters of cash-flows. Cash-flows arriving after quarter 60 are included in the

last quarter under a separately highlighted color (green). The distribution cash-flows fol-
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Table 1: Summary Statistics

Panel A: Fund Count

Vintage Buyout Debt Fund Fund of Funds Infrastructure Real Estate Restructuring Venture Capital Total

1981 0 0 0 0 0 0 1 1
1982 0 0 0 0 0 0 3 3
1983 0 0 1 0 0 0 1 2
1984 0 0 0 0 0 0 3 3
1985 4 0 0 0 0 0 6 10
1986 2 0 3 0 0 0 7 12
1987 5 0 0 0 0 0 5 10
1988 7 0 1 0 0 0 4 12
1989 3 0 0 1 0 0 5 9
1990 7 0 2 0 0 1 8 18
1991 2 0 1 0 0 2 4 9
1992 9 0 0 1 1 2 12 25
1993 9 0 2 1 0 0 11 23
1994 15 0 1 2 1 1 12 32
1995 14 0 5 1 2 0 17 39
1996 20 0 1 3 3 3 21 51
1997 23 0 4 2 6 2 26 63
1998 40 0 11 4 3 1 32 91
1999 31 1 9 1 2 3 47 94
2000 33 2 17 0 6 3 84 145
2001 21 0 19 1 2 5 55 103
2002 24 1 13 3 3 3 29 76
2003 18 1 12 2 7 4 20 64
2004 27 1 19 6 11 2 33 99
2005 55 2 33 5 19 6 49 169
2006 71 1 51 8 32 11 59 233
2007 72 1 48 13 35 13 72 254
2008 65 5 61 11 31 11 62 246
2009 27 2 30 9 12 8 26 114
2010 39 4 38 18 28 8 39 174
2011 53 2 64 22 46 12 49 248
2012 63 3 54 19 36 12 44 231
2013 63 15 66 19 59 20 53 295
2014 68 12 67 26 46 16 67 302
2015 72 16 72 21 73 18 76 348
2016 91 13 78 32 59 10 72 355
2017 47 20 38 22 60 7 58 252

Panel B: Fund AUM ($m)

Vintage Buyout Debt Fund Fund of Funds Infrastructure Real Estate Restructuring Venture Capital Total

1981 0 0 0 0 0 0 0 0
1982 0 0 0 0 0 0 55 55
1983 0 0 75 0 0 0 0 75
1984 0 0 0 0 0 0 189 189
1985 1,580 0 0 0 0 0 74 1,654
1986 59 0 1,510 0 0 0 293 1,862
1987 1,608 0 0 0 0 0 1,061 2,669
1988 2,789 0 0 0 0 0 463 3,252
1989 761 0 0 160 0 0 305 1,226
1990 2,457 0 1,906 0 0 153 1,125 5,641
1991 242 0 0 0 0 329 431 1,002
1992 1,150 0 0 184 0 59 1,320 2,713
1993 3,192 0 597 54 0 0 1,438 5,281
1994 6,882 0 140 1,519 488 93 1,413 10,535
1995 9,169 0 1,172 205 523 0 2,645 13,714
1996 7,435 0 242 1,114 1,851 1,600 3,820 16,062
1997 23,633 0 1,337 480 3,642 1,700 6,308 37,100
1998 38,956 0 10,879 3,933 3,461 52 8,441 65,722
1999 34,297 109 9,248 42 2,293 3,133 17,093 66,215
2000 56,299 730 13,570 0 6,757 3,320 37,802 118,478
2001 23,856 0 11,942 1,375 3,225 7,461 23,852 71,711
2002 23,705 100 10,043 1,795 5,507 1,844 7,391 50,385
2003 31,264 366 8,767 884 3,435 5,105 6,670 56,491
2004 32,855 215 5,808 5,446 6,269 2,580 8,419 61,592
2005 102,231 412 23,252 6,353 25,523 5,830 16,280 179,881
2006 215,875 778 41,728 9,726 42,442 22,928 37,285 370,762
2007 176,849 400 45,660 21,568 44,657 40,486 24,198 353,818
2008 165,982 4,697 39,493 27,228 37,789 26,158 31,839 333,186
2009 38,738 195 11,544 12,108 9,451 11,170 8,880 92,086
2010 30,612 1,684 20,662 19,891 20,125 11,855 21,457 126,286
2011 97,669 1,720 26,915 21,581 48,951 19,237 23,747 239,820
2012 94,732 733 40,384 34,467 23,417 23,943 29,566 247,242
2013 88,022 16,333 20,013 32,762 65,703 25,660 26,026 274,519
2014 126,182 5,638 37,191 50,504 32,206 21,792 35,863 309,376
2015 115,376 12,421 52,430 33,903 75,627 34,845 31,294 355,896
2016 165,779 10,721 47,705 53,388 45,416 11,368 36,433 370,810
2017 112,820 15,942 18,513 20,385 52,750 9,609 24,840 254,859
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low a hum-shaped pattern. While a majority of distribution cash-flows occur between

years 5 and 10, there meaningful cash-flow distributions before year 5 and after year 10.

This is especially true for IN and VC funds.

Figure 9: Distribution Cash-flow Profiles
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Figure 10 zooms in on the four investment categories of most interest to us: LBO, VC,

RE, and IN. The figure shows the average cash-flow profile for each vintage. Since there

are few LBO and VC funds prior to 1990 and few RE and IN funds prior to 2000, we start

the former two panels with vintage year 1990 and the latter two panels with vintage year

2000. The figure shows that there is substantial variation in cash-flows across vintages,

even within the same investment category. This variation will allow us to identify vintage

effects. Appendix Figures A.1 shows cash-flow profiles for the remaining categories.

The figure also highlights that there is a lot of variation in cash-flows across calendar

years. VC funds started in the mid- to late-1990s vintages realized very high average
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cash-flows around calendar year 2000 and a sharp drop thereafter. Since the stock market

also had very high cash-flow realizations in the year 2000 and a sharp drop thereafter, this

type of variation will help the model identify a high stock market beta for VC funds. This

is an important distinction with other methods, such as the PME, which assume constant

risk exposure and so would attribute high cash flow distributions in this period to excess

returns.

