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Abstract 

 

We investigate the apparent paradox of persistent fee differentials for exchange traded funds (ETFs) 

that track the same index, where counterintuitively more expensive ETFs often attract more 

investment. We show that this apparent paradox arises due to liquidity clienteles—investors with 

short holding horizons are attracted to the most liquid ETFs, thereby making them more liquid, and 

allowing the ETF issuers to charge a higher fee in equilibrium. Long horizon investors are more 

sensitive to the fee and therefore hold low-fee ETFs, which in turn are less liquid due to lower 

investor turnover. Liquidity clienteles also explain key features of ETFs competition, including the 

first-mover advantage and the ability for incumbent ETFs to maintain higher fees. We exploit the 

unique laboratory created by competing ETFs to measure the value of market liquidity to investors. 
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1. Introduction 

Can two identical baskets of securities trade at different prices? The law of one price says 

they should not, and yet there are many cases of exchange traded funds (ETFs) that replicate the 

same index, but charge different fees (management expense ratios, MERs). Moreover, the fee 

differentials are persistent, do not decrease through time or with competition, and in fact the higher 

fee ETF is often the one with more assets under management.  So, what is it that investors are 

paying for when they choose higher cost ETFs that track the same basket of securities as a 

competitor? This paper shows that the answer is liquidity. What is more, we also show that the 

liquidity clienteles that give rise to the apparent violation of the law of one price are also 

instrumental to understanding the process by which ETFs compete and the equilibrium that is 

observed in this rapidly expanding market. 

To illustrate the central points of this paper, consider the MERs of the three ETFs that track 

the S&P 500 index: State Street’s SPY charges 9.4 basis points (bps) per annum, while Black 

Rock’s IVV and Vanguard’s VOO charge only 4 bps. Despite its fee being more than twice that of 

its competitors, the SPY is the largest of these ETFs by assets under management and there are no 

signs of the SPY’s dominance declining in favor of its cheaper alternatives. We observe a similar 

situation in most same-index ETFs, where highly liquid first movers charge higher management 

fees compared to their cheaper competitors. What differentiates the relatively expensive ETFs like 

SPY from their competitors is the sheer amount of readily accessible liquidity.1 SPY not only has 

more assets under management, but also higher turnover, leading to much greater daily traded 

volume.  

If faced with a choice of multiple ETFs on the same index, which of these ETFs would an 

investor choose? Intuitively, and as we show formally, it depends on investment horizon. For short 

horizon investors (generally referred to in this paper as “high-turnover investors”), it’s optimal to 

choose a more liquid ETF, even if it means paying a higher MER. Because high-turnover investors 

trade in and out of positions frequently, trading costs rather than MER costs constitute a higher 

proportion of their ETF holding fees, on an annualized basis. Therefore, high-turnover investors — 

typically institutions using ETFs for short-term tactical portfolio allocations — constitute a natural 

clientele of the highly liquid high-fee ETFs like SPY, which gives those ETFs greater secondary 

market turnover and reinforces their higher level of liquidity. At the other end of the spectrum, long 

term investors —for example, retail investors using ETFs as buy-and-hold vehicles — will not be 

                                                           
1 Interestingly, despite higher MERs, SPY does not offer better performance in terms of tracking error: in 

fact, the opposite is the case. In case of SPY, that adds to the performance drag, resulting in IVV beating 

SPY by 0.48% over 10 years. 
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too concerned about liquidity because they will rarely trade, but will pay great attention to the fee 

differential as this is an important source of performance drag. 

In effect, the “liquidity begetting liquidity” effect generated by the large and relatively 

short-horizon investor base allows SPY’s issuers to extract a rent from the liquidity externalities. 

Liquidity externalities create a strong first-mover advantage and lead to less than perfectly 

competitive fee setting. The value of market liquidity to an investor is integral to the nature of 

competition among ETFs and the equilibrium in this market.  

We develop a simple theoretical model to formalize the intuition in the above example and 

characterize the interplay between ETF fees, their liquidity, and investor clienteles. We also provide 

an empirical analysis of these relations, showing the above example is by no means an isolated case 

and liquidity and clienteles play an important role in how same-index ETFs compete. Our main 

contribution is in characterizing the important role played by liquidity in the ETF market: showing 

how it shapes competition between ETFs, drives fee setting in Nash equilibrium, and explains 

persistent fee differentials. From an investor’s perspective, the Nash equilibrium has similarities 

with a prisoner’s dilemma: while it would be optimal for all investors as a group to switch to a 

cheaper ETF, an individual liquidity-sensitive investor is worse off by switching, as he incurs the 

costs of illiquidity. Thus, our model helps resolve the apparent paradox of same-index ETFs 

charging vastly different MERs.  

We test the model empirically and find that consistent with the model, higher MERs in 

ETFs tracking a given index tend to be associated with more liquidity: higher dollar volume and 

narrower relative bid-ask spreads. We also find evidence of the clientele effect. Higher-MER ETFs 

tend to have higher turnover (traded dollar volume divided by market capitalization), suggesting a 

clientele skewed towards shorter-horizon investors. This finding is in line with the industry view 

that that high ETF turnover is mainly due to institutions trading large short-term positions, for 

example, for short-term tactical allocation, hedging, or rebalancing. The common feature of these 

institutional traders is that they require substantial liquidity and trade in and out of their ETF 

positions frequently. Retail traders, on the other hand, use ETFs as an investment vehicle and 

therefore have longer holding horizons (Balchunas, 2016).  

Our model also explains why new ETF launches, even if based on the same underlying 

index, do not necessarily prompt incumbents to lower their fees. For example, Box, Davis, and 

Fuller (2017) study the effects of new ETF introductions on the incumbent ETF’s liquidity and 

MERs. They find that MERs of the incumbent do not decrease as a result of greater competition. 

We offer the liquidity explanation for this phenomenon and show why liquidity externalities 
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prevent investors from switching to lower-MER competitors, thus allowing the incumbent ETF 

issuers to keep their MERs high.   

Another contribution is that the model characterizes the conditions under which multiple 

ETFs per index are likely to emerge: namely, high proportion of high-turnover investors and 

significant differences in the holding horizons between the high-turnover and low-turnover 

clienteles (suggesting the high-MER issuer finds it more profitable to keep MERs high and serve 

solely the high-turnover clientele instead of lowering MERs to capture both the high-turnover and 

the low-turnover investors), as well as substantial combined AUM allocated to a given index, and 

relatively low fixed costs of issuers (suggesting issuers operate with significant economies of scale, 

which allows the competing low-liquidity ETF to charge .low enough MERs to attract the low-

turnover clientele).  

 Our findings help explain the striking concentration of liquidity in a handful of major 

funds: 50% of ETF dollar volume is concentrated in the first 15 ETFs (out of the total of almost 

2000 ETFs listed in the US). This oligopoly-like concentration of dollar volumes persists despite 

no shortage of newcomers: a new ETF is being launched on average every trading day?2 By 

zooming in on indices with multiple ETFs, we capture almost half of all equity ETF dollar volumes, 

and just as our model suggests, those are the ETFs that attract significant institutional trading (i.e., 

high proportion of high-turnover investors), track major benchmark indices like S&P500 or Russell 

2000, have substantial combined AUM allocated to them, and are held by highly heterogenous 

investors: on one side of the spectrum — the short-term traders (e.g., for hedging purposes or 

tactical positions), and on the other — the long-term buy-and-hold investors (e.g., for gaining broad 

market exposure at low cost).  

Finally, we exploit unique features of the ETF market to provide novel measures of how 

investors value market liquidity. The standard approach in the asset pricing literature is very 

indirect and involves trying to infer the premium associated with illiquidity by measuring average 

asset returns for securities with different liquidity. In contrast, for competing same-index ETFs we 

can directly observe the fee differentials and relate them to underlying liquidity to measure how 

many basis points of return investors at the margin are willing to forgo for a given amount of 

additional liquidity. We find that investors are willing to pay 1.15% higher MERs in exchange for 

1% higher dollar volumes (relative to a competing fund tracking the same index). In terms of 

trading costs, the average ETF investor pays 0.51 bps higher MER for each 1 bps of narrower 

spreads. This generates welfare transfers worth $780 million annually, which can be interpreted as 

                                                           
2 According to ETF.com, there were 118 ETF launches in the first half of 2018 (January 1 – June 26), 271 

launches in the year 2017, 247 in 2016, 284 in 2015, and 202 in 2014.  



5 

 

investors’ payments for accessing superior liquidity provided by high-MER ETFs. The magnitude 

of this payment for liquidity represents 0.096% of the $815 billion of assets under management 

invested in indices with multiple ETFs.  

To put our findings in a broader context, it’s worth noting that ETFs have become an 

increasingly popular investment vehicle: in terms of money invested globally, they are set to cross 

a $5 trillion mark in 2018. In the year 2017 alone, ETFs saw $460 billion of new inflows, which 

amounts to $1.8 billion inflows on an average working day.3 While ETFs are still a relatively small 

portion of all US assets by value, comprising just over 10% of $30tn US equity market 

capitalization, they account for over 30% of dollar volume traded. Seven out of ten most actively 

traded US securities in 2017 were ETFs rather than stocks (Financial Times, 2017). SPY alone is 

responsible for around one third of ETF traded dollar volume. It is also the most frequently traded 

security in the world, trading over 20 times a second. It is therefore important to understand the 

drivers of investors’ and issuers’ behavior in this rapidly growing market. 

This paper contributes to several strands of literature. The first is the growing body of 

studies on ETFs (Madhavan, 2016), which are part of broader fund management literature. The 

second is the liquidity clientele literature pioneered by Amihud and Mendelson (1986) and followed 

by liquidity-adjusted asset pricing papers. The third is the market fragmentation literature studying 

network externalities when multiple trading venues compete for order flow, and traders behave 

strategically according to the Nash equilibrium dynamics. 

The ETF literature has mostly focused on various effects of ETFs. For example, a number 

of studies investigate how ETFs affect market fragility by propagating market-wide demand shocks 

(Malamud, 2015; Ben-David, Franzoni, Moussawi, 2014; Krause, Ehsani, and Lien, 2014; Chinco 

and Fos, 2017; Bhatcharya and O’Hara, 2017). Multiple studies also explore the effects of ETFs 

on individual securities: Dannhauser (2016), Madhavan (2016), Lettau and Madhavan (2018), 

Madhavan and Sobczyk (2016), Glosten, Nallareddy, and Zou (2016), Wermers and Xue (2015), 

Marshall, Nguyen and Visaltanachoi (2013), and Li and Zhu (2016) argue that ETFs improve price 

discovery in the underlying securities. On the other hand, Hamm (2014), Da and Shive (2018), 

Israeli, Lee and Sridharan (2017) and Agarwal, Hanuona, Moussawi, and Stahel (2018) find that 

ETFs may harm informational efficiency in underlying securities through incorporating market-

wide news rather than idiosyncratic news, and by causing their constituents to experience higher 

trading costs.  

                                                           
3 Financial Times, 2018. 
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Little attention has been paid to how ETFs compete and why there is a considerable 

heterogeneity in the ETF investor base, which is what our paper brings to this literature. The 

existing ETF studies suggest that the high level of market liquidity offered by ETFs is one of their 

most attractive features compared to unlisted funds (Madhavan, 2016). Furthermore, industry 

practitioners point out that “Many institutional investors won’t touch an ETF with volume less than 

$100 million a day or that isn’t the most liquid ETF in the category” (Balchunas, 2016). Our paper 

recognizes that ETF investors value their liquidity and takes this notion one step further to show 

that liquidity also affects fee setting and competition between ETFs. In highlighting the dominance 

of institutional traders in the most liquid ETFs, our paper is consistent with Huang, O’Hara and 

Zhong (2018), Li and Zhu (2016), Easley, Michayluk, O’Hara, and Putnins (2018), and Xu, Yin, 

and Zhao (2018). However, unlike the above papers, we do not zoom in on specific institutional 

uses of ETFs (e.g., hedging industry-specific risk, circumventing short sale constraints or 

employing market timing strategies), but rather highlight how investor heterogeneity (i.e., the 

difference in holding horizons between institutional and retail investors) gives rise to liquidity 

clienteles and allows the most liquid ETFs to charge higher fees in equilibrium. 

In the broader context of mutual funds literature, our paper is related to studies on how 

mutual funds compete and set fees. The seminal paper of Berk and Green (2004) that has shaped 

the thinking on this issue shows that in equilibrium mutual funds set fees such that the after-cost 

returns faced by investors are equalized across funds. Variation in fund manager ability to generate 

alpha drives variation in the fees across funds, with highly skilled managers being able to charge 

higher fees and capture more of the alpha generated. We show that competition between ETFs is 

quite different in two important regards. First, there is no attempt to generate alpha among standard 

index tracking ETFs, so the key driver of fee differences in mutual funds does not apply to ETFs. 

At the same time, secondary market liquidity, which does not play a role in competition between 

unlisted mutual funds is instrumental in the equilibrium for ETFs. Therefore, although both listed 

and unlisted funds are mutual investment vehicles, they operate and compete in rather different 

ways.  

The competition strategies among the passive funds are particularly interesting in the light 

of recent developments in the competitive landscape. In July and August 2018, two big fund 

managers announced slashing their fees to zero: Fidelity did so for two of their index funds’ MERs, 

and Vanguard for their brokerage platform fees, allowing investors to trade ETFs for free4. Just as 

                                                           
4 See the news releases for Vanguard here https://www.cnbc.com/2018/07/02/vanguard-slashing-costs-on-

nearly-all-etfs-even-rival-schwab.html , and for Fidelity here https://www.businessinsider.com/ap-fidelity-

slashes-fees-as-funds-battle-for-investors-2018-8/?r=AU&IR=T 
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our model predicts, passive fund issuers can choose to compete at either extreme: by setting fees 

close to zero while being relatively illiquid (as is the case for Fidelity’s index funds), or by charging 

above-zero MERs while being highly liquid (as is the case for Vanguard’s ETFs that you can trade 

at zero cost).  

We also contribute to the liquidity clientele literature that originates from the seminal study 

by Amihud and Mendelson (1986) and relates market liquidity to asset pricing. Amihud and 

Mendelson (1986) show that long-horizon investors can earn higher returns by holding less liquid 

stocks, while short-horizon investors are willing to sacrifice some returns in more liquid stocks for 

the benefit of immediate execution. A similar mechanism is at play in our model and drives the 

clientele effect whereby short-horizon investors hold highly liquid high fee ETFs and long-horizon 

investors hold less liquid low fee ETFs. However, our model differs in several important regards. 

Liquidity in our model is endogenous and a function of investor choices, whereas in Amihud and 

Mendelson the bid-ask spread is exogenously given. Importantly in our model, ETF issuers are 

aware of the liquidity/fee tradeoffs that investors face and set fees accordingly to capture particular 

clienteles.  Thus, our model includes strategic clientele capture. 

A number of empirical studies document the inverse cross-sectional relation between asset 

returns liquidity, after controlling for risk (Brennan and Subrahmanyam,1996; Amihud, 2002), 

while subsequent literature shows that investors demand compensation for liquidity risk 

(Hasbrouck and Seppi, 2001; Chordia, Roll, and Subrahmanyam, 2000; Huberman and Halka, 

2001). We differ from these studies in taking a more direct approach of inferring liquidity premia 

from MERs of ETFs following identical underlying portfolios. In that respect, our approach is more 

similar to the bond market papers comparing yield differentials between different instruments of 

similar coupon and maturity (Amihud and Mendelson, 1991; Krishnamurthy, 2002; Longstaff, 

Mithal, and Neis, 2005; Subrahmanyam, Jankowitsch, and Friewald, 2012).5 However, in case of 

OTC-traded instruments like bonds, CDS, swaps etc., liquidity is scarce and search costs are high, 

hence investors sacrifice yield to avoid extreme illiquidity (Duffie, Garleanu  and Pedersen, 2005), 

while in case of ETFs investors are on the opposite side of the liquidity spectrum: they accept higher 

MER to access extremely liquid securities.  

The common thread between these studies and ours is that liquidity differentials can in fact 

explain the apparent law of one price violations. While many papers point to limits to arbitrage as 

one of the major explanations for why such violations can persist (e.g., Shleifer and Vishny 1997), 

our results imply another driver can be differences in market liquidity. Differences in liquidity can 

                                                           
 
5 See Holden, Jacobsen, and Subrahmanyam (2014) for a more detailed literature review on liquidity premia.  
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lead to apparent violations of LOOP not simply because illiquidity creates limits to arbitrage, but 

rather because investors value liquidity. Therefore, two assets with identical cash flows can have 

persistently different prices if they have different liquidity. This tendency is what drives the fee 

differentials among competing ETFs. Consequently, the LOOP principle could be expanded to a 

broader concept of liquidity-adjusted LOOP (LALOOP). 

