
Less competition, more meritocracy?∗

Dawei Fang†

University of Gothenburg
Thomas Noe‡

University of Oxford

16th October, 2018

Abstract

Uncompetitive contests for grades, promotions, and job assignments, which feature

lax standards or consider only limited talent pools, are often criticized for being unmerito-

cratic. We show that, when contestants are strategic, lax standards and exclusivity can make

selection more meritocratic. Strategic contestants take more risks in more competitive con-

tests. Risk taking reduces the correlation between selection and ability. By reducing the

noise engendered by strategic risk taking, dialing down competition can produce outcomes

that better conform with the meritocratic ideal of selecting the best and only the best.
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1 Introduction
Competitions to identify and select “the best and the brightest”—e.g., educational tests,

worker performance evaluations, league-table rankings of mutual funds, are a pervasive feature
of modern life. Given the growing labor-income share of “working rich” (Piketty, 2005; David
et al., 2006; Goldin and Katz, 2007), an elite selected through meritocratic selection contests,
and their dominant position in multinational corporations and global institutions (Brezis and
Temin, 2008), such selection contests clearly have profound social and economic effects.

The design of selection contests is frequently shaped by the perspective that competition
and high standards are fundamental features of meritocratic selection or even its defining char-
acteristic (Frost, 2017). In fact, “meritocratic society” is sometimes even treated as a synonym
for “competitive society” (Ekins, 2014).

However, this paper shows that, when contestants are strategic, making contests more com-
petitive can make selection less meritocratic. Making contests more competitive, by increasing
the number of competitors or raising selection standards, has not only the direct effect of adding
contestants who might be better than the incumbent contestants or of excluding a marginal can-
didate unlikely to merit selection, but also an indirect equilibrium effect: making contests more
competitive changes contestants’ equilibrium strategies.

We show that, when contests become too competitive, contestants choose riskier strategies
that reduce the correlation between ability and contest performance, thereby making selection
less meritocratic. When this occurs, meritocratic selection can often be furthered by anti-
competitive policies such as low selection bars and restricted candidate fields.

These implications are developed in a parsimonious model of contest design. In the model,
n contestants compete for selection. The number of contestants selected, m, is determined
by the contest’s selection quota. The m quota places are assigned to the m best-performing
contestants. Contestants prefer selection to deselection.

Each contestant is endowed with ability and contest ability. Ability represents the character-
istics of the contestant valued by the contest designer. Contest ability represents a contestant’s
ability to perform in the contest. There are two types of contestants, strong and weak. Strong
contestants have greater ability and contest ability. Each contestant knows his own type, but not
the types of other contestants. In the contest, if a contestant takes no risk, his contest perfor-
mance simply equals his contest ability and thus fully reflects his ability. However, a contestant
can take risky activities that add noise to his contest performance. We assume that such additive
noise has a zero mean and we allow for all “fair gambles,” i.e., a contestant is free to choose
any distribution of nonnegative performance with mean equal to his contest ability.1 The con-
testant’s realized performance is independently drawn from his performance distribution.

1In our setting, there is no explicit cost of risk taking. The only cost of risk taking is implicit: given fixed
expected performance, to increase the probability of attaining high performance levels, a contestant also has to
increase the probability of having low performance levels. Low performance levels are less likely to be sufficient
for selection.
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The fair-gambles framework has been adopted in many studies of contests, including polit-
ical campaigns (Myerson, 1993; Lizzeri, 1999), status contests (Robson, 1992; Becker et al.,
2005; Ray and Robson, 2012), and fund manager competitions (Bell and Cover, 1980; Seel
and Strack, 2013; Fang and Noe, 2016; Strack, 2016). Strategic risk-taking in highly compet-
itive environments has also been documented empirically in a number of contexts (Chevalier
and Ellison, 1997; Khorana, 2001; Bothner et al., 2007; Beaudoin and Swartz, 2010; Genakos
and Pagliero, 2012) and in laboratory experiments utilizing professional subjects (Kirchler et
al., 2018). Thus, the mechanism we posit, strategic risk taking, is plausible, as is the effect it
produces in our analysis, weakening the link between ability and contest performance.

A contest designer, who rationally anticipates contestant strategies, has some control over
contest design. The designer’s welfare function is purely meritocratic, i.e., welfare depends
positively on the number of strong contestants selected and negatively on the number of weak
contestants selected, and is not affected by any other aspect of contestant performance.

First, consider situations in which both the number of contestants and the selection quota are
beyond the designer’s control, e.g., a university admissions contest in which the selection quota
is fixed by the university’s capacity and the number of contestants by the number of applicants.
Our analysis shows that, if the number of applicants relative to the university’s capacity is
sufficiently large, risk taking can be reduced without lowering admitted student quality by
adopting a relaxed selection policy which “approves” more applicants than can be admitted,
and fills the selection quota with approved students using a random lottery.2 This mechanism
coincides with the elite-university admission scheme proposed in Schwartz (2007).3

Next, consider situations in which the number of places is fixed but the number of contes-
tants is under the designer’s control, e.g., a competition for a firm’s CEO position. Firms have
only one CEO, so the selection quota is fixed. However, firms can vary the number of contes-
tants either by excluding external candidates, through an “in-house” competition, or including
external candidates, through an “open competition.” Our results in Sections 4 and 6.4 imply
that, when competition between internal candidates is sufficiently intense, considering exter-
nal candidates does not increase expected CEO quality but does increase risk taking. When
external candidates are less likely to exhibit high ability than internal candidates, an in-house
competition can yield strictly higher expected CEO quality, even though it is possible that an
excluded external candidate is better than any internal candidate (cf. Section 6.3).

Finally, consider situations in which the number of contestants is fixed but the designer
controls the selection quota, e.g., a promotion contest within a firm in which the firm can choose
the promotion rate. Our analysis in Section 5 yields two key results. First, when contestants

2See Section 6.4.
3Using a large all-pay contest setting, which focuses on contestants’ effort strategies but abstracts from risk

taking, Olszewski and Siegel (2018) show that making contests less competitive by pooling intervals of perfor-
mance rankings can improve student welfare in a Pareto sense via reduced student effort, even though pooling
reduces the correlation between selection and ability. Our result implies that, if students strategically take risks,
reducing competition need not reduce the correlation between selection and ability.
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have low prior quality, then regardless of how large the contestant pool is, risk taking leads to
contest mechanism failure, in the sense that designer welfare is maximized by setting a zero
quota. Consequently, risk taking reduces the scope of contest selection, which can be costly
given many relative advantages of contests over other selection mechanisms.4

Second, if the contest mechanism does not fail, selection is biased toward “Peter Principle”
selection: the selection quota is inflated so much that some selected candidates are expected
to be unworthy of selection. Quota inflation occurs when the benefit from quota inflation—
reducing contestant risk taking and thereby increasing the correlation between ability and con-
test performance—exceeds the cost of inflation—selecting some candidates who are expected
to be unworthy.

Social promotions and lax grading by schools can be interpreted as awards to sub-marginal
performance ranks. In our analysis, such policies can make selection more meritocratic. For
the same reasons, motivational promotions by firms can be rationalized even when such “mo-
tivational promotions” have no motivational effect.5 In retention contests, where not being dis-
missed is the contest reward, our results predict that dismissal rates will be lower under strategic
risk taking than when the dismissal rate is fixed purely on the basis of the distribution of con-
testant ability. This conclusion appears to be consistent with empirical studies of dismissals in
mutual funds.6

We conclude by extending our baseline analysis to show that its key implications—that
risk taking caps the gains from increasing contest participation and biases meritocratic contest
designers toward quota inflation—are robust to various modifications, which include but are not
limited to (a) endogenous contest ability acquired through costly effort, (b) ex post discretionary
filling of the selection quota, and (c) scoring caps that bound contestant performance.

Related literature

This paper is probably most closely related to the literature on the effect of risk on selec-
tion. Lazear (2004) studies promotion in a model where risk is generated by exogenous noise
affecting the performance/ability relation. His analysis, like ours, identifies a Peter Principle
effect: because a component of worker performance is produced by luck, i.e., a high realiza-
tion of a random noise term affecting contest performance, the expected future performance
of promoted workers is less than their performance in the promotion contest. However, the

4A number of researchers have argued that contest selection is more advantageous than selection based on
absolute performance when performance is hard to verify (Che and Gale, 2003) or affected by common time-
varying shocks (Lazear and Rosen, 1981; Knoeber and Thurman, 1994), as well as when relative performance is
easier to measure (Lazear and Rosen, 1981), and when firms have a strong preference for offering a fixed amount
of total compensation to employees (Gürtler and Kräkel, 2010).

5For a discussion of social promotion in schools, see Jimerson et al. (2006). For a discussion of motivational
promotion in the workplace, see Deeprose (2006).

6For example, Khorana (1996, Table 4) finds that only 14% of managers in the lowest performance decile are
replaced despite the fact that, as Khorana (2001) documents, replacing low performing managers improves mutual
fund returns.
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implications of our analysis differ quite dramatically from Lazear (2004). In Lazear (2004), the
contest designer, realizing that part of contestant performance is the product of luck, adjusts
upward the performance cutoff required for promotion. Thus, in Lazear (2004), exogenous risk
leads to an increase in promotion standards relative to the no-noise case. In our analysis, en-
dogenous strategic risk leads the designer to lower standards by expanding the selection quota
relative to the quota which would have been selected in the absence of risk taking.

Ryvkin and Ortmann (2008), Ryvkin (2010), and Hvide and Kristiansen (2003) also con-
sider the effect of risk on selection. These papers fix the selection quota at one, and thus, unlike
our paper and Lazear (2004), they do not address the effect of risk on the selection quota.
However, they do consider the effect of expanding the contestant pool.

In selection contests with exogenous risk, Ryvkin (2010) demonstrates that expanding the
contestant pool always strictly increases the expected ability of the winner.7 In contrast, we
show that, when contestants are strategic risk takers, pool expansion beyond a threshold number
of contestants never strictly increases the expected ability of the winner(s).

Hvide and Kristiansen (2003) develop a restricted risk-taking contest model in which a
contestant can only choose/mix between two fixed strategies. They find an example in which
pool expansion reduces the expected ability of the winner. This example is consistent with
the idea that contestant risk taking can nullify the gains from pool expansion. However, the
example depends on the specific risk-taking strategies imposed on the contestants. In contrast,
our analysis shows that when contestants are free to choose any fair-gamble risk-taking strategy,
beyond a threshold number of contestants, strategic risk taking always nullifies the gains from
pool expansion.

More generally, our paper is related to research showing that meritocracy can be furthered
by seemingly unmeritocratic policies. Meyer (1991) and Kawamura and Moreno de Barreda
(2014) find that biasing the contest selection mechanism toward certain contestants can increase
selection efficiency.8

In some research on the benefits of seemingly unmeritocratic policies, “meritocratic” is
defined very differently than it is in our analysis. For example, Morgan et al. (2018) model
contests where contest performance equals output and the designer’s objective is to maximize
expected total output. Prizes are allocated based on measured output and measured output
is affected by an exogenous noise term. In their framework, more meritocratic means less
noise and thus, “meritocratic” is a property of the contest mechanism not, as in our analysis, a
property of the designer’s objective function. They show that too much meritocracy, i.e., too
little noise, can reduce expected total output.

7Ryvkin (2010) also verifies a similar result when dynamic tournament mechanisms, such as binary elimination
tournaments and round-robin tournaments, are used for selection.

8Meyer (1991) considers sequential selection of non-strategic agents when performance is a noisy signal of
ability and shows that biasing contests in favor of early leaders can increase selection efficiency. Kawamura and
Moreno de Barreda (2014) show, in an all-pay contest setting in which contestant abilities are known to every
contestant but not to the designer, that selection efficiency can be increased by biasing the contest in favor of one
of the contestants even if the contestants are ex ante identical to the designer.
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In addition, the large literature on the effects of strategic risk taking is also relevant to
understanding the policy implications of our analysis. Researchers studying risk taking have
documented many situations in which strategic risk taking in extremely competitive contests
imposes social costs, quite independent of its effect on meritocratic selection, e.g., portfolio
volatility (Chevalier and Ellison, 1997; Khorana, 2001; Kaniel and Parham, 2017), military
aggression by politicians (Hess and Orphanides, 1995), and fraud by bureaucrats, accoun-
tants, and academics (Weinstein, 1979; Shleifer, 2004; Ghanem and Zhang, 2014; Serrato et
al., 2016).

Our results complement this analysis. We show that, even when these costs are absent,
extremely competitive contests make selection less correlated with ability. Thus, in many
situations, the standard tradeoff determining the optimal degree of contest competition—the
risk-taking costs of competition vs. competition’s selection benefits—may not be present. In
addition, we address the concerns of this literature in Section 6.4, where we consider mecha-
nisms that reduce contestant risk taking without sacrificing meritocratic selection.

Our results on quota inflation complement other explanations for “Peter Principle” hiring
polices. In the tournament models of Lazear and Rosen (1981) and Gürtler and Kräkel (2010),
over-promotion results from its effect on employee effort. In the job assignment models of
Prendergast (1992) and Fairburn and Malcomson (2001), over-promotion results because the
labor market cannot observe the ability of individual employees, but can observe the average
ability of employees assigned to a given task. Because of employee risk aversion, reducing the
gap between expected ability conditioned on the two job assignments through over-promotion
increases employee welfare and thus permits risk-neutral employers to attract employees at
lower cost.

The questions considered in these paper are quite different from the one we address. These
papers consider situations in which employers are willing to make hiring less meritocratic,
through over-promotion, in order to increase the incentive efficiency of compensation. We
examine whether over-promotion can be motivated by the objective of making hiring more
meritocratic.

Our model is also broadly related, at a technical level, to a large literature on unrestricted
risk-taking contests. These contests have been extensively analyzed in compete-information
settings (Bell and Cover, 1980; Myerson, 1993; Becker et al., 2005; Hart, 2008, 2016; Fang
and Noe, 2016; Strack, 2016) and are closely related to an even more extensively analyzed
mechanism, all-pay auctions (Baye et al., 1996; Barut and Kovenock, 1998).9 In contrast to the
existing studies of unrestricted risk-taking contests, our analysis is developed in an incomplete-
information setting and we focus on the effect of risk taking on meritocratic selection, an issue

9As pointed out by Hart (2016), an all-pay auction, with linear bidding costs, can be considered as a two-stage
game in which each player chooses his expected bid in the first stage followed by a randomization of his bid
subject to the constraint that the mean of his second-stage bid distribution equals the expected bid chosen in the
first stage. See Sahuguet and Persico (2006), Fang and Noe (2016), and Hwang et al. (2018) for further discussions
of how risk-taking contests relate to all-pay auctions.
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that has not been addressed in unrestricted risk-taking contest settings.

2 Risk taking

2.1 Risk-taking selection contests

Consider a contest with n ≥ 2 contestants; m of them will be selected to fill a place, and
the remaining n−m contestants will be deselected and not receive a place, where 0 < m < n.
The number of places, m, which we call the selection quota, and the number of contestants, n,
which we call contest size, are fixed before the contest and are common knowledge.

The contestants are of two possible types, t: strong, S, and weak, W . Whether a contestant
is strong or weak is determined by an independent draw from a Bernoulli distribution which
assigns probability θ to S, and probability 1−θ to W . A contestant’s type is the contestant’s
private information.

Selection is based on performance in the contest. Every type-t contestant can take risky
activities in the contest that add noise to his otherwise fixed performance µt > 0, t ∈ {S,W}.
We call µt a type-t contestant’s contest ability and assume that strong contestants have higher
contest ability than weak contestants, i.e., µS > µW . In Section 6.2, we endogenize contest
ability by allowing each contestant to acquire contest ability through costly effort. As we
will show, the qualitative conclusions of our analysis are fairly robust to this extension. We
assume that the additive noise has a zero mean and we allow for all “fair gambles,” i.e., a
contestant can costlessly choose any distribution of nonnegative performance subject to the
contest ability constraint that the expected performance of a type-t contestant must equal the
type-t contestant’s contest ability, µt , t ∈ {S,W}. As we will show in Section 6.4, restricting
fair gambles to distributions with a bounded support, [0, x̄], x̄≥ µS, does not change any of our
welfare results.

Each contestant’s realized performance is independently drawn from his performance dis-
tribution. The m contestants with the highest realized performances are selected and the re-
maining contestants are deselected, with ties broken randomly. Contestants are expected utility
maximizers who strictly prefer selection to deselection. Thus, given that risk taking is costless,
each contestant chooses his performance distribution to maximize his probability of winning a
place given his rivals’ strategies and the contest’s parameters.

