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Abstract

This paper studies the optimal time-consistent distortionary taxation when the repay-

ment of government debt is not enforceable. The government taxes labor income or issues

non-contingent debt in order to finance an exogenous stochastic stream of fiscal shocks.

Debt can be repudiated subject to some default costs. Optimal policy is characterized by

two opposing incentives: an incentive to postpone taxes by issuing more debt for the future

(“greed”), and an incentive to tax more currently in order to avoid punishing default premia

(“fear”). A Generalized Euler Equation (GEE) captures these two effects and determines

the optimal back-loading or front-loading of tax distortions. Even if default risk is small,

tax-smoothing is severely limited. The same mechanisms operate also in environments with

long-term debt.
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1 Introduction

This paper studies the optimal time-consistent allocation of tax distortions and the optimal

issuance of debt in an environment where government debt can be defaulted on. We consider a

government that has to finance an exogenous stream of stochastic government expenditures and

maximizes the utility of the representative household. The government can use distortionary

labor taxes or issue non-contingent debt. The government can default on its debt subject to a

default cost. Our setup is fully time-consistent; neither tax nor debt promises are honored.

Our analysis builds on the notion of Markov-perfect equilibrium (MPE) of Klein et al. (2008).

Optimal policy is time-consistent in the payoff-relevant state variables, which for our case are

government debt and government expenditures. Furthermore, we model default as in the work

of Arellano (2008) and Aguiar and Gopinath (2006), that builds on the debt repudiation setup

of Eaton and Gersovitz (1981). This setup allows us to observe default in equilibrium.1

In most of the sovereign default literature, government debt is assumed to be held only

by foreigners whereas domestic households are hand-to-mouth consumers. However, Reinhart

and Rogoff (2011) find that, on average, domestic debt accounts for nearly two-thirds of total

public debt for a large group of countries. We consider a closed economy in which domestic

households hold government debt. Thus, our model takes into account that default events often

involve default on debt held by domestic households. This assumption is supported by the

empirical literature. While domestic default events are more difficult to identify than external

default events, Reinhart and Rogoff (2011) document 68 cases of overt default on domestic

debt since 1800. Moreover, often even when default is only on external debt (which we do not

model), a significant portion of the external debt is held by domestic investors (Sturzenegger and

Zettelmeyer 2006). For these reasons, it is of interest to understand the tradeoffs governments

face when considering whether to default on domestic households.

Our purpose it to analyze optimal tax-smoothing and debt issuance in such an environment.

The lack of state-contingent insurance markets hinders the ability of the government to smooth

taxes. Default can in principle make debt partially state-contingent. This state-contingency

does not come for free: default risk is reflected in equilibrium prices, altering the tradeoffs that

the government is facing in smoothing taxes over states and dates.

The government has an incentive to default when either debt or expenditures are high. By

defaulting the government can avoid high distortionary taxation. However, default entails either

direct costs in terms of output losses, or indirect costs, in terms of a limited functioning of the

market of government debt after a default event. In particular, we follow Arellano (2008) and

assume that the market for government debt pauses to function for a random number of periods

after a default event.

1See for further references the survey of Aguiar and Amador (2014).
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Optimal policy is analyzed through the lens of a Generalized Euler Equation (GEE), which

summarizes the dynamic costs and benefits that the government is facing when it issues debt.

The average welfare loss that is incurred by an increase in debt issuance (higher debt is repaid

in the future with higher distortionary taxes) has to be balanced with the benefits of relaxing

the government budget and allowing less taxes today. The GEE reflects two opposite forces

that reflect the lack of commitment to old tax promises and to debt repayment. Facing a fiscal

shock, the policymaker can either increase taxes or issue more debt that is due next period.

The current policymaker realizes that, by increasing debt, will make the future policymaker

tax more and reduce future consumption, conditional on repaying. This raises future marginal

utility and increases the current price of debt. Debt becomes cheaper, creating the incentive to

back-load tax distortions. We dub this effect “greed” in order to capture the desire of the current

government to manipulate interest rates against the future government. This price manipulation

is in the heart of the problem of a sophisticated policymaker who realizes that next period he

will not be bound by past promises.

However, this desire to postpone taxes and issue more debt is counteracted by the “fear” of

default. Higher debt issuance increases the probability of default, decreasing the price of debt

and raising default premia. Debt becomes expensive, forcing the planner to use more current

taxes to absorb fiscal shocks. Consequently, default risk creates an incentive to front-load tax

distortions and issue less debt. Ultimately, the dynamics of the tax rate are determined by the

relative strength of these opposite forces, which depend on the curvature of the pricing kernel

and the size of the region at which government debt is subject to default risk.

We consider also the optimal taxation, debt management and default plan when the gov-

ernment can issue long-term debt as in Hatchondo and Martinez (2009) and Chatterjee and

Eyigungor (2012). Long-term debt has been shown to capture better the mean and volatility of

spreads in the sovereign default literature and has allowed to sustain more debt in equilibrium.

Furthermore, the volatility in prices due to the long duration of debt provides an additional tool

for absorbing fiscal risks, which is of particular interest for our optimal taxation exercise. We

show that a richer version of our GEE goes through. Reflecting the longer maturity of debt,

the GEE encapsulates now the present value of the two opposing price effects (“greed” versus

“fear”) that stem from the lack of commitment to old policies and from the option to default.

We take a first pass on the properties of the optimal taxation plan in a series of quantitative

exercises, comparing the properties of taxes and debt to economies with full commitment as in

Aiyagari et al. (2002) or to economies with time-consistent policies but no option to default. The

Barro (1979) random walk results about the tax rate are substantially altered. Even if default

risk is small and default rare, tax-smoothing is severely limited: governments rely mostly on

taxes to absorb fiscal shocks and issue limited amounts of debt.
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Related literature. A short, though undoubtedly incomplete, list of references should include

Aiyagari et al. (2002), the basic paper that analyzes optimal taxation in incomplete markets.

They solve for optimal policy under commitment and without default. In the time-consistent

literature, Krusell et al. (2004) and Debortoli and Nunes (2013) analyze time-consistent taxation

and debt in deterministic setups without default. Martin (2009) analyzes the joint determina-

tion of time-consistent fiscal and monetary policy. Chari and Kehoe (1993) and Aguiar and

Amador (2016) study environments with sustainability constraints and Dovis (2018) considers

also informational frictions.

The closest paper to ours is Pouzo and Presno (2016), which has been the first to consider

the possibility of debt repudiation à la Arellano in the optimal taxation problem. These authors

alter the Aiyagari et al. (2002) setup only in one dimension; they allow the government to

default but they retain a notion of commitment.2 In their setup, the government cannot commit

to repay debt, but as long as the government decides to repay, it honors the marginal utility

promises of the plan devised in previous periods and commits therefore to the tax sequence

and the evolution of interest rates. In contrast, we treat debt and taxes symmetrically and

derive the fully time-consistent policy in terms of the payoff -relevant endogenous state variable

which is debt. Another paper of interest is D’Erasmo and Mendoza (2018), who study optimal

domestic sovereign default in a quantitative model with heterogenous agents. They focus on the

redistributional effects of default, but do not treat the optimal taxation problem.

Organization. Section 2 lays out the economy. Section 3 sets up the fiscal policy problem.

The main forces of price manipulation and back-loading and front-loading of tax distortions are

analyzed through the lens of a Generalized Euler Equation in section 4. Section 5 extends the

analysis to environments with long-term debt. Section 6 provides various numerical exercises

and section 7 concludes. An Appendix with the proofs of various propositions and the details

of the numerical method follows.