Third, at a broad level, our model is based on the classic microeconomic models of non-

cooperating agents, with the resulting Nash equilibrium (Nash, 1951). What differentiates our 

model from many other settings that have been modelled is that the investors (“consumers”) care 

not only about fees (“prices”) but also a second dimension, that being liquidity. What makes our 

setting interesting is that liquidity differs from static product features in that it is endogenous. Fee 

setting by ETF issuers affects investor choices, which affects liquidity, which then effects fee 

setting, and so forth. Our model is therefore closest in spirit to microeconomic models of 

competition for goods that have network externalities (e.g., Katz and Shapiro, 1985; 

Economides,1996), which in our case are liquidity externalities. However, our model differs from 

standard network externalities models by having clienteles form due to heterogeneity in investment 

horizons, which is an important and realistic feature.  

Finally, our paper is indirectly related to the vast literature on fragmentation of trading 

across competing trading venues. There are certain parallels between the fragmentation of investors 

across different ETFs and fragmentation of trading volumes across multiple exchanges.6  For 

example, trading venues compete on speed, fees, and fee structures, which leads to clientele effects 

in fragmented markets (Faucault, Kadan and Kandel, 2005; Yao and Ye, 2018). Similar to Faucault 

et al. (2005), we model the high-turnover (impatient) ETF traders behaving strategically in 

choosing the cost-minimizing ETF (trading venue). However, the trading venue liquidity, unlike 

ETF liquidity, is not driven by investors’ holding horizons. Hence, the nature of first mover 

advantage in the ETF market is different: while exchanges accumulate liquidity simply by the virtue 

of being the first mover, ETFs accumulate liquidity by attracting the high-turnover investors. In 

other words, sufficient investor heterogeneity is a necessary condition for separating equilibria 

among ETFs based on the same index, which is not the case for competition among trading venues. 

Another parallel is with the models of fragmented trading, in which multiple equilibria are 

possible, depending on transaction costs and the traders’ conjectures about trading volumes in 

different venues (Pagano, 1989). In a similar manner, we show that ETFs compete on liquidity and 

fees to attract investors with different holding horizons, but we take the model a step further by 

                                                           
6 See Gomber, Sagade, Theissem, Weber, and Westheide (2017) for a more detailed review of consolidation 

vs competition literature.   
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introducing holding horizon heterogeneity. The fragmentation literature also investigates the 

welfare effects of competition. For example, Mendelson (1987) models the trade-off between 

market thinness in case of fragmentation  and high order communication costs in case of 

consolidation, while Baldauf and Mollner (2016) model the trade-off between benefits from lower 

bid-ask spreads and the costs from cross-venue arbitrage, Colliard and Faucault (2012) suggest that 

competition is beneficial due to lower trading fees, and Pagnotta and Philippon (2011) argue that 

product differentiation benefits heterogenous investors, which is in line with our proposition about 

the clientele effect in the ETF market.  

 

2. Theory model of ETF competition 

2.1. Baseline model structure 

Consider a simple oligopolistic market, with two competing ETFs based on the same index 

(as in Stackelberg, 1934). Profit-maximizing ETF issuers A and B choose their management fees 

to maximize profits, taking into account the strategy of the competing ETF issuer. Issuer A gets to 

choose his clientele first and charges the management fee (as a percentage of assets under 

management, AUM) 𝑓𝐴 while B charges the management fee 𝑓𝐵.7 Both issuers face the same annual 

costs 𝑓𝑓𝑖𝑥, which cover payments to the index provider and the administrative costs of running the 

fund. The total investments (AUM) in the given ETF index is 𝑋, with ETF A having 𝑥𝐴 share of 

the AUM (in %), and ETF B having 𝑥𝐵 share (in %). 

ETF issuers A and B face the following profit maximization problems, which involve 

choosing the fee that maximizes their profits (𝜋𝐴  and 𝜋𝐵, respectively): 

max
𝑓𝐴
(𝜋𝐴) = 𝑚𝑎𝑥{𝑋𝑥𝐴𝑓𝐴 − 𝑓𝑓𝑖𝑥}                                               (1) 

max
𝑓𝐵
(𝜋𝐵) = 𝑚𝑎𝑥{𝑋𝑥𝐵𝑓𝐵 − 𝑓𝑓𝑖𝑥}                                               (2) 

In this model, ETF issuers behave as Stackelberg (1934) duopolists: to arrive at equilibrium 

fees, they follow a sequential game and set their prices (fees) recognizing competitor’s optimal 

response. In our model, A is a market leader in that he is the one with a more liquid ETF. However, 

we depart from the classic Stackelberg model in that investors care not only about fees (MERs), 

but also about liquidity of an ETF. Both dimensions — fees and liquidity — are endogenous: 

                                                           
7 We show in Appendix 2 that 𝑓𝐴 > 𝑓𝐵, as ETF A is more liquid and as a first mover gets to choose his 

clientele (high-turnover investors, who have lower sensitivity to MER). In reality, index issuers can sign 

exclusivity agreements with ETF issuers, essentially guaranteeing the embargo period during which the index 

won’t be licensed to competing issuers. So monopolistic fee setting by the first issuer is a realistic feature of 

the model, and allows the first mover to cement the liquidity advantage before the competitor arrives.  
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issuers’ fees affect investors’ choice of ETFs, which in turn affect liquidity of ETFs, which again 

affects fee setting and so on.  

There are two types of investors in this ETF index — high-turnover investors (with holding 

horizon ℎ𝐹, measured in years on fractions of a year) and low-turnover ones (with holding horizon 

ℎ𝑆 > ℎ𝐹). The proportion of high-turnover investors is 𝑤𝐹, the proportion of low-turnover is 𝑤𝑆, 

and each investor can choose one ETF only: either A or B. The average trading frequency of high-

turnover investors is 𝜆𝐹 =
1

ℎ𝐹
 — the number of times per year that high-turnover investors exit their 

ETF positions8, and the average trading frequency of low-turnover investors is 𝜆𝑆 =
1

ℎ𝑆
. A marginal 

high-turnover (low-turnover) investor’s time until transaction (inter-arrival time) is therefore 𝐻𝐹 =

1

𝑤𝐹𝜆𝐹
=

ℎ𝐹

𝑤𝐹
 (𝐻𝑆 =

1

𝑤𝑆𝜆𝑆
=

ℎ𝑆

𝑤𝑆
 for low-turnover).9 

ETF investors trade though market makers, who set the bid-ask spread to recover the costs 

of liquidity provision. According to classic market microstructure models, the three main costs that 

market makers recover through the bid-ask spread are fixed order processing costs (e.g., admin 

costs), adverse selection costs and inventory costs (De Jong and Rindi, 2009). Adverse selection 

costs approach zero in the ETF market, given that the prices of constituent securities are readily 

available for market makers, which minimizes the risk of trading at stale quotes. Therefore, we 

argue that fixed costs and inventory costs are the most relevant costs of liquidity provision in the 

ETF market. We model these costs as a function of the inter-arrival time of investors: 𝐶𝐿𝐼𝑄 = 𝑐𝐻, 

where 𝑐 is a constant order processing cost, and 𝐻 is the inter-arrival time. The rationale behind 

behind this functional form is that (i) fixed costs per trade are reduced when trades occur more 

frequently, and (ii) inventory holding risks are reduced when trade arrivals are more frequent.    The 

proposed functional form is in line with Garman (1976), Ho and Stall (1980, 1981, 1983) and 

Amihud and Mendelson (1986), as well as Foucault, Kadan, and Kandel (2005) and Rosu (2009). 

The liquidity cost decreasing in trading activity is also consistent with the empirical evidence in 

Amihud and Mendelson (1986) and McInish and Wood (1992). 

An individual investor 𝑖 that considers a single investment in an ETF 𝑗 involving buying 

the ETF, holding the ETF, then selling the ETF faces two types of costs: 

                                                           
8 Investors’ arrival intensity is modelled as a Poisson process with parameter 𝜆𝐹 for high-turnover investors, 

and 𝜆𝑆 for the low-turnover.  
9 Accounting for the fact that there are two sides to the transaction would scale the inter-arrival time by 2 

(assuming balanced order flow), as an average high-turnover buyer would face the arrival intensity of high-

turnover sellers equal to 0.5𝜆𝐹 . We do not model this explicitly, as in subsequent steps multiplying by a 

constant does not materially alter the model results. 
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(i) 𝐶𝑀𝐸𝑅𝑖𝑗 = 𝑓𝑗ℎ𝑖  , the annual fee charged by the ETF 𝑗 that he selects (the ETF’s MER).10 

(ii) 𝐶𝐿𝐼𝑄𝑖𝑗 = 𝑐𝐻𝑖𝑗, a round-trip trading cost charged by the market maker, that is linear in 

the expected waiting time until a trade counterparty arrives, 𝐻𝑖𝑗, is similar to Foucault, 

Kadan, and Kandel (2005) and Rosu (2009).  

Investors arrive to the market knowing their holding horizon (ℎ𝑖) and the round-trip 

transaction cost (𝑐𝐻𝑖𝑗), hence they choose between two ETFs, A or B, to minimize their overall 

cost of the investing in the ETF market, 𝐶𝑇𝑂𝑇𝐴𝐿𝑖𝑗 = 𝐶𝐿𝐼𝑄𝑖𝑗 + 𝐶𝑀𝐸𝑅𝑖𝑗 = 𝑐𝐻𝑖𝑗 + 𝑓𝑗ℎ𝑖. ETF investors 

are competitive, and each is a small proportion of their respective group, hence individual investor’s 

decision does not have a material effect on the proportion of high-turnover vs low-turnover 

investors. 

 

2.2. Nash equilibrium for investors 

Suppose high-turnover investors choose ETF A and low-turnover investors choose ETF B. 

Then, they incur the following total costs:  

𝐶𝑇𝑂𝑇𝐴𝐿
𝐹 = 𝑓𝐴ℎ𝐹 +

𝑐ℎ𝐹

𝑤𝐹
                                                                 (3) 

𝐶𝑇𝑂𝑇𝐴𝐿
𝑆 = 𝑓𝐵ℎ𝑆 +

𝑐ℎ𝑆

𝑤𝑆
                                                                 (4) 

To identify the conditions under which this choice of ETFs is an equilibrium (a separating 

equilibrium as the two investor groups hold different ETFs), consider an investor’s standpoint. If 

an individual high-turnover investor decided to deviate from this strategy and instead invest in ETF 

B, then he would incur total costs equal to 𝐶𝑇𝑂𝑇𝐴𝐿
𝐹∗ = 𝑓𝐵ℎ𝐹 +

𝑐ℎ𝑆

𝑤𝑆
. Note that the MER portion of his 

costs 𝐶𝑀𝐸𝑅
𝐹∗ = 𝑓𝐵ℎ𝐹 is driven by the fees in ETF B and this investor’s holding period is ℎ𝐹. The 

liquidity portion of his costs 𝐶𝐿𝐼𝑄
𝐹∗ =

𝑐ℎ𝑠

𝑤𝑠
 is driven by the time it takes for the trading counterparty 

to arrive. Because ETF B market is dominated by low-turnover investors, the inter-arrival time is 

ℎ𝑆

𝑤𝑆
. An individual high-turnover investor will not have an incentive to deviate from the strategy of 

choosing ETF A, if his total cost of investing in A is lower than o choosing B: 

𝑓𝐴ℎ𝐹 +
𝑐ℎ𝐹

𝑤𝐹
< 𝑓𝐵ℎ𝐹 +

𝑐ℎ𝑆

𝑤𝑆
                                                           (5) 

Following the same logic, if an individual low-turnover investor chose to deviate from the 

strategy of investing in B, and invest in A instead, then his costs would be 𝐶𝑇𝑂𝑇𝐴𝐿
𝑆∗ = 𝑓𝐴ℎ𝑆 +

𝑐ℎ𝐹

𝑤𝐹
. 

                                                           
10 Note that 𝑗 can take two values: A or B, and 𝑖 can take two values: high-turnover or low-turnover.  
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A low-turnover investor will choose not to deviate from the original strategy of investing in B, if 

his total cost of investing in B is lower than that of investing in A: 

𝑓𝐵ℎ𝑆 +
𝑐ℎ𝑆

𝑤𝑆
< 𝑓𝐴ℎ𝑆 +

𝑐ℎ𝐹

𝑤𝐹
                                                          (6) 

The inequalities (5) and (6) jointly determine the condition under which we obtain a 

separating Nash equilibrium (with the high-turnover investing in A, and the low-turnover in B), in 

which no investor wants to deviate from the chosen strategy: 

𝑐

1−𝑤𝐹
−

𝑐ℎ𝐹

𝑤𝐹ℎ𝑆
< 𝑓𝐴 − 𝑓𝐵 < 

𝑐ℎ𝑆
(1−𝑤𝐹)ℎ𝐹

−
𝑐

𝑤𝐹
                                 (7) 

Condition (7) suggests that the separating equilibrium is stable (i.e., no investor has an 

incentive to deviate from the chosen strategy), if the fee differential between ETFs A and B is 

bounded from both sides. If the fee differential is too small (i.e., below ∆𝑚𝑖𝑛=
𝑐

1−𝑤𝐹
−

𝑐ℎ𝐹

𝑤𝐹ℎ𝑆
 ), the 

low-turnover investors switch to the more expensive ETF (i.e., the MER discount in the low-

liquidity ETF B becomes small enough to make MER saving too low for the low-turnover investor 

and incentivize him to switch to the high-MER ETF A, which offers lower liquidity costs). If the 

fee differential is too large (i.e., above ∆𝑚𝑎𝑥=
𝑐ℎ𝑆

(1−𝑤𝐹)ℎ𝐹
−

𝑐

𝑤𝐹
), the high-turnover investors switch 

to the less liquid ETF (i.e., the MER premium is too high for them to justify the liquidity advantage). 

Condition (7) also guarantees that ETF A held by the high-turnover is more liquid than ETF B held 

by the low-turnover. In other words, the cost of liquidity in A is lower than that in B. The full 

derivation is provided in Appendix 1. 

 

2.3. Nash equilibrium for ETF issuers 

As in classic duopoly models (Stackelberg, 1934), issuers A and B act independently and 

sequentially, and optimize their strategy given the competitor’s optimal strategy. The issuers are 

aware of investors’ optimum choice (i.e., that the high-turnover invest in A, and the low-turnover  

in B, if A is more liquid than B and fees are within the acceptable range), and take into account 

investors’ cost sensitivity when setting their fees (i.e., setting the fee so that the fee differential 

satisfies inequality (3) derived above: ∆𝑚𝑖𝑛< 𝑓𝐴 − 𝑓𝐵 < ∆𝑚𝑎𝑥  ). The fee setting is summarized in 

Figure 1. 

<Fig. 1 here> 

As shown in Appendix 2, a separating equilibrium emerges when issuer B charges the fee 

just at the margin of 𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛 (where 𝑓0 is B’s breakeven fee), and A charges the fee just 

at the margin of 𝑓0 + ∆𝑚𝑎𝑥. For this equilibrium to be stable, it must hold that A’s profit from the 

high-turnover clientele is higher than the potential profits from both high-turnover and low-
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turnover clienteles at a lower fee. Formally, the following inequality must hold for A to find it 

suboptimal to deviate from the chosen strategy: 

𝑓0 + ∆𝑚𝑖𝑛< 𝑤𝐹(𝑓0 + ∆𝑚𝑎𝑥)                                                      (8) 

Consider what happens if either issuer chooses to deviate from the conjectured strategy. 

Suppose A lowers his fee below 𝑓𝐴 = 𝑓0 + ∆𝑚𝑎𝑥 to get both clienteles. Then, B responds by 

lowering his fee to maintain the ∆𝑚𝑖𝑛 difference between his fee and A’s, and keep the low-turnover 

clientele. This would result in the race to the bottom dynamics, whereas A can keep lowering his 

fee down to 𝑓𝐴 = 𝑓0 + ∆𝑚𝑖𝑛, at which point he achieves a market share of 100% and competes B 

out of business. For A not to be interested in this scenario, A’s profit from the high-turnover 

clientele at a higher fee must be greater than the profit from both clienteles at a lower fee: 𝑓0 +

∆𝑚𝑖𝑛< 𝑤𝐹(𝑓0 + ∆𝑚𝑎𝑥), which is outlined in condition (8) above. 

Suppose A increases his fee, charging up to  𝑓𝐴 = 𝑓0 + 2∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛 without losing the 

high-turnover clientele, and earning a higher profit. However, at this fee level of A, B can reduce 

his fee by a marginally small amount and attract both the high-turnover and the low-turnover 

clienteles, which would prompt A to lower his fee, resulting in sequential lowering of fees by both 

issuers until they reach an equilibrium : either at  𝑓𝐴 = 𝑓0 + ∆𝑚𝑎𝑥 and 𝑓𝐵 = 𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛, or 

at 𝑓𝐴 = 𝑓0 + ∆𝑚𝑖𝑛 and 𝑓𝐵 = 𝑓0 (with the second case essentially competing B out of business and 

A achieving 100% market share).  