Figure 10: Cash-flows by Vintage
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4.2 One-factor Model

We start with a discussion of the one-factor model, which assumes that the only risk that is

priced is interest rate risk. It is straightforward to estimate and provides a useful point of

comparison for our benchmark four-factor model. The estimation chooses parameters to

match the average fund cash flows, for each category-vintage pair. Crucially, the resulting

positions in bonds of various maturities are then scaled down (or up) to ensure that the

replicating portfolio of bonds does not cost too much (too little). The high cash flows of
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a particular PE vintage-category may not be achievable/replicable with a budget-feasible

bond portfolio, but only with a budget infeasible one. This will result in high “errors” v

and high average risk-adjusted profits across the funds in that vintage-category.

Figure 11 show the estimated horizon effects b̂h in the left panels and the vintage ef-

fects ât in the right panels. Appendix Figure A.5 contains the same figure for other fund

categories. Each row is for one of our four main investment categories. The plotted co-

efficients on the left are the positions that the replicating portfolio holds in bond strips

(zero-coupon bonds) of the various horizons. The one-factor model explains 4.9% of the

variation in cash-flows for LBO, 13.9% for VC, 5.2% for RE, and 6.2% for IN. There is

substantial variation in the distribution of bond betas across categories of funds, both

in terms of the horizon effects and vintage effects. The left panels show that IN funds

have the highest average bond betas in years 10 and later, reflecting that they make dis-

tributions on average later in the life-cycle. RE funds have more short-horizon bond risk

exposure, and also the highest exposure of all categories.

The right panels show how these exposure profiles from the left panel are shifted

up or down for each vintage. On average, these vintage effects are 1 by construction.

Values below one reflect lower bond risk. When bond risk is low, zero coupon bond

prices are high and the $1 replicating portfolio can buy fewer bonds. The replicating

portfolio therefore has lower average cash flows. Conversely, vintage effects above 1

reflect vintages with above-average risk and above-average cash flows on the replicating

portfolio. For most categories the 2005-2007 vintages jump out as having the highest risk

exposure. The mid-1990s also resulted in higher average systematic cash flows on RE and

LBO.7

Expected Return With the replicating portfolio of zero-coupon bonds in hand, we can

calculate the expected return on PE funds in each investment category as in equation

(3). The expected returns on the traded strips are given by equation (A.12) in Appendix

A. The left panels of Figure 12 plot the total expected return over the life of the invest-

ment, broken down into its horizon components, and averaged across all vintages. The

expected return at each horizon is annualized in the left panels, and the fund’s expected

return is the weighted average of the horizon-specific returns, weighted by the portfolio

weights over horizons. Since most of the cash-flows come later and later cash flows are

riskier (higher bond beta), the risk premium is “backloaded.” This backloading is more

7For these last three vintages, many funds have not yet reached their terminal date. Their vintage effect
is thus estimated off the first 13-10 years of cash-flow data.
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pronounced for IN and VC funds. Panels on the right plot the time-series of the expected

return. Variation in the state variables of the VAR drive variation in the expected return of

each zero-coupon bond, and therefore in the expected return of the replicating portfolio

of the PE fund.

Performance Evaluation Next, we turn to performance evaluation in the one-factor

model. The left panels of Figure 13 plots the histogram of risk-adjusted profits (RAP),

pooling all vintages. The right panels plot the average risk-adjusted profit for each vin-

tage. Appendix Figure A.8 reports on the remaining investment categories. If the only

risk considered is interest rate risk, the average buyout fund has delivered a small neg-

ative RAP of -0.3%. The average VC fund has made a RAP of -0.9%. The average real

estate and infrastructure fund have RAP of -0.3% each. More strikingly, there is large

cross-sectional variation in profit across funds in the same category. Some funds gain 20

cents or more per dollar of committed capital while others lose 10 cents or more. Depend-

ing on the category, about 5% of PE funds have a RAP that exceeds 10%.

The right panels show interesting time series variation in average profits. Risk-adjusted

profits are high for VC funds in the earlier part of the sample, confirming a key stylized

fact in the VC literature. RE and IN funds have the highest profits for vintages in the

early 2000s. Maybe surprisingly, the VC profits are not unusually high for the 1999-2000

vintages. The high factor exposures for those vintages are sufficient to explain the high

average payouts. Also interesting is that the 2005-07 RE vintages performed poorly. The

post-crisis vintages of PE funds tend to have weak average performance, with the excep-

tion of RE.8

8The profit for these vintages is calculated as the discounted value of the idiosyncratic cash-flow compo-
nents vi that are available through the end of the sample. Implicitly, the assumption is that the non-systematic
cash-flow component of the average fund in those vintages will be zero in the remaining years for which
no cash-flow data are available yet. In other words, the poor performance is not simply due to missing
cash-flow information.
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Figure 11: Replicating Portfolio Exposure by Feature
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Figure 12: Expected Return
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Figure 13: Risk-Adjusted Profits by Category
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Panel C: Real Estate Funds
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Panel D: Infrastructure Funds
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4.3 Four-factor Model

Next, we turn to our main results for the four factor model. Figure 14 show the estimated

horizon effects b̂h in the left panels and the vintage effects ât in the right panels for the

four main investment categories. The appendix contains the same plot for the three re-

maining categories. Our model illustrates a rich pattern of factor risk exposures. The

overall R2 model fit improves substantially from that of the one-factor model, with R2

values between 9-19%. All PE fund categories tend to load strongly positively on REITs;

all categories also have positive infrastructure risk exposure after year five. Offsetting the

REIT and infrastructure exposure is negative stock market exposure. These patterns may

be explained by REIT cash-flow distributions that have a strong pro-cyclical component,

mirroring the cash flow pattern in PE distributions.

Expected Return The asset pricing model provides the expected return on each zero-

coupon bond and each stock, REIT, and infra dividend strip. With the replicating portfolio

in hand, we can calculate the expected return on PE funds in each investment category as

in (3). Figure 15 breaks down the expected return by horizon, stacking the contribution

from each security exposure. Each panel is for one investment category.