2.2 Best reply and the probability of winning function

To determine the effect of contest design on meritocracy, we first need to characterize equi-
librium contestant behavior. We focus on symmetric equilibria in which contestants of the same
type all play the same strategy, i.e., each type-t contestant chooses performance distribution Ft

with support Suppt , t ∈ {S,W}.
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A contestant’s probability of winning function maps the contestant’s realized performance,
x, to his probability of being selected and is thus determined endogenously by his rivals’ strate-
gies. Because, each contestant faces the same distribution of rivals, and strategies are symmet-
ric, all of the contestants face the same probability of winning function, P : R+→ [0,1].

In this section, we provide a characterization of equilibrium probability of winning func-
tions that will be the foundation of our subsequent analysis. Our derivation assumes that (a)
equilibrium performance distributions, Ft , t ∈ {S,W}, are continuous, and (b) the probability
of winning function, P, is continuous, and increasing when P(x) < 1. Because many authors
have established properties analogous to (a) and (b) in symmetric unrestricted risk-taking con-
tests and symmetric all-pay auctions (Barut and Kovenock, 1998; Fang and Noe, 2016), our
verifications of (a) and (b) are not very original. So, we defer these verification to the Online
Appendix.

To initiate this derivation, a few definitions are required: for any two points (x1, p1), (x2, p2)

in R2
+, we define the interval between the points, [(x1, p1),(x2, p2)] by

[(x1, p1),(x2, p2)] = {λ (x1, p1)+(1−λ )(x2, p2) : λ ∈ [0,1]}.

A gamble between performance levels x′ and x′′ represents a performance distribution that
randomizes between x′ and x′′. A fair gamble between x′ and x′′ for a contestant of type t is a
gamble between x′ and x′′ with the property that the probability of choosing x′, π , satisfies π x′+

(1−π)x′′ = µt . Because fair gambles are feasible performance distributions, if performance
levels x′ and x′′ are in the support of the equilibrium performance distribution of type t, then a
type-t contestant’s payoff from a fair gamble between x′ and x′′ equals his equilibrium payoff.
Thus, in equilibrium, no fair gamble produces a higher payoff to a type-t contestant than the
fair gamble between x′ and x′′.

Next, note that, for performance levels x1, x2, and x3 satisfying x1 < µt < x2 and x1 < µt <

x3, if (P(x3)−P(x1))/(x3−x1)< (P(x2)−P(x1))/(x2−x1), the interval [(x1,P(x1)),(x3,P(x3))]

lies below the interval [(x1,P(x1)),(x2,P(x2))] . Because µt ∈ [x1,x2]∩ [x1,x3], this implies that
a payoff to a type-t contestant from a fair gamble between x1 and x2 exceeds the payoff from a
fair gamble between x1 and x3. This result is illustrated by Figure 1.

O Μt

x

p

Hx1, PHx1LL

Hx2, PHx2LL
Hx3, PHx3LL

Figure 1: Fair gambles and best replies. In the figure, for a contestant of type t ∈ {S,W}, the payoff
from a fair gamble between x1 and x3, given by the intersection of the dashed line and the interval
[(x1,P(x1)),(x3,P(x3))] , yields a lower payoff than a fair gamble between x1 and x2, given by the
intersection of the dashed line and the interval [(x1,P(x1)),(x2,P(x2))].
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Because all fair gambles in the support of a type-t contestant’s performance distribution
must produce the same payoff, x3 cannot be in the support of t’s performance distribution if x1

and x2 are in its support. Similarly, if (P(x3)−P(x1))/(x3− x1) > (P(x2)−P(x1))/(x2− x1),
x2 cannot be in the support of t’s performance distribution if x1 and x3 are in the support. Thus,
the slope of the line joining any two points (x1,P(x1)) and (x2,P(x2)) in the support of t’s
performance distribution is constant, and hence all performance/probability-of-winning pairs
(x,P(x)) such that x ∈ Suppt are collinear.10

For each contestant type t, we can represent this line in the performance/probability-of-
winning space by an affine function with intercept αt and slope βt . Expressed in this fashion,
the collinearity condition is αt + βt x = P(x), x ∈ Suppt . Moreover, it must be the case that
all x ≥ 0 satisfy the condition αt + βt x ≥ P(x). To see this, suppose that a point x∗ ≥ 0 did
not satisfy this condition. Then a fair gamble between x∗ and some point in the support would
produce a higher payoff than fair gambles over performance levels contained in the support.
The formal expression of these conditions is11

∀ t ∈ {S,W}, x ∈ Suppt =⇒ αt +βt x = P(x), (1)

x≥ 0 =⇒ αt +βt x≥ P(x). (2)

Because the probability of winning produced by any performance level is nonnegative, (2)
implies that αt ≥ 0. Because, by assumption, P is increasing when P(x) < 1, (1) implies that
βt > 0. Because P can only increase at points in the support of at least one type’s performance
distribution, and because the support of a distribution is, by definition, a closed set,

SuppW ∪SuppS = [0, min{x≥ 0 : P(x) = 1}]. (3)

In terms of the graph of the performance distribution, equation (2) and the fact that the
probability of winning is never greater than 1, imply that, if P is an equilibrium probability of
winning function, then

(x,P(x)) ∈P = {(x, p) : αS +βS x≥ p}∩{(x, p) : αW +βW x≥ p}∩{(x, p) : p≤ 1}. (4)

For all x such that P(x) < 1, equation (3) implies that equation (1) is satisfied for at least
one type. Thus, equations (1), (3), and (4) imply that

P(x) = max{p≥ 0 : (x, p) ∈P}= min
[
αW +βW x, αS +βS x, 1

]
. (5)

The last equality implies that P is concave. The lines x ↪→ αt + βt x, t = S,W , must meet at
some x such that 0 < P(x) < 1, since otherwise by (1), the support of one type’s performance
distribution would be empty, inconsistent with the existence of an equilibrium, or a single point,
contradicting the performance distribution being continuous.

Thus, there are only two possibilities. In the first, (αS,βS) = (αW ,βW ) = (α,β ). By the
hypothesis that equilibrium performance distributions are continuous, the probability of zero

10Collinearity for the single performance level where x = µt follows from the continuity of P.
11These conditions can also be derived using the concavification argument à la Aumann et al. (1995) and

Kamenica and Gentzkow (2011).
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performance is 0 for both types, this implies that P(0) = 0. Thus, equation (5) implies that
α = 0. Thus, in this case, the probability of winning function is given by P(x) = min[β x,1].

The second case is (αS,βS) 6= (αW ,βW ). In this case, the lines x ↪→ αt +βt x, t = S,W , meet
at a single point. By (1) and (5), this implies that the supports of the two types’ performance
distributions are adjacent intervals. Because the contest ability of S is greater than the contest
ability of W , the upper interval must coincide with SuppS and the lower interval with SuppW .
By the concavity of P, the slope of P over the upper interval is less than the slope of P over the
lower interval. Thus, βS < βW , which implies, because the lines cross, that αS > αW . Hence,
given the fact that P(0) = 0, (5) implies that αW = 0, Thus, in this case, the probability of
winning function is given by P(x) = min[βW x,αS +βS x,1]. These results are summarized in
the next lemma and illustrated in Figure 2. All of the formal proofs of our results are relegated
to the Online Appendix.

Lemma 1. In any symmetric equilibrium, the probability of winning function, P, satisfies one

and only one of the following conditions:

(i) There exists β > 0, such that the probability of winning function is given by

P(x) = min[β x,1].

(ii) There exist βS, βW , and αS, with 0 < βS < βW and αS > 0, such that the probability of

winning function is given by

P(x) = min[βW x,αS +βS x,1].

In both (i) and (ii), SuppW ∪SuppS = [0,min{x≥ 0 : P(x)= 1}]. In (ii), maxSuppW =minSuppS.

A. Lemma 1.i B. Lemma 1.ii

Figure 2: The possible forms of probability of winning function, P, defined in Lemma 1. In the figure,
`W = {(x, p) : βW x = p}, `S = {(x, p) : αS +βS x = p}, and `= {(x, p) : β x = p}.

Figure 2.A illustrates the satisfaction of condition (i) of Lemma 1, i.e., the case in which
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P is linear over its support. In Figure 2.A, the union of SuppS and SuppW equals the interval
between 0 and the upper endpoint of the support of P. When (i) of Lemma 1 is satisfied, except
for the non-generic boundary case in which the upper bound of SuppW exactly equals the lower
bound of SuppS, the upper bound of SuppW lies strictly above the lower bound of SuppS, which
implies that a weak contestant’s performance sometimes tops a strong contestant’s. We refer to
any pair of performance distributions, (FS,FW ) in which the upper bound of SuppW lies strictly
above the lower bound of SuppS as challenge configurations and refer to equilibria in which
the performance distributions are challenge configurations as challenge equilibria.

Figure 2.B illustrates the contrasting case in which P satisfies condition (ii) of Lemma 1.
The equilibrium strategy of each type of contestant places all probability weight on one of the
two adjacent intervals. Thus, weak contestants concede to strong contestants and concentrate
their contest ability on beating other weak contestants. We refer to any pair of performance
distributions, (FS,FW ) in which the upper bound of SuppW equals the lower bound of SuppS

as concession configurations, and refer to equilibria in which the performance distributions
are concession configurations as concession equilibria. Concession configurations include all
configurations satisfying condition (ii) of Lemma 1 as well as the non-generic boundary case
in which P is linear over its support (i.e., P satisfies condition (i) of Lemma 1) but the supports
of the two types’ performance distributions are non-overlapping.

2.3 Equilibrium configurations

The question that remains is determining the conditions under which each of these config-
urations can be sustained in equilibrium. We first show that, for each parameterization of the
model, either concession or challenge equilibria exist (but never both). The key to establish-
ing this assertion as well as to identifying the conditions under which a configuration sustains
an equilibrium is provided by considering probability of winning to a weak contestant. First,
consider concession configurations. Let pC

t be the probability of winning for a contestant of
type t ∈ {S,W} in concession configurations. For a given contestant i, let S̃−i

n be the number
of strong rivals to i. Note that S̃−i

n is Binomially distributed with parameters n− 1 and θ , i.e.,
S̃−i

n ∼ Binom(n−1, θ). Because, in concession configurations, weak contestants never outper-
form strong contestants, and contestants of the same type have the same probability of winning,
if contestant i is weak, i has no chance of winning if S̃−i

n ≥ m and has a probability of winning
equal to (m− S̃−i

n )/(n− S̃−i
n ) if S̃−i

n < m.12 Thus,

pC
W = E

[
max

[
0,

m− S̃−i
n

n− S̃−i
n

]]
. (6)

For concession configurations to sustain an equilibrium, it must be that a given weak con-

12Suppose contestant i is weak and a concession configuration is played. If S̃−i
n < m, then after the S̃−i

n strong
rivals all win a place, there are still m− S̃−i

n > 0 places left to be assigned to the n− S̃−i
n weak contestants, including

i. By symmetry, these n− S̃−i
n weak contestants have the same probability of winning. Thus, each of these weak

contestants has a probability of winning equal to (m− S̃−i
n )/(n− S̃−i

n ).
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testant has no incentive to challenge strong contestants. A simple and feasible way for a weak
contestant to challenge strong contestants is to mimic strong contestants’ strategy with prob-
ability µW/µS and choose 0 with probability 1− (µW/µS). Under this “mimicking strategy,” a
weak contestant’s expected performance equals µW

µS
×µS +

(
1− µW

µS

)
×0 = µW and, hence, the

weak type’s contest ability constraint is satisfied. For concession configurations to sustain an
equilibrium, it must be that a weak contestant has no incentive to deviate from a concession
strategy to the prescribed mimicking strategy. This requires that

pC
W ≥

µW

µS
pC

S , (7)

where the right-hand side is the probability of winning for a weak contestant if he deviates to
the prescribed mimicking strategy.13 Note that, in any equilibrium, the expected number of
places filled must equal the selection quota, i.e.,

m = n(θ pS +(1−θ) pW ), (8)

where pt represents a type-t ∈ {S,W} contestant’s equilibrium probability of winning. Thus,
by equations (7) and (8), concession equilibria exist only if

pC
W ≥

m
n

(
1

θr+1−θ

)
, (9)

where r = µS/µW represents the strength asymmetry between strong and weak contestants.
In fact, the right-hand side of (9) is just a weak contestant’s probability of winning in chal-

lenge configurations. To see this, let pG
t be the probability of winning for a contestant of type

t ∈ {S,W} in challenge configurations. Because the probability of winning function, P, is
concave, by Jensen’s inequality, choosing a deterministic performance level equal to contest
ability is always a weakly optimal strategy for each type. Hence, we can evaluate each type’s
probability of winning in challenge configurations simply by evaluating P at the type’s contest
ability. Thus, given that P is linear over its support and meets the origin in challenge configu-
rations, it must be that, in challenge configurations, the ratio between strong and weak types’
probabilities of winning, pG

S/pG
W , equals their strength asymmetry, r = µS/µW , i.e.,

pG
S

pG
W

=
µS

µW
= r. (10)

Equation (10), combined with identity (8), implies that

pG
W =

m
n

(
1

θr+1−θ

)
. (11)

Equations (9) and (11) thus imply that concession equilibria exist only if pC
W ≥ pG

W .
If pC

W < pG
W , only challenge equilibria can exist. In fact, the condition that pC

W < pG
W is

necessary for challenge equilibria to exist. This is because, in challenge equilibria, weak con-
testants not only have a chance of winning by beating weak rivals but also by beating strong

13By deviating, the weak contestant’s probability of winning equals the strong type’s probability of winning in
concession configurations, pC

S , with probability µW/µS, and equals 0 with the complementary probability.
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rivals. Because the necessary condition for the existence of challenge equilibria, pC
W < pG

W , and
the one for the existence of concession equilibria, pC

W ≥ pG
W , are complementary, and because,

as we show in the Online Appendix, an equilibrium always exists, these necessary conditions
are also sufficient conditions. We thus obtain the following proposition.

Proposition 1. Let pt be a type-t ∈ {S,W} contestant’s equilibrium probability of winning.

(a) Concession (challenge) configurations sustain an equilibrium if and only if pC
W ≥ pG

W

(pC
W < pG

W ), where pC
W and pG

W are given by (6) and (11) respectively. (The construc-

tion of equilibrium strategies are given by Lemmas A-3 and A-4 in the Online Appendix.)14

(b) A weak contestant’s equilibrium probability of winning, pW , is given by

pW = max
[

pC
W , pG

W

]
. (12)

(c) A strong contestant’s equilibrium probability of winning, pS, is determined by pW through

equation (8).

Proposition 1 implies that which configuration is played, for a given parameterization of the
model, is determined by weak contestants’ preferences. Through adopting high-risk strategies,
weak contestants are able to sometimes challenge strong contestants for places. However,
because of the contest ability constraint, such challenges require increasing the probability
of low performance, performance that is likely to be topped even by weak rivals. High-risk
strategies can be sustained in equilibrium only when the benefits of such high-risk strategies
outweigh their costs.

The next lemma shows that increasing competition tends to induce weak contestants to
challenge strong contestants, and that weak contestants will challenge strong contestants if the
selection contest is sufficiently competitive.

Lemma 2. Everything else being equal, challenge configurations will be played in equilibrium

if (a) contest size, n, is sufficiently large, or (b) strength asymmetry, r, is sufficiently small (i.e.,

sufficiently close to 1).

If challenge configurations are played in equilibrium, challenge configurations will also be

played in equilibrium if (a) contest size, n, increases, (b) the selection quota, m, decreases, or

(c) strength asymmetry, r, decreases.

Increasing contest size or decreasing the selection quota increases the proportion of rivals
that must be topped to win a place. Both these parameter changes make it less likely that
besting only weak rivals is sufficient for a weak contestant to be selected. This increases weak
contestants’ incentives to challenge strong contestants through high-risk strategies. Reducing
strength asymmetry increases weak contestants’ contest ability relative to strong contestants’,

14The construction is unique for concession but not for challenge equilibria. However, the multiplicity of
challenge equilibria does not affect our welfare analysis, because all of the challenge equilibria produce the same
probability of winning for each type and thus have the same implications for meritocracy.
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making it easier for weak contestants to best strong contestants. This also increases weak
contestants’ incentives to challenge strong contestants.