Hence, it is not optimal for A to either increase or decrease his fee relative to the 

conjectured strategy. Now, consider whether B has an incentive to change his fee.  

Suppose B lowers his fee below 𝑓𝐵 = 𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛. That would result in lower 

profits for B, which is not optimal. If B increases his fee, that decreases the fee differential below 

∆𝑚𝑖𝑛, so B loses the low-turnover clientele to A. Hence, it is not optimal for B to either increase or 

decrease his fee relative to the conjectured strategy. The full derivation is provided in Appendix 2. 

 

2.4. Conditions for the separating equilibrium and testable hypotheses 

The separating equilibrium occurs when both investors’ and issuers’ conditions are 

satisfied. Recall from inequality (7) and Appendix 1 that the high-turnover investors will choose 

ETF A, and the low-turnover ETF B, if A is more liquid than B, and the fee differential between 

the two is neither too large (not to give the high-turnover an incentive to switch to the lower-MER 

ETF B), nor too small (not to give the low-turnover an incentive to switch to the more liquid ETF 

A). ETF issuers recognize this and set their fees so that to cater to their respective clienteles (i.e., 

A caters to the high-turnover investors, and B to the low-turnover). However, issuer A only allows 

this to happen, if his profits from catering to the high-turnover investors are greater than his 
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potential profits from catering to both the high-turnover and the low-turnover at lower MERs. 

Combining investors’ and issuers’ conditions that must hold in separating equilibrium11: 

{
  𝐿𝐼𝑄𝐴 > 𝐿𝐼𝑄𝐵                          

𝑓0 + ∆𝑚𝑖𝑛< 𝑤𝐹(𝑓0 + ∆𝑚𝑎𝑥) 
   

 
                                           (9) 

The second condition can be expressed as a function of liquidity differential ∆𝐿𝐼𝑄 =

𝐿𝐼𝑄𝐴 − 𝐿𝐼𝑄𝐵 : 

𝑓𝑓𝑖𝑥

𝑋
 + ∆𝐿𝐼𝑄 (

1

ℎ𝑆
−
𝑤𝐹

ℎ𝐹
) < 0                                                     (10) 

Recognizing that ∆𝐿𝐼𝑄 > 0, inequality (10) implies that the proportion of high-turnover 

investors (𝑤𝐹) must be greater than the homogeneity parameter (ℎ𝐹𝑆)12, for issuer A to find it 

profitable to cater to only the high-turnover clientele instead of starting the price war trying to 

capture both the high-turnover and the low-turnover13: 

𝑤𝐹 > ℎ𝐹𝑆                                                                                  (11) 

Solving the system of inequalities in (9) provides a set of restrictions on model parameters 

that guarantee the separating equilibrium. Given that there are factors beyond the model that might 

affect whether or not the separating equilibrium is achieved, characterizing the strength of forces 

driving the system into the separating equilibrium is worthwhile. Therefore, we proceed to outline 

the conditions for separating equilibrium as 𝑦 > 0, where 𝑦 is the propensity for separating 

equilibrium, re-expressed from inequality (10): 

𝑦 = 𝑤𝐹
2(𝑓𝑓𝑖𝑥ℎ𝐹𝑆 + 𝑐𝑋ℎ𝐹𝑆 + 𝑐𝑋) − 𝑤𝐹ℎ𝐹𝑆(𝑓𝑓𝑖𝑥 + 2𝑐𝑋 + 𝑐𝑋ℎ𝐹𝑆) + 𝑐ℎ𝐹𝑆

2 𝑋                  (12) 

The separating equilibrium is achieved for the model parameters that allow for 𝑦 > 0, and 

adhere to the restriction 𝑤𝐹 > ℎ𝐹𝑆. In appendix 4, we show mathematically how this function 

behaves when parameter values change. Below, we provide the intuition and resulting hypotheses: 

 

Hypothesis 1: The separating equilibrium is more likely when the proportion of high-

turnover ETF investors in a given index is higher. 

 

                                                           
11 Denoting ETF A’s liquidity as 𝐿𝐼𝑄𝐴 = −𝐶𝐿𝐼𝑄

𝐴  and ETF B’s liquidity 𝐿𝐼𝑄𝐵 = −𝐶𝐿𝐼𝑄
𝐵 . 

12 Note that ℎ𝐹𝑆 =
ℎ𝐹

ℎ𝑆
. 

13 Note that inequality (11) is more restrictive than investors’ condition on liquidities (𝐿𝐼𝑄𝐴 > 𝐿𝐼𝑄𝐵 → 𝑤𝐹 >
ℎ𝐹𝑆

1+ℎ𝐹𝑆
). Hence, 𝑤𝐹 > ℎ𝐹𝑆 restriction is driven by the competitive dynamics of the issuers that requires 

sufficiently high proportion of high-turnover investors with sufficiently short holding horizons (relative to 

the low-turnover) to enable A not to lower his fees.  
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Hypothesis 2: The separating equilibrium is more likely when ETF investors’ holding 

horizons in a given index are less homogenous. 

 

Intuitively, the separating equilibrium is more likely when the proportion of high-turnover 

investors is large (hence making it more attractive for issuer A to settle for the high-turnover 

clientele instead of starting the price war trying to capture both the high-turnover and the low-

turnover). The separating equilibrium is also more likely when investors are highly dissimilar in 

their holding horizons (i.e., high heterogeneity, or low homogeneity parameter ℎ𝐹𝑆), because in 

that case, high-turnover investors are even more likely to accept high MERs charged by issuer A, 

while the low-turnover are even less likely, hence making it more attractive for issuer A to keep 

only the high-turnover clientele and charge them high MERs. We provide the full derivation in 

Appendix 3.  

Hypotheses 3 and 4 characterize the separating equilibrium with respect to the fixed costs 

(𝑓𝑓𝑖𝑥) and AUM (𝑋) parameters.  

 

Hypothesis 3: The separating equilibrium is more likely when the ETF issuers’ fixed costs 

in a given index are lower. 

 

Hypothesis 4: The separating equilibrium is more likely when the combined AUM of all 

ETFs in a given index is higher. 

 

Separating equilibrium is more likely when issuers’ fixed costs are low. The fixed costs 

essentially cover payments to the index provider and overheads, hence unsubstantial costs make 

the barriers to entry lower, which in our model translates into the breakeven fee that is low enough 

for the low-MER ETF to be able compete with the incumbent.  

A similar mechanism is at play when the combined assets under management of the two 

ETFs are high, as this allows for economies of scale that make the breakeven MER sufficiently low 

for ETF A to be able to compete with B. To provide further intuition for how parameter values 

affect separating equilibrium, we provide plots with respect to various model parameters in Figure 

2. 

<Fig. 2 here> 

Figure 2 plots the system of inequalities (9) as a plain that characterizes the forces for 

separating equilibrium in a three-dimensional space. The 𝑦 dimension can be interpreted as how 
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strong the forces for separating equilibrium are for each of the plotted parameter combinations on 

𝑥 and 𝑧  axes, keeping the other two parameters constant.14 The plots provide useful intuition to 

complement the formal model. For example, Panel A shows that the force for separating 

equilibrium is stronger for higher values of 𝑤𝐹 parameter and lower values of ℎ𝐹𝑆parameter. This 

suggests that indices that have a high proportion of high-turnover investors with highly dissimilar 

holding horizons are more likely to end up in separating equilibrium, keeping other factors 

constant.15 Note that we fix the other two parameters — combined AUM and fixed costs — at 

levels actually observed for an average index in separating equilibrium, hence values of 𝑦 are above 

zero for most of parameter combinations of ℎ𝐹𝑆 and 𝑤𝐹, except the most disadvantageous — low 

𝑤𝐹 and high ℎ𝐹𝑆. So the way to interpret the 𝑦 dimension on Panel A plot is by asking the following 

question: given the other conditions for separating equilibrium are satisfied, which combinations 

of  ℎ𝐹𝑆 and 𝑤𝐹 parameters are more likely to result in separating equilibrium for a given index? 

Panels B through E of Figure 2 provide a similar intuition with respect to other parameters. 

Panel B suggests that higher values of combined AUM per index (𝑋) and higher proportion of high-

turnover investors (𝑤𝐹) are more likely to satisfy the conditions for separating equilibrium, keeping 

other parameters constant. Panel C suggests that higher values of combined AUM per index (𝑋) 

and lower values of similarity of holding horizons (ℎ𝐹𝑆) are more likely to lead to separating 

equilibrium, keeping other factors constant. Panel D suggests that separating equilibrium is more 

likely for low values of fixed costs (𝑓𝑓𝑖𝑥), combined with high proportion of high-turnover investors 

(𝑤𝐹). Panel E suggests that separating equilibrium is more likely for low values of fixed costs (𝑓𝑓𝑖𝑥), 

combined with low homogeneity parameter (ℎ𝐹𝑆). 

 

2.3. Liquidity-fee relation in separating equilibrium and testable hypotheses 

As we have shown in Subsection 2.3 and in Appendix 2, in Nash equilibrium, ETF issuers 

charge the following fees in equilibrium: 

𝑓𝐴 = 𝑓0 + ∆𝑚𝑎𝑥                                                                        (13) 

𝑓𝐵 = 𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛                                                          (14) 

Hence, the fee differential between ETF A MERs and ETF B MERs in equilibrium is: 

𝑓𝐴 − 𝑓𝐵 = ∆𝑚𝑖𝑛 =
𝑐

𝑤𝑆
−

𝑐ℎ𝐹

𝑤𝐹ℎ𝑆
                                                   (15) 

                                                           
14 Recall we have four parameters in total: ℎ𝐹𝑆, 𝑤𝐹 , 𝑋, 𝑓𝑓𝑖𝑥. We vary two of them in each plot, and fix the 

other two at average level observed for our sample ETFs.  
15 Note that the 𝑐 parameter is calibrated to the data to minimize the sum of squared deviations from the 

equilibrium relation between fees and liquidity.  
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At the same time, investors incur the following costs when investing in ETFs A and B in 

Nash equilibrium: 

𝐶𝐿𝐼𝑄
𝐴 =

𝑐ℎ𝐹

𝑤𝐹
                                                                                (16) 

𝐶𝐿𝐼𝑄
𝐵 =

𝑐ℎ𝑆

𝑤𝑆
                                                                                (17) 

Expressing the liquidity cost differential as a function of fee differential: 

𝐶𝐿𝐼𝑄
𝐴 − 𝐶𝐿𝐼𝑄

𝐵 = 𝑐 (
ℎ𝐹

𝑤𝐹
−

ℎ𝑆

𝑤𝑆
) = −ℎ𝑆(𝑓𝐴 − 𝑓𝐵)                                        (18) 

Recognizing that the liquidity cost differential is just the liquidity differential with a minus 

sign (denoting the ETF A’s liquidity as 𝐿𝐼𝑄𝐴 and ETF B’s liquidity as 𝐿𝐼𝑄𝐵), we obtain the 

following liquidity-fee relation for ETFs in separating equilibrium:16 

𝐿𝐼𝑄𝐴 − 𝐿𝐼𝑄𝐵 = ℎ𝑆(𝑓𝐴 − 𝑓𝐵)                                                                (19) 

Note that in the above relation, the liquidity differential between the high-fee and the low-

fee ETF depends only on the fee differential and on the low-turnover investors’ holding horizon. 

This implies that in equilibrium, the value of ETF liquidity in a given index is set by the low-

turnover investors. This result is driven by the Nash equilibrium dynamics (see Appendix 2), which 

introduces an asymmetry in the optimum fee setting behavior by issuers. In simple words, low-

turnover investors hold a “swing vote” in whether or not to choose ETF B, hence it’s the low-

turnover investors’ minimum acceptable fee differential that constraints how high B can set his fee, 

and it’s therefore low-turnover investor’s fee sensitivity that determines the fee differential between 

A and B.  

To formalize this intuition, recall that in equilibrium, the fee difference between A and B 

is just at the margin of MER differential that corresponds to the low-turnover investors’ 

indifference condition (as in inequality (6)). This means that the equilibrium fee differential 

between A (the high-MER ETF) and B (the low-MER ETF) is the lowest possible fee differential 

at which B does not lose the low-turnover clientele to A. Hence, it’s the low-turnover investors’ 

fee sensitivity that drives the trade-off between liquidity cost and MER cost in Nash equilibrium.  

Another way to interpret the equilibrium relation between liquidity and MER differentials 

in Eq. (19) is to see it as the law of one price condition. For a low-turnover investor to be indifferent 

between investing in ETF A or ETF B, it must be that the annual savings in liquidity cost that he 

generates by choosing A (𝐶𝐿𝐼𝑄
𝐵 − 𝐶𝐿𝐼𝑄

𝐴 ) are the same as the annual savings in MER that he generates 

by choosing B ( ℎ𝑆(𝑓𝐴 − 𝑓𝐵).). Note that ℎ𝑆 can be seen as a coefficient of proportionality that 

ensures liquidity costs and MER costs are both measured on an annual basis.  

                                                           
16 The full derivation provided in Appendix 4.  
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Overall, the separating Nash equilibrium is characterized by the high-turnover investors 

(i.e., high-turnover investors) choosing the high-MER ETF, and the low-turnover (i.e., the low-

turnover investors) the low-MER ETF. Additionally, the model suggests that in equilibrium, we 

should observe a positive relation between liquidity and MER differentials. We formalize these 

model predictions in the following hypotheses: 

Hypothesis 5: For ETFs tracking the same index, liquidity is positively related to fees. 

Hypothesis 6: For ETFs tracking the same index, turnover is positively related to fees. 

 

3. Empirical analysis 

3.1. Data and descriptive statistics 

We obtain daily data from ETF Global, which covers the full universe of US-domiciled 

ETFs, and use CRSP to add daily spread and price measures for each ETF. We restrict our sample 

to equity ETFs traded on US markets, excluding ETNs (exchange-traded notes), leveraged or 

inverse ETFs, and ETFs that are hedged versions of the original fund. The full sample includes 

1035 equity ETFs traded in the US in 2017. Since the model predictions concern static equilibrium 

relations, we test them in the cross-section of ETFs, computing an annual average for each variable 

for each ETF. The underlying data for each ETF is at daily frequency, and covers the year 2017.  

For the tests involving indices in separating equilibrium, we filter the data for indices 

tracked by multiple ETFs and arrive at the core sample of 60 ETFs based on 24 indices. Each ETF 

in our sample shares the benchmark with at least one other ETF. In general, we have two or three 

ETFs per benchmark. See Table 1 for the full list of ETFs used in our analysis. 

<Table 1 here > 

We cross-validate the identified list of same index ETFs by using three alternative 

approaches, which confirm that our sample correctly identifies ETFs that invest in the same 

portfolio of stocks. Firstly, we manually check each ETF on ETF.com, an online provider of ETF 

statistics that allows to search for ETFs by ticker and identify competitor ETFs with the same 

portfolio exposure. Secondly, we compare our list with that of same benchmark ETFs provided in 

the appendix of Box, Davis, and Fuller (2017) who use Morningstar data in their analysis. Thirdly, 

we compute the empirical measure of portfolio similarity by using ETF Global data on portfolio 

weights pertaining to each ETF constituent. Specifically, the similarity measure is computed as 

follows: 

𝑆𝑖𝑚𝐴𝐵 = 1 − 𝐷𝑖𝑠𝑡𝐴𝐵 = 1 −
1

2
∑ |𝑤𝑖𝐴 −𝑤𝑖𝐵|
𝑁
𝑖=1                                    (20) 

Where 𝑤𝑖𝐴 is the weight of stock 𝑖 in ETF A, 𝑤𝑖𝐵 is the weight of stock 𝑖 in ETF B, 𝑁 is 

the number of stocks in both ETFs A and B, and 𝐷𝑖𝑠𝑡𝐴𝐵 is the distance measure between ETFs A 
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and B. ETF pairs with similarity measure close to 1 (distance measure close to 0) have practically 

identical portfolio exposure, hence validating that they indeed follow the same benchmark index.  

The descriptive statistics on key variables is provided in Table 2.  

<Table 2 here > 

As shown in descriptive statistics, our sample covers 1035 ETFs with a combined AUM of 

$2.26 trillion, and combined daily value traded of $52.78 billion. The subsample with multiple 

ETFs per index accounts for 36% of the total AUM and 47% of total daily dollar volume of all 

equity ETFs in the sample. Given that indices in separating equilibrium (i.e., with multiple ETFs 

per index) account for only 5.8% of all ETFs by count, the high concentration of AUM and dollar 

volume in those indices is quite striking.  