We find generally higher expected returns from the four-factor model than from the

one-factor model, around 10%. Much of the expected return is earned for far out cash

flows, despite those cash flows being relatively less important. The different patterns

across horizons illustrates the value of breaking down PE returns strip-by-strip; while

the variation across categories illustrates that private funds load very differently on risk

exposures depending on industry focus. In the time series, we generally observe falling

expected returns over vintages. The reason is low expected returns especially on REITs

and Infrastructure stocks towards the end of the sample; see the bottom left panels of

Figure 3. The differences in exposure across fund categories suggest limitations of existing

measures in fund performance evaluation, such as the PME, which do not account for

different risk exposures of different funds. Appendix Figure A.8 extends the analysis for

the remaining three fund categories.

Performance Evaluation Figure 16 plots the histogram of risk-adjusted profits for the

four-factor model, pooling all vintages, in the left panels. The right panels plot the aver-

age risk-adjusted profit for each vintage. The rows contain LBO, VC, RE, and IN funds.

The appendix contains the same figures for the remaining investment categories. Like in
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the one-factor model, average profits are close to zero with considerable variation around

them. Average profits in the later vintages are lower in the four- than in the one-factor

model, underscoring the importance of incorporating the traded equity risk factors.The

cross-sectional dispersion of profits is also more tightly concentrated around zero in these

estimates, suggesting a tighter fit using the replicating portfolio.

All fund categories suggest negative but modest risk-adjusted profits under the four-

factor model, averaging around -0.3 to -0.9%. Our estimates would suggest that apparent

high returns in the VC sector primarily reflect high loadings on risk factors, and therefore

high expected returns, as opposed to abnormal returns beyond the yield of a replicating

portfolio.
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Figure 14: Replicating Portfolio Exposure by Feature: Multi-Factor Model
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Figure 15: Expected Return
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Figure 16: Risk-Adjusted Profits by Category: Multi-Factor Model
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5 Conclusion

We provide a novel valuation method for private equity cash-flows that decomposes a

private equity cash-flow at each horizon into a systematic component that reflects expo-

sure to aggregate sources of risk, priced in listed securities markets, and an idiosyncratic

component which is the risk-adjusted profit to the PE investor. The systematic component

reflects the value of a portfolio of stock and bond strips, which pay safe or risky cash flows

at horizons that match the horizon over which PE funds make cash flow distributions. A

state-of-the-art no-arbitrage asset pricing model estimates prices and expected returns for

these strips, fitting the time series bond yields and stock prices, including dividend strips,

closely. The method improves on existing PE fund valuation techniques by considering

exposure to multiple risk factors, decomposing risk into horizon-dependent components,

and allowing for heterogeneity in systematic risk across PE vintages and categories.

We find that the average private equity fund generates little outperformance across

most of the categories we consider. This is because private fund cash-flows can be repli-

cated, at least on average, through a basket of publicly traded equivalents. However, we

also document rich heterogeneity across horizons, in the cross-section, and in the time-

series in terms of fund performance and expected returns. Average fund performance

trends downward over time.
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A Appendix: Asset Pricing Model

A.1 Risk-free rate

The real short yield yt,1, or risk-free rate, satisfies Et[exp{mt+1 + yt,1}] = 1. Solving out

this Euler equation, we get:

yt,1 = y$
t,1 − Et[πt+1]−

1
2

e′πΣeπ + e′πΣ
1
2 Λt

= y0(1) +
[
e′yn − e′πΨ + e′πΣ

1
2 Λ1

]
zt. (A.1)

y0(1) ≡ y$
0,1 − π0 −

1
2

e′πΣeπ + e′πΣ
1
2 Λ0. (A.2)

where we used the expression for the real SDF

mt+1 = m$
t+1 + πt+1

= −y$
t,1 −

1
2

Λ′tΛt −Λ′tεt+1 + π0 + e′πΨzt + e′πΣ
1
2 εt+1

= −yt,1 −
1
2

e′πΣeπ + e′πΣ
1
2 Λt −

1
2

Λ′tΛt −
(

Λ′t − e′πΣ
1
2

)
εt+1

The real short yield is the nominal short yield minus expected inflation minus a Jensen

adjustment minus the inflation risk premium.

A.2 Nominal and real term structure

Proposition 1. Nominal bond yields are affine in the state vector:

y$
t (τ) = −

A$
τ

τ
− B$′

τ

τ
zt,

where the coefficients A$
τ and B$

τ satisfy the following recursions:

A$
τ+1 = −y$

0,1 + A$
τ +

1
2

(
B$

τ

)′
Σ
(

B$
τ

)
−
(

B$
τ

)′
Σ

1
2 Λ0, (A.3)(

B$
τ+1

)′
=

(
B$

τ

)′
Ψ− e′yn −

(
B$

τ

)′
Σ

1
2 Λ1, (A.4)

initialized at A$
0 = 0 and B$

0 = 0.

Proof. We conjecture that the t + 1-price of a τ-period bond is exponentially affine in the
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state:

log(P$
t+1,τ) = A$

τ +
(

B$
τ

)′
zt+1

and solve for the coefficients A$
τ+1 and B$

τ+1 in the process of verifying this conjecture

using the Euler equation:

P$
t,τ+1 = Et[exp{m$

t+1 + log
(

P$
t+1,τ

)
}]

= Et[exp{−y$
t,1 −

1
2

Λ′tΛt −Λ′tεt+1 + A$
τ +

(
B$

τ

)′
zt+1}]

= exp{−y$
0,1 − e′ynzt −

1
2

Λ′tΛt + A$
τ +

(
B$

τ

)′
Ψzt} ×

Et

[
exp{−Λ′tεt+1 +

(
B$

τ

)′
Σ

1
2 εt+1}

]
.

We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

P$
t,τ+1 = exp

{
−y$

0,1 − e′ynzt + A$
τ +

(
B$

τ

)′
Ψzt +

1
2

(
B$

τ

)′
Σ
(

B$
τ

)
−
(

B$
τ

)′
Σ

1
2 (Λ0 + Λ1zt)

}
.

Taking logs and collecting terms, we obtain a linear equation for log(pt(τ + 1)):

log
(

P$
t,τ+1

)
= A$

τ+1 +
(

B$
τ+1

)′
zt,

where A$
τ+1 satisfies (A.3) and B$

τ+1 satisfies (A.4). The relationship between log bond

prices and bond yields is given by − log
(

P$
t,τ

)
/τ = y$

t,τ.