3 Risk taking and meritocracy
For a fixed contest design—contest size, n and the selection quota, m—the designer’s wel-

fare is determined by the ability (type) of contestants selected. The designer’s welfare function
is meritocratic, i.e., she prefers to select strong contestants and deselect weak contestants. How-
ever, the designer does not know, ex ante, which contestants are strong and which are weak.
Moreover, as we have seen from the results in Section 2, the outcome of the contest may not
perfectly reveal ability. Thus, whether the selection of a contestant of unknown type will in-
crease designer welfare depends on the tradeoff between the increase in welfare that results if
the contestant turns out to be strong versus the decrease in welfare that results if the contestant
turns out to be weak. We incorporate this tradeoff into the analysis with a symmetric linear
specification—we assume that the designer maximizes the expectation of

#Strong Selected Contestants−#Weak Selected Contestants. (13)

Thus, the designer gains one utile by selecting a strong contestant and loses one utile by select-
ing a weak contestant.15

For a given selection quota, m, and contest size, n, let u(m,n) represent the designer’s wel-
fare and let Π(m,n) be a selected contestant’s probability of being strong, which we interpret
as winner quality. Consistent with equation (13), the designer’s welfare, u, is given by

u(m,n) = mΠ(m,n)−m(1−Π(m,n)) = m (2Π(m,n)−1) . (14)

An application of Bayes rule shows that, in the risk-taking contest, the probability that a se-
lected contestant is strong, Π, is given by

Π(m,n) =
θ pS

θ pS +(1−θ)pW
= 1− n

m
(1−θ)pW = 1− n

m
(1−θ)max

[
pC

W , pG
W

]
, (15)

where the second equality follows from equation (8) and the last from (12).
The fundamental question we aim to address is how contestant risk-taking affects the attain-

ment of the meritocratic ideal embodied in the designer’s objective function. Because holding
a contest requires the designer to commit to a fixed number of places, and the realized number
of strong contestants is random, there is always a possibility that some places will be filled by
weak contestants and some strong contestants will not receive a place. Subject to the constraint
imposed by this commitment, the best possible selection strategy for the designer is to prioritize
strong contestants, i.e., select weak contestants to fill the quota only after all strong contestants
have been selected. We term this policy merit-based selection. Designer welfare under merit-

15The assumption of equal gains and losses simplifies the presentation. Extending the analysis by introducing
asymmetry between gains and losses does not result in any qualitative change of our results. This extension is
provided by an earlier version of the paper under the title “Lowering the bar and limiting the field: The effect of
strategic risk-taking on selection contests” and is available from the authors upon request.

13



based selection, represented by uM, will be our benchmark for measuring the welfare effects of
risk taking.

Under concession configurations, weak contestants never outperform strong contestants.
Thus, because places are allocated based on performance ranking, concession equilibria im-
plement merit-based selection. In contrast, under challenge configurations, it is possible for a
weak contestant to best strong contestants and, hence, strong contestants are not always priori-
tized. Given the designer’s meritocratic preferences, this implies that the designer’s welfare in
challenge equilibria is lower than her welfare under merit-based selection. These observations
are formalized below.

Lemma 3. For a given selection quota, m, and contest size, n, the designer’s welfare, u(m,n),

and welfare under merit-based selection, uM(m,n), satisfy the following conditions:

i. if pC
W ≥ pG

W , only concession equilibria exist, and u(m,n) = uM(m,n);

ii. if pC
W < pG

W , only challenge equilibria exist, and u(m,n)< uM(m,n),

where pC
W and pG

W are defined by equations (6) and (11) respectively.

Lemma 3 shows that, for a fixed contest design, the noise generated by strategic risk taking
can lower designer welfare by making contest selection less meritocratic. In the following two
sections, we examine how meritocratic contest designers respond to contestants’ risk taking
when designing contests.

4 Risk taking and contest size
In this section, we consider the effect on designer welfare of varying contest size, n, for a

fixed selection quota, m. Note that the number of strong selected contestants and the number
of weak selected contestants add up to m, which is fixed when m is fixed. Inspection of equa-
tion (13) then shows that, when m is fixed, the designer’s problem is equivalent to maximizing
the expected number of strong selected contestants.

To identify the effect of risk taking, we first examine the effect of varying n under merit-
based selection. Suppose we add a new contestant to the contestant pool. If the added contes-
tant is strong, and if before the contestant’s addition, less than m contestants were strong, the
new contestant will be selected, and the number of strong selected contestants will increase.
Otherwise, i.e., if the new contestant is weak or the selection quota has already been filled
by strong contestants, the number of strong selected contestants will not change. Because the
ability of each contestant is drawn independently, the probability that the pool contains less
than m strong contestants is always positive. Thus, fixing the quota, under merit-based selec-
tion, adding contestants increases the expected number of strong selected contestants and thus
designer welfare.

Now consider the effect of pool expansion in the risk-taking contest. As shown by Lemma 3,
in concession configurations, the designer’s welfare, u, equals her welfare under merit-based
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selection, uM. Given that n ↪→ uM(m,n) is strictly increasing, pool expansion increases the de-
signer’s welfare as long as concession configurations are played. However, by Lemma 2, once
contest size is sufficiently large, challenge configurations will be played. By equations (11) and
(15), in challenge configurations, winner quality satisfies

Π =
θr

θr+1−θ
, (16)

which is independent of contest size. Thus, given that the expected number of strong selected
contestants equals m×Π, equation (16) reveals that, once contest size becomes sufficiently
large such that challenge configurations are triggered, adding further contestants will not in-
crease the expected number of strong selected contestants and, hence, will not increase designer
welfare. This argument yields the following characterization.

Theorem 1. For any fixed selection quota, m, there exists nc, such that the marginal effect of

increasing contest size on designer welfare is positive, i.e., u(m,n+1)> u(m,n), only if n < nc.

Moreover,

i. if n ≥ nc, increasing contest size does not change designer welfare, i.e., u(m,n+ 1) =
u(m,n).

ii. If n > nc, designer welfare in the risk-taking contest is less than designer welfare under

merit-base selection, i.e., u(m,n)< uM(m,n).

The basic implication of Theorem 1 is that risk taking caps the gains from inclusivity. When
making the contestant pool more inclusive is costly because of outreach, advertisement, or
search costs, the optimal contest size under risk-taking contest selection will tend to be smaller
than under merit-based selection. As we will show in Section 6.3, even when increasing contest
size is costless, when the pool of potential new contestants is, on average, of lower quality
than the incumbent candidate pool, the designer may strictly gain from excluding the potential
contestants from the contest. In such cases, the gain from expanding the pool produced by
increasing the expected number of strong candidates is overwhelmed by the cost of increased
risk taking. In contrast, under merit-based selection, the designer always strictly gains from
inclusion because adding contestants increases the expected number of strong candidates.

Thus, in risk-taking contests, even meritocratic designers who are not biased toward spe-
cific candidates have little incentive to expand candidate fields and sometimes will deliberately
restrict consideration to candidates who, ex ante, look promising, even if considering a wider
field is costless.

In contrast, exogenous-noise contest models and all-pay contest models generally predict
winner quality to be increasing in contest size. For example, Ryvkin (2010, Corollary 3.1)
shows that, in selection contests where contestant performance equals ability plus an exogenous
i.i.d. noise, expected winner ability is always increasing in contest size.16 In all-pay contests,

16While Ryvkin (2010) restricts the selection quota to one, his result can be easily extended to the case with an
arbitrary fixed quota.
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where contestant performance equals contestant effort and effort costs depend on contestant
ability, merit-based selection is implemented if contestants are ex ante homogenous with ability
being private information (Moldovanu and Sela, 2001), and is approximately implemented if
contest size is large (Olszewski and Siegel, 2016). Thus, in these all-pay contests, adding
contestants also increases expected winner ability.

5 Risk taking and the selection quota
In this part, we fix contest size, n, and consider the welfare effects of varying the selection

quota, m. Given that n is fixed, we suppress the dependence of the designer’s welfare on n.
Note that, because n is fixed, the expected number of weak contestants is fixed. This implies
that the sum of the expected number of weak selected contestants and the expected number of
weak deselected contestants is fixed. Inspection of (13) then shows that the designer’s problem
is equivalent to maximizing the expectation of

#Strong Selected Contestants+#Weak Deselected Contestants. (17)

Thus, for fixed n, the selection problem is equivalent to the classic task assignment prob-
lem. In this problem, the designer assigns a fixed pool of contestants either to a more desirable
“selection task” or a less desirable “deselection task.” The marginal product of strong (weak)
contestants is higher when performing the selection (deselection) task. For this reason, the
results in this section can either be interpreted as a designer setting the number of places allo-
cated to a fixed pool of contestants or as a designer fixing the performance rank required for
“promotion” to more desirable task.

We first determine the optimal quota under merit-based selection. The number of strong
contestants is Binomially distributed with parameters n and θ . Under merit-based selection, it is
optimal for the designer to set the quota such that the marginal contestant selected (deselected)
is more (less) likely to be strong than to be weak. Thus, given that strong contestants are
prioritized for selection under merit-based selection, it is optimal for the designer to set the
quota, m, such that the m-th highest ability contestant has a probability of being strong no less
than one half and the (m+1)-th highest ability contestant has a probability of being strong no
greater than one half, i.e., it is optimal to set the quota equal to a median of the Binom(n, θ)

distribution.
Binomial distributions have either one or two medians. However, for any fixed n, the

Binom(n, θ) distribution has two medians only for a finite set of θ . Thus, generically, the
Binom(n, θ) distribution has a unique median. In the non-generic case where the Binom(n, θ)

distribution has two medians, these two medians differ by one and are both optimal under
merit-based selection.17 For expositional convenience, in the subsequent analysis, we assume

17In such a non-generic case of merit-based selection, when the quota equals the lower median of the
Binom(n, θ) distribution, the marginal contestant deselected has a probability of being strong equals exactly one
half. In this case, setting the quota to the higher median is equally optimal as setting the quota to the lower median
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that, whenever the designer is indifferent between two quotas, she chooses the larger quota. Let
m∗M be the optimal quota selected by the designer under merit-based selection and call m∗M the
merit-based optimal quota. The next lemma, which characterizes m∗M, is thus straightforward.

Lemma 4. The merit-based optimal quota, m∗M, is given by

m∗M(n,θ) = min{m ∈ {0,1, . . . ,n} : B(m;n,θ)> 1/2},

where B(·;n, θ) denotes the CDF of the Binom(n,θ) distribution. In other words, m∗M equals

the median number of strong contestants (i.e., the median of the Binom(n,θ) distribution) if the

Binom(n,θ) distribution has a unique median, and equals the larger median if the Binom(n,θ)

distribution has two medians.

If the Binom(n,θ) distribution has a median equal to 0 (n), then the merit-based optimal
quota selects none (all) of the contestants. In this case, even in the absence of risk taking,
the contest mechanism does not further the goal of meritocratic selection. The examination of
the effects of risk taking on contests when contests cannot further merit-based selection is not a
very interesting exercise. Thus, in the subsequent analysis, we impose the following restriction:

Assumption 1. The Binom(n,θ) distribution has no median equal to 0 or n.

Now consider the designer’s optimal quota when selection is determined by the risk-taking
contest. Lemma 3 implies that, for any selection quota, the designer’s welfare, u(m), is bounded
above by her welfare under merit-based selection, uM(m), and thus, a fortiori, by her welfare
under optimal merit-based selection, uM(m∗M). When does designer welfare in the risk-taking
contest attain this upper bound, uM(m∗M), and how does contestant risk taking affect the de-
signer’s optimal selection quota? The following proposition answers these questions.

Theorem 2. Let m∗ be the optimal selection quota in the risk-taking contest and let m∗M be the

merit-based optimal quota.

i. Designer welfare in the risk-taking contest equals designer welfare under merit-based se-

lection, i.e., u(m∗) = uM(m∗M), if and only if a concession configuration is played in the

risk-taking contest at m = m∗M; otherwise, designer welfare is lower in the risk-taking con-

test, i.e., u(m∗)< uM(m∗M).

ii. If r ≤ (1−θ)/θ (in which case, challenge configurations will be played at m = m∗M), then

m∗ = 0.

iii. If r > (1−θ)/θ , then (a) if a concession configuration is played at m = m∗M, m∗ = m∗M,

whereas (b) if challenge configurations are played at m=m∗M, m∗≥m∗M and m∗= m̄ or m̄+

1, where m̄ is the largest quota at which challenge configurations are played, i.e.,

m̄ = max
{

m ∈ {m∗M, . . . ,n−1} : pC
W (m)< pG

W (m)
}
, (18)

where pC
W and pG

W are defined by equations (6) and (11) respectively.

under merit-based selection.
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The logic behind Theorem 2 is fairly straightforward. Part (i) asserts that the necessary
and sufficient condition for designer welfare to attain its merit-based upper bound is that a
concession configuration is played at the merit-based optimal quota, m∗M. This follows because,
if challenge configurations are played at m∗M, designer welfare will fall below its merit-based
upper bound either due to the reduction in the correlation between selection and ability caused
by risk taking or due to the designer’s use of a “distorted” quota to accommodate risk taking
(or even both).

Part (ii) shows that, if the strength asymmetry between strong and weak contestants, r, is
smaller than the threshold, (1−θ)/θ , it is optimal to set a zero quota, even though doing so is
not optimal under merit-based selection. This result follows because, when weak contestants
are only marginally weaker than strong contestants, weak contestants will not concede. In this
case, only challenge configurations sustain an equilibrium. Inspection of equation (16) shows
that, when r ≤ (1−θ)/θ , a selected contestant’s probability of being strong under challenge con-
figurations is less than one half. Hence, by (17), each contestant selected lowers the designer’s
welfare. This tends to induce the designer to reduce the quota in an attempt to raise the quality
of selected contestants. However, reducing the quota makes the selection even more compet-
itive and, consequently, challenge configurations will continue to be played. By (16), winner
quality in challenge configurations is independent of the quota, m. Thus, reducing the quota
cannot improve winner quality and it is optimal to set a zero quota, or equivalently not conduct
a selection contest. Thus, selection through risk-taking contests will not be implemented when
the relation between contest ability and ability, measured by r, is sufficiently weak.

Note that the condition in part (ii) highlights a fundamental difference between selection in
risk-taking contests and merit-based selection: the merit-based optimal quota is nonzero when
candidate pool is sufficiently large. In contrast, under contest selection, the condition for setting
a zero quota in part (ii) is independent of n and, for any fixed level of strength asymmetry, is
always satisfied for sufficiently small prior quality of candidates, θ . Thus, part (ii) implies
that, when the designer is faced with a pool of candidates with low average prior quality, the
designer has no incentive to run a competition for selection/assignment regardless of the size of
pool of candidates the designer can tap. Risk taking blocks using selective contests to identify
a few high-ability agents hidden in a large pool of weak candidates.

Part (iii) shows that, if the strength asymmetry, r, is larger than the threshold, (1−θ)/θ , and
if challenge configurations are played at the merit-based optimal quota, m∗M, contestant risk
taking can induce quota inflation, setting quotas greater than the merit-based optimal quota.

When r > (1−θ)/θ , the marginal gain from adding the first quota place to a zero quota is
positive. As long as the selection quota is small enough to sustain a challenge configuration,
the marginal gain from adding another quota place is constant. In this case, when challenge
configurations are played at m∗M, the designer will always inflate the quota up to m̄≥m∗M, where
m̄ denotes the highest quota that supports a challenge configuration.

Whether the designer will inflate the quota even further to m̄+1 depends on a tradeoff spe-
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cific to the parameters of the contest: inflating the quota from m̄ to m̄+1 will result in a con-
cession configuration being sustained. The concession configuration implements merit-based
selection at the quota m̄+ 1 while, because of high-risk challenge strategies played by weak
contestants, selection at m̄ is not merit-based. This risk-mollification effect favors expanding
the quota to m̄+ 1. However, m̄+ 1 exceeds the merit-based optimal quota, m∗M, even more
than m̄. Thus, expanding the quota even further requires filling marginal quota places with con-
testants whose expected quality is even more deficient than under m̄. If the risk-mollification
effect is dominant, then the quota will be inflated further, to m̄+ 1. Otherwise, the quota will
be set at m̄.

In any case, expansion of the quota past m̄+1 is never optimal: expansion to m̄+1 elimi-
nates the adverse selection effects of strategic risk taking and the m̄+1 quota already is inflated
relative to the merit-based optimal quota, m∗M. The following example provides an illustration
of these results.

Example 1. Consider a contest with n = 8 contestants, where ex ante, each contestant’s prob-
ability of being strong equals θ = 1/2. The contest ability of strong contestants is µS = 2 while
the contest ability of weak contestants is µW = 1. Designer welfare under merit-based selection
and under risk-taking contest selection are presented in Table 1.