Since we test for separating equilibrium relations in a given index, the descriptive statistics 

are computed as index-level averages. The average MERs are 22.67 bps in separating equilibrium, 

and more than twice higher in non-separating equilibrium (50.13bps). The difference in relative 

spreads is even wider: investors pay 6.19 bps on average for a round-trip transaction in ETFs in 

separating equilibrium, compared to 29.02 bps if an index is tracked by one ETF only. Separating 

equilibrium ETFs also tend to be broader (854 constituents on average, compared to 276), have 

significantly larger AUM ($34.32 billion, compared to 1.48 billion), and larger daily dollar volumes 

($1.03 billion vs $0.03 billion).Separating equilibrium ETFs are also two times more likely to be 

issued by Vanguard, BlackRock or State Street (the top 3 issuers) or track a major index (branded 

by MSCI, S&P or Russell).  

 
3.2. OLS regression results 

We test the theory model predictions empirically by exploring the relation between same 

index ETFs’ liquidity and their management expense ratios. First, we plot the demeaned versions 

of relative spread, dollar volume and turnover against demeaned MERs for each ETF.  

<Fig.3 here > 

As illustrated in Figure 3, ETFs with lower relative spreads (compared to their same index 

peers) tend to have higher MERs (compared to those same index peers), as predicted by the model. 

However, spreads are imperfect measures of liquidity, especially for highly liquid tick-constrained 

ETFs. That is why we use dollar volumes as a more natural proxy for liquidity. The analysis for 

dollar volumes is also consistent with the theory model predictions. ETFs with higher dollar 

volumes (compared to their same index peers) tend to have higher MERs (compared to those same 

index peers). This is in line with the model intuition stated in Hypothesis 5: that investors “pay” 

for higher ETF liquidity by accepting higher MERs.  



20 

 

Next, we perform a similar exploratory analysis for the turnover-MER relation. As shown 

in Figure 3, ETFs with higher turnovers (compared to their same index peers) tend to have higher 

MERs (compared to those same index peers), consistent with Hypothesis 6. The high-MER high-

turnover ETFs also tend to be those that were launched first (i.e., first movers). This is in line with 

the clientele effect, which arises due to heterogenous holding horizons among investors. Recall 

from the theory model derivation (see Appendix 2) that this effect emerges because the first mover 

accumulates liquidity before the second ETF is launched, and the superior liquidity serves as a 

source of monopolistic rents, because the high-turnover investors (i.e., those with high turnovers) 

prefer the highly liquid high-MER ETF, even when there’s a low-MER alternative.  

To formally test the above effects, we run cross-sectional OLS regressions with index fixed 

effects. The baseline form of the regression model is as follows: 

𝑀𝐸𝑅𝑖 = 𝛼 + 𝛽1𝐿𝐼𝑄𝑖 + 𝛽2𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝐸𝑟𝑟𝑜𝑟𝑖 + 𝜇𝐼𝑁𝐷𝑖 + 𝜀𝑖                   (21) 

Where 𝐿𝐼𝑄𝑖 can refer to relative spread, log-turnover or log-dollar volume of ETF 𝑖, 

depending on the model specification, 𝑀𝐸𝑅𝑖 is the net expense ratio of ETF 𝑖, 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝐸𝑟𝑟𝑜𝑟𝑖 is 

the tracking error of ETF 𝑖, and 𝜇𝐼𝑁𝐷𝑖 is the index dummy for ETF 𝑖. There are 23 index dummies 

(the omitted dummy is S&P MidCap 400 Value Index). Since there are multiple ETFs following 

each index in our sample, index fixed effects allow us to capture within-index variation in MERs 

and liquidity measures.17 In other words, regressions with index fixed effects ask the question “For 

ETFs tracking the same index, how much MER are investors sacrificing, on average, for an extra 

unit of liquidity?” Note that we control for both tracking error and MER, as those are the only two 

factors that should account for any differences between ETFs that track the same underlying index. 

We report the regression results in Table 3.  

<Table 3 here > 

Regression results suggest that for an average ETF, 1 bps increase in relative spread is 

associated with 0.51 bps lower MER (compared to other same index ETFs). This result is 

statistically significant at 1% level, and economically meaningful. The coefficient on tracking error 

is insignificant, so it does not materially affect spread differences between same index ETFs. This 

                                                           
17 Fixed effects regression with index fixed effects is equivalent to demeaning both dependent and 

independent variables with respect to the average value of each variable per index. For example, estimating 

the regression model in Eq. (21) is equivalent to estimating the following model (demeaning all variables 

using within-index transformation):  

𝑀𝐸𝑅𝑖 −𝑀𝐸𝑅̅̅ ̅̅ ̅̅ ̅ = 𝛼 + 𝛽1(𝐿𝐼𝑄𝑖 − 𝐿𝐼𝑄̅̅ ̅̅ ̅) + 𝛽2(𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝐸𝑟𝑟𝑜𝑟𝑖 − 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝐸𝑟𝑟𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) + 𝜀𝑖,  
Where 𝑀𝐸𝑅̅̅ ̅̅ ̅̅ ̅ is the average MER of all ETFs tracking the same index, 𝐿𝐼𝑄̅̅ ̅̅ ̅ is the average liquidity measure 

(dollar volume, turnover or relative spread) for all ETFs tracking the same index, and 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝐸𝑟𝑟𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the 

average tracking error of all ETFs tracking the same index.  
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result corroborates Hypothesis 5: indeed, investors value ETF liquidity and accept higher MERs in 

ETFs with lower costs of round-trip transaction, compared to same index ETF peers.  

For convenience of interpretation, we run regressions for turnovers and dollar volumes 

using log-transformed variables. The results suggest that for an average ETF, 1% increase in 

turnover is associated with 0.24% higher MER, while 1% increase in dollar volume commands 

1.15% higher MER. These results are in line with Hypotheses 5 and 6: indeed, high-turnover 

investors in a given index are more likely to transact in high-MER ETFs, and that allows issuers to 

charge them 1.15% higher MERs for 1% increase in the dollar volume. 

We rule out alternative explanations for MER differences among same index ETFs by 

controlling for tracking error and introducing index fixed effects. Higher tracking error does 

decrease MERs slightly (compared to same index ETFs), but its effect is much weaker compared 

to the liquidity measures. For example, 1% increase in tracking error reduces MERs by 0.09%, 

while 1% increase in dollar volumes gives MERs a boost of 1.15%.  

Note that the mathematical form of our regression equations flows directly from the theory 

model Eq. (19), which describes the equilibrium relation between MER and liquidity for ETFs 

tracking the same index. According to the theory model, ETF liquidity and MERs are jointly 

determined, given certain values of exogenous model parameters (heterogeneity of investors’ 

holding horizons, combined AUM per index, issuers’ fixed costs, and proportion of fast investors) 

that characterize the specific index which these ETFs track. Hence, our intention in regression 

analysis is not to capture the causal link between MERs and liquidity (and the theory model does 

not suggest there is such a link), but rather to estimate the average MER premium investors are 

paying for an extra unit of liquidity in same-index ETFs. The implicit assumption is that we observe 

ETFs in equilibrium. This assumption is plausible, given that we use one year averages to construct 

the cross section of MERs, liquidity and tracking error, and given that our sample ETFs had existed 

for a least three years before the period for which the measures were calculated, which is arguably 

a sufficient period to arrive at equilibrium.18  

The regression results discussed above allow us to draw inferences with respect to the 

average ETF. However, it might be of interest to consider the MER-liquidity trade-offs with respect 

to the average dollar invested, especially since ETFs are rather dissimilar in terms of dollars 

invested (AUMs), so what holds for the average ETF might not hold for the average dollar invested. 

That is why we also report AUM-weighted least squares regression results to complement the 

baseline analysis. As shown in Table 3, the effects for dollar volumes and turnovers are stronger in 

                                                           
18 The most recently launched ETFs in our sample are from year 2014, while we calculate the average variable 

values for the year 2017.  
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weighted OLS, compared to simple OLS. That is not surprising, as high-AUM ETFs tend to extract 

the highest liquidity rents in terms of higher MERs. As for relative spreads, the effect is present but 

not statistically significant, as the high-AUM ETFs tend to be tick-constrained and hence their 

liquidity advantages are manifested through dollar volumes rather than relative spreads.  

 

3.4. Probit regression results 

We also test the model predictions related to the driving forces of separating equilibrium. 

Recall that hypotheses 1–4 suggest that separating equilibrium is more likely to occur in indices 

with greater proportion of high-turnover investors, greater heterogeneity of investors’ holding 

horizons, lower issuers’ costs, and greater combined AUM. We test these predictions empirically 

by modelling the probability of separating equilibrium in all indices tracked by US-domiciled 

equity ETFs. 

We do not observe the holding horizon differentials in single-ETF indices, nor do we have 

data on issuers’ costs. The only readily available variable is the combined AUM of all ETFs per 

index. For the remaining variables, we use liquidity measures such as spreads and dollar volumes 

to proxy for the proportion of high-turnover investors in a given index, we use dummy variables 

for major index benchmarks to proxy for the extent of heterogeneity, and we use dummies for top 

3 ETF issuers to proxy for the level of issuers’ fixed costs. Results of probit regressions are reported 

in Table 4.19 

<Table 4 here > 

In general, regression results corroborate the model predictions. Specifically, we find that 

indices tracked by more liquid ETFs (both in terms of higher daily value traded and in terms of 

lower spreads) are more likely to be in separating equilibrium. Since greater ETF liquidity is the 

preferred habitat of the high-turnover investors, this is in line with Hypothesis 1. Further, the 

separating equilibrium is more likely to occur in major benchmark indices, such as those offered 

by S&P, Russell and MSCI. Because institutional investors are more likely to make short-term 

tactical allocations to those indices, the investor base in these indices is likely to be heterogenous. 

Hence, this result corroborates Hypothesis 2. We also find that indices with greater proportion of 

ETFs by top 3 issuers are more likely to be in separating equilibrium, in line with Hypothesis 3. 

The presence of Black Rock, Vanguard and State Street — the top 3 ETF issuers — is typically 

                                                           
19 Given that indices in non-separating equilibrium significantly outnumber those in separating equilibrium, 

we perform the robustness check by randomly selecting 150 indices with single ETF per index, and 

combining them with the 24 indices in non-separating equilibrium, and run the same probit regression. 

Results are reported in Panel B of Table 4.  
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indicative of low-cost and low-fee environment. Finally, high combined AUM is a strong predictor 

of separating equilibrium, as suggested in Hypothesis 4.  

 

4. Welfare analysis 

4.1. Theoretical underpinnings 

Recall that in separating equilibrium (i.e., when there are multiple ETFs on a given index), 

ETF A is necessarily more liquid than ETF B. The extra liquidity in ETF A is valuable from the 

high-turnover investors’ perspective, as it allows them to turn over their positions at a lower cost. 

This enables issuer A to charge MERs over and above what would be a competitive level, hence 

generating oligopolistic rents in equilibrium. In this scenario, issuers A and B earn the following 

profits: 

𝜋𝐴 = (𝑓0 + ∆𝑚𝑎𝑥)𝑋𝑤𝐹 − 𝑓𝑓𝑖𝑥                                                               (22) 

𝜋𝐵 = (𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛)𝑋(1 − 𝑤𝐹) − 𝑓𝑓𝑖𝑥                                        (23) 

The costs incurred by the high-turnover investors in separating equilibrium constitute 

issuer A’s revenues: 

𝐶𝐹 = (𝑓0 + ∆𝑚𝑎𝑥)𝑋𝑤𝐹                                                                         (24) 

The costs incurred by the low-turnover investors in separating equilibrium constitute issuer 

B’s revenues: 

𝐶𝑆 = (𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛)𝑋(1 − 𝑤𝐹)                                                  (25) 

From the societal welfare perspective, the cost involved in delivering ETF liquidity in a 

given index in separating equilibrium is simply the sum of costs incurred by both issuers: 

𝐶𝑆𝐸𝑃 = 2𝑓𝑓𝑖𝑥                                                                                         (26) 

All non-zero profits generated in separating equilibrium constitute a welfare transfer from 

investors to issuers. The value of this transfer can be interpreted as the value of liquidity to ETF 

investors:    

𝑉𝑆𝐸𝑃𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = (𝑓0 + ∆𝑚𝑎𝑥)𝑋𝑤𝐹 + (𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛)𝑋(1 − 𝑤𝐹) − 2𝑓𝑓𝑖𝑥            (27) 

Now, let us consider the counterfactual scenario with homogenous liquidity across ETFs 

tracking a given index.  If there are no differences in liquidity, no liquidity clienteles emerge and 

there is room for only one ETF issuer in a given index. This issuer would earn the following 

competitive profits: 20 

𝜋∗ = 𝑋𝑓∗ − 𝑓𝑓𝑖𝑥 = 0                                                               (28) 

                                                           
20 𝑓∗ =

𝑓𝑓𝑖𝑥

𝑋
 is the breakeven fee of the sole ETF issuer. See Appendix 5 for the full derivation of 

equilibrium fees in the absence of liquidity clienteles. 
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The costs incurred by investors in this scenario are: 

𝐶∗ = 𝑋𝑓∗                                                                                 (29) 

The costs of delivering ETF liquidity in non-separating equilibrium without liquidity 

clienteles are: 

𝐶𝑁𝑂𝑁−𝑆𝐸𝑃 = 𝑓𝑓𝑖𝑥                                                                      (30) 

Under homogenous liquidity conditions, no welfare transfers occur (𝑉𝑁𝑂𝑁−𝑆𝐸𝑃𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 =

0), as MERs are set at a competitive level and the issuer generates zero profit. Note that the 

difference in costs of delivering ETF liquidity in separating vs non-separating equilibrium gives 

the value of deadweight loss, which arises due to the liquidity externality (i.e., “liquidity begetting 

liquidity” effect). The deadweight loss emerges due to two ETFs delivering the value of liquidity 

rather than one: 

𝑉𝐷𝑊𝐿 = 𝐶𝑆𝐸𝑃 − 𝐶𝑁𝑂𝑁−𝑆𝐸𝑃 = 𝑓𝑓𝑖𝑥                                            (31) 

Hence, the welfare analysis suggests the following key insights about the effects of ETF 

liquidity in separating equilibrium: 

1) In separating equilibrium, the value of ETF liquidity to investors can be calculated as 

the sum of economic profits earned by issuers. 

2) From the societal welfare perspective, the deadweight loss due to liquidity externalities 

in separating equilibrium can be calculated as one times fixed costs of an ETF issuer.  

 

4.2. Quantitative analysis 

We estimate the welfare effects in the sample of 24 indices tracked by 60 ETFs. Our 

estimates suggest that all US-traded ETFs in separating equilibrium generate the total value of $780 

million annually to ETF investors. These are the excess profits of high-MER ETF issuers, which 

the high-turnover investors pay to access the liquidity pool in those instruments. The magnitude of 

this liquidity-enabled welfare transfer is comparable with the average AUM-weighted MER 

differential, representing 0.096% of the $815 billion of assets under management invested in the 

60 ETFs in our sample. As a point of reference, the equal-weighted average MER differential for 

same index ETFs in our sample is 7.7 bps (or 0.077%). Figure 4 illustrates the MER differentials 

and liquidity value estimates per index.  

<Fig. 4 here> 

We also estimate the cost to society of having multiple ETF issuers tracking the same index. 

The annual value of $70 million is lost due to the liquidity externality effect, whereas the highly 

liquid ETF charges MERs at monopolistic levels. Effectively, it’s the value of inefficiency in 
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resource allocation in separating equilibrium compared to the counterfactual scenario in which all 

liquidity in a given index is concentrated in a single ETF. This inefficiency arises due to the high-

MER ETF taking advantage of MER-insensitive high-turnover investors and leaving enough 

market share for the low-MER ETF to break-even by serving the low-turnover clientele. In dollar 

value terms, this cost to society is over ten times smaller compared to the value of accessing 

liquidity by the high-turnover investors.  

To arrive at these estimates, we make the following assumptions: 

1) The low-MER ETF21 earns zero profits. 

2) Fixed costs are homogenous across all ETFs tracking a given index.  

These assumptions imply that the value of ETF liquidity to investors can be proxied by 

excess profits earned by the high-MER ETF over the low-MER ETF. Because we assume the low-

MER ETF just breaks even, its revenues are equal to fixed costs: 

𝜋𝐵 = 𝑓𝐵𝑋𝑥𝐵 − 𝑓𝑓𝑖𝑥 = 0 → 𝑓𝑓𝑖𝑥 = 𝑓𝐵𝑋𝑥𝐵                              (32) 

Where 𝑓𝐵 is the MER of the low-MER ETF, 𝑥𝐵 is the market share of the low-MER ETF 

based on AUM, 𝑋 is the combined AUM of all ETFs in a given index. Hence, the value of liquidity 

from the perspective of high-turnover investors is simply the excess profit earned by the high-MER 

ETF over and above the competitive level.  

𝑉𝐿𝐼𝑄 = 𝑉𝑆𝐸𝑃𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝜋𝐴 = 𝑓𝐴𝑋𝑥𝐴 − 𝑓𝑓𝑖𝑥                                  (33) 

Note that these assumptions are conservative, as they are likely to over-estimate issuers’ 

fixed costs and underestimate their profits. This suggests that our proxies for the value of ETF 

liquidity are likely to be the lower-bound estimates.  