Define the one-period return on a nominal zero-coupon bond as:

rb,$
t+1,τ = log

(
P$

t+1,τ

)
− log

(
P$

t,τ+1

)
The nominal bond risk premium on a bond of maturity τ is the expected excess return

corrected for a Jensen term, and equals negative the conditional covariance between that

bond return and the nominal SDF:

Et

[
rb,$

t+1,τ

]
− y$

t,1 +
1
2

Vt

[
rb,$

t+1,τ

]
= −Covt

[
m$

t+1, rb,$
t+1,τ

]
=

(
B$

τ

)′
Σ

1
2 Λt
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Real bond yields, yt,τ, denoted without the $ superscript, are affine as well with coeffi-

cients that follow similar recursions:

Aτ+1 = −y0,1 + Aτ +
1
2

B′τΣBτ − B′τΣ
1
2

(
Λ0 − Σ

1
2 ′eπ

)
, (A.5)

B′τ+1 = −e′yn + (eπ + Bτ)
′
(

Ψ− Σ
1
2 Λ1

)
. (A.6)

For τ = 1, we recover the expression for the risk-free rate in (A.1)-(A.2).

A.3 Stock Market

We define the real return on equity as Rm
t+1 =

Pm
t+1+Dm

t+1
Pm

t
, where Pm

t is the end-of-period

price on the equity market. A log-linearization delivers:

rm
t+1 = κm

0 + ∆dm
t+1 + κm

1 pdm
t+1 − pdm

t . (A.7)

The unconditional mean log real stock return is rm
0 = E[rm

t ], the unconditional mean

dividend growth rate is µm = E[∆dm
t+1], and pdm = E[pdm

t ] is the unconditional average

log price-dividend ratio on equity. The linearization constants κm
0 and κm

1 are defined as:

κm
1 =

epdm

epdm
+ 1

< 1 and κm
0 = log

(
epdm

+ 1
)
− epdm

epdm
+ 1

pdm. (A.8)

Our state vector z contains the (demeaned) log real dividend growth rate on the stock

market, ∆dm
t+1 − µm, and the (demeaned) log price-dividend ratio pdm − pdm.

pdm
t (τ) = pdm + e′pdzt,

∆dm
t = µm + e′divmzt,

where e′pd (edivm) is a selector vector that has a one in the fifth (sixth) entry, since the log

pd ratio (log dividend growth rate) is the fifth (sixth) element of the VAR.

We define the log return on the stock market so that the return equation holds exactly,

given the time series for {∆dm
t , pdm

t }. Rewriting (A.7):

rm
t+1 − rm

0 =
[
(edivm + κm

1 epd)
′Ψ− e′pd

]
zt +

(
edivm + κm

1 epd
)′ Σ 1

2 εt+1.

rm
0 = µm + κm

0 − pdm(1− κm
1 ).
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The equity risk premium is the expected excess return on the stock market corrected

for a Jensen term. By the Euler equation, it equals minus the conditional covariance be-

tween the log SDF and the log return:

1 = Et

[
Mt+1

Pm
t+1 + Dm

t+1
Pm

t

]
= Et

[
exp{m$

t+1 + πt+1 + rm
t+1}

]
= Et

[
exp

{
−y$

t,1 −
1
2

Λ′tΛt −Λ′tεt+1 + π0 + e′πzt+1 + rm
0 + (edivm + κm

1 epd)
′zt+1 − e′pdzt

}]
= exp

{
−y$

0(1)−
1
2

Λ′tΛt + π0 + rm
0 +

[
(edivm + κm

1 epd + eπ)
′Ψ− e′pd − e′yn

]
zt

}
×Et

[
exp{−Λ′tεt+1 +

(
edivm + κm

1 epd + eπ

)′ Σ 1
2 εt+1

]
= exp

{
rm

0 + π0 − y$
0(1) +

[
(edivm + κm

1 epd + eπ)
′Ψ− e′pd − e′yn

]
zt

}
× exp

{
1
2
(
edivm + κm

1 epd + eπ

)′ Σ (edivm + κm
1 epd + eπ

)
−
(
edivm + κm

1 epd + eπ

)′ Σ 1
2 Λt

}
Taking logs on both sides delivers:

rm
0 + π0 − y$

0(1) +
[
(edivm + κm

1 epd + eπ)
′Ψ− e′pd − e′yn

]
zt (A.9)

+
1
2
(
edivm + κm

1 epd + eπ

)′ Σ (edivm + κm
1 epd + eπ

)
=

(
edivm + κm

1 epd + eπ

)′ Σ 1
2 Λt

Et

[
rm,$

t+1

]
− y$

t,1 +
1
2

Vt

[
rm,$

t+1

]
= −Covt

[
m$

t+1,r
m,$
t+1

]
The left-hand side is the expected excess return on the stock market, corrected for a Jensen

term, while the right-hand side is the negative of the conditional covariance between the

(nominal) log stock return and the nominal log SDF. We refer to the left-hand side as the

equity risk premium in the data, since it is implied directly by the VAR. We refer to the

right-hand side as the equity risk premium in the model, since it requires knowledge of

the market prices of risk.

Note that we can obtain the same expression using the log real SDF and log real stock

return:

Et
[
rm

t+1
]
− yt,1 +

1
2

Vt
[
rm

t+1
]

= −Covt
[
mt+1,rm

t+1
]

rm
0 − y0(1) +

[
(edivm + κm

1 epd + eπ)
′Ψ− e′pd − e′yn − e′πΣ1/2Λ1

]
zt

+
1
2
(edivm + κm

1 epd)
′Σ(edivm + κm

1 epd) =
(
edivm + κm

1 epd
)′ Σ1/2(Λt −

(
Σ1/2

)′
eπ)
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We combine the terms in Λ0 and Λ1 on the right-hand side and plug in for y0(1) from

(A.2) to get:

rm
0 + π0 − y$

0,1 +
1
2

e′πΣeπ +
1
2
(edivm + κm

1 epd)
′Σ(edivm + κm

1 epd) + e′πΣ
(
edivm + κm

1 epd
)

+
[
(edivm + κm

1 epd + eπ)
′Ψ− e′pd − e′yn

]
zt =

(
edivm + κm

1 epd
)′ Σ1/2Λt + e′πΣ

1
2 Λ0 + e′πΣ1/2Λ1zt

This recovers equation (A.9).