Consistent with Lemma 4, the merit-based optimal quota, m∗M, equals 4, the median of
the Binom(n = 8,θ = 1/2) distribution. Also note that, if the performance of each contestant
simply equaled contest ability plus an i.i.d. noise, i.e., if risk were exogenous, the optimal
selection quota would also equal 4, provided that the noise term was Normally distributed, or
more generally, satisfied the standard restrictions, i.e., the density of the noise distribution was
symmetric and log-concave (i.e., strongly unimodal). Symmetry and the fact that θ = 1/2 imply
that the gain from increasing the quota from m to m+1 equals the loss from increasing the quota
from n−(m+1) to n−m. The fact that the error law is strongly unimodal implies that designer
welfare is quasi-concave in the quota; thus its optimum over {0,1, . . .8} is also attained at 4,
the merit-based optimal quota. Hence, absent strategic risk taking, in this example, we should
not expect quota inflation.

Now consider the risk-taking contest. Challenge configurations are played for m ≤ m̄ = 5.
In challenge configurations, the odds of a strong versus a weak contestant being selected equal
the strength asymmetry, r = µS/µW = 2 regardless of the size of the quota. Thus, as reported
in Table 1, the marginal gain from increasing the quota is constant when the quota is below
m̄. Although, in the contest, the designer’s welfare is lower than under merit-based selection,
at the merit-based optimal quota, m∗M = 4, the marginal gain from adding a quota place is
higher. This is not too surprising: at m = m∗M, challenge configurations are played, and thus the
noise produced by strategic risk taking reduces the expected winner quality relative to merit-
based selection. Hence, given that selection does not affect the quality of the entire pool of
contestants, the expected loser quality under contest selection is higher than under merit-based
selection, and thus the marginal gain from increasing the quota is larger. Hence, the quota will
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merit-based selection contest selection

E[# Selected] E[# Selected]

m S W welfare, uM Configuration S W welfare, u

1 0.996 0.004 0.992

Challenge

0.667 0.333 0.333
2 1.961 0.039 1.922 1.333 0.667 0.667
3 2.816 0.184 2.632 2.000 1.000 1.000
4 3.453 0.547 2.906 2.667 1.333 1.333
5 3.816 1.184 2.632 3.333 1.667 1.667
6 3.961 2.039 1.922

Concession
3.961 2.039 1.922

7 3.996 3.004 0.992 3.996 3.004 0.992

Table 1: The selection quota, m, and designer welfare in Example 1

be inflated at least until it reaches the highest quota that supports a challenge configuration,
m̄ = 5.

Whether it is optimal to inflate the quota even more, from m = m̄ = 5 to m = m̄+ 1 = 6,
involves a tradeoff between further quota distortion and risk mollification. At m = 5, challenge
configurations are played; at m = 6, a concession configuration is played. The mollification
of risk taking in concession configurations makes selection at m = 6 merit-based. This effect
encourages inflating the quota further to m = 6. However, the m̄ = 5 selection quota already
exceeds the merit-based optimal quota. This implies that the additional place created by further
increasing the quota is very likely to be filled by a weak contestant. In fact, in this example, the
probability that a sixth quota place will be filled by a weak contestant is approximately 85%.18

This effect discourages further inflating the quota.
However, as Table 1 reveals, in this example, the benefit of risk mollification exceeds the

cost of further quota distortion, and increasing the quota from m = m̄ = 5 to m = m̄+ 1 = 6
is optimal. Thus, the meritocratic contest designer is willing to offer a place to a contestant
who is very likely to be unworthy in order to mollify weak contestants’ risk-taking incentives
and thereby, on net, further the goal of meritocratic selection. Further increases of the quota
beyond six are clearly suboptimal because increasing the quota to m = m̄+ 1 = 6 eliminates
the distortions in selection caused by risk taking and further increases in the quota will lead
to marginal quota places being filled by contestants who are even more likely to be weak, and
thus unworthy of selection.

Figure 3 illustrates the relation between the strength asymmetry, r, and the optimal contest
selection quota, m∗, when n = 10 and θ = 0.5. As the figure shows, the optimal quota is highly
inflated for small r. As the strength asymmetry increases, m∗ decreases and eventually con-

18If selection is merit-based, the probability that the sixth contestant selected is weak equals the probability that
the number of strong contestants is less than or equal to five, i.e., B(5;n = 8,θ = 1/2) ≈ 0.85, where B(·;n, θ)
denotes the CDF of the Binom(n,θ) distribution.
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verges to the merit-based optimal quota, m∗M. As the next proposition reveals, the convergence
from above exhibited in Figure 3 is a general property of optimal contest selection quotas.

1 2 3 4 5 6
r0
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2

3

4

mM
* = 5

6

7

8
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Figure 3: Optimal quota in the risk-taking contest, m∗, given strength asymmetry, r, when n = 10 and
θ = 0.5. The merit-based optimal quota, m∗M, equals 5.

Proposition 2. Suppose that r > (1−θ)/θ (otherwise, by Theorem 2, setting a zero quota is opti-

mal). The optimal quota in the risk-taking contest, m∗, is nonincreasing in strength asymmetry,

r, and equal to m∗M, the merit-based optimal quota, for r sufficiently large.

Proposition 2 implies that over-selection will be most pronounced in contests where contest
ability is only weakly related to ability. This case is very likely to occur, as we will show
in Section 6.2, where we endogenize contest ability through costly effort, when the cost of
acquiring contest ability is highly convex.

6 Extensions
In this section, we consider various modifications of our baseline model. These extensions

show that our results are quite robust and also lead to new implications.

6.1 Ex post discretionary selection

In our baseline model, we assumed that the designer commits to fill the quota places by best
performers. Such commitment, however, can be hard to enforce in practice, because contest
performance sometimes depends on complex evaluations that are difficult for outsiders to ver-
ify.19 Thus, an important question to address is whether our game has an equilibrium in which
the designer, even if she is ex post filling the quota at her discretion, has no incentive to fill
the quota with contestants who are not the best performers. The corollary to the next lemma
provides an affirmative answer to this question.

19In contrast, the number of contestants selected is easy to verify in practice, which justifies the assumption that
the designer can commit to her choice of the selection quota.
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Lemma 5. There always exists an equilibrium in which FS and FW satisfy the monotone likeli-
hood ratio property (MLRP), i.e.,

for every x′′ > x′ ≥ 0,
fS(x′′)
fW (x′′)

≥ fS(x′)
fW (x′)

,

where fS and fW denote the density functions for FS and FW , respectively, and we treat fS(x)/fw(x)=

∞ if fW (x) = 0.

Lemma 5 implies that there always exists an equilibrium in which better performance is a
stronger signal of ability. To see this, simply note that, by Bayes rule, a contestant’s probability
of being strong conditional on his performance level x is given by

P[S|x] = θ fS(x)
θ fS(x)+(1−θ) fW (x)

=
θ ( fS(x)/fW (x))

θ ( fS(x)/fW (x))+1−θ
,

which is nondecreasing in performance level x if the MLRP holds. Given that better perfor-
mance more reflects ability, the next result is straightforward.

Corollary 1. Filling the selection quota, m, by the m best performers is a credible commitment.

6.2 Endogenous contest ability

In our baseline model, we assumed that contest ability of each contestant was fixed and
positively related to contestant ability. In this subsection, we endogenize contest ability by
allowing each contestant to acquire contest ability through costly effort. To do so, we assume
that, after the selection quota and contest size are announced to the contestants, the contes-
tants first simultaneously exert effort, which determines their contest ability. We assume that
the effort cost function is a strictly convex power function. Specifically, the cost of choosing
contest ability µ for a type-t ∈ {S,W} contestant is ct(µ) = µα/at , where α > 1 and at is an
ability parameter satisfying 0 < aW < aS. After the contestants acquire their contest ability, the
contestants, without knowing each other’s contest ability, simultaneously choose nonnegative
random performance subject to their contest ability constraints. Selection is still based on the
ranking of realized performance. Without loss of generality, we assume that the reward from
being selected equals 1 and the reward from being deselected equals 0.20 A contestant’s payoff
equals the reward he receives less his effort cost.

The next proposition shows that this modified game has symmetric equilibria in which
contestants of the same type choose the same level of contest ability and play the same perfor-
mance distribution. These equilibria still feature either concession or challenge configurations,
and the conditions for the play of concession/challenge configurations are similar to those in
our baseline model except that now the strength asymmetry, r = µS/µW , is endogenized.

20Assuming that rewards are functions of contest size and/or the selection quota does not change any result
or implication of Proposition 3, as long as the reward from being selected is greater than the reward from being
deselected.
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Proposition 3. Define pC
W as in (6) and define pG

W (r) as in (11) and as a function of strength

asymmetry, r. The modified game in which contest ability is acquired through costly effort has

either concession or challenge equilibria.

i. A concession equilibrium exists if and only if

pC
W ≥ pG

W (r∗), where r∗ =
(

aS

aW

) 1
α−1

. (19)

ii. If pC
W < pG

W (r∗), challenge equilibria exist with endogenous strength asymmetry equal to

r∗ given in equation (19).
iii. Everything else being equal, if challenge configurations are played in a contest with α =

α ′, challenge configurations will also be played in contests with α > α ′.

In concession configurations, a weak contestant’s probability of winning equals pC
W given

by equation (6), which is independent of contest ability. In challenge configurations, a weak
contestant’s probability of winning is given by pG

W (r∗), where r∗, given in equation (19), is the
endogenous strength asymmetry in a challenge configuration.21 Thus, Proposition 3 implies
that which configuration is played, for a given parameterization of our modified game with
endogenous contest ability, is still determined by weak contestants’ preferences. Because r∗

depends neither on contest size, n, nor on the selection quota, m, our previous analysis of how
contest size and the selection quota affect contestant risk taking and how risk taking in turn
affects the design of selection contests is robust to this extension.

Moreover, part (iii) of Proposition 3 leads to a new implication. Note that, α , the power
coefficient of the effort cost function, measures effort cost convexity. Increasing α reduces r∗

given in (19), and the reduction in r∗ increases pG
W (r∗), making it less likely that condition (19)

holds. Thus, consistent with part (iii), increasing effort cost convexity makes it less likely
that weak contestants will concede to strong contestants and, conditional on weak contestants
challenging strong contestants, a reduction in strength asymmetry due to an increase in cost
convexity will further increase weak contestants’ chance of besting strong contestants. Thus,
the performance/ability relation is most noisy if effort costs are highly convex. In this case,
when the prior quality of the contestant pool is not too low (otherwise, by Theorem 2.ii, setting
a zero quota is optimal), to reduce strategic noise, selection contests tend to be highly “clubby,”
featuring limited candidate pools and low selection standards for pool members.22 As is well
known that, in the mutual fund industry, it is hard for fund managers to generate “alpha,” i.e.,
risk-adjusted abnormal returns (Fama and French, 2010), this fact suggests that the cost of
improving mean performance is highly convex for mutual fund managers. Thus, our result
might offer a rational explanation for why retention contests in the mutual fund industry are

21If condition (19) holds, then a concession equilibrium exists. In this concession equilibrium, endogenous
strength asymmetry is different from r∗ but does not enter pC

W .
22If the power coefficient α tends to 1, in which case the cost function lacks convexity, r∗ will tend to infinity

and thus, by equation (11), pG
W (r∗) will tend to 0. In this case, by Proposition 3, weak contestants will always

concede, which makes risk-taking contest selection merit-based.
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highly clubby—only 14% of managers in the lowest performance decile are replaced (Khorana,
1996, Table 4).

6.3 Pool expansion by including less promising candidates

In Section 4, we studied the effect of risk-taking on the optimal size of the contestant pool.
We showed that, if the contestant pool is sufficiently large, adding more contestants who are
as likely to exhibit ability as the contestants in the original pool does not affect the expected
ability of contest winners. Thus, a meritocratic contest designer has no incentive to expand
the contestant pool if the pool is already sufficiently large. The next result shows that, in fact,
expanding a large pool makes selection less meritocratic if the external candidates are less
likely to exhibit ability than the contestants in the original pool.

Proposition 4. Suppose that the designer can only expand the contestant pool by including

external candidates whose prior quality (measured by θ ) is lower than the internal candidates’.

If the contest with only the internal candidates has challenge equilibria, pool expansion strictly

reduces designer welfare in any symmetric equilibrium.23

Proposition 4 implies that, even without any direct cost of pool expansion, as long as the
external candidates are ex ante less promising than internal ones, a meritocratic designer strictly
prefers “limiting the field” only to internal candidates if the internal competition already trig-
gers the play of challenge configurations. Proposition 4 might shed some light on why many
real-world selection contests limit participation by requiring, sometimes in a de facto way,
candidates to have certain qualifications to be eligible for contest participation.

6.4 Scoring caps and risk mitigation

Throughout our earlier analysis, we focused on the problem of a meritocratic designer who
only cares about the effect of risk taking on meritocracy. As we mentioned in the introduction,
risk taking in many selection contests also imposes social costs other than the cost of reduc-
ing meritocracy. Given these unwanted social costs of risk taking, a natural question to ask
is whether it is possible for a meritocratic designer to reduce risk taking without sacrificing
meritocracy. Our answer is affirmative and we propose three mechanisms.

The first is to use a scoring cap. Many real-life contests naturally have a scoring cap, such
as a full score in examinations, that caps the highest performance a contestant can possibly
obtain. Even in cases, e.g., mutual fund tournaments, in which performance is unbounded, a
designer can impose a scoring cap if she can credibly specify that all performance levels no less
than a threshold will be treated the same for the purpose of determining contest winners. Under
this specification, that threshold will effectively be the scoring cap. The second is to limit

23Because, by assumption, the external candidates are ex ante different from the internal candidates, the concept
of symmetric equilibria in such a case refers to equilibria in which all type-t internal candidates play the same
strategy and all type-t external candidates play the same strategy, t ∈ {S,W}.
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contest size when the quota is fixed. The third is to randomly allocate the quota places over an
expanded set of “contest winners” à la Schwartz (2007) when both the quota and contest size
are fixed. For these mechanisms to work, we require certain conditions. Details are provided
by the next proposition.

Proposition 5. Let F = θFS +(1−θ)FW be the equilibrium performance distribution chosen

by a contestant of unknown type. All of the following induce F to undergo a mean-preserving

contraction (i.e., to be larger in the sense of second-order stochastic dominance with a fixed

mean) without changing meritocratic designer welfare (specified by equation (14)):
i. impose a scoring cap x̄ ∈ [µS, x̂), where x̂ represents the upper bound of the support of F

in the contest without the scoring cap (imposing any cap x̄≥ x̂ does not affect F).

ii. For fixed quota, m, reduce contest size from n to n′ < n, provided that the n′-contestant/m-

winner risk-taking contest has challenge equilibria.

iii. For fixed quota, m, and fixed contest size, n, use a “relaxed” selection policy by first

approving m′ > m contestants based on performance ranks and then randomly select m

out of these m′ approved contestants, provided that the n-contestant/m′-winner risk-taking

contest has challenge equilibria.

Part (i) of Proposition 5 implies that imposing a scoring cap no less than strong contestants’
contest ability, µS, has no effect on meritocracy but tends to reduce contestant risk taking.24 As
we show in the proof of Proposition 5, if a scoring cap, no less than µS, is lower than the upper
endpoint of the union of the supports of weak and strong contestants’ performance distributions
chosen in the contest without the cap, imposing such a scoring cap will lead contestants to move
any probability weight originally placed on performance levels above the cap and some weight
below the cap to the cap, thereby reducing performance riskiness.

Parts (ii) and (iii) imply that making highly competitive selection contests less competitive
by either limiting contestant fields or randomly allocating places over an expanded group of
best performers reduces performance riskiness without sacrificing meritocracy, provided that
contests with reduced competitiveness are still fairly selective (such that challenge configu-
rations are still played in less competitive contests). Thus, if performance riskiness per se

causes direct social costs or if fierce competition imposes psychological costs on contestants,
our result implies that, for competitions that are naturally fierce, e.g., competitions for a CEO
position and elite-university admissions, reducing competition by, e.g., running an “in-house”
competition or using a “relaxed” selection policy followed by a lottery process as proposed by
Schwartz (2007), can reduce the side effect of contest selection without sacrificing meritocracy.

7 Conclusion
In this paper, we studied selection contests in which contestants of private types are strate-

gic risk takers. We showed that increasing competition, either by expanding the contestant
24Imposing a scoring cap less than µS will handicap strong contestants and reduce meritocracy.
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pool or reducing the selection quota, increases weak contestants’ tendency to play high-risk
strategies to challenge potential strong contestants, which limits the gains in selected appli-
cant quality produced by intensifying competition. Consequently, even meritocratic designers
have an incentive to limit competition by adopting “clubby” contests, contests that feature
less inclusive contestant pools and over-promotion of marginal candidates. Our model implies
that many seemingly unmeritocratic practices and proposals, in fact, further meritocracy, such
as the use of “Peter Principle” promotion policies in companies and organizations (Peter and
Hull, 1969), the running of “in-house” competition instead of “open competition” for leader
selection, and the advocate of using a “relaxed” selection policy followed by a lottery process
for elite-university admissions (Schwartz, 2007).
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Online Appendix to “Less competition, more meritocracy?:”
Proofs of results
Proof of Lemma 1. In the main text, we provided an informal but intuitive discussion of the
proof of Lemma 1. In what follows, we give a formal proof based on duality theory. The proof
consists of several steps.