2 Economy

Consider an infinite horizon model economy, where the government can default on issued debt. I

use an economy similar to Lucas and Stokey (1983) and Aiyagari et al. (2002). The uncertainty

is coming from exogenous government expenditures shocks gt that take values in the set G. Let

gt ≡ (g0, g1, ..., gt) denote the partial history of shocks up to t and assume that the initial shock

g0 is given.

The economy is populated by a representative household with preferences over consumption

2Pouzo and Presno (2016) consider also the possibility of secondary markets in the event of default, a feature
we do not share.
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and leisure and an endowment of one unit of time every period. Let ct(g
t) denote private

consumption and let ht(g
t) denote labor, so leisure is lt(g

t) = 1 − ht(gt). Let dt(g
t) denote an

indicator variable that captures the decision of the government to default, so dt(g
t) = 1 if there

is default and dt(g
t) = 0 if the government repays.

The resource constraint in the economy when the government repays is

ct(g
t) + gt = ht(g

t). (1)

If the government defaults, there are direct default costs that are modelled effectively as an

adverse technology shock. The resource constraint in the event of default is

ct(g
t) + gt = zht(g

t), (2)

where z < 1. In the numerical section I explore more elaborate default costs as in Arellano

(2008).

Household. The household’s preferences are

E0

∞∑
t=0

βtu(ct, 1− ht),

where u increasing and concave, and E0 the expectation operator with respect to the physical

measure of uncertainty, conditional on the initial shock g0. The household trades with the

government a discount bond that gives one unit of consumption next period at any state of the

world at which the government is not defaulting and zero in the event of default. The price of

the bond is qt(g
t). The household pays a linear tax τt(g

t) on labor income wt(g
t)ht(g

t). The

household’s budget constraint when the government is not defaulting reads

ct(g
t) + qt(g

t)bt+1(gt) = (1− τt(gt))wt(gt)ht(gt) + bt(g
t−1). (3)

Note that the bond position bt+1 is function of the partial history gt, capturing the non-

contingency of payoffs in the event of repayment. The household has also initial debt b0 and is

also subject to some borrowing limits that we assume that are large enough so that they do not

bind.
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Default. Default entails direct and indirect costs. The direct costs were captured in the

resource constraint (2). The indirect costs come from exclusion from government debt markets.

When the government defaults at time t, bt is wiped out and the government cannot issue new

debt at the same period, so it runs a balanced budget. This can be thought of as a collapse of

the market. At every period after default, the government can reenter with probability α the

market with zero initial debt or stay excluded with probability 1 − α.3 There are still direct

output costs z, whenever the government stays excluded. When α = 1, the indirect cost of

default is small, since the exclusion lasts only one period, whereas when α = 0, the cost is large,

since the government has to run a balanced budget forever and also incurs an output cost in

doing so, compounding the default cost.

The specification of the consequences of default is standard in the open economy literature

and follows directly Arellano (2008). In those setups, α is calibrated in order to match the

average duration of exclusion from international markets. The international market justification

is not obviously relevant for the closed economy, thus our market “collapse” interpretation.

Consequently, the household’s budget constraint in the event of default, or for any exclusion

period, is

ct(g
t) = (1− τt(gt))wt(gt)ht(gt). (4)

Wages. Competitive factor markets lead to an equilibrium wage rate that is wt(g
t) = 1 if

dt(g
t) = 0 and wt(g

t) = z if dt(g
t) = 1 or if there is exclusion.

Government. The budget constraint of the government in the event of repayment is

Bt(g
t−1) = τt(g

t)wt(g
t)ht(g

t)− gt + qt(g
t)Bt+1(gt). (5)

Bt(g
t−1) > 0 means that the government borrows and Bt(g

t−1) < 0 that the government

lends.

If there is default or for any period after a default event for which there is exclusion, the

government runs a balanced budget,

τt(g
t)wt(g

t)ht(g
t) = gt. (6)

3Note that I am abusing notation by not including the history of exclusion shocks εt in the description of
uncertainty and write all relevant variables as functions of st ≡ (gt, εt). The numerical exercises in this version
of the draft have α = 1, so the exclusion shock is not currently relevant.
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Equilibrium. A competitive equilibrium with taxes and default is a price-tuple {q, w}, a

government policy {τ, B, d}, and a household’s allocation and bond holdings {c, h, b} such that:

1) Given prices and government policies, the household maximizes its utility subject to the

budget constraint, 2) Given wages, firms maximize profits, 3) Prices and government policies are

such so that the resource constraint and the government budget constraint hold. Furthermore,

the bond market clears, bt = Bt.
4

2.1 Optimality conditions

The household’s labor supply condition equates the marginal rate of substitution between con-

sumption and leisure to the after-tax wage,

ult
uct

= (1− τt)wt. (7)

The Euler equation for government bonds is

qt = βEt
uc,t+1

uct
(1− dt+1). (8)

Equation (8) is the standard asset pricing equation that prices the risky payoff 1−dt+1. The

equilibrium price of debt is zero, if the government defaults with certainty. If the government

repays with certainty, then (8) reduces to the standard Euler equation without default.

Default premium. We contrast at a later stage the return of government debt to the return

of a risk-free asset in order to get a measure of the default premium.5 Assume that there is a

private risk-free asset that is in zero net supply, so that the equilibrium allocation is not affected.

This asset would have a price qFt = βEtuc,t+1/uct. It is easy to see that the default premium can

be expressed as

rt − rFt
1 + rFt

=
Etxt+1dt+1

Etxt+1(1− dt+1)
=

Probxt (default at t+ 1)

Probxt (repayment at t+ 1)
, (9)

where xt+1 ≡ uc,t+1/Etuc,t+1, the risk-adjusted change of measure and rt ≡ 1/qt−1, rFt ≡ 1/qFt −1,

the respective net returns. Therefore, the default premium at t is proportional to the ratio of

the conditional risk-adjusted probability of default next period over the respective risk-adjusted

4Given bt = Bt and the rest of the equilibrium conditions, the government budget constraint is redundant.
5In open economy models the premium is measured against an international risk-free asset.
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probability of repayment.

3 Markov-perfect policy

The policymaker chooses tax, debt and default policies to maximize the utility of the representa-

tive household. His choice of (τ, B, d) is subject to the constraints of the competitive equilibrium,

that is, optimality conditions, budget and resource constraints. I use the primal approach of

Lucas and Stokey (1983) and eliminate tax rates and prices (τ, q) from budget constraints by

using the respective optimality conditions (7) and (8).

I am assuming a Markov-perfect timing protocol as in Klein et al. (2008), so the solution to the

policy problem will be time-consistent in the payoff-relevant state variables.6 The Markov-perfect

equilibrium (MPE) has two “natural” state variables, government debt B, and the exogenous

shock g, which is also assumed to be Markov. Let V r(B, g) denote the value function if the

government decides to repay and V d(g) the value function if the government defaults. The value

function of the government is

V (B, g) = max{V r(B, g), V d(g)}.

Value of default. When the government defaults, the consumption and labor allocation at

g, (cd(g), hd(g)), is determined by the resource constraint, the labor supply condition and the

balanced budget requirement. Using (7) to eliminate the tax rate from the household’s budget

(4), the balanced budget requirement becomes

Ω(c, h) = 0 (10)

where

Ω(c, h) ≡ uc(c, 1− h)c− ul(c, 1− h)h, (11)

i.e. consumption net of after tax labor income, in marginal utility units. Ω is exactly equal to

the primary surplus in marginal utility units.7 So (cd, hd) has to satisfy the resource constraint (2)

6See Bassetto (2005) for a careful analysis of the timing protocols underlying optimal policy design.
7Note that if there are multiple feasible allocations that satisfy the balanced budget requirement (10), we

should pick the one with the highest consumption. This allocation should correspond to a tax rate that is at the
increasing portion of the tax Laffer curve.
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and (10). Given (cd, hd) we can immediately deduce the default tax rate as, τ d(g) = 1−udl /(zudc).
So the value of default is8

V d(g) = u(cd(g), 1− hd(g)) + βEg′|g
[
αV (0, g′) + (1− α)V d(g′)

]
.