A.4 Dividend Strips

A.4.1 Affine Structure for Price-Dividend Ratio on Equity Strip

Proposition 2. Log price-dividend ratios on dividend strips are affine in the state vector:

pd
t,τ = log

(
Pd

t,τ

)
= Am

τ + Bm′
τ zt,

where the coefficients Am
τ and Bm

τ follow recursions:

Am
τ+1 = Am

τ + µm − y0(1) +
1
2
(edivm + Bm

τ )
′ Σ (edivm + Bm

τ )

− (edivm + Bm
τ )
′ Σ

1
2

(
Λ0 − Σ

1
2 ′eπ

)
, (A.10)

Bm′
τ+1 = (edivm + eπ + Bm

τ )
′ Ψ− e′yn − (edivm + eπ + Bm

τ )
′ Σ

1
2 Λ1, (A.11)

initialized at Am
0 = 0 and Bm

0 = 0.

Proof. We conjecture the affine structure and solve for the coefficients Am
τ+1 and Bm

τ+1 in

the process of verifying this conjecture using the Euler equation:

Pd
t,τ+1 = Et

[
Mt+1Pd

t+1,τ
Dm

t+1
Dm

t

]
= Et

[
exp{m$

t+1 + πt+1 + ∆dm
t+1 + pd

t+1(τ)}
]

= Et

[
exp{−y$

t,1 −
1
2

Λ′tΛt −Λ′tεt+1 + π0 + e′πzt+1 + µm + e′divmzt+1 + Am
τ + Bm′

τ zt+1}
]

= exp{−y$
0(1)− e′ynzt −

1
2

Λ′tΛt + π0 + e′πΨzt + µm + e′divmΨzt + Am
τ + Bm′

τ Ψzt}

×Et

[
exp{−Λ′tεt+1 + (edivm + eπ + Bm

τ )
′ Σ

1
2 εt+1

]
.
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We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

Pd
t,τ+1 = exp{−y$

0(1) + π0 + µm + Am
τ +

[
(edivm + eπ + Bm

τ )
′ Ψ− e′yn

]
zt

+
1
2
(edivm + eπ + Bm

τ )
′ Σ (edivm + eπ + Bm

τ )

− (edivm + eπ + Bm
τ )
′ Σ

1
2 (Λ0 + Λ1zt)}

Taking logs and collecting terms, we obtain a log-linear expression for pd
t (τ + 1):

pd
t,τ+1 = Am

τ+1 + Bm′
τ+1zt,

where:

Am
τ+1 = Am

τ + µm − y$
0(1) + π0 +

1
2
(edivm + eπ + Bm

τ )
′ Σ (edivm + eπ + Bm

τ )

− (edivm + eπ + Bm
τ )
′ Σ

1
2 Λ0,

Bm′
τ+1 = (edivm + eπ + Bm

τ )
′ Ψ− e′yn − (edivm + eπ + Bm

τ )
′ Σ

1
2 Λ1.

We recover the recursions in (A.10) and (A.11) after using equation (A.2).

Like we did for the stock market as a whole, we define the strip risk premium as:

Et

[
rd,$

t+1,τ

]
− y$

t,1 +
1
2

Vt

[
rd,$

t+1,τ

]
= −Covt

[
m$

t+1, rd,$
t+1,τ

]
= (edivm + eπ + Bm

τ )
′ Σ

1
2 Λt

The risky strips for REITs and infrastructure are defined analogously.

A.4.2 Strip Expected Holding Period Return over k-horizons

The expected nominal return on a dividend strip that pays the realized nominal dividend

k quarters hence and that is held to maturity is:

Et[Rt→t+k] =

Et

[
D$

t+k

D$
t

]
Pd

t,k
− 1

= exp

(
−Am

k − Bm′
k zt + Et

[
k

∑
s=1

∆dt+s + πt+s

]
+

1
2

Vt

[
k

∑
s=1

∆dt+s + πt+s

])
− 1
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= exp

(
−Am

k − Bm′
k zt + k(µm + π0) + (edivm + eπ)

′
[

k

∑
s=1

Ψs

]
zt

+
k
2
(edivm + eπ)

′Σ(edivm + eπ)

)
− 1 (A.12)

These are the building blocks for computing the expected return on a PE investment.

A.4.3 Strip Forward Price and Return

The price of a dividend futures contract which delivers one quarter worth of nominal

dividends at quarter t + τ, divided by the current dividend, is equal to:

Fd
t,τ

D$
t

= Pd
t,τ exp

(
τy$

t,τ

)
,

where Pd
t,τ is the spot price-dividend ratio. Using the affine expressions for the strip price-

dividend ratio and the nominal bond price, it can be written as:

Fd
t,τ

D$
t

= exp
(

Am
τ − A$

τ + (Bm
τ − B$

τ)
′zt

)
,

The one-period holding period return on the dividend future of maturity τ is:

R f ut,d
t+1,τ =

Fd
t+1,τ−1

Fd
t,τ

− 1 =
Fd

t+1,τ−1/D$
t+1

Fd
t,τ/D$

t

D$
t+1

D$
t

− 1

It can be written as:

log
(

1 + R f ut,d
t+1,τ

)
= Am

τ−1 − A$
τ−1 − Am

τ + A$
τ + µm + π0

+(Bm
τ−1 − B$

τ−1 + edivm + eπ)
′zt+1 − (Bm

τ − B$
τ)
′zt

The expected log return, which is already a risk premium on account of the fact that

the dividend future already takes out the return on an equal-maturity nominal Treasury

bond, equals:

Et

[
log
(

1 + R f ut,d
t+1,τ

)]
= Am

τ−1 − A$
τ−1 − Am

τ + A$
τ + µm + π0

+
[
(Bm

τ−1 − B$
τ−1 + edivm + eπ)

′Ψ− (Bm
τ − B$

τ)
′
]

zt
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Given that the state variable zt is mean-zero, the first row denotes the unconditional div-

idend futures risk premium.

A.4.4 Decomposing Strip Price into Deterministic and Risky Components

A claim to the dividend on a risky claim at time t + k, Dt+k, can be decomposed in the

value of a claim to the deterministic component Ddet
t+k = Dt exp(kµm) and a risky com-

ponent Drisky
t+k = Dt+k − Ddet

t+k = Dt+k − Dt exp(kµm). By no arbitrage, the price-dividend

ratio of the risky claim must be the difference between the price-dividend ratio of the

entire claim and the price-dividend ratio of the deterministic claim. We conjecture and

verify that the price-dividend ratio of the deterministic claim is also affine in the state

vector and solve for the coefficients from the Eurler equation.