Step 1: The first step, which is the key, is to develop an algorithm that can be used to charac-
terize each type’s best reply in a symmetric equilibrium. The algorithm is given in Lemma A-1.
Note that, for every type-t ∈ {S,W} contestant, his problem is to choose a performance distri-
bution, Ft , for his nonnegative random performance, Xt , so as to maximize E[P(Xt)], subject
to the contest ability constraint, i.e., E(Xt) = µt . More conveniently, we can formulate the
problem as one of choosing a performance measure, dFt , to use against P. The performance
measure, dFt , has to satisfy two constraints: (a) it has to be a probability measure and (b) its
expectation equals µt . The solution to this problem coincides with the solution to the following
relaxed problem of choosing a measure dFt supported by [0,∞):

max
dFt≥0

∫
∞

0−
P(x)dFt(x) s.t. (i)

∫
∞

0−
dFt(x)≤ 1 & (ii)

∫
∞

0−
xdFt(x)≤ µt . (PF)

The Lagrangian associated with problem (PF) is given by

L (dFt ,αt ,βt) =
∫

∞

0−
P(x)dFt(x)−αt

(∫
∞

0−
dFt(x)−1

)
−βt

(∫
∞

0−
xdFt(x)−µt

)
, (A-1)

where αt and βt are nonnegative dual variables. Rewrite equation (A-1) as

L (dFt ,αt ,βt) =
∫

∞

0−
[P(x)− (αt +βt x)]dFt(x)+αt +βt µt . (A-2)

Our next result shows the existence of a solution to problem (PF).

Result A-1. Suppose that P is nonnegative, nondecreasing, bounded, and upper semicontin-
uous, with P(µt) < P(∞) (which we will show to be the case in any symmetric equilibrium).
Problem (PF) has a solution and the support of this solution is bounded.

Proof. Define

v∗t = sup
{∫

∞

0−
P(x)dFt(x) :

∫
∞

0−
dFt(x)≤ 1 &

∫
∞

0−
xdFt(x)≤ µt

}
. (A-3)

Because P is bounded and the unit mass constraint, (PF–i), and the contest ability constraint,
(PF–ii), are not mutually exclusive, v∗t clearly exists. The map dFt ↪→

∫
∞

0−P(x)dFt(x) is linear.
The set of nonnegative measures satisfying the contest ability and the unit mass constraints is
convex. Thus, by basic duality theory (Luenberger, 1969, §8.3, Theorem 1), there exist αo

t ≥ 0
and β o

t ≥ 0 such that
sup

dFt≥0
L (dFt ,α

o
t ,β

o
t ) = v∗t .

25 (A-4)

25The other conditions for the existence of the nonnegative dual variables are clearly satisfied as the constraint
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Because P is nondecreasing and P(µt)< P(∞), increased contest ability has value. Hence, the
contest ability constraint cannot be slack, which implies that β o

t > 0. Because P is bounded,
P(∞) exists. Thus, given that αo

t ≥ 0 and P(x) ≤ P(∞) for all x ≥ 0, we must have that, for
all x > x∗ = P(∞)/β o

t , P(x)− (αo
t +β o

t x) < 0. Inspection of equation (A-2) then shows that
placing positive weight on any performance level x > x∗ lowers the Lagrangian, L . Hence,
restricting the probability measure to [0,x∗] will not lower its supremum. Thus,

sup{L (dFt ,α
o
t ,β

o
t ) : dFt ≥ 0}= sup{L (dFt ,α

o
t ,β

o
t ) : dFt ≥ 0 & dFt{(x∗,∞)}= 0}. (A-5)

The set of measures with support in [0,x∗] is compact in the weak topology and P is upper
semicontinuous. Thus, the supremum of the Lagrangian is attained over the restricted set of
measures, i.e., there exists dFo

t such that

L (dFo
t ,α

o
t ,β

o
t ) = sup{L (dFt ,α

o
t ,β

o
t ) : dFt ≥ 0 & dFt{(x∗,∞)}= 0}. (A-6)

Thus, equations (A-3), (A-4), (A-5), (A-6), and basic duality theory (Luenberger, 1969, §8.4,
Theorem 1) imply that dFo

t solves problem (PF).

The next lemma presents the algorithm that can be used to characterize the solution to
problem (PF).

Lemma A-1. Suppose that P satisfies all the conditions in Result A-1. A probability distribution

function, Ft , solving problem (PF) exists. For any such solution, its support is bounded and there

exist dual variables αt ≥ 0 and βt > 0 such that αt and βt satisfy

P(x)≤ αt +βt x ∀ x≥ 0 & dFt{x≥ 0 : P(x)< αt +βt x}= 0, (A-7)

and, if v(P,µt) represents the optimal value of problem (PF),

v(P,µt) = αt +βt µt . (A-8)

Conversely, if a probability distribution, Ft , satisfies (A-7) and makes the contest ability con-

straint, (PF–ii), bind, it is a solution to (PF).

Proof. The dual variables associated with an optimal solution are the solutions to the following
dual problem:

min
αt ,βt≥0

sup
dFt≥0

L (dFt ,αt ,βt), (DF)

where L is given by (A-2). Equation (A-2) implies that the optimal dual variables that solve
(DF) must satisfy

P(x)− (αt +βt x)≤ 0 ∀ x≥ 0, (A-9)

since otherwise supdFt≥0 L (dFt ,αt ,βt) tends to positive infinity. Thus, αt + βt x is an upper
bound for P(x).

space is simply ℜ2 and thus its nonnegative cone has a nonempty interior and the feasible set contains a point
where the contest ability and the unit mass constraints are strictly satisfied.
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When condition (A-9) is satisfied, by (A-2), the value of the dual problem (DF) equals

αt +βt µt ,

which is strictly increasing in both αt and βt . Thus, the nonnegative optimal dual variables must
minimize αt +βt µt subject to condition (A-9). Hence, given that P is upper semicontinuous,
condition (A-9) must be binding for some x ≥ 0, i.e., there exists some point(s) x′ ≥ 0 such
that P(x′)− (αt + βt x′) = 0. Thus, αt + βt x is an upper support line for P. To distinguish
this line from other upper support lines that P might have, we call this line the type-t’s upper

support line. Placing any probability weight on points at which P(x)− (αt +βt x) < 0 lowers
the Lagrangian. Thus, the optimal performance distribution for type-t must place no weight
on such points. Therefore, the optimal performance measure for type-t is always concentrated
on points at which the type-t’s support line, αt +βt x, meets P. Thus, the optimal performance
measure for type-t, dFt , and the associated optimal dual variables, αt and βt , must satisfy (A-7).

Note that the maps dFt ↪→
∫

∞

0− dFt(x) and dFt ↪→
∫

∞

0− xdFt(x) are linear. Thus, the set of non-
negative measures satisfying the unit mass constraint, (PF–i), and the contest ability constraint,
(PF–ii), is convex. Given that the map dFt ↪→

∫
∞

0−P(x)dFt(x) is linear, by basic duality theory
(Luenberger, 1969, §8.6, Theorem 1), strong duality holds. Thus, the primal problem (PF) must
have its optimal value equal to that of the dual problem (DF). Hence, the optimal value of prob-
lem (PF) satisfies equation (A-8). Relaxing the unit mass constraint, (PF–i), by ε > 0 increases
the type-t contestant’s probability of winning by at least ε×P(0)≥ 0. Thus, a solution to prob-
lem (PF) in which the unit mass constraint is satisfied as an equality (i.e., the optimal measure
is a probability measure) always exists and αt , the dual variable associated with the unit mass
constraint, is at least equal to 0. Similarly, since P(µt) < P(∞), the type-t contestant does not
have sufficient contest ability to guarantee the largest possible payoff. Thus, the contest ability
constraint, (PF–ii), must be binding at the optimum and hence, βt > 0.

Step 2: The second step is to argue that

Lemma A-2. In any symmetric equilibrium, the probability of winning function, P, is nonneg-

ative, nondecreasing, bounded, and continuous, with P(µt)< P(∞) = 1 and P(0) = 0.

Proof. First, note that in any symmetric equilibrium, no contestant places any point mass. This
is because, if a contestant of type-to placed point mass on some performance level, say xo,
then by symmetry, all of the contestants of type-to would place point mass on xo. Thus, given
that contestant types are independently drawn from a Bernoulli distribution, there would exist
a positive probability that all of the contestants are of type-to and all of them tie at xo. Then
a type-to contestant would be strictly better off transferring mass away from xo to xo + ε , for
ε > 0 sufficiently small. The transfer’s effect on satisfying the contest ability constraint could
be made arbitrarily small by shrinking ε to zero while, for all positive ε , no matter how small,
the transfer would generate a gain that is bounded below by a positive number, a contradiction.
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Next, given that no contestant places any point mass in any symmetric equilibrium, P must
be continuous and, given that performances are nonnegative, it must be that P(0) = 0.

Finally, the result that P(µt)< 1 follows from the fact that no contestant can ensure winning
in any symmetric equilibrium. The rest is obvious.

Because continuity implies upper semicontinuity, Lemma A-2 implies that, in any sym-
metric equilibrium, P satisfies all the conditions in Lemma A-1. This enables us to apply
Lemma A-1. Lemma A-1 implies that the optimal performance measure for type-t is always
concentrated on points at which the type-t’s upper support line, αt +βt x, meets P. Because P

is continuous, the set of points at which P meets the upper support line must be closed. Thus,
given that supports of distributions are by definition closed, equation (1) must hold.

Define ψ as the concave lower envelope of the two upper support lines, {αt +βt x}t=S,W ,
associated with the two types of contestants, i.e.,

ψ(x) = min[αS +βS x, αW +βW x]. (A-10)

By Lemma A-1 and the definition of the concave lower envelope, ψ , ψ is increasing and

∀ t ∈ {S,W}, αt +βt x≥ ψ(x)≥ P(x). (A-11)

Step 3: The third step in the proof is to establish the following technical result:

Result A-2. Define ψ as in (A-10). In any symmetric equilibrium, for any a > 0, if P is
continuous over [0, a) and if there exists x′ ∈ (0,a) such that P(x′) = ψ(x′), it must be that
P(x) = ψ(x) for all x ∈ [0,x′].

Proof. We prove the result by way of contradiction. Let Z = {x ∈ [0,x′] : P(x) 6= ψ(x)}. Sup-
pose, contrary to the result, that Z 6=∅. Then Z must contain a point, say xo. Let x1 = min{x ∈
(xo,x′] : P(x) = ψ(x)}. Because ψ , given by (A-10), is continuous and because, by hypothesis,
P(x′) = ψ(x′) and P is continuous for x ≤ x′, x1 is well defined. By the definition of x1 and
equation (A-11), P(x)< ψ(x) for all x∈ (xo,x1). Thus, by (A-11), P(x)< αt +βt x, t ∈ {S,W},
for all x ∈ (xo,x1). Hence, by Lemma A-1, no contestant places any weight on (xo,x1). Thus,
P(x) = P(xo) for all x ∈ (xo,x1). Thus, by continuity of P for x≤ x′, P(xo) = P(x1). However,
because ψ , given by (A-10), is increasing, ψ(xo) < ψ(x1). Thus, given that P(xo) ≤ ψ(xo)

and P(xo) = P(x1), we must have P(x1)< ψ(x1), which contradicts the definition of x1. Thus,
Z =∅ and the result follows.

Step 4: The last step is to use Result A-2 to show that

P(x) = min[ψ(x), 1], x≥ 0, (A-12)

which, given (A-10), will imply equation (5). Then Lemma 1 will follow immediately from
equation (5) and the argument between equation (5) and Lemma 1 in the main text.

Thus, to complete the proof Lemma 1, it suffices to show equation (A-12). Let x̂=max{x≥
0 : P(x) = ψ(x)}. Because (i) both P and ψ are continuous, (ii) P is bounded while ψ is un-
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bounded, and (iii) there exists x′ ≥ 0 such that P(x′) = ψ(x′), x̂ must exist. By equation (A-11)
and the definition of x̂, P(x) < αt +βt x, t ∈ {S,W}, for all x > x̂. Thus, by Lemma A-1, no
contestant places any weight over (x̂,∞). Thus, given that no one places point mass in any
symmetric equilibrium, a contestant ensures winning if his performance is no less than x̂, i.e.,
P(x) = 1 for all x≥ x̂. Thus, by the definition of x̂, P(x̂) = ψ(x̂) = 1. Hence, by Result A-2 and
continuity of P, P(x) = ψ(x) for all x ∈ [0, x̂]. Because ψ is increasing, the fact that ψ(x̂) = 1
implies that min[ψ(x), 1] = ψ(x) for x ∈ [0, x̂] and min[ψ(x), 1] = 1 for x≥ x̂. Equation (A-12)
thus follows. This completes the proof of Lemma 1.

Proof of Proposition 1. The “only if” part and each type’s equilibrium payoff are both estab-
lished in the main text.

Below we establish the “if” part by constructing a symmetric equilibrium. Note that the
performance distribution chosen by a contestant of unknown type is given by

F(x) = θFS(x)+(1−θ)FW (x). (A-13)

In any symmetric equilibrium, no one places point mass. Thus, if a contestant has performance
equal to x, his probability of besting any given rival of unknown type equals F(x). To win a
place, the contestant has to best at least (n−m) out of his (n− 1) rivals, whose types are un-
known to him and whose performances are independent. Thus, in any symmetric equilibrium,
a contestant’s probability of winning function, P, has a relation to F given by

P(x) =
n−1

∑
i=n−m

(
n−1

i

)
F(x)i (1−F(x))n−1−i. (A-14)

The next lemma shows the existence of a concession equilibrium when pC
W ≥ pG

W , and gives a
construction of P and Ft , t ∈ {S,W}, in this concession equilibrium.

Lemma A-3. When pC
W ≥ pG

W , there exists a unique concession equilibrium. In this equilib-

rium, the probability of winning function, P, is given by

P(x) =


βW x, x ∈ [0, x̃]

αS +βS x, x ∈ [x̃, x̂]

1, x≥ x̂

, (A-15)
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where βW , x̃, αS, βS, and x̂ are determined by contest parameters as follows:

βW =
pC

W
µW

(A-16)

x̃ =
p̃ µW

pC
W

(A-17)

αS =
p̃
(
µS−

(
pC

S µW/pC
W
))

µS− (p̃µW/pC
W )

(A-18)

βS =
pC

S − p̃
µS− (p̃µW/pC

W )
(A-19)

x̂ =
(1− p̃)µS− (1− pC

S )(p̃µW/pC
W )

pC
S − p̃

(A-20)

with pC
W given by (6), pC

S determined by pC
W through equation (8), and p̃ given by

p̃ =
n−1

∑
i=n−m

(
n−1

i

)
(1−θ)i

θ
n−1−i. (A-21)

The constants, βW , αS, and βS, given by (A-16), (A-18), and (A-19), respectively, satisfy the

following: if pC
W = pG

W , then αS = 0 and βW = βS > 0. If pC
W > pG

W , then αS > 0 and βW >

βS > 0.

Define

φ(y) =
1

βW

n−1

∑
i=n−m

(
n−1

i

)
[(1−θ)y]i [1− (1−θ)y]n−1−i , y ∈ [0,1] (A-22)

ζ (y) =
1
βS

(
n−1

∑
i=n−m

(
n−1

i

)
[1−θ +θ y]i [θ(1− y)]n−1−i−αS

)
, y ∈ [0,1]. (A-23)

φ : [0,1]→ [0, x̃] and ζ : [0,1]→ [x̃, x̂] are both increasing, smooth, and continuous, where x̃ and

x̂ are given by (A-17) and (A-20), respectively. Thus, their inverse functions, φ−1 : [0, x̃]→ [0,1]
and ζ−1 : [x̃, x̂]→ [0,1] exist. In the concession equilibrium, SuppW = [0, x̃] and SuppF = [x̃, x̂],

and over the corresponding support, FW and FS are given by

FW (x) = φ
−1(x), x ∈ [0, x̃]; FS(x) = ζ

−1(x), x ∈ [x̃, x̂]. (A-24)

Proof. The proof consists of several steps.

Step 1: By Lemma 1 and the definition of a concession configuration, P must have the form
given by (A-15) in a concession configuration.