Default decision. Define the default and its complement repayment set as

D(B) ≡ {g ∈ G|V d(g) > V r(B, g)} and A(B) ≡ D(B)c = {g ∈ G|V d(g) ≤ V r(B, g)}.

Given an amount of debt B at the beginning of the period, the default set denotes the set

of values of g for which the government decides to default, so d(B, g) = 1 and V (B, g) = V d(g)

if g ∈ D(B). Similarly, d(B, g) = 0 and V (B, g) = V r(B, g) if g ∈ A(B). Define also the upper

and lower debt limit as

B̄ ≡ inf{B|D(B) = G} and B ≡ sup{B|D(B) = ∅}.

B̄ is the lowest amount of debt for which the government defaults with certainty, whereas B

is the highest amount of debt for which the government repays with certainty.

Value of repayment. In a Markov-perfect equilibrium optimal policy has two features: a) the

planner is not bound by past promises, a fact which is reflected in the choice of the state variables

(B, g), and b) the planner takes into account at the current period that he will follow an optimal

policy from next period onward, given the value of the natural state variable next period. To

capture this requirement, let C(B′, g′) and H(B′, g′) denote the repayment consumption and

labor policy functions next period when the state is (B′, g′). We obviously have C(B′, g′) + g′ =

H(B′, g′),∀(B′, g′). The “current” policymaker takes into account that by choosing debt B′, he

affects the consumption-labor choice of the “future” policymaker though C and H. The value of

repayment is

V r(B, g) = max
c≥0,h∈[0,1],B′

u(c, 1− h) + βEg′|gV (B′, g′) (12)

8Note that if α = 0, i.e. if the market for government debt seized to exist forever after a default event, and
if the set G were finite, we could calculate immediately the value of “autarky” as Vd = (I − βΠ)−1ud, where
boldface variables denote vector columns, I the identity matrix and Π the transition matrix of the shocks.
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subject to

uc(c, 1− h)B ≤ Ω(c, h)︸ ︷︷ ︸
surplus in uc units

+ βEg′∈A(B′)|guc(C(B′, g′), 1−H(B′, g′))︸ ︷︷ ︸
Q(B′,g)

·B′ (13)

c+ g = h (14)

The planner chooses a consumption-labor allocation and issues new debt subject to the im-

plementability constraint (13) and the resource constraint (14). The implementability constraint

is just the government’s (or household’s) budget constraint in current marginal utility units, af-

ter (7) and (8) are used to eliminate τ and q. In particular, let Qt ≡ uct · qt denote the price

of government debt in current marginal utility units. From (8) we know that Qt is equal to

average future marginal utility, conditional on repaying. This is exactly the object that shows

up in (13).

So the planner maximizes utility by choosing effectively the current tax rate and new debt

(i.e. future taxes) subject to the government budget constraint. What matters in this dynamic

decision is the surplus Ω and the revenue that the planner can achieve from new debt issuance,

Q(B′, g) ·B′. Moreover, the current planner cares for the optimal policy functions of next period

(C,H), only as long as there is curvature in the utility function, and, consequently, a margin for

affecting interest rates. In other words, if utility were linear in consumption, so if there was no

room for interest rate manipulation through the pricing kernel, C and H would be irrelevant,

and the commitment solution would be time-consistent in the natural state variables (B, g).

MPE requirement. Let c(B, g), h(B, g) and B′(B, g) be the policy functions that solve (12).

The Markov-perfect requirement is that c(B, g) = C(B, g) and h(b, g) = H(B, g).9

4 Greed versus fear

To prepare the ground for the main analysis, consider the following lemma about default sets:

Lemma 1. (“Default sets”)

1. The value of repayment is decreasing in B, so B1 > B2 ⇒ D(B2) ⊆ D(B1).

2. Let ω(g) denote the amount of debt such that the government is indifferent between de-

faulting and repaying at g, V d(g) = V r(ω(g), g). The government defaults if B > ω(g) and

repays if B ≤ ω(g).

9A more precise MPE requirement would be that C(B, g) and H(B, g) are maximizers of the stated problem
in order to account for the existence of multiple solutions. This is for example what Klein et al. (2008) do.

10



3. V (0, g) = V r(0, g),∀g. If the government has no debt, it does not default. Thus, D(0) = ∅
and B ≥ 0.

Proof. This is obvious since for B1 < B2 the constraint correspondence increases, and therefore

the repayment value is larger at B1, V r(B1, g) ≥ V r(B2, g). This implies the threshold policy in

terms of ω(g). The third part is to be written.

Assumptions. Assume a continuous distribution of shocks with bounded support [g, ḡ] and

a conditional density f(g′|g). Furthermore, assume differentiability of the value functions, the

policy functions of the future planner (C,H) and the default threshold, in order to derive a

Generalized Euler Equation (GEE). This is only to develop intuition for the tradeoffs that

the government is facing. Any differentiability holds at most locally.10 I am not making any

smoothness assumption in the numerical treatment of the problem and I work directly with the

Bellman equation.

The non-differentiabilities arise from two sources: a) the discreteness of the default decision

b) the time-consistency of policy. We will analyze these issues in more detail in the numerical

section of the paper. For the derivation of the GEE we will also assume that the repayment and

default sets are “nice”. It is easy to see that if the government defaults more in bad times (high

g), then the threshold ω(g) is monotonically decreasing.11 If ω is strictly decreasing, then we can

invert it and interpret ω−1(B) as the value of government spending that makes the government

indifferent between repaying or defaulting given B. Thus, the repayment and default sets become

“nice” intervals, A(B) = [g, ω−1(B)] and D(B) = (ω−1(B), ḡ].

4.1 Optimal debt issuance

We are finally at the stage where we can derive the optimal debt issuance of the government

in problem (12). Let Φ denote the multiplier on the implementability constraint (13). This

multiplier denotes the welfare cost of the absence of lump-sum taxes and captures essentially

tax distortions. We will call Φ the excess burden of taxation.

The first-order necessary condition with respect to B′ at an interior optimum takes the form

−β ∂

∂B′
Eg′|gV (B′, g′) = Φ · [Q(B′, g) +

∂Q(B′, g)

∂B′
·B′]. (15)

where Q(B′, g) ≡ βEg′∈A(B′)|guc(C(B′, g′), 1 − H(B′, g′)), that is, average marginal utility

conditional on repaying.

10Note that non-differentiability issues emerge in the infinite horizon economy– the analysis a two-period
economy would not face this type of problems.

11By defaulting more in bad times I mean if g′ > g and g ∈ D(B) then g′ ∈ D(B). This statement is equivalent
to ω(g′) ≤ ω(g) for g′ > g.
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Optimality condition (15) captures the dynamic tradeoffs of issuing debt. The left-hand side

denotes the marginal cost of issuing debt. Debt is costly in this second-best world because the

government has to raise revenues through distortionary taxation in order to repay. The right-

hand side of (15) denotes the marginal benefit of issuing debt, which is equal to the marginal

revenue from debt issuance, multiplied by the excess burden of taxation. By issuing more debt,

the government relaxes the government budget, which has shadow value Φ. The incentives

to back-load or front-load tax distortions come from the manipulation of prices through debt,

∂Q/∂B′. To see that, we rewrite (15) as follows.