Proof. We conjecture the affine structure for the price-dividend ratio and solve for the co-

efficients Adet
τ+1 and Bdet

τ+1 in the process of verifying this conjecture using the Euler equa-

tion:

Pdet
t,τ+1 = Et

[
Mt+1Pdet

t+1,τ
Ddet,m

t+1
Dm

t

]
= Et

[
exp{m$

t+1 + πt+1 + µm + pd
t+1(τ)}

]
= Et

[
exp{−y$

t,1 −
1
2

Λ′tΛt −Λ′tεt+1 + π0 + e′πzt+1 + µm + Adet
τ + Bdet′

τ zt+1}
]

= exp{−y$
0(1)− e′ynzt −

1
2

Λ′tΛt + π0 + e′πΨzt + µm + Adet
τ + Bdet′

τ Ψzt}

×Et

[
exp{−Λ′tεt+1 + (eπ + Bm

τ )
′ Σ

1
2 εt+1

]
.

We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

Pdet
t,τ+1 = exp{−y$

0(1) + π0 + µm + Adet
τ +

[(
eπ + Bdet

τ

)′
Ψ− e′yn

]
zt

+
1
2

(
eπ + Bdet

τ

)′
Σ
(

eπ + Bdet
τ

)
−
(

eπ + Bdet
τ

)′
Σ

1
2 (Λ0 + Λ1zt)}

Taking logs and collecting terms, we obtain a log-linear expression for pdet
t (τ + 1):

pdet
t,τ+1 = Adet

τ+1 + Bdet′
τ+1zt,
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where:

Adet
τ+1 = Adet

τ + µm − y$
0(1) + π0 +

1
2

(
eπ + Bdet

τ

)′
Σ
(

eπ + Bdet
τ

)
−
(

eπ + Bdet
τ

)′
Σ

1
2 Λ0,

Bdet′
τ+1 =

(
eπ + Bdet

τ

)′
Ψ− e′yn −

(
eπ + Bdet

τ

)′
Σ

1
2 Λ1.

After using equation (A.2), we get the final expressions:

Adet
τ+1 = Adet

τ + µm − y0,1 +
1
2

(
Bdet

τ

)′
Σ
(

Bdet
τ

)
−
(

Bdet
τ

)′
Σ

1
2

(
Λ0 − Σ

1
2 ′eπ

)
, (A.13)

Bdet′
τ+1 =

(
eπ + Bdet

τ

)′
Ψ− e′yn −

(
eπ + Bdet

τ

)′
Σ

1
2 Λ1. (A.14)

Expressions (A.13) and (A.14) are identical to the ones in (A.10) and (A.11), expect that

they do not contain the terms edivm which capture the cash flow risk. The price-dividend

ratio on the risky component of the cash flow strip is the difference between the price-

dividend ratio on the entire strip and the price-dividend ratio on the deterministic strip.

The expected return on the deterministic strip is given by:

Et[Rt→t+k] =

Et

[
D$,det

t+k

D$
t

]
Pdet

t,k
− 1 (A.15)

= exp

(
−Adet

k − Bdet′
k zt + k(µm + π0) + e′π

[
k

∑
s=1

Ψs

]
zt +

k
2

e′πΣeπ

)
− 1

The expected return on the risky part of the equity strips is the difference between the

expected return on the entire strip given in (A.12) and the expected return on the deter-

ministic strip given in (A.15).

B Point Estimates Baseline Model

B.1 VAR Estimation

In the first stage we estimate the VAR companion matrix by OLS, equation by equation.

We start from an initial VAR where all elements of Ψ are non-zero. We zero out the ele-
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ments whose t-statistic is less than 1.96. We then re-estimate Ψ and zero out the elements

whose t-statistic is less than 1.96. We continue this procedure until the Ψ matrix no longer

changes and all remaining elements have t-statistic greater than 1.96. The resulting VAR

companion matrix estimate is listed below.

Ψ̂ =



0.9015 0 0 0 0 0 0 0 0 0

0 0.2116 0 0 0.0171 0 0.0078 0 −0.0188 0

0.0694 0 0.9449 0 0 0 0 0 0 0

0 0 0 0.8309 0 0 0 0 0 0

−4.7698 0 0 0 0.9573 0 −0.0711 0 0 0.6467

0 0 0 0 0 0.3696 0.0179 0 0 0

0 0 −3.5856 0 0 0 0.8938 0 0 0

0 0 1.9302 0 0.0694 0 0.0931 0 −0.0720 0

0 0 0 0 0.0792 0 0 0 0.9156 0

0 0 0 0 −0.0527 0 0 0 0.0466 0



The resulting variance-covariance matrix of the VAR residuals is Σ. It’s Cholesky de-

composition is Σ = Σ
1
2 Σ

1
2 ′. After multiplying by 100, we obtain:

Σ̂
1
2 =



0.2515 0 0 0 0 0 0 0 0 0

0.0406 0.6688 0 0 0 0 0 0 0 0

0.0350 0.0634 0.1725 0 0 0 0 0 0 0

−0.0056 −0.0119 −0.0827 0.0968 0 0 0 0 0 0

−1.4238 1.1058 −1.2234 −0.6322 8.0735 0 0 0 0 0

−0.0344 −0.0679 0.1129 −0.1378 −0.1744 2.1303 0 0 0 0

−0.8195 0.9114 −1.1875 −0.6028 5.4196 0.7971 7.4634 0 0 0

0.2899 −0.0576 0.0378 −0.1595 0.0315 0.6164 −1.5111 3.2112 0 0

−0.5775 0.7041 −0.9354 −0.7745 6.3894 0.9705 0.3429 0.5091 4.4511 0

−0.0775 0.0886 0.0716 −0.0964 −0.4243 0.5170 −0.0798 −0.0679 −0.5938 1.8896



The diagonal elements report the standard deviation of the VAR innovations, each one

orthogonalized to the shocks that precede it in the VAR, expressed in percent per quarter.

57



B.2 Market Price of Risk Estimates

The market prices of risk are pinned down by the moments discussed in the main text.