Step 2: Now we show that the five constants, βW , x̃, αS, βS, and x̂, must satisfy equations (A-16)–
(A-20) in a concession configuration. First, continuity of P, combined with (A-15), implies that

βW x̃ = αS +βS x̃ (A-25)

αS +βS x̂ = 1. (A-26)
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Next, by Lemma A-1, in a concession configuration, it must be that pC
t = αt +βt µt , t ∈ {S,W}.

Thus, given that αW = 0, we must have

βW µW = pC
W (A-27)

αS +βS µS = pC
S . (A-28)

Third, by equations (1) and (A-15) and Lemma 1, SuppW = [0, x̃] and SuppS = [x̃, x̂]. Thus,
given that no one places point mass in any symmetric equilibrium, for a given contestant, if
his performance equals x̃, he will outperform all weak rivals but be outperformed by all strong
rivals. Given that each rival is strong with probability θ and rival types are independent, the
given contestant’s probability of winning by having performance equal to x̃ in a concession
configuration equals p̃ given by (A-21). Thus, it must be that P(x̃) = p̃. Because, by (A-15),
P(x̃) = βW x̃, we must have

βW x̃ = p̃. (A-29)

Equations (A-25)–(A-29) imply equations (A-16)–(A-20).

Step 3: Next, we show that the values of βW , αS, and βS, given by (A-16), (A-18), and (A-19),
respectively, satisfy that

pC
W > (=)pG

W =⇒ αS > (=)0 & βW > (=)βS > 0. (A-30)

Note that, pC
S is the probability of winning if a contestant always bests weak rivals and ties

with strong rivals. p̃, given by (A-21), is the probability of winning if a contestant always
bests weak rivals but is always beaten by strong rivals. pC

W is the probability of winning if a
contestant ties with weak rivals and is always beaten by strong rivals. It is thus clear that

pC
S > p̃ > pC

W > 0. (A-31)

Also note that, by identity (8), pC
W > (=)pG

W implies that pC
S < (=)pG

S . Thus, given equa-
tion (10) that pG

W/pG
S = µW/µS, we must have

pC
W > (=) pG

W =⇒ pC
W > (=) pC

S µW/µS. (A-32)

By (A-31), pC
S > p̃. Thus, pC

W ≥ pC
S µW/µS implies that pC

W > p̃ µW/µS. Thus, by (A-32),

pC
W ≥ pG

W =⇒ pC
W > p̃ µW/µS. (A-33)

By (A-16) and (A-19),

βW −βS =
pC

W µS− pC
S µW

µW
(
µS− (p̃µW/pC

W )
) . (A-34)

Suppose pC
W ≥ pG

W . By (A-32), the numerators of the right-hand sides of (A-18) and (A-34)
are both nonnegative and are zero if and only if pC

W = pG
W . By (A-33), the denominators of

the right-hand sides of (A-19), (A-18), and (A-34) are positive. By (A-31), the numerator of
the right-hand side of (A-19) is positive. These facts imply (A-30). (A-30) implies that, if
pC

W ≥ pG
W , then P, constructed in (A-15), is increasing over its support and weakly concave.

Moreover, if pC
W = pG

W , we obtain the boundary case in which P satisfies the linearity condition
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for challenge configurations but weak contestants still concede to strong contestants.

Step 4: The above analysis shows that, when pC
W ≥ pG

W , we can always construct, according to
(A-15), a continuous, piecewise linear, weakly concave P that intersects the origin with βW , x̃,
αS, βS, and x̂ given by equations (A-16)–(A-20), respectively. The final step is to show that FW

and FS, constructed in (A-24), are CDFs that jointly produce such a P and satisfy their contest
ability constraints.

First, note that, by construction, SuppW = [0, x̃] and SuppS = [x̃, x̂]. Thus, by (A-13), F(x) =

(1−θ)FW (x) for x ∈ [0, x̃], while F(x) = 1−θ +θFS(x) for x ∈ [x̃, x̂]. Thus, if P̂ represents the
probability of winning function produced via equation (A-14) by the two CDFs constructed in
(A-24), P̂ satisfies that

P̂(x) =


βW φ ◦FW (x), x ∈ [0, x̃]

αS +βS ζ ◦FS(x), x ∈ [x̃, x̂]

1, x≥ x̂

,

where φ and ζ are given by (A-22) and (A-23), respectively. Because, by construction, FW (x)=

φ−1(x) for x ∈ [0, x̃] and FS(x) = ζ−1(x) for x ∈ [x̃, x̂], it is clear that P̂, jointly produced by FW

and FS given in (A-24), equals the probability of winning function given by (A-15).
Next, we show that FW , constructed in (A-24), satisfies W ’s contest ability constraint. Let

µ̂W be the mean of FW constructed in (A-24). Note that

µ̂W =

∫ x̃

0
xdFW (x) =

∫ 1

0
F−1

W (y)dy =

∫ 1

0
φ(y)dy

=
1

βW

∫ 1

0

n−1

∑
i=n−m

(
n−1

i

)
[(1−θ)y]i [1− (1−θ)y]n−1−i dy, (A-35)

where the third equality follows from the construction of FW in (A-24) and the last from (A-22).
Also note that ∫ 1

0

n−1

∑
i=n−m

(
n−1

i

)
[(1−θ)y]i [1− (1−θ)y]n−1−i dy = pC

W , (A-36)

where pC
W is given by (6). To see why (A-36) holds, note that the left-hand side of (A-36) is

a weak contestant’s probability of winning if he concedes to all strong rivals and both he and
his weak rivals play a uniform performance distribution on [0, 1]. In this hypothetical contest,
this weak contestant has no chance of winning if the number of strong rivals, denoted by S̃−i

n ,
is no less than m. If S̃−i

n < m, given that this weak contestant and all his weak rivals play
the same strategy, after the S̃−i

n strong contestants each win a place, each of the n− S̃−i
n weak

contestants will have the same chance of winning one of the remaining m− S̃−i
n places. Thus, if

S̃−i
n < m, this weak contestant’s probability of winning equals (m− S̃−i

n )/(n− S̃−i
n ). Hence, by

the definition of pC
W given in (6), this weak contestant’s probability of winning simply equals

pC
W . Equations (A-35) and (A-36) imply that µ̂W = pC

W/βW . Thus, by (A-27), we must have
µ̂W = µW and, hence, the construction of FW satisfies W ’s contest ability constraint.
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Finally, to show that FS, constructed in (A-24), satisfies S’s contest ability constraint, we
can follow the argument analogous to the one used above. We thus omit its proof.

Lemma A-3 shows the construction of the concession equilibrium when pC
W ≥ pG

W . Now we
turn to the case in which pC

W < pG
W . In the next lemma and its proof, we construct a challenge

equilibrium when pC
W < pG

W .

Lemma A-4. When pC
W < pG

W , there exist challenge equilibria. All of these challenge equilibria

produce the same probability of winning function, P, given by

P(x) = min
[ m

nµ̄
x, 1
]
, (A-37)

where µ̄ ≡ θ µS +(1−θ)µW is the expected contest ability of a contestant of unknown type.

There exist positive constants, xo, ρW , and ρS, where xo < nµ̄/m and ρW > ρS, and distri-

butions, Fo
W and Fo

S , with Fo
W supported by [0,xo] and Fo

S supported by [xo,nµ̄/m], such that,

in one of these challenge equilibria, each weak contestant plays Fo
W with probability ρW and

plays Fo
S with probability 1−ρW and each strong contestant plays Fo

W with probability ρS and

plays Fo
S with probability 1−ρS (the construction of such a challenge equilibrium is provided

in the proof).

Proof. First, we establish equation (A-37). By Lemma 1, in challenge configurations, P(x) =

min[β x, 1]. Given concavity of P, playing safe by concentrating all mass on µW is a best reply
to P for a weak contestant. Thus, P(µW ) = pG

W , where pG
W is given by (11). Thus, β = m/(nµ̄)

and equation (A-37) follows.
The next step is to find a pair of CDFs, FS and FW , that produce P constructed in (A-37) and

satisfy the specific characterization given in Lemma A-4 and their contest ability constraints
under the condition pC

W < pG
W . The argument next to the following lemma gives such a con-

struction.

Result A-3. For fixed n, m, and θ , define ro ≡ pC
S/pC

W , where pC
W is given by (6) and pC

S is
determined by pC

W via (8) and neither pC
W nor pC

S depends on r. Define pG
W (r) as in (11) and as

a function of r. Then pC
W > (=)(<)pG

W (r) if and only if r > (=)(<)ro.

Proof. By equation (8),

pC
W = pG

W (r) ⇐⇒ pC
S = pG

S (r) ⇐⇒ pC
S/pC

W = pG
S (r)/pG

W (r),

where, by (10), pG
S (r)/pG

W (r) = µS/µW = r. Thus, pC
W = pG

W (r) if and only if pC
S/pC

W = r. The
result then follows from the fact that pC

W is independent of r while pG
W is decreasing in r.

Step 1: Identify the equilibrium performance distributions in the boundary case. Note
that, given µS, µW , and ro ≡ pC

S/pC
W , there uniquely exist µo

S and µo
W such that

θ µ
o
S +(1−θ)µo

W = θ µS +(1−θ)µW ≡ µ̄ (A-38)

µ
o
S/µ

o
W = ro. (A-39)
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By construction and the fact that µW < µS,

r =
µS

µW
< ro =⇒ µ

o
W < µW < µS < µ

o
S . (A-40)

Now let Fo
S and Fo

W be the equilibrium performance distributions played in the case where the
strong and the weak type’s contest abilities equal µo

S and µo
W , respectively. Because, by con-

struction, µo
S/µo

W = ro, and because, by Result A-3, pC
W = pG

W (ro), this case is a boundary case,
in which Fo

S and Fo
W jointly produce a uniform probability of winning function while Fo

S and
Fo

W have adjacent supports and, hence, represent a concession configuration. The construction
of equilibrium in this boundary case follows from Lemma A-3, which shows the construction
of a concession equilibrium. By Lemma A-3, in this boundary case, there exists a unique pair
of CDFs, Fo

S and Fo
W , such that the mean of Fo

S equals µo
S , the mean of Fo

W equals µo
W , the lower

endpoint of the support of Fo
S equals the upper endpoint of the support of Fo

W , denoted by xo,
Fo

S and Fo
W jointly produce a uniform probability of winning function through equations (A-13)

and (A-14), and the upper endpoint of the support of this probability of winning function, given
by (A-20), satisfies

x̂ =
(1− p̃)µo

S − (1− pC
S )(p̃µo

W/pC
W )

pC
S − p̃

.

By (A-39) and the definition of ro, pC
S/pC

W = ro = µo
S/µo

W . We can thus simplify the expression
for x̂ into x̂ = µo

S/pC
S . By the definition of ro, Result A-3, and equation (8), pC

S = pG
S (r

o).
Thus, x̂ = µo

S/pG
S (r

o) = nµ̄/m, where the last equality follows from (8) and (11). Thus, by
construction, the upper endpoint of the support of the probability of winning function produced
by Fo

W and Fo
S equals nµ̄/m. Hence, the probability of winning function produced by Fo

W and
Fo

S equals P given by (A-37).

Step 2: Mix the boundary equilibrium performance distributions. By Result A-3, if pC
W <

pG
W (r), it must be that r < ro. In this case, by (A-40), there must exist ρW ∈ (0,1) and ρS ∈ (0,1)

such that
ρW µ

o
W +(1−ρW )µo

S = µW & ρSµ
o
W +(1−ρS)µ

o
S = µS. (A-41)

Hence,

ρW =
µo

S −µW

µo
S −µo

W
& ρS =

µo
S −µS

µo
S −µo

W
. (A-42)

Equations (A-38) and (A-41) imply that ρW and ρS satisfy that

θρS +(1−θ)ρW = 1−θ . (A-43)

Now we argue that, when pC
W < pG

W (r), there exists a challenge equilibrium in which strong
and weak contestants play as follows:

S-strategy =

Fo
W w. p. ρS

Fo
S w. p. 1−ρS

W-strategy =

Fo
W w. p. ρW

Fo
S w. p. 1−ρW

, (A-44)

where ρW and ρS are given in (A-42). Note that, by (A-41), the prescribed strategies satisfy
each type’s contest ability constraint. Also, by construction, a contestant of unknown type will
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play Fo
W with probability θρS +(1− θ)ρW = 1− θ , where the equality follows from (A-43),

and play Fo
S with the complementary probability, θ . Thus, by construction, the performance

distribution played by a contestant of unknown type equals the one in the boundary case, i.e.,
θFS +(1− θ)FW = θFo

S +(1− θ)Fo
W . Because, by (A-14), the shape of P only depends on

the performance distribution played by a contestant of unknown type, and because θFo
S +(1−

θ)Fo
W produces a uniform P given by (A-37), it must be that θFS +(1− θ)FW also produces

such a uniform P. Thus, the prescribed strategies constitute a challenge equilibrium.

Lemmas A-3 and A-4 establish the “if” part. This completes the proof of the proposition.

Proof of Lemma 2. To establish the first part, note that equation (6) implies that

pC
W = E

[
m− S̃−i

n

n− S̃−i
n

∣∣∣S̃−i
n ≤ m−1

]
P[S̃−i

n ≤ m−1]≤ m
n
P[S̃−i

n ≤ m−1]. (A-45)

Because r = µS/µW > 1, equation (11) implies that

pG
W =

m
n

1
r θ +(1−θ)

>
m
n

1
r
. (A-46)

By Proposition 1, challenge configurations will be played in equilibrium if and only if pG
W >

pC
W . Thus, by (A-45) and (A-46), challenge configurations will be played whenever

P[S̃−i
n ≤ m−1]≤ 1/r. (A-47)

Everything else being equal, P[S̃−i
n ≤ m− 1]→ 0 as n→ ∞, and 1/r→ 1 as r→ 1. Thus, by

(A-47) and by the fact that P[S̃−i
n ≤m−1]< 1, challenge configurations will be played if either

n is sufficiently large or r is sufficiently close to 1. This establishes the first part of the lemma.
To establish the second part, let S̃n ∼ Binom(n,θ). Note that, by (6), we can rewrite pC

W as

pC
W =

n−1

∑
s=0

max
[

0,
m− s
n− s

](
n−1

s

)
θ

s(1−θ)n−1−s

=
1

n(1−θ)

n

∑
s=0

max[0, m− s]
(

n
s

)
θ

s(1−θ)n−s =
1

n(1−θ)
E
[
max

[
0, m− S̃n

]]
, (A-48)

where the second equality follows from the binomial coefficient identity,
(n−1

s

)
= (n−s

n )
(n

s

)
,

and the fact that max[0, m−n] = 0. Thus, by equations (11) and (A-48),

pC
W

pG
W

= E
[

max
[

1− S̃n

m
,0
]] (

rθ +1−θ

1−θ

)
. (A-49)

Equation (A-49) allows us to evaluate the effect of a parameter change on equilibrium con-
figurations. First consider a change of n. Note that s ↪→ max[1− (s/m), 0] is nonincreasing.
Also note that, when n increases, the distribution of S̃n after the increase stochastically dom-
inates the one before the increase. Thus, n ↪→ E

[
max

[
1− S̃n

m ,0
]]

is nonincreasing. Hence,

by equation (A-49), n ↪→ pC
W (n)/pG

W (n) must be nonincreasing. Thus, by Proposition 1, an
increase in n favors the play of challenge configurations.
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Next, consider a change of m. Note that, for any fixed s, m ↪→max[1− (s/m), 0] is nonde-
creasing. Because a change in m does not change the distribution of S̃n, m ↪→E

[
max

[
1− S̃n

m ,0
]]

must be nondecreasing. Hence, by equation (A-49), m ↪→ pC
W (m)/pG

W (m) must be nondecreas-
ing. Thus, by Proposition 1, a decrease in m favors the play of challenge configurations.

Finally, consider a change of r. Because pC
W is independent of r while r ↪→ pG

W (r) is de-
creasing, it is clear that a decrease in r increases pG

W (r) relative to pC
W . Thus, by Proposition 1,

a decrease in r favors the play of challenge configurations.

Proof of Lemma 3. Follows immediately from Proposition 1 and the fact that only concession
equilibria implement merit-based selection.

Proof of Theorem 1. Established by the argument in the main text before Theorem 1.