Proposition 1. (“GEE”)

1. The Generalized Euler Gquation in an environment with incomplete markets and default

takes the form

−
∫ ω−1(B′)

g

∂V r(B′, g′)

∂B′
f(g′|g)dg′ = Φ ·

{∫ ω−1(B′)

g
uc(C(B′, g′), 1−H(B′, g′))f(g′|g)dg′

+
[
uc(C(B′, ω−1(B′)), 1−H(B′, ω−1(B′)))f(ω−1(B′)|g)

dω−1

dB′︸ ︷︷ ︸
“Fear”: Q ↓ due to default risk

+

∫ ω−1(B′)

g
[u′cc − u′cl]

∂C
∂B′

f(g′|g)dg′︸ ︷︷ ︸
“Greed”: Q ↑ due to an increase of uc

]
·B′
}

(16)

2. Let mt+1(Bt+1, gt+1) ≡ (1−dt+1)uc,t+1

Et(1−dt+1)uc,t+1
denote the default-and-risk-adjusted change of mea-

sure (Etmt+1 = 1), with induced conditional density fm(gt+1, Bt+1|gt) ≡ mt+1(Bt+1, gt+1) ·
f(gt+1|gt). Using the envelope condition ∂V r

∂B
= −Φuc < 0, we can rewrite (16) in sequential

notation as

Etmt+1Φt+1 = Φt

{
1 +

[
fm(ω−1(Bt+1), Bt+1|gt)

dω−1

dB′︸ ︷︷ ︸
“Fear”

+ Etmt+1
ucc,t+1 − ucl,t+1

uc,t+1

∂C
∂Bt+1

]
︸ ︷︷ ︸

“Greed”

·Bt+1

}
(17)

Proof. See Appendix.

Greed. Consider first the pricing effect coming from the assumption that policy is Markov-

perfect, so there is lack of commitment to to tax and debt policies designed in the past, and

assume that ucl ≥ 0. An increase in debt B′ leads to a decrease in the consumption of the future

policymaker (∂C/∂B′ < 0), since, conditional on repaying, the future policymaker will have to

tax more in a distortionary way. This fall in future consumption raises marginal utility and,
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therefore, increases the price Q, (u′cc − u′cl)∂C/∂B′ > 0. In other words, by bequeathing higher

debt to the future government, the current policymaker reduces the cost of new debt. So higher

debt leads to lower interest rates due to the manipulation of the pricing kernel inherent in a

setup without commitment. We dub this effect “greed”.

Fear. The Markov-perfect effect through the pricing kernel is naturally accompanied with an

opposite effect when there is default risk. Higher debt issuance B′ increases the default region

and raises the probability of default. This is reflected in the GEE (16) or (17) by the term

that reflects the risk-adjusted mass at the threshold value of government expenditures times the

change in the threshold, which we expect to be negative, dω−1/dB′ < 0. As a result, the price

of debt falls, ∂Q/∂B′ < 0 due to default risk. We call this force “fear,” referring to the fear of

no repayment, which is reflected in equilibrium prices and default premia.

Tax-smoothing. The GEE in (17) makes clearer the connection to the tax-smoothing litera-

ture and helps contrast our analysis to Aiyagari et al. (2002), Krusell et al. (2004), Debortoli and

Nunes (2013) and Pouzo and Presno (2016).12 At first, note that the left-hand side denotes the

average tax distortions with respect to the default-and-risk-adjusted measure. The right-hand

side denotes the change in revenue from debt issuance due to a larger position and to the pricing

effects that we previously identified. Thus, (17) just says that the planner should issue more

debt and tax more on average for tomorrow, if the interest cost of debt is low. To understand

better the mechanism, consider the setup of Aiyagari et al. (2002), who analyze optimal taxa-

tion without state-contingent debt and with full commitment to old policies and debt repayment.

The respective tax-smoothing condition is Etxt+1Φt+1 = Φt, where xt+1 ≡ uc,t+1/Etuc,t+1, the

risk-adjusted change of measure.13 Thus, the planner tries to make tax distortions on average

(with respect to the risk-adjusted measure) constant and the pricing effects ∂Q/∂B′ are absent.

Back-loading versus front-loading. In contrast, in this paper the planner does not try to

make average distortions constant due to the lack of commitment to the two dimensions of policy.

If the reduction in interest rates due to the marginal utility channel (“greed”) is larger than the

increase in interest rates due to default risk, then it is optimal for the planner to tax less today,

issue more debt and postpone on average distortions for the future. This translates to a positive

drift in the excess burden according to the default-and-risk-adjusted measure, Etmt+1Φt+1 ≥ Φt,

12Krusell et al. (2004) and Debortoli and Nunes (2013) analyze interest rate manipulation in deterministic
setups through the marginal utility channel, so they do not consider uncertainty and default. Their respective
GEE is the deterministic version of (17), and they differ in terms of the sign of ∂C/∂B′. See for further discussion
the numerical section 6. In Pouzo and Presno (2016), the manipulation of prices through the marginal utility
channel is not present due to the commitment to previously designed tax policies, so their respective GEE exhibits
only the default term.

13Φ is still the multiplier on the respective implementability constraint, but the state variable in the commit-
ment problem is a measure of both debt and marginal utility. See the Appendix.
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when Bt+1 > 0. The opposite will happen if the default force is stronger, i.e. if default premia

increase so much that they dominate the decrease in interest rates due to high marginal utility.

Then the planner on average wants to decrease the excess burden over time and to front-load

tax distortions, Etmt+1Φt+1 ≤ Φt. This negative drift (with respect to the measure mt+1) in the

excess burden should also materialize as a negative drift in debt.14

4.2 Optimal tax rate

Consider now the optimal tax rate of problem (12).

Proposition 2. 1. (“Optimal tax rate”) The optimal tax rate takes the form

τ =
Φ
[
(εcc + εhc)(1−B/c) + εch + εhh

]
1 + Φ(1 + εhh + εhc(1−B/c))

, (18)

where εcc ≡ −uccc/uc, εch ≡ uclh/uc the own and cross elasticity of the marginal utility of

consumption and εhh ≡ −ullh/ul, εhc ≡ uclc/ul, the own and cross elasticity of the marginal

disutility of labor.

2. (“Constant Frisch elasticity”) Assume the utility function U = c1−ρ−1
1−ρ − ah

h1+φh
1+φh

. Then τ

becomes

τ =
Φ(ρ(1−B/c) + φh)

1 + Φ(1 + φh)
. (19)

Proof. See Appendix.

Discussion. The optimal tax rate (18) depends on the excess burden of taxation Φ > 0, the

elasticities of the period utility function and the amount of initial debt, B. Debt enters the

problem though the lack of commitment of the planner to past promises. To see that, consider

the tax rate for the constant Frisch case, where we make the elasticity channel constant. An

increase in initial debt B leads to a decrease in the tax rate, ceteris paribus. This is the typical

time-inconsistency issue in Lucas and Stokey (1983), and it refers to the incentive of the planner

to devalue initial debt.15 At t = 0, the planner has an incentive to have a low tax rate, leading

14The discussion above is silent about drifts with respect to the physical measure. It is still possible to have
a positive drift with respect to mt+1 (or xt+1 in the case without default) and still have a negative drift with
respect to the physical measure. A thorough numerical analysis is necessary to determine that.

15The optimal tax rate at t = 0 in Lucas and Stokey (1983) is given by (18), if we set B = B0 and keep the
excess burden of taxation constant.
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to high consumption. This is useful, because the value of initial debt in marginal utility units

falls, since uc(c0) falls. In other words, the interest rate at the initial period falls.