 

5. Discussion and conclusions 

Our paper makes several contributions. Firstly, it advances the market microstructure 

literature by proposing a novel approach to measuring how much investors value liquidity. As such, 

the ETF market offers a unique laboratory for inferring liquidity premia from MER differentials. 

Our study makes a clear case that liquidity premia can explain the supposed law of one price 

violations in financial markets. Secondly, we shed light on the microeconomics of competition in 

the ETF market and show that liquidity externalities can lead to oligopolistic price-setting behavior 

by first-movers. Thirdly, we argue that ETF liquidity can be a double-edged sword in affecting 

                                                           
21 In case of three ETFs per index, we assume that only the highest-MER ETF earns non-zero profits. This 

assumption effectively makes our estimates of the value of ETF liquidity more conservative. Hence, it is fair 

to interpret these estimates as representing the lower bound of the value of ETF liquidity.  
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investor welfare, as liquidity-sensitive investors are likely to pool in suboptimal equilibrium with 

higher fees. Table 5 summarizes our empirical findings as they relate to the testable hypotheses. 

<Table 5 here > 

5.1. The value of liquidity 

Similar to Amihud and Mendelson (1986) model for stocks, we model the liquidity 

clienteles arising in ETFs due to investors’ heterogenous holding horizons. However, ETFs, unlike 

stocks, offer a unique laboratory for inferring the liquidity premia from the readily observed MERs, 

quoted by issuers in basis points. We find that investors require an average MER discount of 0.51 

bps to buy an ETF with 1 bps higher spread, compared to a peer ETF tracking the same index. 

Investors also accept 1.15% higher MERs in exchange for 1% higher volume in an average ETF, 

relative to same index peers. This effect arises due to high-turnover investors pooling in highly 

liquid ETFs, while low-turnover investors in less liquid low-fee ETFs.  

We estimate that ETF liquidity is worth at least $780 million annually to ETF investors. 

This is how much high-turnover investors pay to ETF issuers for accessing liquidity in major US 

indices with multiple ETFs tracking them. Hence, we contribute to the market microstructure 

literature by relating the welfare analysis to standard microstructure models. 

 

4.2. Competition dynamics in the ETF market 

We propose a coherent explanation for the apparent puzzle of persistent MER differences 

between same index ETFs. We also show why first mover ETFs tend to keep their MERs high even 

after competing ETF launches. The model implication is that liquidity externalities prevent 

investors from switching to low-MER competitors, thus allowing the incumbent ETF issuers to 

keep their MERs high.  We find empirical support for the model predictions in the sample of same-

index US-domiciled equity ETFs.  

 
4.3. Welfare implications of liquidity 

We estimate that the annual value of $70 million is lost due to the liquidity externality effect, 

whereas the highly liquid ETF charges MERs at monopolistic levels. Effectively, this is the double- 

expense incurred by index trackers when liquidity in a given index is delivered by multiple ETFs 

rather than one. It arises due to the classical “coordination problem” among ETF investors, whereas 

it’s suboptimal for a single investor too switch to the low-liquidity ETF, although it would be 

beneficial to do so as a group.  

Our model suggests that liquidity can be a “double-edged sword” in affecting investor 

welfare. On one hand, highly liquid markets are beneficial to allocating resources efficiently. On 
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the other hand, in fragmented markets the incumbent can extract monopolistic rents from liquidity-

sensitive traders, as liquidity externalities can lead to suboptimal pooling equilibria.  

  



28 

 

Appendix 1 

This appendix derives the conditions for Nash equilibrium in which high-turnover investors 

choose ETF A and low-turnover investors ETF B.  An individual high-turnover (low-turnover) 

investor will not have an incentive to deviate from the strategy of choosing ETF A (B), if his costs 

in case of holding A (B) are lower than in case of holding B (A). Hence the following inequalities 

should hold for high-turnover and low-turnover investors respectively: 

{

𝑓𝐴ℎ𝐹 +
𝑐ℎ𝐹

𝑤𝐹
< 𝑓𝐵ℎ𝐹 +

𝑐ℎ𝑆

𝑤𝑆
       

𝑓𝐵ℎ𝑆 +
𝑐ℎ𝑆

𝑤𝑆
< 𝑓𝐴ℎ𝑆 +

𝑐ℎ𝐹

𝑤𝐹

  

 

                                                    (A1.1) 

{
𝑓𝐴 − 𝑓𝐵 <

𝑐ℎ𝑆

𝑤𝑆ℎ𝐹
−

𝑐

𝑤𝐹
    

𝑓𝐵 − 𝑓𝐴 <
𝑐ℎ𝐹

𝑤𝐹ℎ𝑆
−

𝑐

𝑤𝑆

                                                                 (A1.2) 

{
𝑓𝐴 − 𝑓𝐵 <

𝑐ℎ𝑆

𝑤𝑆ℎ𝐹
−

𝑐

𝑤𝐹
    

𝑓𝐴 − 𝑓𝐵 >
𝑐

𝑤𝑆
−

𝑐ℎ𝐹

𝑤𝐹ℎ𝑆

                                                                 (A1.3) 

Hence, we have the following condition on investor behavior, under which the separating 

equilibrium emerges: 

𝑐

1−𝑤𝐹
−

𝑐ℎ𝐹

𝑤𝐹ℎ𝑆
< 𝑓𝐴 − 𝑓𝐵 < 

𝑐ℎ𝑆

(1−𝑤𝐹)ℎ𝐹
−

𝑐

𝑤𝐹
                           (A1.4) 

Intuitively, this condition suggests that for the separating equilibrium to emerge, it should 

be that the fee differential is bounded from both sides. If the fee differential is too small, the low-

turnover investors switch to the more expensive ETF (the MER differential is not that high to accept 

the lack of liquidity in ETF B). If the fee differential is too large, the high-turnover investors switch 

to the less liquid ETF (the MER differential is too high for them to justify the liquidity advantage).  

Simplifying the outside part of the compound inequality (A1.4) gives us the condition on 

liquidities: 

ℎ𝑆
(1−𝑤𝐹)ℎ𝐹

+
ℎ𝐹

𝑤𝐹ℎ𝑆
−

1

𝑤𝐹
−

1

(1−𝑤𝐹)
> 0                                    (A1.5) 

𝑤𝐹ℎ𝑆ℎ𝑆+(1−𝑤𝐹)ℎ𝐹ℎ𝐹−(1−𝑤𝐹)ℎ𝐹ℎ𝑆−𝑤𝐹ℎ𝐹ℎ𝑆

𝑤𝐹(1−𝑤𝐹)ℎ𝐹ℎ𝑆
> 0                       (A1.6) 

𝑤𝐹 > (1 − 𝑤𝐹)
(ℎ𝐹ℎ𝑆−ℎ𝐹ℎ𝐹)

(ℎ𝑆ℎ𝑆−ℎ𝐹ℎ𝑆)
                                                 (A1.7) 

𝑤𝐹 > 𝑤𝑆
ℎ𝐹

ℎ𝑆
                                                                           (A1.8) 

Recall that the cost of liquidity in A is: 𝐶𝐿𝐼𝑄
𝐴 =

𝑐ℎ𝐹

𝑤𝐹
, and in B: 𝐶𝐿𝐼𝑄

𝐵 =
𝑐ℎ𝑆

𝑤𝑆
. Expressing 𝑤𝐹 

and 𝑤𝑆 and plugging into the inequality above:  
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𝑐ℎ𝐹

𝐶𝐿𝐼𝑄
𝐴 >

𝑐ℎ𝑆

𝐶𝐿𝐼𝑄
𝐵 ∗

ℎ𝐹

ℎ𝑆
                                                                     (A1.9) 

Recognizing that 𝑐 > 0, ℎ𝐹 > 0, ℎ𝑆 > 0 the inequality simplifies to: 

𝐶𝐿𝐼𝑄
𝐴 < 𝐶𝐿𝐼𝑄

𝐵                                                                         (A1.10) 

Expressing this inequality in terms of liquidity rather than the cost of liquidity (denoting 

ETF A’s liquidity as 𝐿𝐼𝑄𝐴 = −𝐶𝐿𝐼𝑄
𝐴  and ETF B’s liquidity 𝐿𝐼𝑄𝐵 = −𝐶𝐿𝐼𝑄

𝐵 ):  

𝐿𝐼𝑄𝐴 > 𝐿𝐼𝑄𝐵                                                                     (A1.11) 

This condition guarantees that the ETF A held by the high-turnover is more liquid than the 

ETF B held by the low-turnover. In other words, the cost of liquidity in A is lower than that in B.  
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Appendix 2 

This appendix provides the proof that there are two possible Nash equilibria resulting from 

the issuers’ competitive dynamics: 

(i) An equilibrium with two ETFs: A charging 𝑓0 + ∆𝑚𝑎𝑥 and B charging 𝑓0 + ∆𝑚𝑎𝑥 −

∆𝑚𝑖𝑛. 

(ii) An equilibrium with A charging 𝑓0 + ∆𝑚𝑖𝑛 and being the only ETF in the market, 

where 𝑓0 =
𝑓𝑓𝑖𝑥

𝑋𝑤𝑆
 is the breakeven fee for B, ∆𝑚𝑖𝑛 is the minimum acceptable fee differential between 

A and B, under which B can keep the low-turnover clientele, ∆𝑚𝑎𝑥 is the maximum acceptable fee 

differential, under which A can keep the high-turnover clientele.  

Recall that we model issuers in line with the Stackelberg (1934) duopoly model, where one 

issuer (A) is the market leader, while another (B) is the follower. Issuers set their MERs taking into 

account investors’ response, as well as competitor’s response. Based on the condition investors’ 

derived in Appendix 1, the follower always sets his fee (𝑓𝐵) low enough relative to the leader’s fee 

(𝑓𝐴) to satisfy the following condition: 
𝑐

1−𝑤𝐹
−

𝑐ℎ𝐹

𝑤𝐹ℎ𝑠
< 𝑓𝐴 − 𝑓𝐵 < 

𝑐ℎ𝑆
(1−𝑤𝐹)ℎ𝐹

−
𝑐

𝑤𝐹
. Let’s call this 

fee differential ∆. With this notation, we can rewrite the inequality as ∆𝑚𝑖𝑛< ∆< ∆𝑚𝑎𝑥. In line 

with the inequality above, the minimum acceptable fee differential under which B can keep his 

clientele of low-turnover investors is as follows: 

∆𝑚𝑖𝑛 =
𝑐

1−𝑤𝐹
−

𝑐ℎ𝐹

𝑤𝐹ℎ𝑆
                                                            (A2.1) 

The maximum acceptable fee differential under which A can keep his clientele of high-

turnover investors is as follows: 

∆𝑚𝑎𝑥 =
𝑐ℎ𝑆

(1−𝑤𝐹)ℎ𝐹
−

𝑐

𝑤𝐹
                                                         (A2.2) 

Suppose B sets his fee at 𝑓0 and A sets his fee at 𝑓0 + ∆𝑚𝑎𝑥. Let’s check whether this is a 

stable Nash equilibrium from issuers’ perspective. With these fees, A will attract the high-turnover 

clientele, and B the low-turnover clientele. Hence, A’s profits will be: 

𝜋𝐴 = 𝑋𝑤𝐹(𝑓0 + ∆𝑚𝑎𝑥) − 𝑓𝑓𝑖𝑥                                             (A2.3) 

And B’s profits: 

𝜋𝐵 = 𝑋𝑤𝑆𝑓0 − 𝑓𝑓𝑖𝑥 = 0                                                       (A2.4) 

Let’s check if either issuer has an incentive to deviate, and if so, under which conditions: 

1) Keeping B’s strategy as given (𝑓𝐵 = 𝑓0): 

a. If A increases his fee above 𝑓𝐴 = 𝑓0 + ∆𝑚𝑎𝑥, then he loses his high-turnover 

clientele to B, hence ending up with negative profits (𝜋𝐴∗ = −𝑓𝑓𝑖𝑥). This is not an 

optimal strategy. 
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b. If A decreases his fee below 𝑓𝐴 = 𝑓0 + ∆𝑚𝑎𝑥, he can gain the low-turnover 

clientele and have the market share of 100%, if he charges 𝑓𝐴 = 𝑓0 + ∆𝑚𝑖𝑛. For 

this strategy to be inferior for A, compared to the current strategy, it must be that 

his additional profits from the low-turnover clientele are lower than the profits he 

gives up by lowering his fee. Formally, the following inequality should hold for 

this strategy to be inferior to the conjectured strategy: 𝑓0 + ∆𝑚𝑖𝑛< 𝑤𝐹(𝑓0 + ∆𝑚𝑎𝑥) 

2) Keeping A’s strategy as given (𝑓𝐴 = 𝑓0 + ∆𝑚𝑎𝑥): 

a. If B decreases his fee below 𝑓𝐵 = 𝑓0, he will be earning negative profits, which is 

not an optimal strategy. 

b. If B increases his fee above 𝑓𝐵 = 𝑓0, he can actually earn higher profits without 

losing his clientele up until the fee  𝑓𝐵 = 𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛. The profits under this 

strategy are higher (𝜋𝐵 = 𝑋𝑤𝑆(𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛) − 𝑓𝑓𝑖𝑥 > 0), hence this 

strategy will be preferred by B.  

3) If B charges (𝑓𝐵 = 𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛) and A charges (𝑓𝐴 = 𝑓0 + ∆𝑚𝑎𝑥), neither  

has an incentive to deviate, as they recognize the following: 

a. A can lower his fee marginally and get both clienteles, to which B will respond by 

lowering his fee to maintain the ∆𝑚𝑖𝑛 difference between his fee and A’s, and keep 

the low-turnover clientele. This would result in the race to the bottom dynamics, 

whereas A can keep lowering his fee down to 𝑓𝐴 = 𝑓0 + ∆𝑚𝑖𝑛, at which point he 

achieves a market share of 100% and competes B out of business. For A not to be 

interested in this scenario, A’s profit from the high-turnover clientele at higher fee 

must be higher than the profit from both clienteles at a lower fee: 𝑓0 + ∆𝑚𝑖𝑛<

𝑤𝐹(𝑓0 + ∆𝑚𝑎𝑥).  

b. A can increase his fee, charging up to ( 𝑓𝐴 = 𝑓0 + 2∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛 ) without losing 

the high-turnover clientele, and earning a higher profit. However, at this fee level 

of A, B can reduce his fee by a marginally small amount and attract both the high-

turnover and the low-turnover clienteles, which would prompt A to lower his fee, 

resulting in sequential lowering of fees by both issuers until they reach an 

equilibrium: either at  𝑓𝐴 = 𝑓0 + ∆𝑚𝑎𝑥 and 𝑓𝐵 = 𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛, or at 𝑓𝐴 =

𝑓0 + ∆𝑚𝑖𝑛 and 𝑓𝐵 = 𝑓0 (with the second case essentially competing B out of 

business and A achieving 100% market share). 