Proof of Lemma 4. Let S̃n be the random number of strong contestants in a pool of n contes-
tants. Note that S̃n ∼Binom(n,θ). Consider the effect of reducing the quota by one from m+1
to m under merit-based selection. If there are at least m+1 strong contestants in the pool, which
happens with probability P

[
S̃n > m

]
= 1−P

[
S̃n ≤ m

]
, then reducing the quota will lower de-

signer welfare by 1, because, under merit-based selection, a strong contestant would have been
selected had the quota equaled m+ 1. If there are less than m+ 1 strong contestants, which
happens with probability P

[
S̃n ≤ m

]
, lowering the quota will increase designer welfare by σ ,

because, had the quota equaled m+1, the designer would have been forced to fill the (m+1)-th
place with a weak contestant. Thus, the marginal gain from reducing the quota from m+1 to
m is given by

∆(m) = P
[
S̃n ≤ m

]
− (1−P

[
S̃n ≤ m

]
) = 2B(m;n,θ)−1, (A-50)

where the last equality follows from the fact that S̃n ∼ Binom(n,θ).
Thus, when ∆(m)> 0, it is strictly optimal to reduce the quota from m+1 to m. Note that

∆ is increasing in m. Thus, m∗M, defined in Lemma 4, represents the smallest m ≥ 0 at which
∆(m)> 0. Hence, it is strictly optimal to reduce the quota from above m∗M to m∗M and any further
reduction in the quota will not strictly increase designer welfare. In the non-generic case where
∆(m∗M − 1) = 0, both m∗M and m∗M − 1 are optimal under merit-based selection. Because, by
assumption, when the designer is indifferent between two quotas, she chooses the larger quota,
the designer chooses m∗M in the non-generic case. The lemma thus follows.

Proof of Theorem 2. We first prove part (i). Because concession configurations implement
merit-based selection, if a concession configuration is played at m = m∗M, it must be that
u(m∗M) = uM(m∗M). Because u(m) ≤ uM(m∗M), it is then optimal to choose m = m∗M. Thus,
u(m∗) = u(m∗M) = uM(m∗M). This establishes the “if” part. To establish the “only if” part,
suppose that challenge configurations are played at m = m∗M. Then by Lemma 2, challenge
configurations will also be played at m < m∗M. Note that only m∗M and (in the non-generic case)
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also m∗M−1 (see the discussion in the proof of Lemma 4) can be optimal under merit-based se-
lection. Thus, if m∗ equals either m∗M or m∗M−1, given that challenge configurations are played
at m = m∗M and, a fortiori, played at m = m∗M− 1, Lemma 3 implies that u(m∗) < uM(m∗) ≤
uM(m∗M). If m∗ differs from m∗M and m∗M− 1 and, thus, differs from any optimal quota under
merit-based selection, by Lemma 3, it must be that u(m∗)≤ uM(m∗)< uM(m∗M). Thus, in both
cases, u(m∗)< uM(m∗M). This establishes the “only if” part.

Next, we prove part (ii). Note that winner quality, Π(m,n), has the following upper bound:

Π(m,n)≤ 1− n
m
(1−θ)pG

W =
θr

θr+1−θ
,

where the inequality follows from (15) and the equality from (11). Thus, by (14), designer
welfare in the risk-taking contest, u, has the following upper bound:

u(m,n)≤ m
(

2θr
θr+1−θ

−1
)
= m

(
θ r−1+θ

θ r+1−θ

)
. (A-51)

The last expression is nonpositive if r ≤ (1−θ)/θ . Thus, if r ≤ (1−θ)/θ , u(m,n)≤ 0 and, clearly,
this zero upper bound will be attained by choosing m = 0. This establishes part (ii).

Finally, consider part (iii). If a concession configuration is played at m∗M, then by part (i),
which has been proved, it is optimal to choose m = m∗M. Now suppose that challenge config-
urations are played at m = m∗M and that r > (1−θ)/θ . Note that, in challenge configurations,
designer welfare, u, is given by the last expression in (A-51), which, given the hypothesis
that r > (1−θ)/θ , is increasing in m. By Lemma 2, challenge configurations are played at any
0 < m ≤ m̄, where m̄ is the largest quota at which challenge configurations are played. Thus,
choosing m = m̄ strictly dominates choosing m < m̄. By the definition of m̄, a concession
configuration will be played at m > m̄. Concession configurations implement merit-based se-
lection. Thus, by (A-50), the marginal gain from increasing the quota from m > m̄ to m+1 is
1−2B(m;n,θ). By the definition of m∗M given in Lemma 4, 1−2B(m;n,θ)< 0 for m > m∗M.
Thus, given that m̄≥ m∗M, the marginal gain from increasing the quota from m > m̄ to m+1 is
negative. Thus, choosing m= m̄+1 strictly dominates choosing m> m̄+1. Hence, if challenge
configurations are played at m = m∗M and r > (1−θ)/θ , either m = m̄ or m = m̄+ 1 is optimal.
This completes the proof of the theorem.

Proof of Proposition 2. Throughout, we fix n and θ . Thus, the merit-based optimal quota, m∗M,
defined in Lemma 4, is fixed. Let m∗(r) be the optimal contest selection quota conditional on r.
Define m̄(r) as in (18) and as a function of r. Note that m̄(r) represents the largest quota under
which challenge configurations are played. Let u(m,r) be designer welfare under risk-taking
contest selection when the quota is m and the strength asymmetry is r. Let uM(m) be designer
welfare under merit-based selection when the quota is m. Note that uM does not depend on
r. Let pG

W (m,r) be a weak contestant’s probability of winning under challenge configurations,
given by (11), when the quota is m and the strength asymmetry is r. Let pC

W (m) be a weak
contestant’s probability of winning under concession configurations, given by (6), when the
quota is m. Note that pC

W does not depend on r.
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First, we show that m∗(r) = m∗M for r sufficiently large. By Result A-3, for any fixed m,
pC

W ≥ pG
W (r) for r sufficiently large. Thus, by Proposition 1, for r sufficiently large, a concession

configuration will be played at m = m∗M. Thus, by Theorem 2, m∗(r) = m∗M for r sufficiently
large.

Now we prove that m∗ is nonincreasing in r by way of contradiction. Suppose, to the con-
trary, that there exist r′′ > r′ > (1−θ)/θ such that m∗(r′′)> m∗(r′). Then by Theorem 2 and the
hypothesis that r′ > (1−θ)/θ , m∗(r′) ≥ m∗M. Thus, the hypothesis that m∗(r′′) > m∗(r′) implies
that m∗(r′′)> m∗M. Thus, by Theorem 2, it must be that, under r′′, challenge configurations are
played at m = m∗M. Thus, by the definition of m̄, m̄(r′′)≥ m∗M.

Next, note that the definition of m̄ given by (18), combined with the facts that pC
W is in-

dependent of r whereas pG
W is decreasing in r and the hypothesis that r′′ > r′, implies that

m̄(r′) ≥ m̄(r′′). Thus, given that m̄(r′′) ≥ m∗M, it must be that m̄(r′) ≥ m̄(r′′) ≥ m∗M. Thus,
Theorem 2 and the hypotheses that r′′ > r′ > (1−θ)/θ and m∗(r′′)> m∗(r′) imply that

m̄(r′′) = m̄(r′) (A-52)

m∗(r′′) = m̄(r′′)+1 (A-53)

m∗(r′) = m̄(r′). (A-54)

Thus,

u(m̄(r′),r′′)≤ u(m∗(r′′),r′′) = u(m̄(r′′)+1,r′′) = uM(m̄(r′′)+1)

= uM(m̄(r′)+1) = u(m̄(r′)+1,r′)≤ u(m∗(r′),r′) = u(m̄(r′),r′), (A-55)

where in the first line, the inequality follows from the fact that m∗(r′′) is the optimal contest
selection quota when r = r′′, the first equality from (A-53), and the last from the fact that, by the
definition of m̄(r′′), a concession configuration is played under (m = m̄(r′′)+1, r = r′′), which
implements merit-based selection at m= m̄(r′′)+1. In the second line, the first equality follows
from (A-52), the second equality from the fact that, by the definition of m̄(r′), a concession
configuration is played under (m = m̄(r′)+1, r = r′), which implements merit-based selection
at m = m̄(r′)+1, the inequality from the fact that m∗(r′) is the optimal contest selection quota
when r = r′, and the last equality from (A-54).

The first and the last term in (A-55), combined with the inequalities between the two terms,
imply that u(m̄(r′),r′′)≤ u(m̄(r′),r′), which, by (14) and (15), further implies that

max
[

pC
W (m̄(r′)), pG

W (m̄(r′),r′′)
]
≥max

[
pC

W (m̄(r′)), pG
W (m̄(r′),r′)

]
. (A-56)

Equation (11) and the hypothesis that r′′ > r′ imply that pG
W (m̄(r′),r′′) < pG

W (m̄(r′),r′). This
result, combined with (A-56), implies that pC

W (m̄(r′))≥ pG
W (m̄(r′),r′). However, the definition

of m̄(r′) implies that pC
W (m̄(r′))< pG

W (m̄(r′),r′), a contradiction. The proposition then follows.

Proof of Lemma 5. In the challenge equilibrium constructed in Lemma A-4, each contestant
plays Fo

S with some probability and plays Fo
W with the complementary probability, where the
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lower endpoint of the support of Fo
S equals the upper endpoint of the support of Fo

W . Because,
by construction, strong contestants play Fo

W with a lower probability and play Fo
S with a higher

probability compared to weak contestants, the constructed challenge equilibrium clearly satis-
fies the MLRP.

Proof of Corollary 1. Established by the argument in the main text before Corollary 1.

Proof of Proposition 3. In a symmetric equilibrium, at the effort stage, every weak contestant
chooses the same contest ability µW and every strong contestant chooses the same contest
ability µS. Note that, in any symmetric equilibrium, it must be that µW > 0 and µS > 0. This
is because choosing zero contest ability would imply placing point mass on 0. By the same
argument used in the proof of Lemma A-2 for showing the continuity of P and by the fact that
the cost of choosing ε > 0 contest ability can be made arbitrarily small by shrinking ε to zero,
it is clear that placing point mass on 0 cannot be sustained in a symmetric equilibrium.

Given µW > 0 and µS > 0, weak and strong contestants’ performance distributions, FW

and FS, and the probability of winning function, P, at the risk-taking stage are characterized by
Lemmas A-3 and A-4. Let P(·; µW ,µS) be the probability of winning function at the risk-taking
stage when, at the effort stage, weak contestants choose µW and strong contestants choose
µS. By Lemma 1, in any symmetric equilibrium, P is concave.26 Because taking no risk
is a best reply to a concave P, by choosing contest ability µ , a contestant’s probability of
winning is given by P(µ; µW ,µS). In a symmetric equilibrium, it must be that a type-t ∈ {S,W}
contestant’s expected payoff, P(µ; µW ,µS)− (µα/at) is maximized at µ = µt . Because P is
concave while the cost functions are strictly convex and because both P and the cost functions
are continuous, µW and µS are best replies to P(·; µW ,µS) if and only if they satisfy the first-
order conditions:

P′(µW ; µW ,µS) =
αµ

α−1
W

aW
& P′(µS; µW ,µS) =

αµ
α−1
S

aS
. (A-57)

We first argue that, in any symmetric equilibrium, it must be that µS > µW . This is because,
if, to the contrary, µS ≤ µW , the fact that aW < aS would imply that αµ

α−1
W /aw > αµ

α−1
S /aS.

Thus, by (A-57), it would have to be that P′(µW ; µW ,µS) > P′(µS; µW ,µS), which, given con-
cavity of P, could only happen if µW < µS, contradicting the hypothesis that µS ≤ µW .

Next, by Proposition 1, either concession or challenge equilibria exist for any subgame
starting from the risk-taking stage with contestants of the same type having the same contest
ability and with µS > µW > 0. In challenge configurations, by Lemma A-4, P′(x) = m/(nµ̄)

over [0,nµ̄/m], the support of P, where µ̄ = θ µS +(1−θ)µW . Thus, by (A-57), in challenge

26Concavity of P holds even if µS ≤ µW , because if µS < µW , we can simply treat the high-ability type as the
weak type and the low-ability type as the strong type at the risk-taking stage and all the arguments used in the
proof of Lemma 1 apply. If µS = µW , one can treat every contestant as of the same type at the risk-taking stage by
treating either θ = 0 or θ = 1. The proof of Lemma 1 does not rely on the value of θ . Thus, concavity of P still
holds under µS = µW .
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configurations, it must be that

m
nµ̄

=
αµ

α−1
t

at
, t ∈ {S,W}, (A-58)

which implies that

r =
µS

µW
=

(
aS

aW

) 1
α−1

≡ r∗. (A-59)

By Proposition 1, equation (A-59), and the fact that pC
W is independent of r, challenge equilibria

exist only if pC
W < pG

W (r∗).
To show that pC

W < pG
W (r∗) is sufficient for the existence of challenge equilibria, simply note

that, when each type-t ∈ {S,W} contestant chooses µt according to (A-58), in the subgame
starting from the risk-taking stage, µS/µW = r∗. Given that pC

W < pG
W (r∗), by Lemma A-4,

this subgame produces a uniform P with P′ = m/(nµ̄) over the support of P. Thus, the choice
of µt given by (A-58) satisfies the first-order condition, which, by the argument right before
equation (A-57), ensures that the choice of µt given by (A-58) is a best reply to such a uniform
P for any type-t contestant.

Now we show that there are no concession equilibria if pC
W < pG

W (r∗). Suppose, to the
contrary, that a concession equilibrium exists given pC

W < pG
W (r∗). By Lemma A-3, in any

concession equilibrium, the marginal benefit of contest ability is weakly higher for weak con-
testants than for strong contestants, i.e., βW ≥ βS. By the first-order conditions,

αµ
α−1
W

aW
= βW &

αµ
α−1
S

aS
= βS, (A-60)

which implies, given βW ≥ βS, that

r =
µS

µW
=

(
aSβS

aW βW

) 1
α−1

≤
(

aS

aW

) 1
α−1

= r∗. (A-61)

Because r ↪→ pG
W (r) is decreasing, the hypothesis pC

W < pG
W (r∗) and equation (A-61) imply that

pC
W < pG

W (r). Thus, by Proposition 1, at the risk-taking stage, only challenge configurations can
sustain an equilibrium, a contradiction. This contradiction implies that concession equilibria
exist only if pC

W ≥ pG
W (r∗).

Finally, we show that there exists a concession equilibrium if pC
W ≥ pG

W (r∗). Suppose that
pC

W ≥ pG
W (r∗). Define ro as in Result A-3, i.e., ro = pC

S/pC
W . By Proposition 1 and Result A-

3, to show that pC
W ≥ pG

W (r∗) is sufficient for the existence of a concession equilibrium, it
suffices to verify that there exists a pair, (µS, µW ), such that µS/µW ≥ ro and a type-t ∈ {S,W}
contestant’s choice of µt in the effort stage is a best reply to the probability of winning function,
P(·; µW ,µS), produced by µS and µW according to the concession equilibrium construction
given in Lemma A-3.

Note that the optimal dual variables, βW and βS, in concession equilibria are given by
(A-16) and (A-19), respectively. Thus, by (A-60), the choices of µW and µS are best replies to
P(·; µW ,µS) constructed in Lemma A-3 for W and S, respectively, if and only if they satisfy the
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following first-order conditions:

αµ
α−1
W

aW
=

pC
W

µW
(A-62)

αµ
α−1
S

aS
=

pC
S − p̃

µS− (p̃µW/pC
W )

, (A-63)

where pC
W and p̃ are given by (6) and (A-21), respectively, and pC

S is determined by pC
W through

(8).
Now we show that, when pC

W ≥ pG
W (r∗), (µS, µW ) that solves (A-62) and (A-63) satisfies

that µS/µW ≥ ro. Note that the value of µW > 0 that satisfies (A-62) is uniquely given by

µW = µ
′
W ≡

(
aW pC

W
α

) 1
α

> 0. (A-64)

Define

K (µS) =
αµ

α−1
S

aS
−

pC
S − p̃

µS− (p̃µ ′W/pC
W )

. (A-65)

By (A-31), pC
S > p̃. Thus, given that pC

S , pC
W , and p̃ do not depend on µS, µS ↪→K (µS) is

increasing. Note that, when µS = µ ′W ro, where µ ′W is given by (A-64), we have

K (µS = µ
′
W ro) =

α(µ ′W ro)α−1

aS
−

pC
S − p̃

µ ′W ro− (p̃µ ′W/pC
W )

=
pC

W
µ ′W

(
(ro)α−1aW

aS
−

pC
S − p̃

pC
W ro− p̃

)
, (A-66)

where the second line follows from substituting α(µ ′W )α−1 using α(µ ′W )α−1 = aW pC
W/µ ′W im-

plied by (A-62) and collecting the common factor in the resulting expression. By Result A-
3 and the hypothesis that pC

W ≥ pG
W (r∗), we have r∗ ≥ ro. Thus, given that, by definition,

r∗ = (aS/aW)
1

α−1 , we must have
(ro)α−1aW

aS
≤ 1. (A-67)

Because, by definition, ro = pC
S/pC

W , we must also have

pC
S − p̃

pC
W ro− p̃

= 1. (A-68)

Equations (A-66), (A-67), and (A-68) imply that K (µ ′W ro)≤ 0. It is obvious that K (µS)→∞

as µS→ ∞. Thus, given that µS ↪→K (µS) is increasing, there exists a unique µ ′S ≥ µ ′W ro such
that K (µS = µ ′S) = 0. Thus, there exists a pair (µS = µ ′S, µW = µ ′W ) that solves (A-62) and
(A-63) simultaneously and satisfies that µS/µW ≥ ro. The satisfaction of (A-62) and (A-63)
implies that choosing µt = µ ′t is a best reply to P(·; µS = µ ′S,µW = µ ′W ). By Proposition 1
and Result A-3, the fact that µ ′S/µ ′W ≥ ro implies the play of a concession configuration when
µS = µ ′S and µW = µ ′W . Thus, there exists a concession equilibrium if pC

W ≥ pG
W (r∗).