In the time-consistent solution though, these comparative statics analysis is not valid, since

debt has two effects: a direct one through B and an indirect one though Φ, Φ = Φ(B, g). In

other words, the planner is aware of the incentives to devalue, a fact which leads typically to an

increase in the excess burden of taxation.16

5 Long-term debt

Consider now the possibility of long-term debt with exponentially decaying coupons as in

Hatchondo and Martinez (2009) and Chatterjee and Eyigungor (2012).17 Coupons decay at

the rate δ, so the coupon payments are (1 − δ)i, i ≥ 0. Assume that the government chooses

every period to default or not on all current and future debt obligations and that the same

costs (direct and indirect in form of the exclusion from debt markets) apply as in the case with

short-term debt (δ = 1). Under this assumption the definition of the default value function

remains the same as previously.

To calculate the value of repayment, we need to modify the policy problem. Let Bt(g
t−1)

denote the debt obligation of the government at the beginning of the period, which consists of

the coupon payments that correspond to debt issued in all previous periods. This takes the form

of

Bt(g
t−1) = bt(g

t−1) + (1− δ)bt−1(gt−2) + (1− δ)2bt−2(gt−1) + ... = bt(g
t−1) + (1− δ)Bt−1(gt−2),

where bt are the holdings of the security at the end of period t− 1, bt−1 at the end of t− 2 (so

the coupon is 1 − δ) and so on and so forth. Thus, the household’s budget constraint in the

event of repayment reads

ct(g
t) + qt(g

t)(Bt+1(gt)− (1− δ)Bt(g
t−1)) = (1− τt(gt))wt(gt)ht(gt) +Bt(g

t−1). (20)

The Euler equation with defaultable long-term debt becomes

qt = βEt
uc,t+1

uct
(1− dt+1)

[
1 + (1− δ)qt+1

]
. (21)

16We will see in the numerical section that the tax rate is an increasing function of B.
17See also Woodford (2001) for the analysis of non-Ricardian fiscal regimes with this type of long-term debt.
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It is useful for later purposes to rewrite the Euler equation as

Qt = βEt(1− dt+1)
[
uc,t+1 + (1− δ)Qt+1

]
, (22)

where Qt is defined as the price of long-term debt in marginal utility units, Qt ≡ uct · qt.

5.1 Value of repayment

Let C(B′, g′), H(B′, g′) and K(B′, g′) denote the consumption, labor and debt policy function

next period. The value of repayment is defined as

V r(B, g) = max
c≥0,h∈[0,1],B′

u(c, 1− h) + βEg′|gV (B′, g′) (23)

subject to

[uc(c, 1− h) + (1− δ)Q(B′, g)]B ≤ Ω(c, h) +Q(B′, g)B′ (24)

c+ g = h (25)

where the price of long-term debt satisfies the following recursion,

Q(B′, g) = βEg′∈A(B′)|g

[
uc(C(B′, g′), 1−H(B′, g′)) + (1− δ)Q

(
K(B′, g′), g′

)]
(26)

Debt is long-lived, so we need to specify next period’s debt policy function, in order to de-

termine the price of the long-term asset. The Markov-perfect requirement is obviously c(B, g) =

C(B, g), h(B, g) = H(B, g) and B′(B, g) = K(B, g) for all (B, g).

5.2 Analysis

Let Φ denote again the multiplier on the implementability constraint (24). It is easy to see

that the formula for the optimal tax rate with long-term debt is the same as in proposition 2.

Turning to the optimal debt issuance, we have:

−β ∂

∂B′
Eg′|gV (B′, g′) = Φ · [Q(B′, g) +

∂Q

∂B′
(B′ − (1− δ)B)] (27)
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As previously, the left-hand side denotes the cost of issuing more debt, whereas the right-hand

side the welfare benefit of the marginal revenue from debt issuance. Note that a change in price

affects also the price of the remaining coupons that are to be paid in the future, due to the

long-term nature of debt. The respective envelope condition with long-term debt is

∂V r(B, g)

∂B
= −Φ[uc + (1− δ)Q]. (28)

To get a simpler expression, assume as previously that default sets have a “nice” structure

and that the conditional density of shocks is f(g′|g). The derivative of price with respect to

debt is

∂Q

∂B′
= β

[{
uc
(
C(B′, ω−1(B′)), 1−H(B′, ω−1(B′))

)
+ (1− δ)Q(K(B′, ω−1(B′)), ω−1(B′))

}
f(ω−1(B′)|g)

dω−1

dB′︸ ︷︷ ︸
“Fear”: decrease in prices due to default risk

+

∫ ω−1(B′)

g

(
u′cc − u′cl

) ∂C
∂B′

f(g′|g)dg′︸ ︷︷ ︸
“Greed”: increase in price due to an increase in uc

+ (1− δ)
∫ ω−1(B′)

g

∂Q′

∂B′′
∂K
∂B′

f(g′|g)dg′︸ ︷︷ ︸
future price change

]
(29)

The derivative of the price with respect to debt exhibits again the two forces that we previ-

ously identified: the decrease in prices due to an increased default probability (“fear”) and the

increase in prices due to increased marginal utility (“fear”), if, as we expect, ∂C/∂B′ < 0. Debt

though is long-lived so there are capital gains and losses and the derivative of the current price

is determined also by the (properly discounted) derivative of the future price Q′ with respect to

debt, taking into account how current debt issuance will affect future debt issuance, ∂K/∂B′.
As in the case with short-term debt, I will rewrite the GEE in terms of the excess burden.

Proposition 3. (“GEE with long-term debt”)

1. Define the default-and-long-term-debt-adjusted change of measure as

nt+1(Bt+1, gt+1) ≡
(1− dt+1)

[
uc,t+1 + (1− δ)Qt+1

]
Et(1− dt+1)

[
uc,t+1 + (1− δ)Qt+1

] ≥ 0 with Etnt+1 = 1.

Define also the price semi-elasticity with respect to debt as ηt ≡ ∂Qt
∂Bt+1

1
Qt

. The GEE takes

the form

Etnt+1Φt+1 = Φt ·
[
1 + (Bt+1 − (1− δ)Bt)ηt

]
(30)
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2. The semi-elasticity ηt follows the recursion

ηt =
[
fn(ω−1(Bt+1), Bt+1|gt)

dω−1
t+1

dBt+1

+ Etnt+1
ucc,t+1 − ucl,t+1

uc,t+1 + (1− δ)Qt+1

∂Ct+1

∂Bt+1

]
+(1− δ)Etnt+1

Qt+1

uc,t+1 + (1− δ)Qt+1

∂Kt+1

∂Bt+1

ηt+1 (31)

where fn(gt+1, Bt+1|gt) ≡ nt+1(Bt+1, gt+1)·f(gt+1|gt), the default-and-long-term-debt-adjusted

conditional density. Thus, ηt captures the present value of the two opposing price effects

of default risk and the lack of commitment (“fear” and “greed”),

ηt = Ent
∞∑
i=1

(1− δ)i−1

(
i−1∏
j=1

Qt+j

uc,t+j + (1− δ)Qt+j

· ∂Kt+j
∂Bt+j

)
·
[
fn(ω−1(Bt+i), Bt+i|gt+i−1)

dω−1
t+i

dBt+i

+
ucc,t+i − ucl,t+i

uc,t+i + (1− δ)Qt+i

∂Ct+i
∂Bt+i

]
,

where Ent denotes expectation according to the default-and-long-term-debt-adjusted measure.

Proof. See Appendix.

Thus, with long-term debt the entire stream of the future opposing pricing effects affect the

elasticity of prices with respect to debt and therefore the revenue schedule of the government.

Obviously, for δ = 1 the above formulas reduce to the case with short-term debt in proposition

1.

6 Numerical results

For the basic numerical exercise I use the constant Frisch elasticity utility function that delivers

the tax rate (19) in proposition 2. At this stage I use some standard parameter values in order

to illustrate the main forces of the model. A future goal is to have a calibration that considers

particular characteristics of a country.