Therefore, there are two possible Nash equilibria from the issuers’ perspective: 

1) An equilibrium with two ETFs: A charging 𝑓0 + ∆𝑚𝑎𝑥 and B charging 𝑓0 + ∆𝑚𝑎𝑥 −

∆𝑚𝑖𝑛. This equilibrium is stable under the following condition:  
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𝑓0 + ∆𝑚𝑖𝑛< 𝑤𝐹(𝑓0 + ∆𝑚𝑎𝑥)                                              (A2.5) 

2) An equilibrium with A charging 𝑓0 + ∆𝑚𝑖𝑛 and being the only ETF in the market. This 

equilibrium is stable under the following condition: 

𝑓0 + ∆𝑚𝑖𝑛> 𝑤𝐹(𝑓0 + ∆𝑚𝑎𝑥)                                                   (A2.6) 
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Appendix 3 

This appendix shows how the strength of forces driving the system into the separating 

equilibrium varies with the model parameters. For separating equilibrium to occur, both investors’ 

and issuers’ conditions should be satisfied. Writing down investors’ conditions (inequality A1.11) 

and issuers’ conditions (inequality A2.5) as a system of inequalities: 

{
  𝐿𝐼𝑄𝐴 > 𝐿𝐼𝑄𝐵                          

𝑓0 + ∆𝑚𝑖𝑛< 𝑤𝐹(𝑓0 + ∆𝑚𝑎𝑥) 
   

 
                                                   (A3.1) 

Recognizing that 𝐿𝐼𝑄𝐴 = −
𝑐ℎ𝐹

𝑤𝐹
, 𝐿𝐼𝑄𝐵 = −

𝑐ℎ𝑆
(1−𝑤𝐹)

  and ℎ𝐹𝑆 =
ℎ𝐹

ℎ𝑆
 and re-expressing 

investors’ condition: 

𝐿𝐼𝑄𝐴

𝐿𝐼𝑄𝐵
> 1                                                                       (A3.2) 

𝑤𝐹

1−𝑤𝐹
∗

1

ℎ𝐹𝑆
 > 1                                                                (A3.3) 

Recognizing that 1 − 𝑤𝐹 > 0 and ℎ𝐹𝑆 > 0, the inequality simplifies to: 

𝑤𝐹 > (1 − 𝑤𝐹)ℎ𝐹𝑆                                                                (A3.4) 

𝑤𝐹 >
ℎ𝐹𝑆

1+ℎ𝐹𝑆
                                                                       (A3.5) 

Recognizing (from Appendix 2) that 𝑓0 =
𝑓𝑓𝑖𝑥

𝑋(1−𝑤𝐹)
, ∆𝑚𝑖𝑛=

𝑐

1−𝑤𝐹
−
𝑐ℎ𝐹𝑆

𝑤𝐹
=

𝐿𝐼𝑄𝐴

ℎ𝑆
−
𝐿𝐼𝑄𝐵

ℎ𝑆
 and 

∆𝑚𝑎𝑥=
𝐿𝐼𝑄𝐴

ℎ𝐹
−
𝐿𝐼𝑄𝐵

ℎ𝐹
 and denoting ∆𝐿𝐼𝑄 = 𝐿𝐼𝑄𝐴 − 𝐿𝐼𝑄𝐵, we can rewrite issuers’ condition as 

follows:  

𝑓𝑓𝑖𝑥

𝑋(1−𝑤𝐹)
 (1 − 𝑤𝐹) + ∆𝐿𝐼𝑄 (

1

ℎ𝑆
−
𝑤𝐹

ℎ𝐹
) < 0                                             (A3.6) 

𝑓𝑓𝑖𝑥

𝑋
 + ∆𝐿𝐼𝑄 (

1

ℎ𝑆
−
𝑤𝐹

ℎ𝐹
) < 0                                                    (A3.7) 

Recognizing that 
𝑓𝑓𝑖𝑥

𝑋
> 0 and ∆𝐿𝐼𝑄 > 0, condition A3.7 implies: 

1

ℎ𝑆
−
𝑤𝐹

ℎ𝐹
< 0                                                                      (A3.8) 

1

ℎ𝑆
<

𝑤𝐹

ℎ𝐹
                                                                           (A3.9) 

𝑤𝐹 >
ℎ𝐹

ℎ𝑠
                                                                        (A3.10) 

𝑤𝐹 > ℎ𝐹𝑆                                                                        (A3.11) 

Restriction A4.11 is a necessary condition for the separating equilibrium to occur. Note 

that it is more restrictive than investors’ condition derived above (inequality A3.5). Hence, the 

system of inequalities becomes: 
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{
 
 

 
 

𝑓𝑓𝑖𝑥

𝑋(1−𝑤𝐹)
+

𝑐

1−𝑤𝐹
−

𝑐ℎ𝐹

𝑤𝐹ℎ𝑆
< 𝑤𝐹 (

𝑓𝑓𝑖𝑥

𝑋(1−𝑤𝐹)
+

𝑐ℎ𝑆
(1−𝑤𝐹)ℎ𝐹

−
𝑐

𝑤𝐹
)                            

𝑤𝐹 > ℎ𝐹𝑆
   
 

 (A3.12) 

Recognizing that 𝑋 > 0, 𝑤𝐹 > 0, (1 − 𝑤𝐹) > 0, ℎ𝐹𝑆 > 0, the system of inequalities 

simplifies to: 

{
𝑤𝐹
2(𝑓𝑓𝑖𝑥ℎ𝐹𝑆 + 𝑐𝑋ℎ𝐹𝑆 + 𝑐𝑋) − 𝑤𝐹ℎ𝐹𝑆(𝑓𝑓𝑖𝑥 + 2𝑐𝑋 + 𝑐𝑋ℎ𝐹𝑆) + 𝑐ℎ𝐹𝑆

2 𝑋 > 0      

𝑤𝐹 > ℎ𝐹𝑆
   

 
(A3.13) 

Let us denote the function on the left-hand side of the first inequality as follows: 

𝑦 = 𝑤𝐹
2(𝑓𝑓𝑖𝑥ℎ𝐹𝑆 + 𝑐𝑋ℎ𝐹𝑆 + 𝑐𝑋) − 𝑤𝐹ℎ𝐹𝑆(𝑓𝑓𝑖𝑥 + 2𝑐𝑋 + 𝑐𝑋ℎ𝐹𝑆) + 𝑐ℎ𝐹𝑆

2 𝑋         (A3.14) 

On the interval that satisfies the second condition (𝑤𝐹 > ℎ𝐹𝑆), 𝑦 is the propensity for 

separating equilibrium, expressed as a function of model parameters from Eq. (3.14).  

 

1. Characterizing the propensity for separating equilibrium with respect to the 

proportion of high-turnover investors (𝒘𝑭) 

Since 𝑓𝑓𝑖𝑥ℎ𝐹𝑆 + 𝑐𝑋ℎ𝐹𝑆 + 𝑐𝑋 > 0, 𝑦 is an upward-facing parabola w.r.t. 𝑤𝐹 parameter. 

𝐷 ≥ 0 suggests that there exist 𝑤𝐹 roots for  𝑦 = 0 case: 

𝐷 = ℎ𝐹𝑆
2 (𝑓𝑓𝑖𝑥 + 2𝑐𝑋 + 𝑐𝑋ℎ𝐹𝑆)

2
− 4𝑐ℎ𝐹𝑆

2 𝑋(𝑓𝑓𝑖𝑥ℎ𝐹𝑆 + 𝑐𝑋ℎ𝐹𝑆 + 𝑐𝑋)                    (A3.15) 

𝐷 = ℎ𝐹𝑆
2 (𝑓𝑓𝑖𝑥 − 𝑐𝑋ℎ𝐹𝑆)

2
+ 4𝑐𝑋𝑓𝑓𝑖𝑥ℎ𝐹𝑆

2 ≥ 0                                        (A3.16) 

The 𝑦-minimizing value of 𝑤𝐹 is computed by taking a derivative and setting it to zero:  

𝑑𝑦

𝑑𝑤𝐹
= 2𝑤𝐹(𝑓𝑓𝑖𝑥ℎ𝐹𝑆 + 𝑐𝑋ℎ𝐹𝑆 + 𝑐𝑋) − ℎ𝐹𝑆(𝑓𝑓𝑖𝑥 + 2𝑐𝑋 + 𝑐𝑋ℎ𝐹𝑆)              (A3.17) 

𝑤𝐹
∗ =

ℎ𝐹𝑆(𝑐𝑋ℎ𝐹𝑆+𝑓𝑓𝑖𝑥+2𝑐𝑋)

2(𝑐𝑋ℎ𝐹𝑆+𝑓𝑓𝑖𝑥ℎ𝐹𝑆+𝑐𝑋)
                                                     (A3.18) 

𝑦 = 0 gives the following two solutions: 

𝑤𝐹1 =
ℎ𝐹𝑆(𝑓𝑓𝑖𝑥+2𝑐𝑋+𝑐𝑋ℎ𝐹𝑆)−ℎ𝐹𝑆√(𝑓𝑓𝑖𝑥−𝑐𝑋ℎ𝐹𝑆)

2
+4𝑐𝑋𝑓𝑓𝑖𝑥

2(𝑓𝑓𝑖𝑥ℎ𝐹𝑆+𝑐𝑋ℎ𝐹𝑆+𝑐𝑋)
                    (A3.19) 

𝑤𝐹2 =
ℎ𝐹𝑆(𝑓𝑓𝑖𝑥+2𝑐𝑋+𝑐𝑋ℎ𝐹𝑆)+ℎ𝐹𝑆√(𝑓𝑓𝑖𝑥−𝑐𝑋ℎ𝐹𝑆)

2
+4𝑐𝑋𝑓𝑓𝑖𝑥

2(𝑓𝑓𝑖𝑥ℎ𝐹𝑆+𝑐𝑋ℎ𝐹𝑆+𝑐𝑋)
                     (A3.20) 

Solving for 𝑦 > 0 gives the following two intervals: 

𝑤𝐹 ∈ (0;𝑤𝐹1) ∪ (𝑤𝐹2; 1)                                               (A3.21) 
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Corollary 1 

The propensity for separating equilibrium increases as the proportion of high-turnover 

investors (𝑤𝐹) in a particular index increases, given other parameter restrictions for separating 

equilibrium are satisfied. 

Proof 

Combining inequalities: 

{
𝑤𝐹 ∈ (0;𝑤𝐹1) ∪ (𝑤𝐹2; 1)

𝑤𝐹 > ℎ𝐹𝑆
                                               (A3.22) 

Consider two mutually exclusive and collectively exhaustive intervals: 

a) ℎ𝐹𝑆 ∈ (0;𝑤𝐹1) 

b) ℎ𝐹𝑆 ∈ (𝑤𝐹1; 1) 

On the interval ℎ𝐹𝑆 ∈ (𝑤𝐹1; 1), taking into account the restriction 𝑤𝐹 > ℎ𝐹𝑆, the following 

should hold: 

ℎ𝐹𝑆 −𝑤𝐹1 > 0                                                (A3.23) 

ℎ𝐹𝑆 −
ℎ𝐹𝑆(𝑓𝑓𝑖𝑥+2𝑐𝑋+𝑐𝑋ℎ𝐹𝑆)−ℎ𝐹𝑆√(𝑓𝑓𝑖𝑥−𝑐𝑋ℎ𝐹𝑆)

2
+4𝑐𝑋𝑓𝑓𝑖𝑥

2(𝑓𝑓𝑖𝑥ℎ𝐹𝑆+𝑐𝑋ℎ𝐹𝑆+𝑐𝑋)
> 0                (A3.24) 

As  ℎ𝐹𝑆 > 0, the inequality simplifies to: 

1 −
(𝑓𝑓𝑖𝑥+2𝑐𝑋+𝑐𝑋ℎ𝐹𝑆)−√(𝑓𝑓𝑖𝑥−𝑐𝑋ℎ𝐹𝑆)

2
+4𝑐𝑋𝑓𝑓𝑖𝑥

2(𝑓𝑓𝑖𝑥ℎ𝐹𝑆+𝑐𝑋ℎ𝐹𝑆+𝑐𝑋)
> 0                         (A3.25) 

As 2(𝑓𝑓𝑖𝑥ℎ𝐹𝑆 + 𝑐𝑋ℎ𝐹𝑆 + 𝑐𝑋) > 0, the inequality simplifies to: 

2(𝑓𝑓𝑖𝑥ℎ𝐹𝑆 + 𝑐𝑋ℎ𝐹𝑆 + 𝑐𝑋) − (𝑓𝑓𝑖𝑥 + 2𝑐𝑋 + 𝑐𝑋ℎ𝐹𝑆) + √(𝑓𝑓𝑖𝑥 − 𝑐𝑋ℎ𝐹𝑆)
2
+ 4𝑐𝑋𝑓𝑓𝑖𝑥 > 0   (A3.26) 

2𝑓𝑓𝑖𝑥ℎ𝐹𝑆 + 𝑐𝑋ℎ𝐹𝑆 − 𝑓𝑓𝑖𝑥 +√(𝑓𝑓𝑖𝑥 − 𝑐𝑋ℎ𝐹𝑆)
2
+ 4𝑐𝑋𝑓𝑓𝑖𝑥 > 0                                (A3.27) 

Inequality A4.27holds for all model parameters.22 Therefore, we have proven that ℎ𝐹𝑆 −

𝑤𝐹1 > 0 holds, and ℎ𝐹𝑆 −𝑤𝐹1 < 0 is not possible (i.e., the interval ℎ𝐹𝑆 ∈ (0;𝑤𝐹1) is not possible). 

A3.22 system of inequalities becomes: 

{

𝑤𝐹 ∈ (0;𝑤𝐹1) ∪ (𝑤𝐹2; 1)

𝑤𝐹 > ℎ𝐹𝑆
ℎ𝐹𝑆 ∈ (𝑤𝐹1; 1)

                                       (A3.28) 

Selecting the most restrictive conditions suggests: 

{

𝑤𝐹 ∈ (𝑤𝐹2; 1)
𝑤𝐹 > ℎ𝐹𝑆

ℎ𝐹𝑆 ∈ (𝑤𝐹1; 1)
                                                        (A3.29) 

                                                           
22 No analytical solution is presented, as the inequality was checked numerically in Mathematica.  
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Because 𝑦 is an upward-facing parabola w.r.t. 𝑤𝐹 parameter, and 𝑤𝐹2 > 𝑤𝐹
∗, 𝑦 is increasing 

in 𝑤𝐹 on the interval 𝑤𝐹 ∈ (𝑤𝐹2; 1). Because this interval is the only one compatible with 𝑤𝐹 >

ℎ𝐹𝑆 restriction, the 𝑦 function is always increasing with the proportion of high-turnover investors. 

 

2. Characterizing the propensity for separating equilibrium with respect to 

homogeneity parameter (𝒉𝑭𝑺) 

Rewriting the 𝑦 function in A3.14 w.r.t. ℎ𝐹𝑠: 

𝑦 = ℎ𝐹𝑆
2 𝑐𝑋(1 − 𝑤𝐹) + ℎ𝐹𝑆𝑤𝐹 (𝑤𝐹(𝑓𝑓𝑖𝑥 + 𝑐𝑋) − (𝑓𝑓𝑖𝑥 + 2𝑐𝑋)) + 𝑤𝐹

2𝑐𝑋               (A3.30) 

Since 𝑐𝑋(1 − 𝑤𝐹) > 0, 𝑦 is an upward-facing parabola w.r.t. ℎ𝐹𝑠. The discriminant can 

take both positive and negative values, suggesting 𝑦 = 0 might or might not have solutions w.r.t. 

ℎ𝐹𝑆: 

𝐷 = 𝑤𝐹
2 (𝑤𝐹

2(𝑓𝑓𝑖𝑥 + 𝑐𝑋)
2
−𝑤𝐹(2𝑓𝑓𝑖𝑥 + 6𝑓𝑓𝑖𝑥𝑐𝑋) + 𝑓𝑓𝑖𝑥

2 + 4𝑓𝑓𝑖𝑥𝑐𝑋)                      (A3.31) 

𝐷 = 4𝑓𝑓𝑖𝑥(𝑓𝑓𝑖𝑥 + 6𝑓𝑓𝑖𝑥𝑐𝑋 − 𝑓𝑓𝑖𝑥
3 − 6𝑓𝑓𝑖𝑥

2 𝑐𝑋 − 4𝑐3𝑋3)                                   (A3.32) 

The 𝑦-minimizing value of ℎ𝐹𝑆 is computed by taking a derivative and setting it to zero:  

𝑑𝑦

𝑑ℎ𝐹𝑆
= 2ℎ𝐹𝑆 𝑐𝑋(1 − 𝑤𝐹) + 𝑤𝐹 (𝑤𝐹(𝑓𝑓𝑖𝑥 + 𝑐𝑋) − (𝑓𝑓𝑖𝑥 + 2𝑐𝑋)) = 0             (A3.33) 

ℎ𝐹𝑆
∗ = 𝑤𝐹 ∗

𝑓𝑓𝑖𝑥(1−𝑤𝐹)+𝑐𝑋(1−𝑤𝐹)+𝑐𝑋

2𝑐𝑋(1−𝑤𝐹)
                                            (A3.34) 

Corollary 2 

The propensity for separating equilibrium decreases as the homogeneity of investors’ 

holding horizons (ℎ𝐹𝑆) in a particular index increases, given other parameter restrictions for 

separating equilibrium are satisfied. 

Proof 

Consider two mutually exclusive and collectively exhaustive intervals: 

a) ℎ𝐹𝑆 ∈ (0; ℎ𝐹𝑆
∗ ) 

b) ℎ𝐹𝑆 ∈ (ℎ𝐹𝑆
∗ ; 1) 

Given that 𝑤𝐹 > ℎ𝐹𝑆 and ℎ𝐹𝑆 ∈ (0; ℎ𝐹𝑆
∗ ), the following condition is sufficient to rule out 

interval b): 

𝑤𝐹 < ℎ𝐹𝑆
∗                                                                     (A3.35) 

ℎ𝐹𝑆
∗ −𝑤𝐹 > 0                                                               (A3.36) 

𝑤𝐹 (
𝑓𝑓𝑖𝑥(1−𝑤𝐹)+𝑐𝑋(1−𝑤𝐹)+𝑐𝑋

2𝑐𝑋(1−𝑤𝐹)
− 1) > 0                                             (A3.37) 

Given that 2𝑐𝑋(1 − 𝑤𝐹) > 0 for all parameters, inequality A3.37 simplifies to: 

(𝑓𝑓𝑖𝑥 + 𝑐𝑋)(1 − 𝑤𝐹) + 𝑐𝑋 − 2𝑐𝑋(1 − 𝑤𝐹) > 0                               (A3.38) 
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𝑤𝐹 <
𝑓𝑓𝑖𝑥

𝑓𝑓𝑖𝑥−𝑐𝑋
                                                             (A3.39) 

Inequality A3.39 can be considered on two intervals: 

a) 𝑓𝑓𝑖𝑥 < 𝑐𝑋 → inequality A3.38 doesn’t have a solution, as this interval is not 

compatible with 𝑤𝐹 > 0 condition. 

b) 𝑓𝑓𝑖𝑥 > 𝑐𝑋 → inequality A4.38 holds for all parameter values, as 
𝑓𝑓𝑖𝑥

𝑓𝑓𝑖𝑥−𝑐𝑋
> 1 and 

𝑤𝐹 < 1. 