Here we report and discuss the point estimates. Note that the prices of risk are associated

with the orthogonal VAR innovations ε ∼ N (0, I). Therefore, their magnitudes can be

interpreted as (quarterly) Sharpe ratios.
The constant in the market price of risk is estimated to be:

Λ̂0 =
[
−0.2298 0.5320 −0.4446 −0.0542 −0.1840 0.6771 0 0.3469 0 0.3413

]′

The matrix that governs the time variation in the market price of risk is estimated to
be:

Λ̂1 =



60.52 0 0 0 0 0 0 0 0 0

0 10.99 0 0 0 0 0 0 0 0

0 0 −54.39 −248.61 0 0 0 0 0 0

54.97 −6.94 0.01 0.33 0 0 0 0 0 0

−5.91 3.95 5.91 9.10 −0.22 4.60 0 0 0 0

−104.33 −17.40 −89.14 −161.67 −0.95 −0.00 −1.88 0 0 7.46

0 0 0 0 0 0 0 0 0 0

101.04 −3.48 −70.54 −31.87 2.33 −7.63 −0.46 0 −1.78 −3.15

0 0 0 0 0 0 0 0 0 0

162.10 −5.76 −5.98 −7.05 1.59 −10.47 1.20 0 −1.50 −5.10



The first four elements of Λ0 and the first four rows of Λ1 mostly govern the dynamics

of bond yields and bond returns. The price of inflation risk is allowed to move with the

inflation rate. The estimation shows that the price of inflation risk is negative on average

(Λ̂0(1) = −0.23), indicating that high inflation states are bad states of the world. The

market price of inflation risk becomes larger (less negative) when inflation is higher than

average (Λ̂1(1, 1) = 60.52). The price of real GDP growth risk is positive (Λ̂0(2) = 0.53),

indicating that high growth states are good states of the world. The price of growth risk

increases when GDP growth is above average (Λ̂1(2, 2) = 10.99). The price of level risk

(the shock to short rates that is orthogonal to inflation and real GDP growth) is estimated

to be negative (Λ̂0(3) = −0.44), consistent with e.g., the Cox-Ingersoll-Ross or Vasicek

models. The price of level risk is allowed to change with both the level of interest rates, as

in those simple term structure models, and also with the slope factor to capture the fact
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that bond excess returns are predictable by the slope of the yield curve (Campbell and

Shiller). When interest rate levels are unusually high and the term structure steepens,

the price of level risk becomes more negative, and expected future bond returns increase.

The positive association between the slope and future bond returns is consistent with the

bond return predictability evidence. The price of (orthogonal) slope risk is estimated to

be slightly negative on average (-0.05). Since the spread between the five-year bond yield

and the short rate is the fourth element of the state vector, and the short rate is the third

element of the state vector, the five year bond yield can be written as:

y$
t,20 = y$

0,20 + (eyn + eyspr)
′zt = −

A$
20

20
−

B$′
20

20
zt

A necessary and sufficient condition to match the five-year bond yield dynamics is to

allow for the first four elements of the fourth row of Λ1 to be non-zero.

The last six elements of Λ0 and last six rows of Λ1 govern the stock pricing. We assume

that the market prices of risk associated with the price-dividend ratios are zero, since

those variables only play a role as predictors. The only exception is the price-dividend

ratio on the stock market. The evidence from dividend strip spot and futures prices and

the evidence on strip future returns helps us identify the market prices of risk associated

with the pd ratio (fifth element of Λt).

The risk prices in the 6th, 8th, and 10th rows of Λt are chosen to match the observed

mean and dynamics of the equity risk premium in model, as shown in appendix A, and

data, as implied by the VAR. We only free up those elements of the 6th, 8th, and 10th rows

of Λ1 that are strictly necessary to allow the equity risk premium in the model to move

with the same state variables as it does in the VAR. These rows of of Λt are also influenced

heavily by our insistence on matching the entire time series of the price-dividend ratio on

the stock market, REITS, and infrastructure.

C Shock-exposure and Shock-price Elasticities

Borovička and Hansen (2014) provide a dynamic value decomposition, the asset pricing

counterparts to impulse response functions, which let a researcher study how a shock

to an asset’s cash-flow today affects future cash-flow dynamics as well as the prices of

risk that pertain to these future cash-flows. What results is a set of shock-exposure elas-

ticities that measure the quantities of risk resulting from an initial impulse at various
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investment horizons, and a set of shock-price elasticities that measure how much the in-

vestor needs to be compensated currently for each unit of future risk exposure at those

various investment horizons. We now apply their analysis to our VAR setting.

Recall that the underlying state vector dynamics are described by:

zt+1 = Ψzt + Σ
1
2 εt+1

The log cash-flow growth rates on stocks, REITs, and infrastructure stocks are described

implicitly by the VAR since it contains both log returns and log price-dividend ratios for

each of these assets. The log real dividend growth rate on an asset i ∈ {m, reit, in f ra} is

given by:

log(Di
t+1)− log(Di

t) = ∆di
t+1 = Ai

0 + Ai
1zt + Ai

2εt+1,

where Ai
0 = µm, A1 = e′diviΨ, and Ai

2 = e′diviΣ
1
2 .

Denote the cash-flow process Yt = Dt. Its increments in logs can we written as:

yt+1 − yt = Γ0 + Γ1zt + z′tΓ3zt + Ψ0εt+1 + z′tΨ1εt+1 (A.16)

with coefficients Γ0 = Ai
0, Γ1 = Ai

1, Γ3 = 0, Ψ0 = Ai
2, and Ψ1 = 0.

The one-period log real SDF, which is the log change in the real pricing kernel St, is a

quadratic function of the state:

log(St+1)− log(St) = mt+1 = B0 + B1zt + B2εt+1 + z′tB3zt + z′tB4εt+1

where B0 = −y$
0(1) + π0 − 1

2 Λ′0Λ0, B1 = −e′yn + e′πΨ− Λ′0Λ1, B2 = −Λ′0 + e′πΣ
1
2 , B3 =

−1
2 Λ′1Λ1, and B4 = −Λ′1.

We are interested in the product Yt = StDt. Its increments in logs can be written as in

equation (A.16), with coefficients Γ0 = Ai
0 + B0, Γ1 = Ai

1 + B1, Γ3 = B3, Ψ0 = Ai
2 + B2,

and Ψ1 = B4.