We set (β, φh, ρ) = (0.9, 1, 2). The labor disutility parameter is set to ah = 19.2901, so that

the household works 40% of its time at the first-best. For the government expenditure shocks

we assume that they are i.i.d. and that they follow a uniform distribution, g ∼ U [g, ḡ], where

g = 0 and ḡ = 0.08. The maximum amount of g corresponds to 20% of first-best output.

The probability of re-entry is set to unity, α = 1. We allow asymmetric default costs, i.e. it

is less costly to default when government expenditures are high. We use a linear specification,

z(g) = z(g) + λz(g − g), where (z(g), λz) = (0.98, 0.2375).
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Figure 1: Consumption and debt policy function in the deterministic Krusell et al. (2004) economy. The crosses
‘+’ correspond to steady states. At the right of each of these points, there is a jump upwards in the debt and
consumption policy function.

The government is not allowed to lend so the lower debt limit is zero. For the upper limit

of the debt grid, I use the maximum surplus that can be sustained by the static tax Laffer

curve. This corresponds to about 30% of output. Given that upper limit, the model generates

an endogenous debt limit that is smaller. Moreover, I focus on the MPE that is the limit of the

finite horizon problem.

There are several issues with the numerical computation of the problem. These issues have

to do with non-convexities which lead to discontinuous policy functions and touch upon the

Markov-perfect nature of policy.

6.1 Deterministic setup: non-convexities and discontinuities

If we shut off uncertainty and the option to default, the setup reduces to a deterministic Lucas

and Stokey (1983) economy. In contrast to Lucas and Stokey (1983), the policymaker has no

commitment. The GEE (17) reduces to

Φt+1 = Φt · [1 +
ucc,t+1 − ucl,t+1

uc,t+1

∂C
∂Bt+1

·Bt+1].
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Krusell et al. (2004) have analyzed this problem and have shown that the non-convexities

associated with the Markov-perfect assumption in this economy introduce serious discontinuities

in the policy functions for consumption and debt.18 The GEE is then valid only locally. Figure

1 displays the severity of these discontinuities. The debt policies are continuous from the left.

At each jump, if current debt increases marginally, the current planner has an incentive to issue

a large amount of debt for next period, reducing a lot the interest rate (since the consumption of

the future policymaker will jump downwards and therefore marginal utility will jump upwards)

and allowing therefore to tax less currently– which is why also current consumption jumps

upwards as well.

6.2 Stochastic setup

When we turn into a stochastic setup, there is a possibility for elimination of the jumps in the

policy functions, due to the smoothing effect of uncertainty. To see that in a heuristic way, drop

for simplicity the option to default, assume that ucl = 0 and consider the average marginal utility

over the entire support of government expenditures, Etuc(C(Bt+1, gt+1)). This object captures

equilibrium prices and is the source of discontinuity in the implementability constraint, through

the actions of the future policymaker C. Assume for the sake of the argument that each policy

functions of consumption for next period (indexed by g′), is discontinuous in B′. As long as the

points where the policy functions have jumps are countable and not the same across shocks g′,

average marginal utility will smooth out the jumps, leading to a continuous price function of

debt. At a more fundamental level, uncertainty partially “convexifies” the constraint set.19

6.2.1 No option to default

To see the smoothing effect of uncertainty numerically consider first the Markov-perfect policy

without the option to default. The GEE (whenever valid) takes the form

Etxt+1Φt+1 = Φt ·
[
1 + Etxt+1

ucc,t+1 − ucl,t+1

uc,t+1

∂C
∂Bt+1

·Bt+1

]
, xt+1 ≡

uc,t+1

Etuc,t+1

.

In that case, we have only the average interest-rate effects emerging from the Markov-perfect

policy assumption through C (“greed”). More debt for tomorrow is reducing the interest rate

18Debortoli and Nunes (2013) allow government spending to provide utility, making the incentives for interest
rate manipulation opposite to Krusell et al. (2004). See also Occhino (2012). Endogenous government spending
seems to make the discontinuity issue less prevalent.

19I conjecture that a formal introduction of lotteries in debt as in Chatterjee and Eyigungor (2016) would in
principle perform the same role. Otherwise, an additional shock as in Chatterjee and Eyigungor (2012) could
also smooth the constraint set. I am currently abstaining from these approaches.
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Figure 2: The left panel depicts average marginal utility (“price”), in a world with Markov-perfect policy under
uncertainty and without default. The right panel plots the respective revenue from debt issuance.
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Figure 3: Policy functions for consumption, taxes and debt in a world with Markov-perfect policy under uncer-
tainty and without default. The policy functions are drawn for three different level of government expenditures.
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by increasing next period’s average marginal utility, giving an incentive to the planner to in-

crease average distortions tomorrow relative to today, i.e. giving an incentive to back-load tax

distortions.

The left panel in figure 2 depicts the effect of Markov-perfect policy on equilibrium prices.

An increase in debt for next period, reduces consumption and increases average marginal utility,

reducing the interest rate. Note that uncertainty has smoothed out the jumps in policy functions,

leading to a continuous and increasing pricing schedule. The right panel depicts the respective

revenue from debt issuance, which, since there is not default risk, is always increasing. Figure

3 depicts the respective policy functions for consumption, taxes and debt. Note the incentive

of the government to do precautionary savings when the government expenditure shock is low,

which is similar qualitatively to the case with commitment of Aiyagari et al. (2002) (albeit

different quantitatively). To see that, consider the low government expenditure shock schedules

(blue lines - corresponding to g = 0) in the three panels of figure 3. When debt is low, the

government is financing this debt by taxing labor income and abstaining from issuing new debt.

Only when initial debt starts being large enough, the government starts using also new debt

to pay back inherited debt. In contrast, when the fiscal shock is average (red schedules in the

panels) the government is slightly increasing the tax rate when debt increases, and uses tax

revenues to finance government expenditures and interest payments to the public (debt issuance

is almost on the 45 degree line). For high government expenditure shocks, the government is

using much more new debt issuance than taxes to pay back higher inherited debt, as long as the

upper bound on debt issuance is not hit.

6.2.2 Default option

We turn now to the full-blown model with the option to default. Figure 4 plots the default and

repayment sets. Both of our claims are valid, i.e. the default set is increasing in debt and the

country defaults more in “bad” times (high government expenditure shocks). Figure 5 plots the

price schedule and the debt Laffer curve in an economy with Markov-perfect policy and default.

In contrast to the findings of figure 2, the price schedule starts to decrease when we enter the

region where there is positive probability of default, i.e. the negative price effect of an increased

default probability is larger than the positive price effect through the reaction function of the

future policymaker, C. Furthermore, the amount of debt that corresponds to the maximum of

the debt Laffer curve is larger than the maximum amount of debt for which the government

repays with certainty. As a result, there is a region for which there is risky debt in equilibrium.20

Lastly, figure 6 patches together the respective policy functions for consumption, taxes and debt

20To obtain this region, it was necessary to assume asymmetric default costs that vary with the shock g. See
Arellano (2008) for a discussion of the importance of the maximum of the debt Laffer curve in an open economy
without distortionary taxation.
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in the event of repayment and default.
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6.3 Some sample paths

How does the government absorb a fiscal shock with taxes and new debt issuance? In figure 7

we answer this question by considering a one standard deviation shock above the mean at t = 1

and plotting the respective tax rate and debt issuance for the commitment case of Aiyagari et al.