Hence, we have proven that 𝑤𝐹 < ℎ𝐹𝑆
∗  holds, and it is a sufficient condition for ℎ𝐹𝑆 ∈

(0; ℎ𝐹𝑆
∗ ) to hold. This suggests that the 𝑦 function is decreasing with the homogeneity of investors’ 

holding horizons. 

 

3. Characterizing the propensity for separating equilibrium with respect to the fixed 

costs parameter (𝒇𝒇𝒊𝒙) 

Rewriting the 𝑦 function in A3.14 w.r.t. 𝑓𝑓𝑖𝑥: 

𝑦 = 𝑓𝑓𝑖𝑥ℎ𝐹𝑆𝑤𝐹
2 −𝑤𝐹ℎ𝐹𝑆𝑓𝑓𝑖𝑥 +𝑤𝐹

2𝑐𝑋ℎ𝐹𝑆 + 𝑐𝑋𝑤𝐹
2 − 2𝑤𝐹ℎ𝐹𝑆𝑐𝑋 − 𝑤𝐹ℎ𝐹𝑆

2 𝑐𝑋 + 𝑐𝑋ℎ𝐹𝑆
2        (A3.40) 

Taking a partial derivative of 𝑦 (Eq. (A4.40)) w.r.t. 𝑓𝑓𝑖𝑥: 

𝑑𝑦

𝑑𝑓𝑓𝑖𝑥
= 𝑤𝐹

2ℎ𝐹𝑆 −𝑤𝐹ℎ𝐹𝑆 = 𝑤𝐹ℎ𝐹𝑆(𝑤𝐹 − 1)                                (A3.41) 

Corollary 3 

The propensity for separating equilibrium decreases as the fixed cost of running a fund 

(𝑓𝑓𝑖𝑥) in a particular index increase. 

Proof 

The expression in A3.40 is always non-positive, as 𝑤𝐹 ≤ 1 → 𝑤𝐹 − 1 ≤ 0, and 𝑤𝐹ℎ𝐹𝑆 >

0 hence 
𝑑𝑦

𝑑𝑓𝑓𝑖𝑥
≤ 0, suggesting the separating equilibrium is less likely for higher values of issuers’ 

fixed costs. 

 

4. Characterizing the propensity for separating equilibrium with respect to combined 

assets under management of all ETFs tracking a particular index (𝑿) 

Rewriting the 𝑦 function in A3.14 w.r.t. 𝑋: 

𝑦 = 𝑓𝑓𝑖𝑥ℎ𝐹𝑆𝑤𝐹
2 −𝑤𝐹ℎ𝐹𝑆𝑓𝑓𝑖𝑥 +𝑤𝐹

2𝑐𝑋ℎ𝐹𝑆 + 𝑐𝑋𝑤𝐹
2 − 2𝑤𝐹ℎ𝐹𝑆𝑐𝑋 − 𝑤𝐹ℎ𝐹𝑆

2 𝑐𝑋 + 𝑐𝑋ℎ𝐹𝑆
2        (A3.42) 

Taking a partial derivative of 𝑦 (Eq. (A3.42)) w.r.t. 𝑋: 

𝑑𝑦

𝑑𝑋
= 𝑐(𝑤𝐹

2(1 + ℎ𝐹𝑆) − 2𝑤𝐹ℎ𝐹𝑆 + ℎ𝐹𝑆
2 )                                (A3.43) 
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Corollary 4 

The propensity for separating equilibrium increases as the combined AUM (𝑋) in a 

particular index increase. 

Proof 

The expression in A3.42 is always positive, as it is an upward-facing parabola with 

discriminant that is less than zero: 𝑐 > 0, (1 + ℎ𝐹𝑆) > 0, and 𝐷 = 4ℎ𝐹𝑆
2 − 4ℎ𝐹𝑆

2 (1 + ℎ𝐹𝑆) < 0, 

suggesting 
𝑑𝑦

𝑑𝑋
> 0 for all parameter values. 
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Summary table  

R
es

tr
ic

ti
o

n
s 

{
 
 
 

 
 
 
𝑓𝑓𝑖𝑥ℎ𝐹𝑆𝑤𝐹

2 − 𝑤𝐹ℎ𝐹𝑆𝑓𝑓𝑖𝑥 +𝑤𝐹
2𝑐𝑋ℎ𝐹𝑆 + 𝑐𝑋𝑤𝐹

2 − 2𝑤𝐹ℎ𝐹𝑆𝑐𝑋 − 𝑤𝐹ℎ𝐹𝑆
2 𝑐𝑋 + 𝑐𝑋ℎ𝐹𝑆

2 > 0

𝑤𝐹 > ℎ𝐹𝑆

𝑤𝐹 ∈ (
ℎ𝐹𝑆(𝑓𝑓𝑖𝑥 + 2𝑐𝑋 + 𝑐𝑋ℎ𝐹𝑆) + ℎ𝐹𝑆√(𝑓𝑓𝑖𝑥 − 𝑐𝑋ℎ𝐹𝑆)

2
+ 4𝑐𝑋𝑓𝑓𝑖𝑥

2(𝑓𝑓𝑖𝑥ℎ𝐹𝑆 + 𝑐𝑋ℎ𝐹𝑆 + 𝑐𝑋)
; 1)

ℎ𝐹𝑆 ∈ (0; 𝑤𝐹 ∗
𝑓𝑓𝑖𝑥(1 − 𝑤𝐹) + 𝑐𝑋(1 − 𝑤𝐹) + 𝑐𝑋

2𝑐𝑋(1 − 𝑤𝐹)
)

 

 

P
ar

am
et

er
 d

ir
ec

ti
o
n
s 

Parameter 

Derivative of the 𝑦 

function w.r.t. 

parameter23 

Implication 

𝑤𝐹 
𝑑𝑦

𝑑𝑤𝐹
> 0 

Separating equilibrium is more likely when the 

proportion of high-turnover investors in a given 

index is high. 

ℎ𝐹𝑆 
𝑑𝑦

𝑑ℎ𝐹𝑆
< 0 

Separating equilibrium is more likely when the 

homogeneity of holding horizons of investors in 

a given index is low. 

𝑓𝑓𝑖𝑥 
𝑑𝑦

𝑑𝑓𝑓𝑖𝑥
< 0 

Separating equilibrium is more likely when 

ETF issuers’ fixed costs in a given index are 

low. 

𝑋 
𝑑𝑦

𝑑𝑋
> 0 

Separating equilibrium is more likely when the 

combined AUM of all ETFs in a given index is 

high. 

 

 

 

  

                                                           
23 Given the restrictions for all other parameters are satisfied. 
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Appendix 4 

This appendix derives the relation between the ETF fees and liquidity in separating 

equilibrium. As shown in Appendix 2, in equilibrium, issuers A and B charge the following fees: 

𝑓𝐴 = 𝑓0 + ∆𝑚𝑎𝑥                                                          (A4.1) 

𝑓𝐵 = 𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛                                                  (A4.2) 

Hence, the equilibrium fee differential is: 

𝑓𝐴 − 𝑓𝐵 = 𝑓0 + ∆𝑚𝑎𝑥 − 𝑓0 − ∆𝑚𝑎𝑥 + ∆𝑚𝑖𝑛= ∆𝑚𝑖𝑛                       (A4.3) 

As shown in Appendix 2, this fee differential can be expressed as: 

𝑓𝐴 − 𝑓𝐵 = ∆𝑚𝑖𝑛 =
𝑐

𝑤𝑆
−

𝑐ℎ𝐹

𝑤𝐹ℎ𝑆
                                               (A4.4) 

Recall that investors’ liquidity cost in ETFs A and B are as follows: 

𝐶𝐿𝐼𝑄
𝐴 =

𝑐ℎ𝐹

𝑤𝐹
                                                                  (A4.5) 

𝐶𝐿𝐼𝑄
𝐵 =

𝑐ℎ𝑆

𝑤𝑆
                                                                 (A4.6) 

Expressing the liquidity cost differential as a function of the fee differential, we have: 

𝐶𝐿𝐼𝑄
𝐴 − 𝐶𝐿𝐼𝑄

𝐵 = 𝑐 (
ℎ𝐹

𝑤𝐹
−

ℎ𝑆

𝑤𝑆
) = −ℎ𝑆(𝑓𝐴 − 𝑓𝐵)                               (A4.7) 

Recognizing that the liquidity cost differential is just the liquidity differential with a minus 

sign (denoting the ETF A’s liquidity as 𝐿𝐼𝑄𝐴 and ETF B’s liquidity as 𝐿𝐼𝑄𝐵), we obtain the 

following liquidity-fee relation for ETFs in separating equilibrium: 

𝐿𝐼𝑄𝐴 − 𝐿𝐼𝑄𝐵 = ℎ𝑆(𝑓𝐴 − 𝑓𝐵)                                 (A4.8) 
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Appendix 5 

This appendix presents the theoretical underpinnings behind the welfare analysis.  

1. Welfare effects in non-separating equilibrium without liquidity clienteles 

Recall from Appendix 2 that in equilibrium, the costs to high-turnover investors (of 

investing in ETF 𝑗)24 are: 

𝐶𝑇𝑂𝑇𝐴𝐿
𝐹 = 𝑓𝑗ℎ𝐹 +

𝑐ℎ𝐹

𝑤𝐹
                                                       (A5.1) 

And the costs to low-turnover investors are: 

𝐶𝑇𝑂𝑇𝐴𝐿
𝑆 = 𝑓𝑗ℎ𝑆 +

𝑐ℎ𝑆

𝑤𝑆
                                                      (A5.2) 

Recall also that in this model, the clientele effect arises due to one ETF having the liquidity 

advantage over another, which allows the former to charge monopolistic rents in terms of higher 

MERs. To eliminate these monopolistic rents, the liquidity costs would have to be zero for both 

ETFs. Hence, 𝑐 = 0 in the counterfactual scenario without the liquidity begetting liquidity effect. 

In that scenario, the costs to high-turnover and low-turnover investors respectively are: 

𝐶𝑇𝑂𝑇𝐴𝐿
𝐹 = 𝑓𝑗ℎ𝐹                                                            (A5.3) 

𝐶𝑇𝑂𝑇𝐴𝐿
𝑆 = 𝑓𝑗ℎ𝑆                                                            (A5.4) 

Although the low-turnover investors are still more fee-sensitive than the high-turnover (as 

ℎ𝑆 > ℎ𝐹), in the absence of liquidity advantage, both investor types prefer an ETF with a lower fee. 

Hence, investor 𝑖’s cost minimization25 imposes the following condition on fees: 

𝑓𝑖 = min{𝑓𝐴, 𝑓𝐵}                                                            (A5.5) 

What would be the issuers’ optimum fee setting behavior in this case? We can show that 

in the absence of liquidity externalities, the only stable Nash equilibrium is one in which there’s 

only one ETF issuer setting the fee at breakeven level of 𝑓∗ =
𝑓𝑓𝑖𝑥

𝑋
.  

Suppose there are two ETFs in the market: A and B. If A sets his fee at 𝑓𝐴 > 𝑓𝐵, he will 

lose all investors to B. Hence, both ETFs have an incentive to keep lowering their fees until the 

point of zero profits. Recall that the profit function for ETF A is: 

𝜋𝐴 = 𝑋𝑥𝐴𝑓𝐴 − 𝑓𝑓𝑖𝑥                                                           (A5.6) 

Hence, ETF A’s breakeven fee is: 

𝑓𝐴 =
𝑓𝑓𝑖𝑥

𝑋𝑥𝐴
                                                                       (A5.7) 

                                                           
24 Note that 𝑗 can take two values: A or B. 
25 Note that 𝑖 can take two values: high-turnover or low-turnover.  
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The lowest possible breakeven fee is achieved when 𝑥𝐴 = 1 (A has 100% market share). 

In that scenario, A competes B out of the market. Decreasing the fee below 𝑓∗ =
𝑓𝑓𝑖𝑥

𝑋
 would result 

in negative profits for either issuer, hence is not optimal. Increasing the fee above 𝑓∗ =
𝑓𝑓𝑖𝑥

𝑋
 would 

result in losing 100% market share to the competitor, which is not optimal. Therefore, the only 

stable equilibrium emerges when there is only one ETF in the market, and he charges the breakeven 

fee of 𝑓∗.26 The profit of this single ETF issuer is: 

𝜋∗ = 𝑋𝑓∗ − 𝑓𝑓𝑖𝑥 = 0                                                           (A5.8) 

In the non-separating equilibrium without liquidity clienteles, total fees paid by investors 

are as follows: 

𝐶∗ =
𝑓𝑓𝑖𝑥

𝑋
∗ 𝑋 = 𝑓𝑓𝑖𝑥                                                            (A5.9) 

Hence, the following welfare effects arise in non-separating equilibrium without liquidity 

clienteles: 

1) No welfare transfers occur, as MERs are set at a competitive level and the issuer 

generates zero profit: 

𝑉𝑁𝑂𝑁−𝑆𝐸𝑃𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 0                                                        (A5.10) 

2) The cost of providing ETF liquidity in a given index is equal to the cost incurred by a 

single ETF issuer: 

𝐶𝑁𝑂𝑁−𝑆𝐸𝑃 = 𝑓𝑓𝑖𝑥                                                          (A5.11) 

2. Welfare effects in separating equilibrium with liquidity clienteles 

In the separating equilibrium, issuers’ profits are as follows: 27 

𝜋𝐴 = (𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛)𝑋𝑤𝐹 − 𝑓𝑓𝑖𝑥                                        (A5.12) 

𝜋𝐵 = (𝑓0 + ∆𝑚𝑖𝑛)𝑋(1 − 𝑤𝐹) − 𝑓𝑓𝑖𝑥                                        (A5.13) 

The costs to high-turnover and low-turnover investors respectively are as follows: 

𝐶𝐹 = (𝑓0 + ∆𝑚𝑎𝑥)𝑋𝑤𝐹                                                    (A5.14) 

𝐶𝑆 = (𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛)𝑋(1 − 𝑤𝐹)                                    (A5.15) 

Hence, the following welfare effects arise in the separating equilibrium with liquidity 

clienteles: 

                                                           
26 One can argue that there is a possible equilibrium with two ETFs charging identical fees, earning zero 

profits, and having equal market shares: 𝑥𝐴 = 𝑥𝐵 = 0.5. However, this equilibrium is not stable in the sense 

that each issuer has an incentive to undercut on fees. Because even marginally lower fee results in capturing 

100% market share, it would result in the race to the bottom dynamics, until the breakeven fee of  𝑓∗ is 

reached. 

 
27 See Appendix 2 for the Nash equilibrium derivation. 
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1) The welfare transfer from investors to issuers that is also the payment for accessing 

ETF liquidity: 

𝑉𝑆𝐸𝑃𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = (𝑓0 + ∆𝑚𝑎𝑥)𝑋𝑤𝐹 + (𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛)𝑋(1 − 𝑤𝐹) − 2𝑓𝑓𝑖𝑥            (A5.16) 

2) The cost of providing ETF liquidity in a given index is equal to the cost incurred 

by two ETF issuers: 

𝐶𝑆𝐸𝑃 = 2𝑓𝑓𝑖𝑥                                                       (A5.17) 

3. Welfare effects in separating equilibrium with liquidity clienteles compared to non-

separating equilibrium without liquidity clienteles 

The value of welfare transfers from investors to issuers does not affect the overall welfare 

from the perspective of society as a whole. The remaining stream of costs and benefits is simply 

the cost incurred by issuers. To arrive at the net effect on societal welfare, we compare the costs of 

delivering ETF liquidity in separating equilibrium with liquidity clienteles to that in non-separating 

equilibrium without liquidity clienteles. The deadweight loss emerges due to two ETFs delivering 

the value of liquidity rather than one: 

𝑉𝐷𝑊𝐿 = 𝐶𝑆𝐸𝑃 − 𝐶𝑁𝑂𝑁−𝑆𝐸𝑃 = 𝑓𝑓𝑖𝑥                                    (A5.18) 
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Table 1 

Equity ETFs with identical index exposure 

This table provides the list of ETFs that share the same index benchmark with at least one other ETF. The sample contains 60 same-index US-domiciled ETFs 

based on 24 unique indices. The ETF characteristics are daily averages for the year 2017. MER is net expense ratio, relative spread is absolute bid-ask spread 

divided by midpoint, turnover is the annualized percentage ratio of daily dollar volume divided by assets under management (AUM). 