Proof of Proposition 4. Let θ (θ ′) be the probability of being strong for every internal (ex-
ternal) candidate, where θ > θ ′. Consider adding n′ > 0 external candidates to the contest
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with n > m internal candidates. Throughout, suppose that the contest with only the n internal
candidates produces challenge equilibria.

We show that, in any symmetric equilibrium of the expanded contest (“symmetric” in the
sense that every type-t ∈ {S,W} internal candidate plays the same strategy and every type-
t ∈ {S,W} external candidate plays the same strategy), the expanded contest has lower winner
quality than the contest with only the n internal candidates.

Consider the expanded contest. Let p̂t and p̂′t be the equilibrium probability of winning
for a type-t internal candidate and for a type-t external candidate, respectively, in the expanded
contest, t ∈ {S,W}. Because a weak internal candidate always has the option of mimicking a
strong internal candidate’s strategy with probability µW/µS and choosing zero performance with
the complementary probability, it must be that

p̂W ≥
µW

µS
p̂S =

p̂S

r
. (A-69)

Analogously,

p̂′W ≥
µW

µS
p̂′S =

p̂′S
r
. (A-70)

Let Π̂(n,n′) be winner quality in the expanded contest. Note that

Π̂(n,n′) =
nθ p̂S +n′θ ′ p̂′S

nθ p̂S +n′θ ′ p̂′S +n(1−θ)p̂W +n′(1−θ ′)p̂′W

≤
nθ p̂W r+n′θ ′ p̂′W r

nθ p̂W r+n′θ ′ p̂′W r+n(1−θ)p̂W +n′(1−θ ′)p̂′W
, (A-71)

where the first line follows from the fact that winner quality equals the expected number of
strong winners divided by the sum of expected number of strong winners and the expected
number of weak winners, and the second line follows from (A-69), (A-70), and the fact that,
for any fixed b > 0, f (a) = a/(a+b) is increasing in a for a > 0. Let Π(n) be winner quality in
the contest with only the n internal candidates. If the contest with only the internal candidates
has challenge equilibria, Π(n) is given by (16). By (16) and (A-71), for any θ ′< θ and n,n′> 0,

Π̂(n,n′)−Π(n)≤
nθ p̂W r+n′θ ′ p̂′W r

nθ p̂W r+n′θ ′ p̂′W r+n(1−θ)p̂W +n′(1−θ ′)p̂′W
− rθ

rθ +1−θ
=

n′ p̂′W r(
nθ p̂W r+n′θ ′ p̂′W r+n(1−θ)p̂W +n′(1−θ ′)p̂′W

)(
rθ +1−θ

) (θ ′−θ)< 0.

The result then follows immediately from the fact that, fixing m, designer welfare is maximized
by maximizing winner quality.

Proof of Proposition 5. We first prove part (i). Let x̄ ≥ µS be the scoring cap. Let P(·; x̄) be
the probability of winning function under a scoring cap x̄, and let P(·;∞) be the probability of
winning function without any scoring cap. Applying the argument for continuity of P used in
the proof of Lemma A-2 to all x ∈ [0, x̄) establishes the following result:
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Lemma A-5. In any symmetric equilibrium, the probability of winning function, P(·; x̄), inter-

sects the origin and is continuous over [0, x̄), where x̄ represents the scoring cap.

We first argue that imposing the cap x̄ ≥ µS does not affect designer welfare. Note that,
although a discontinuity of P(·; x̄) can occur at x̄, by Lemma A-5 and the fact that P(x; x̄) =

P(x̄; x̄) for all x ≥ x̄, P(·; x̄) is upper semicontinuous. By Result A-1 and the fact that P(·; x̄) is
nondecreasing and bounded, the upper semicontinuity of P(·; x̄) guarantees the existence of a
best reply to P(·; x̄) and makes Lemma A-1 applicable here. By Lemma A-1, equations (1) and
(2) still hold, which implies that

∀ t ∈ {S,W}, Suppt ∈ {x≥ 0 : P(x; x̄) = ψ(x; x̄)} & P(x; x̄)≤ ψ(x; x̄), x≥ 0, (A-72)

where ψ(·; x̄), defined according to (A-10), denotes the concave lower envelope of the upper
support lines, {αt + βt x}t=S,W , when the cap is x̄.27 In this case, still either concession or
challenge configurations are played. W ’s configuration-conditioned payoffs are still given by
equations (6) and (11) and are unaffected by the scoring cap x̄≥ µS. Thus, given that S’s payoff
is determined by W ’s payoff through (8), imposing the cap x̄ > µS does not change any type’s
configuration-conditioned payoff. By the same argument used in the proof of Proposition 1 for
showing that, between concession and challenge, equilibrium configurations are determined by
W ’s preferences, after imposing x̄≥ µS, equilibrium configurations are still determined by W ’s
preferences. Thus, given that each type’s configuration-conditioned payoffs are unaffected by
x̄≥ µS, each type’s equilibrium payoff is unaffected by x̄≥ µS and, hence, designer welfare is
unaffected by x̄≥ µS.

Next, we show that imposing the cap x̄≥ µS reduces risk taking. Note that the optimal dual
variables, αt and βt , t ∈ {S,W}, are constant in x̄ ∈ [µS,∞).28 This is because, as discussed
above, whether weak contestants challenge strong contestants or not is unaffected by the cap
x̄ ∈ [µS,∞). The optimal dual variables in challenge equilibria are given by αW = αS = 0 and
βW = βS = m/(n(θ µS +(1− θ)µW )) (see the argument in the proof of Lemma A-4), which
are unaffected by the cap x̄ ∈ [µS,∞). The optimal dual variables in concession equilibria are
given by equations (A-16), (A-18), and (A-19) and αW = 0 (see the argument in the proof
of Lemma A-3), which are again unaffected by the cap x̄ ∈ [µS,∞). Thus, the optimal dual
variables must be constant in x̄ ∈ [µS,∞).

Then, note that, constant optimal dual variables imply that, for x̄≥ µS,

ψ(x; x̄) = ψ(x;∞), x≥ 0. (A-73)

Thus, when the cap constraint is not binding, i.e., when x̄ ≥ x̂, where x̂ is defined as the upper
bound of the support of F in the contest without the cap, equilibrium distributions are unaf-

27With a scoring cap, tie might occur at the scoring cap. Because we have assumed a symmetric tie-breaking
rule, there are still only two contestant types, distinguished by contest ability but not by the tie-breaking rule.
Thus, there are still only two upper support lines, S-support line and W -support line.

28When x̄ = µS, the optimal dual variables are not unique. However, S’s strategy is unique: S places all the mass
on µS when x̄ = µS. Thus, without loss of generality, we redefine the values of αS and βS when x̄ = µS by their
limiting values when x̄ ↓ µS.
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fected.
Now consider the case in which the cap constraint is binding, i.e., x̄ ∈ [µS, x̂). By the

definition of x̂ and equation (A-12), ψ(x̂;∞) = P(x̂;∞) = 1. Thus, when x̄ ∈ [µS, x̂),

P(x̄; x̄)≤ ψ(x̄; x̄) = ψ(x̄;∞)< ψ(x̂;∞) = 1,

where the first inequality follows from (A-72), the first equality from (A-73), and the second
inequality from the fact that ψ(·;∞) is increasing. The result that P(x̄; x̄) < 1 implies that
contestants cannot ensure winning by having performance equal to the cap. Thus, there must
be point mass on x = x̄ when x̄ ∈ [µS, x̂). Thus, by the random resolution of ties, P(·; x̄) is
discontinuous at x = x̄ when x̄ ∈ [µS, x̂). Moreover, given point mass on x = x̄, (A-72) implies

P(x̄; x̄) = ψ(x̄; x̄), x̄ ∈ [µS, x̂). (A-74)

Given that P is discontinuous at x = x̄ while ψ is increasing and continuous, (A-74) implies

P(x̄−; x̄)< ψ(x̄−; x̄), x̄ ∈ [µS, x̂). (A-75)

Note that P must also meet ψ at some point x′ ∈ (0, x̄), because otherwise, P could only meet
ψ at 0 and at x̄ ≥ µS, which, by Lemma A-1, would imply that weak contestants place point
mass on 0, contradicting Lemma A-5. Thus, given that P meets ψ at some point x′ ∈ (0, x̄) and
given the continuity of P over the interval [0, x̄), Result A-2 and equations (A-73), (A-74), and
(A-75) imply the existence of xo ∈ (0, x̄) such that, when x̄ ∈ [µS, x̂),

P(x; x̄) =


ψ(x;∞) if x ∈ [0, xo]

ψ(xo;∞) if x ∈ [xo, x̄)

ψ(x̄;∞) if x≥ x̄

.

Thus, by the one-to-one relation between P and F , imposing the cap x̄ ∈ [µS, x̂) induces con-
testants to transfer mass over (xo, x̂] to the point mass on x̄, without changing F over [0, xo]

or the mean of F . Thus, it is clear that imposing the cap x̄ ∈ [µS, x̂) induces F to undergo a
mean-preserving contraction. This completes the proof of part (i).

Now we establish part (ii). We first show that designer welfare is unchanged. By Lemma 2,
everything else being equal, if challenge configurations are played under n′, challenge configu-
rations will also be played under n > n′. Winner quality under challenge configurations, given
by (15), is independent of contest size. Thus, given that, fixing m, designer welfare is measured
by winner quality, reducing contest size from n to n′ < n does not affect designer welfare if
challenge configurations are played in the n′-contestant/m-winner contest.

Next, we show the risk-taking result in part (ii). Let Fm:n be the equilibrium performance
distribution played by a contestant of unknown type when n contestants compete for m places.
By equation (A-14) and Lemma A-4, if challenge configurations are played, Fm:n is given, over
its support [0,nµ̄/m], by

n−1

∑
i=n−m

(
n−1

i

)
Fm:n(x)i (1−Fm:n(x))n−1−i =

m
nµ̄

x, (A-76)
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where µ̄ = θ µS +(1− θ)µW . Thus, by Jones (2002), Fm:n in challenge equilibria is a Com-
plementary Beta distribution. Complementary Beta distributions are smooth and have positive
derivatives on the interior of their supports. Thus, the inverse function, F−1

m:n, in challenge
equilibria is smooth and has positive derivatives over the open interval (0,1). Given that Fm:n

and Fm:n′ , n > n′, are two non-identical distributions with the same mean, to show that Fm:n′

is a mean-preserving contraction of Fm:n (or equivalently, Fm:n is a mean-preserving spread of
Fm:n′), it suffices to show that Fm:n and Fm:n′ satisfy a single-crossing condition (Diamond and
Stiglitz, 1974): there exists x′ such that Fm:n(x)−Fm:n′(x)≤ (≥)0 when x≥ (≤)x′. This single-
crossing condition can be equivalently expressed in terms of the quantile functions: there exists
q̂ ∈ (0,1) such that F−1

m:n(q)−F−1
m:n′(q)≥ (≤)0, when q≥ (≤)q̂. Below, we show that F−1

m:n and
F−1

m:n′ satisfy this single-crossing condition.
Note that equation (A-76) implies that

F−1
m:n(q) =

nµ̄

m

n−1

∑
i=n−m

(
n−1

i

)
qi(1−q)n−1−i, q ∈ (0,1). (A-77)

Thus, for q ∈ (0,1),

F−1
m:n(q)−F−1

m:n′(q) =
nµ̄

m

n−1

∑
i=n−m

(
n−1

i

)
qi(1−q)n−1−i

− n′µ̄
m

n′−1

∑
i=n′−m

(
n′−1

i

)
qi(1−q)n′−1−i. (A-78)

Differentiate (A-78) with respect to q, apply the result that (i+ 1)
(n−1

i+1

)
= (n− 1− i)

(n−1
i

)
to

cancel the common terms, and combine the common factors. This yields

d(F−1
m:n(q)−F−1

m:n′(q))
dq

=
µ̄qn′−1−m(1−q)m−1

m
K(q), (A-79)

K(q) = n(n−m)

(
n−1
m−1

)
qn−n′−n′(n′−m)

(
n′−1
m−1

)
.

When q ∈ (0,1), the sign of (A-79) is determined by the sign of K. Note that K(0) < 0,
K(1) > 0, and K is continuous and increasing for q ≥ 0. Thus, there exists q∗ ∈ (0,1) such
that K single crosses the horizontal axis from below at q = q∗. This implies, by (A-79), that
F−1

m:n −F−1
m:n′ is decreasing for q ∈ (0,q∗) and increasing for q ∈ (q∗,1). Because F−1

m:n(0) =
F−1

m:n′(0) = 0, it follows that F−1
m:n(q)−F−1

m:n′(q)< 0 for q ∈ (0,q∗]. This result, together with the
facts that F−1

m:n(1)−F−1
m:n′(1) = (n− n′)µ̄/m > 0 and F−1

m:n−F−1
m:n′ is continuous and increasing

for q ∈ (q∗,1), implies the satisfaction of the single-crossing condition. Thus, Fm:n is a mean-
preserving spread of Fm:n′ , i.e., Fm:n′ is a mean-preserving contraction of Fm:n .

Part (iii) can be proved in a similar manner. To see that designer welfare is unchanged by
the “relaxed” policy, note that, by Lemma 2, everything else being equal, if challenge configu-
rations are played under m′, challenge configurations will also be played under m < m′. Thus,
by (15), winner quality is unaffected by the relaxed policy. Because the assignment of the m

places over the m′ best performers under the relaxed policy is random, the average quality of
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the m selected contestants under the relaxed policy will be the same as the average quality of
the m winners in the original contest. Thus, given that contest size and the selection quota are
both fixed, designer welfare is unaffected by the adoption of the relaxed policy if challenge
configurations are played in the n-contestant/m′-winner contest.

To establish the risk-taking result in part (iii), note that, as just discussed, the play of chal-
lenge configurations under m′ implies the play of challenge configurations under m < m′. Thus,
Fm,n and Fm′,n both satisfy equation (A-76). Thus, by (A-77),

F−1
m:n(q)−F−1

m′:n(q) =
nµ̄

m

n−1

∑
i=n−m

(
n−1

i

)
qi(1−q)n−1−i

− nµ̄

m′
n−1

∑
i=n−m′

(
n−1

i

)
qi(1−q)n−1−i. (A-80)

Differentiate (A-80) with respect to q, apply the result that (i+ 1)
(n−1

i+1

)
= (n− 1− i)

(n−1
i

)
to

cancel the common terms, and combine the common factors. This yields

d(F−1
m:n(q)−F−1

m′:n(q))
dq

= nµ̄qn−1−m′(1−q)m−1 J(q), (A-81)

J(q) =
n−m

m

(
n−1
n−m

)
qm′−m− n−m′

m′

(
n−1
n−m′

)
(1−q)m′−m.

When q∈ (0,1), the sign of (A-81) is determined by the sign of J. Note that J(0)< 0, J(1)> 0,
and J is continuous and increasing for q∈ [0,1]. Thus, there exists qo ∈ (0,1) such that J single
crosses the horizontal axis from below at q= qo. This result implies, by (A-81), that F−1

m:n−F−1
m′:n

is decreasing for q ∈ (0,qo) and increasing for q ∈ (qo,1). Because F−1
m:n(0) = F−1

m′:n(0) = 0, it
follows that F−1

m:n(q)− F−1
m′:n(q) < 0 for q ∈ (0,qo]. This result, together with the facts that

F−1
m:n(1)−F−1

m′:n(1) = nµ̄((1/m)− (1/m′)) > 0 and F−1
m:n −F−1

m′:n is continuous and increasing
for q ∈ (qo,1), implies the satisfaction of the single-crossing condition. Thus, Fm:n is a mean-
preserving spread of Fm′:n, i.e., Fm′:n is a mean-preserving contraction of Fm:n. This establishes
part (iii) and completes the proof of Proposition 5.
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