(2002) and the time-consistent case without or with default risk.21 The government starts with

zero initial debt. In all cases, when the government expenditure shock increases, both taxes

and new debt increase. Figure 7 shows that in the absence of default risk, the government is

increasing partially the tax rate in face of an adverse fiscal shock, but also increases substantially

debt. Furthermore, the tax rate remains at high levels even if the fiscal shock goes back to the

mean, confirming the persistence result of Aiyagari et al. (2002), and debt increases over time.

It is of interest to observe that without commitment but no default option, the increase in debt

is larger over time in comparison to the commitment case.

In contrast, the presence of default risk reduces the ability of the government to absorb fiscal

shocks with new debt issuance, since debt becomes more expensive. As a result, the government

absorbs the shock with a much larger increase of the tax rate at t = 1 (almost two and half

percentage points higher than in the case without default) and a much smaller increase in new

debt issuance. Moreover, the increase in the tax rate and debt is not persistent. After the second

period, taxes and debt return to a slightly higher level than the initial one. Overall, default risk

limits the fiscal hedging of the government.

To get a sense of how default occurs, figures 8 and 9 consider a random path of fiscal shocks

of 30 periods and considers the respective debt, consumption tax and default decision paths.

Note that the government defaults for the first time at t = 10, despite the fact that government

expenditures happened to be higher at t = 4. The reason is obvious; debt was not as high at

t = 4, which made it worthwhile for the government to repay.

6.4 Stationary moments

Consider now a long simulation of 100, 000 periods. Table 1 depicts the moments from the

commitment problem and the Markov-perfect problem without or with default risk. Note that

at the commitment solution the tax rate has high persistence (as expected from Aiyagari et al.

(2002)). Moving to the case of no commitment but without the default option, the persistence

of the tax rate is slightly reduced, but other than that, the mean and standard deviation of taxes

remain similar. There is a noticeable change though in debt. In the no commitment solution,

the policymaker is issuing on average more debt. This reflects the desire of the policymaker to

manipulate interest rates by anticipating the reaction of the future policymaker. Moving to the

case of default risk, we note that equilibrium debt is much smaller. As we noted in the analysis of

21See the Appendix for the formulation of the commitment problem.

25



0 5 10 15 20 25 30

t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Government expenditure shock

0 5 10 15 20 25 30

t

0

0.005

0.01

0.015

0.02

0.025

D
eb

t

Debt issuance and default

issuance
effective

Figure 8: The default decision is depicted as an indicator variable that takes the value unity when there is
default (right axis in each graph). Effective debt is debt in the beginning of the period after the decision to
default (so it becomes zero when the government defaults).
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Figure 9: The paths of consumption and tax rates that correspond to the sample path of fiscal shocks in figure
8.

figure 7, the tax rate – relatively to debt– is used much more as a fiscal hedging tool when there
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Commitment (AMSS) MPE MPE with default

Tax rate in %

Mean 11.95 12.64 10.44

St. Dev 3.2 3.8 4.82

Corr with g 0.5075 0.6033 0.9369
Autocorrelation 0.77 0.54 0.2316

Debt-output-ratio in %

Mean 14.03 21 1.62

St. Dev 9.65 11.4 2

Autocorrelation 0.79 0.85 0.2

Table 1: Stationary moments from a 100, 000 period simulation, starting from zero initial debt. The calibration
of the shocks implies a mean share of government expenditures that is 10% with a standard deviation of 6
percentage points. The probability of default is 5%.

is the option to default. The mean tax rate is smaller (because the debt that can be sustained

is smaller), but the standard deviation of the tax rate is larger, close to 5 percentage points.

Furthermore, the correlation of the tax rate with government expenditure shocks is much larger

when there is default risk (0.93), and its autocorrelation small. This reveals the fact that the

behavior of the tax rate reflects the behavior of the iid fiscal shock when there is the option to

default, since the government budget is effectively balanced due to high debt “intolerance”.

6.5 Spreads, taxes and default costs

Consider now a different calibration of shocks with a mean and standard deviation equal to

17.5% and 4.5% of output and a subjective discount factor of 0.96 so that the frequency is

annual. In order to make a meaningful comparison between commitment and default, we have

to be explicit about the upper debt limits in the commitment case, since in the default case the

upper debt limit of the government is endogenously determined. Table 2 shows the stationary

moments for the commitment and the default case for varying debt limits and varying default

costs.

The first column of the table reports moments from the commitment solution (AMSS) that

correspond to an exogenously set upper debt limit that corresponds to 200% of output.22 The

second column repeats the same exercise for an upper debt limit that corresponds to the max-

imum of the static Laffer curve, and is about 30% of output. Higher upper debt limits under

commitment allow the government to sustain more debt in equilibrium. Furthermore, higher

22As in the baseline computation, the lower limit for all experiments is set to zero; the government is not
allowed to lend to the private sector.
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Commitment Commitment Default Default
high debt limit low debt limit low cost high cost

Tax rate in %

Mean 21 19.23 18.56 18.69

St. Dev 2.39 1.79 3.67 2.96

Corr with g 0.08 0.45 0.9676 0.86
Autocorrelation 0.94 0.79 0.19 0.39

Debt-output-ratio in %

Mean 53.75 12.89 0.93 3

St. Dev 41.13 8.09 1.01 2.3

Autocorrelation 0.98 0.84 0.16 0.42

Default probability in % 0 0 2.19 0.53

Spread in %

Mean 0 0 1.97 0.075

St. Dev 0 0 3.63 0.33

Autocorrelation - - 0.15 0.14

Table 2: Stationary moments from a 2 million period simulation. Shocks are i.i.d. U [0.04, 0.10] with lower and
upper bounds that correspond to 10% and 25% of first-best output. The spending ratio has mean 17.5% and
standard deviation of 4.5% in terms of first-best output. The high and low debt limit for the commitment case
correspond to 200% or 30% of output respectively. Preference parameters are the same like before except for
(β, α) = (0.96, 22.9568), so the frequency is annual. Default costs are linear in g with (z(g), λz) = (0.98, 0.3167)
and (z(g), λz) = (0.96, 0.5833) for the low and high cost case.

debt limits allow the government to make the tax rate even more persistent and less correlated

with spending, confirming the ad hoc analysis of Barro (1979). Naturally, with higher upper

debt limits, the contrast between commitment and default is even starker.

Turning to the case of default risk, the third and fourth column in table 2 report the respective

moments for an economy with low and high default costs, implying respectively high and low

default risk. The average output cost is 1% and 2.25% in the low and high cost case respectively.

As in table 1, default risk limits tax smoothing. The default probability in the low cost case is

about 2.2%, so the government defaults twice every one hundred years. The default probability

is higher than the implied default probability in the Reinhart and Rogoff (2011) data, which is

about 1%.23 The spread is about 2% with a high standard deviation of 3.6%. If we increase

the default costs (last column) the default probability becomes just 0.5%, so the government

defaults once every 200 years. This is even less frequent than in the data, a fact that is reflected

in the very low spread of 7.5 basis points. Nonetheless, the standard deviation of the tax rate

23See D’Erasmo and Mendoza (2018).
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Figure 10: Dynamics 5 periods before and 5 periods after default events. The economy simulated is the low
default cost economy of Table 2 which exhibited around 44,000 default events in 2 million years.

and its correlation with spending remain high and the debt that the government can sustain

is just 3% of output, so the government still absorbs fiscal shocks mainly with increases in tax

revenues. Thus, even if default is rare, tax smoothing is severely limited.