Starting from a state z0 = z at time 0, consider a shock at time 1 to a linear combination

of state variables, α′hε1. The shock elasticity ε(z, t) quantifies the date-t impact:

ε(z, t) = α′h
(

I − 2Ψ̃2,t
)−1 (Ψ̃′0,t + Ψ̃′1,tz

)
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where the Ψ̃ matrices solve the recursions

Ψ̃0,j+1 = Γ̂1,jΣ1/2 + Ψ0

Ψ̃1,j+1 = 2Ψ′Γ̂3,jΣ1/2 + Ψ1

Ψ̃2,j+1 =
(

Σ1/2
)′

Γ̂3,jΣ1/2

The Γ̂ and Γ̃ coefficients follow the recursions:

Γ̃0,j+1 = Γ̂0,j + Γ0

Γ̃1,j+1 = Γ̂1,jΨ + Γ1

Γ̃3,j+1 = Ψ′Γ̂3,jΨ + Γ3

Γ̂0,j+1 = Γ̃0,j+1 −
1
2

log
(∣∣I − 2Ψ̃2,j+1

∣∣)+ 1
2

Ψ̃0,j+1
(

I − 2Ψ̃2,j+1
)−1 Ψ̃′0,j+1

Γ̂1,j+1 = Γ̃1,j+1 + Ψ̃0,j+1
(

I − 2Ψ̃2,j+1
)−1 Ψ̃′1,j+1

Γ̂3,j+1 = Γ̃3,j+1 +
1
2

Ψ̃1,j+1
(

I − 2Ψ̃2,j+1
)−1 Ψ̃′1,j+1

starting from Γ̂0,0 = 0, Γ̂1,0 = 01×N , Γ̂2,0 = 0N×N, and where I is the N × N identity

matrix.

Let εg(z, t) be the shock-exposure elasticity (cash-flows Y = D) and εsg(z, t) the shock-

value elasticity, then the shock-price elasticity εp(z, t) is given by

εp(z, t) = εg(z, t)− εsg(z, t).

In an exponentially affine framework like ours, the shock price elasticity can also di-

rectly be derived by setting Yt = S−1
t or yt+1 − yt = −mt+1, with coefficients in equation

(A.16) equal to Γ0 = −B0, Γ1 = −B1, Γ3 = −B3, Ψ0 = −B2, and Ψ1 = −B4.

The shock-price elasticity quantifies implied market compensation for horizon-specific

risk exposures. In our case, these risk compensations are extracted from a rich menu of

observed asset prices matched by a reduced form model, rather than by constructing a

structural asset pricing model. The horizon-dependent risk prices are the multi-period

impulse responses for the cumulative stochastic discount factor process.
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D Korteweg-Nagel Details

They propose:

mt+1 = a− brm
t+1,

whereby the coefficients a and b are chosen so that the Euler equation 1 = E[Mt+1Rt+1]

holds for the public equity market portfolio and the risk-free asset return. More specifi-

cally, they estimate a = 0.088 and b = 2.65 using a GMM estimator:

min
a,b

(
1
N ∑

i
ui(a, b)

)′
W

(
1
N ∑

i
ui(a, b)

)

where

ui(a, b) =
J

∑
j=1

Mt+h(j)(a, b)[Xi f ,t+h(j), Xim,t+h(j)],

N is the number of funds, and W is a 2× 2 identity matrix. The T-bill benchmark fund

cash-flow, Xi f , and the market return benchmark cash-flow, Xim, are the cash-flows on a

T-bill and stock market investment, respectively, that mimic the timing and magnitude

of the private equity fund i’s cash-flows. The t + h(j) are the dates on which the private

equity fund pays out cash-flow j = 1, · · · , J. Date t is the date of the first cash-flow

into the fund, so that h(1) = 0. For each of the two benchmark funds, the inflows are

identical in size and magnitude as the inflows into the PE fund. If PE fund i makes a

payout at t + h(j), the benchmark funds also make a payout. That payout consists of two

components. The first component is the return on the benchmark since the last cash-flow

date. The second component is a return of principal, according to a preset formula which

returns a fraction of the capital which is larger, the longer ago the previous cash-flow was.

A special case of this model is the public market equivalent of Kaplan and Schoar

(2005), which sets a = 0 and b = 1. This is essentially the log utility model. The simple

PME model is rejected by Korteweg and Nagel (2016), in favor of their generalized PME

model.

There are several key differences between our method and that of Korteweg and Nagel

(2016). First, we do not use SDF realizations to discount fund cash-flows. Rather, we use

bond prices and dividend strip prices, which are conditional expectations. Realized SDFs

are highly volatile. Second, the KN approach does not take into account heterogeneity

in the amount of systematic risk of the funds. All private equity funds are assumed to

have a 50-50 allocation to the stock and bond benchmark funds. Our model allows for
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different funds to have different stock and bond exposure. Third, the KN approach uses

a preset capital return policy which is not tailored to the fund in question. For example,

a fund may be making a modest distribution in year 5, say 10%, and a large distribution

in year 10 (90%). Under the KN assumption, the public market equivalent fund would

sell 50% in year 5 and the other 50% in year 10. There clearly is a mismatch between the

risk exposure of the public market equivalent fund and that of the private equity fund.

In other words, the KN approach does not take into the account the magnitude of the

fund distributions, only their timing. Fourth, we use additional risk factors beyond those

considered in KN.

To study just the importance of the last assumption, we can redo our calculations using

a much simplified state vector that only contains the short rate, inflation, and the stock

market return. This model has constant risk premia.

E Additional Results
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Figure A.1: cash-flows by Vintage
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Figure A.2: One-Factor Fund Exposures for Other Categories

Panel A: Fund of Funds
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Figure A.3: One Factor Risk-Adjusted Profits by Category

Panel A: Fund of Funds
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Figure A.4: One Factor Expected Return

Panel A: Fund of Funds
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Figure A.5: Four-Factor Fund Exposures for Other Categories

Panel A: Fund of Funds
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Figure A.6: Replicating Portfolio Exposure by Feature

Panel A: Buyout
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Figure A.7: Four Factor Risk-Adjusted Profits by Category

Panel A: Fund of Funds
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Figure A.8: Four Factor Expected Return

Panel A: Fund of Funds
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