6.6 Dynamics around default events

Figure 10 displays the median dynamics (together with the 25th and 75th percentile) of various

variables of interest around default events for the low default cost economy of Table 2. Recall

that the default probability for this economy is 2.2% and that equilibrium debt is low. Overall,

the dynamics are as we expect them. Default events are associated with a rise in the median

spending about three periods before the default event (upper left panel). Government starts

raising taxes and debt (upper center and right panel). Higher spending and debt increase the

probability of default, which is reflected in the premium. The premium jumps one period before

the default (lower right panel). New debt issuance becomes prohibitively expensive and the

government defaults at t = 0, leading to a drop in consumption (lower left panel). Taxes and

output return almost immediately to the same median value before the default event started

(i.e. three periods before the event at t = 0). Debt ratios take a longer time to recover.
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6.7 Future steps

Further quantitative analysis is necessary to flesh out the properties of the optimal taxation

problem. In particular, we would like to introduce a) persistent shocks, b) solve the problem

with a larger state space, and c) solve the model with long-term debt (proposition 3) in order

to be able to sustain more debt in equilibrium like in Hatchondo and Martinez (2009) and

Chatterjee and Eyigungor (2012). All these features exacerbate the discontinuity issues, making

computation challenging.

Furthermore, we would like to explore in more detail the optimal front-loading versus back-

loading of taxes and debt. Ultimately, we want to use our optimal policy exercise in order

to evaluate various fiscal rules that have been proposed to deal with the sovereign debt crisis.

“Austerity” measures cannot be evaluated without considering both the default risk and the

distortionary taxation implications from an optimal policy perspective.

7 Concluding remarks

In this paper we analyze optimal distortionary taxation in a setup where policymakers can

commit to neither repaying debt nor to the taxation and debt scheme devised in the past. We

want to understand how this double absence of commitment alters the basic tax-smoothing

and debt issuance prescriptions. We are motivated by the fact that domestic sovereign default

is an empirically relevant phenomenon, as Reinhart and Rogoff (2011) showed. Two opposite

forces shape optimal policy, manifesting themselves as a desire to back-load or front-load tax

distortions. We find that even when default is rare, tax smoothing is severely limited.
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A Proofs of propositions 1, 2 and 3

A.1 GEE for short-term debt

Given the assumptions about uncertainty and the repayment and default sets, the expected

value function next period and the price Q are

Eg′|gV (B′, g′) =

∫ ω−1(B′)

g

V r(B′, g′)f(g′|g)dg′ +

∫ ḡ

ω−1(B′)

V d(g′)f(g′|g)dg′

Q(B′, g) = β

∫ ω−1(B′)

g

uc(C(B′, g′), 1−H(B′, g′))f(g′|g)dg′.

Thus, using Leibnitz’s rule, we get

∂

∂B′
Eg′|gV (B′, g′) = f(ω−1(B′)|g)

dω−1

dB′
[V r(B′, ω−1(B′))− V d(ω−1(B′))] +

∫ ω−1(B′)

g

∂V r(B′, g′)

∂B′
f(g′|g)dg′

=

∫ ω−1(B′)

g

∂V r(B′, g′)

∂B′
f(g′|g)dg′,

since V d(ω−1(B)) = V r(B,ω−1(B)).

Similarly, we have

∂Q

∂B′
= β

[
uc(C(B′, ω−1(B′)), 1−H(B′, ω−1(B′)))f(ω−1(B′)|g)

dω−1

dB′
+

∫ ω−1(B′)

g

(u′cc − u′cl)
∂C
∂B′

f(g′|g)dg′
]
,

where I already used the fact that ∂C/∂B′ = ∂H/∂B′. The GEE (16) follows.

To get (17), update one period the envelope condition and rewrite (16) in sequential notation.

The derivative of the expected value function becomes Et(1− dt+1)uc,t+1Φt+1. Divide all terms

in the GEE with Et(1− dt+1)uc,t+1 and use the definition of mt+1 to get (17).

A.2 Optimal tax rate

Proof. Assign multiplier λ on the resource constraint (14). First-order necessary conditions are

c : uc + Φ[Ωc − uccB] = λ (A.1)

h : −ul + Φ[Ωh + uclB] = −λ (A.2)

Combining (A.1-A.2) and eliminating λ gives
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1 =
ul
uc
·

1− Φ[Ωh
ul

+ ucl
ul
B]

1 + Φ[Ωc
uc
− ucc

uc
B]

=
ul
uc
·

1 + Φ
[
εhh + εhc(1− B

c
)
]

1 + Φ
[
1− εcc(1− B

c
)− εch

] ,
where the second line follows by expressing the derivatives of Ωi, i = c, h in terms of elasticities,

Ωc/uc = 1− εcc− εch, and Ωh/ul = −1− εhh− εhc. Use now ul/uc = 1− τ and rewrite the above

expression in terms of τ . Note that the denominator of (18) is positive, since condition (A.2)

and λ > 0 imply 1 + Φ(1 + εhh + εhc(1−B/c)) > 0.

A.3 GEE for long-term debt

Proof. As with short-term debt, the derivative of the expected value function takes the form

∂

∂B′
Eg′|gV (B′, g′) =

∫ ω−1(B′)

g

∂V r(B′, g′)

∂B′
f(g′|g)dg′ = Et(1− dt+1)

∂V r
t+1

∂Bt+1

.

Update the envelope condition (28) one period and rewrite (27) in sequential form as

βEt(1− dt+1)[uc,t+1 + (1− δ)Qt+1]Φt+1 = Φt

[
Qt + (Bt+1 − (1− δ)Bt)

∂Qt

∂Bt+1

]
Divide over Qt and remember that Qt satisfies the recursion (22). Use that fact in order to

express the expectation in term of nt+1 to finally get (30). To get the recursion for ηt, divide

(29) over Qt and write it in sequential form as

ηt = β
[(uc,t+1(Bt+1, ω

−1(Bt+1)) + (1− δ)Qt+1(K(Bt+1, ω
−1(Bt+1)), ω−1(Bt+1))

)
Qt

f(ω−1(Bt+1)|gt)
dω−1

dBt+1

+Et
(1− dt+1)

Qt
[ucc,t+1 − ucl,t+1]

∂C
∂Bt+1

+ (1− δ)Et
(1− dt+1)

Qt
Qt+1

∂Kt+1

∂Bt+1
ηt+1

]
Use again (22) and the definition of nt+1 to finally get (31).

B Commitment problem

This section illustrates the problem under commitment as in Aiyagari et al. (2002) and Bhandari

et al. (2017). The implementability constraint with non-contingent debt bt+1(gt) and no risk of

default takes the form
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uctbt = uctct − ultht + βEtuc,t+1bt+1.

Define B̃t ≡ Etuc,t+1 · bt+1, which is a function of information at t and captures (besides debt)

the commitment of the planner to marginal utility promises. The implementability constraint

becomes

uct
Et−1uct

B̃t−1 = uctct − ultht + βB̃t.

Bellman equation. The commitment problem from period one onward is formed recursively

as follows:

W (B̃−, g−) = max
cg ,hg ,B̃g

∑
g

π(g|g−)
[
u(cg, 1− hg) + βW (B̃g, g)

]
subject to

uc(cg, 1− hg)∑
g π(g|g−)uc(cg, 1− hg)

B̃− = Ω(cg, hg) + βB̃g, ∀g

cg + g = hg,∀g

cg ≥ 0, hg ∈ [0, 1]

Bg ≤ B̃g ≤ B̄g

The value function W denotes the optimal average utility. Note that the debt limits are

formulated directly in terms of the state variable B̃t.

Initial period problem. As in Kydland and Prescott (1980), the initial value of the pseudo-

state variable is chosen optimally at t = 0. The planner chooses c0 ≥ 0, h0 ∈ [0, 1] and B̃0 within

the debt limits to maximize

u(c0, 1− h0) + βW (B̃0, g0)
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subject to

uc(c0, 1− h0)b0 = uc0c0 − ul0h0 + βB̃0

c0 + g0 = h0

where (b0, g0) given.

C Computation

[To be completed]
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