 

Index benchmark ETF issuer Ticker 

Inception 

date 

 

MER, bps 

Relative 

spread, 

bps 

Dollar 

volume, 

$ mln 

AUM, 

$ mln 

Turnover, 

% 

FTSE Emerging NR USD Charles Schwab SCHE 2010/01/14 13.00 4.11 21.91 3404.86 161.72 

FTSE Emerging NR USD Vanguard VWO 2005/03/04 14.22 2.40 456.54 55862.66 205.71 

JPX-Nikkei 400 Net Total Return Index Deutsche Bank JPN 2015/06/24 35.67 17.83 0.09 12.83 184.94 

JPX-Nikkei 400 Net Total Return Index Blackrock JPXN 2001/10/23 48.00 12.55 0.25 88.26 70.19 

MSCI ACWI Ex USA NR USD Blackrock ACWX 2008/03/26 32.09 2.67 24.82 2393.42 261.13 

MSCI ACWI Ex USA NR USD State Street CWI 2007/01/10 30.00 4.29 7.77 1295.34 150.90 

MSCI ACWI Low Carbon Target Index Blackrock CRBN 2014/12/08 20.00 11.54 0.94 403.20 58.68 

MSCI ACWI Low Carbon Target Index State Street LOWC 2014/11/25 20.00 17.98 0.11 140.78 19.61 

MSCI EAFE 100% Hedged NR USD Deutsche Bank DBEF 2011/06/09 35.00 3.39 48.11 7919.25 153.04 

MSCI EAFE 100% Hedged NR USD Blackrock HEFA 2014/01/31 35.94 4.27 33.49 4075.72 218.31 

MSCI Japan 100% Hedged NR USD Deutsche Bank DBJP 2011/06/09 45.00 3.40 19.63 1896.35 260.98 

MSCI Japan 100% Hedged NR USD Blackrock HEWJ 2014/01/31 49.00 3.44 32.11 1098.26 734.91 

NASDAQ 100 Equal Weighted TR USD First Trust QQEW 2006/04/19 60.00 4.82 2.78 506.10 138.18 

NASDAQ 100 Equal Weighted TR USD Direxion QQQE 2012/03/21 35.00 15.57 1.36 124.43 275.71 

Russell 1000 Growth TR USD Blackrock IWF 2000/05/22 20.00 0.93 181.09 35900.41 127.05 

Russell 1000 Growth TR USD Vanguard VONG 2010/09/20 12.00 3.72 5.26 1162.83 113.69 

Russell 1000 TR USD Blackrock IWB 2000/05/15 15.00 1.00 118.77 18490.70 161.76 

Russell 1000 TR USD State Street ONEK 2005/11/08 10.00 18.39 0.56 137.28 102.48 

Russell 1000 TR USD Vanguard VONE 2010/09/20 12.00 4.60 2.51 717.25 88.37 

Russell 1000 Value TR USD Blackrock IWD 2000/05/22 20.00 0.92 230.89 36874.94 157.76 

Russell 1000 Value TR USD Vanguard VONV 2010/09/20 12.00 3.60 4.35 1067.79 102.48 

Russell 2000 Growth TR USD Blackrock IWO 2000/07/24 24.58 1.81 95.36 8078.46 297.28 

Russell 2000 Growth TR USD Vanguard VTWG 2010/09/20 20.00 6.18 0.92 193.21 120.04 

Russell 2000 TR USD Blackrock IWM 2000/05/22 20.00 0.71 3651.68 38912.53 2365.30 

Russell 2000 TR USD State Street TWOK 2013/07/08 10.00 13.04 1.51 204.92 185.24 

Russell 2000 TR USD Vanguard VTWO 2010/09/20 15.00 5.17 8.53 1050.01 204.53 

Russell 2000 Value TR USD Blackrock IWN 2000/07/24 24.58 1.41 111.87 8766.73 321.59 
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Russell 2000 Value TR USD Vanguard VTWV 2010/09/20 20.00 7.54 1.06 173.43 154.20 

Russell 3000 TR USD Blackrock IWV 2000/05/22 20.00 1.15 28.34 7686.42 92.86 

Russell 3000 TR USD State Street THRK 2000/10/04 10.00 15.21 1.49 416.72 89.92 

Russell 3000 TR USD Vanguard VTHR 2010/09/20 15.00 4.82 1.29 343.30 94.48 

S&P 500 Growth TR Blackrock IVW 2000/05/22 18.00 1.14 91.79 17775.55 130.00 

S&P 500 Growth TR State Street SPYG 2000/09/25 12.72 5.86 3.91 769.41 128.47 

S&P 500 Growth TR Vanguard VOOG 2010/09/07 15.00 3.98 6.02 1544.69 98.02 

S&P 500 TR USD Blackrock IVV 2000/05/15 4.00 0.51 834.05 112581.34 186.46 

S&P 500 TR USD State Street SPY 1993/01/22 9.40 0.40 17012.97 240662.22 1780.40 

S&P 500 TR USD Vanguard VOO 2010/09/07 4.32 0.61 434.58 68728.50 159.18 

S&P 500 Value TR USD Blackrock IVE 2000/05/22 18.00 1.16 83.42 13687.09 153.51 

S&P 500 Value TR USD State Street SPYV 2000/09/25 12.72 8.60 2.10 330.83 160.68 

S&P 500 Value TR USD Vanguard VOOV 2010/09/07 15.00 5.75 2.70 726.10 93.46 

S&P Global Infrastructure TR USD State Street GII 2007/01/25 40.00 38.18 0.85 142.82 149.67 

S&P Global Infrastructure TR USD Blackrock IGF 2007/12/10 47.42 5.94 9.75 1617.15 151.72 

S&P MidCap 400 Growth TR Blackrock IJK 2000/07/24 25.00 2.25 23.19 6607.17 88.41 

S&P MidCap 400 Growth TR Vanguard IVOG 2010/09/07 20.00 3.47 2.59 685.03 95.17 

S&P MidCap 400 Growth TR State Street MDYG 2005/11/08 15.00 8.06 3.70 665.06 139.74 

S&P MidCap 400 TR Blackrock IJH 2000/05/22 7.00 0.80 214.32 39471.90 136.73 

S&P MidCap 400 TR Vanguard IVOO 2010/09/07 15.00 2.79 3.49 721.24 121.88 

S&P MidCap 400 TR State Street MDY 1995/05/04 25.00 0.69 359.18 19412.60 466.23 

S&P MidCap 400 Value TR USD Blackrock IJJ 2000/07/24 25.00 2.50 21.94 5821.33 94.95 

S&P MidCap 400 Value TR USD Vanguard IVOV 2010/09/07 20.00 6.23 2.15 651.70 82.98 

S&P MidCap 400 Value TR USD State Street MDYV 2005/11/08 15.00 8.44 3.26 457.36 179.29 

S&P SmallCap 600 Growth TR Blackrock IJT 2000/07/24 25.00 4.08 19.30 4391.47 110.71 

S&P SmallCap 600 Growth TR State Street SLYG 2000/09/25 15.00 8.12 5.84 1209.82 121.60 

S&P SmallCap 600 Growth TR Vanguard VIOG 2010/09/07 20.00 5.01 1.25 249.79 125.54 

S&P SmallCap 600 TR USD Blackrock IJR 2000/05/22 7.00 1.64 198.20 29655.62 168.49 

S&P SmallCap 600 TR USD State Street SLY 2005/11/08 15.00 10.44 3.31 765.07 109.02 

S&P SmallCap 600 TR USD Vanguard VIOO 2010/09/07 15.00 3.49 4.55 635.85 179.86 

S&P SmallCap 600 Value TR Blackrock IJS 2000/07/24 25.00 4.01 21.62 4779.00 114.00 

S&P SmallCap 600 Value TR State Street SLYV 2000/09/25 15.00 8.33 6.12 977.80 157.62 

S&P SmallCap 600 Value TR Vanguard VIOV 2010/09/07 20.00 4.86 1.26 215.83 146.98 
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Table 2 

Descriptive statistics  

This table reports descriptive statistics for the variables used in regression analysis. Panel A contains 60 

same-index US-domiciled ETFs, based on 24 unique indices with combined assets under management of 

$823.58 billion and combined daily dollar volume of $24.79 billion. Panel B contains 975 indices, each 

tracking one ETF, with combined assets under management of $1,445.42 billion and combined daily dollar 

volume of $27.98 billion. All variables are calculated from the daily frequency data and averaged per index 

over the year 2017. MER is net expense ratio, relative spread is absolute bid-ask spread divided by midpoint, 

turnover is annualized percentage ratio of daily dollar volume divided by assets under management (AUM).  

  

 

Mean 
Standard 

Deviation 

25th 

percentile 

50th 

percentile 

75th 

percentile 

Panel A. Indices with multiple ETFs per index (in separating equilibrium) 

MER, bps 22.67 11.80 15.11 20.00 26.66 

Relative Spread, bps 6.19 4.92 3.45 4.88 6.68 

Turnover, % 331.21 283.01 191.47 244.11 328.47 

Number of Constituents 854.52 716.24 338.46 590.67 1176.98 

AUM, $ bn 34.32 85.85 4.79 8.70 34.34 

Daily Dollar Volume, $ mln 1033.00 3801.70 318.00 895.00 200.10 

      

Panel B. Indices with one ETF per index (in non-separating equilibrium) 

MER, bps 50.13 40.25 35.00 48.00 62.20 

Relative Spread, bps 29.02 66.83 6.13 14.37 31.81 

Turnover, % 534.35 1458.76 171.21 289.54 495.36 

Number of Constituents 276.50 532.47 44.16 100.49 276.48 

AUM, $ bn 1.48 5.44 0.02 0.12 0.69 

Daily Dollar Volume, $ mln 28.80 177.90 0.20 0.90 4.60 
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Table 3 

OLS regressions  

This table reports cross-sectional regression results for six different models with index fixed effects, where MER is the 

dependent variable, and independent variables are reported in the first column. Panel A reports the results for simple 

OLS regressions. Panel B reports the results for AUM-weighted least squares regressions. The sample contains 60 same 

index US-domiciled ETFs based on 24 unique indices. All variables are calculated from the daily frequency data and 

averaged per ETF over the year 2017. MER is net expense ratio, relative spread is absolute bid-ask spread divided by 

midpoint, turnover is annualized percentage ratio of daily dollar volume divided by assets under management (AUM), 

tracking error is the standard deviation of the difference in daily returns between an ETF and its benchmark index. T-

statistics are reported in parentheses. ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels, 

respectively. 

 

  
MER (1) MER (2) 

Log MER 

 (3) 

Log MER 

 (4) 

Log MER 

(5) 

Log MER 

(6) 

Panel A. Ordinary least squares regressions 

       

Intercept 23.12*** 22.97*** 2.06*** 1.83*** 1.29 2.28 

 (8.37) (8.62) (4.98) (4.82) (0.19) (0.36) 

       

Relative Spread -0.55*** -0.51***     

  (-4.01) (-3.83)     

       

Log Turnover   0.19** 0.24***   

    (2.42) (3.21)   

       

Log Dollar Volume     1.21*** 1.15*** 

     (3.12) (3.11) 

       

Tracking Error  -0.08*     

   (-1.92)     

        

Log Tracking Error    -0.12***  -0.09** 

    (-3.00)  (-2.13) 

       

Adjusted R2  0.85 0.86 0.73 0.78 0.83 0.84 

Fixed Effects Index Index Index Index Index Index 

       

Panel B. AUM-weighted least squares regressions 

       

Intercept 26.38*** 26.44*** 1.46*** 1.44*** -2.07 -1.76 

 (4.37) (4.33) (5.58) (5.54) (-0.31) (-0.26) 

       

Relative Spread -0.69 -0.66     

  (-1.11) (-1.03)     

       

Log Turnover   0.37*** 0.37***   

    (14.66) (14.70)   

Log Dollar Volume     1.57*** 1.56*** 

     (5.01) (4.95) 

Tracking Error  -0.25     

   (-0.49)     

Log Tracking Error    -0.15  -0.26 

    (-1.29)  (-0.68) 

       

Adjusted R2  0.74 0.73 0.93 0.93 0.84 0.84 

Fixed Effects Index Index Index Index Index Index 
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Table 4 

Probit regressions  

This table reports results for probit regressions modelling the probability of an index being in separating equilibrium 

(i.e., having multiple ETFs tracking it).  Independent variables are reported in the first column. Panel A sample 

contains 24 indices with multiple ETFs per index and 975 indices with one ETF per index, Panel B sample contains 

24 indices with multiple ETFs per index  and 150 randomly selected indices with one ETF per index. All variables 

are calculated from the daily frequency data and averaged per index over the year 2017. Relative spread (in basis 

points) is absolute bid-ask spread divided by midpoint, major index is one issued by MSCI, S&P or Russel, top 3 

ETF issuers are Vanguard, BlackRock and State Street. Dollar volume and AUM are in $ billion, number of 

constituents is in hundreds. Chi-squared statistics are reported in parentheses. ***, **, and * indicate statistical 

significance at 1%, 5%, and 10% levels, respectively. 

 

  Prob (1) Prob (2) Prob (3) Prob (4) 

Panel A. All equity ETFs 

Intercept -2.87*** -2.87*** -2.37*** -2.32 

 (127.11) (126.87) (68.87) (73.69) 

     

Dollar Volume  -0.07 0.44** 0.42** 

  (0.06) (4.21) (3.83) 

     

Relative Spread   -0.03** -0.03** 

    (5.32) (4.10) 

      

Major Index Dummy 0.56** 0.56** 0.56**  

 (3.60) (3.62) (4.32)  

     

AUM 0.04*** 0.04***   

 (23.76) (17.22)   

     

Top3 Issuer Dummy 0.51* 0.51*** 0.56** 0.82*** 

 (3.12) (3.07) (4.09) (10.24) 

     

Number of Constituents    0.02** 

    (4.94) 

Panel B. Randomly selected ETFs in non-separating equilibrium 

Intercept -2.18*** -2.18*** -1.61*** -1.48** 

 (46.38) (46.19) (15.83) (14.46) 

     

Dollar Volume  0.72 2.26* 2.31** 

  (0.28) (3.17) (3.46) 

     

Relative Spread    -0.03 

     (2.40) 

      

Major Index Dummy 0.55 0.54 0.54  

 (2.11) (2.04) (2.19)  

     

AUM 0.04*** 0.03**   

 (9.43) (4.42)   

     

Top3 Issuer Dummy 0.75** 0.74** 0.59 0.87*** 

 (3.87) (3.67) (2.44) (6.03) 

     

Number of Constituents    0.01 

    (0.17) 
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Table 5 

Summary of empirical results 

Hypotheses 
Empirical 

support 

Hypothesis 1: The separating equilibrium is more likely when the proportion of high-

turnover ETF investors in a given index is higher. 
Yes 

Hypothesis 2: The separating equilibrium is more likely when ETF investors’ holding 

horizons in a given index are less homogenous.  
Yes 

Hypothesis 3: The separating equilibrium is more likely when the ETF issuers’ fixed costs 

in a given index are lower.  
Yes 

Hypothesis 4: The separating equilibrium is more likely when the combined AUM of all 

ETFs in a given index is higher.  
Yes 

Hypothesis 5: For ETFs tracking the same index, liquidity is positively related to fees. Yes 

Hypothesis 6: For ETFs tracking the same index, turnover is positively related to fees. Yes 
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Fig. 1. Fee setting behavior in Nash equilibrium. 

This figure summarizes the fee setting behavior in Nash equilibrium. 𝑓𝐴 is issuer A’s optimum fee, 𝑓𝐵 is 

issuer B’s optimum fee, 𝑓0 is issuer B’s breakeven fee, 𝑓𝑓𝑖𝑥 is the fixed cost faced by ETF issuers, 𝑋 is the 

total AUM of all ETFs on a given index, 𝑤𝑆 is the proportion of low-turnover investors in the ETF market. 

In separating Nash equilibrium (i.e., when two ETFs track the same index), neither issuer has an incentive to 

deviate from the chosen strategy, if issuer A (the high-MER issuer of the more liquid ETF A) charges the fee 

𝑓𝐴 = 𝑓0 + ∆𝑚𝑎𝑥, and B charges the fee 𝑓𝐵 = 𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛 . If A charges MER higher than 𝑓𝐴 = 𝑓0 +
∆𝑚𝑎𝑥, high-turnover investors incur too high MER fees and have an incentive to switch to ETF B, despite 

the higher liquidity costs in B. If B charges MER higher than 𝑓𝐵 = 𝑓0 + ∆𝑚𝑎𝑥 − ∆𝑚𝑖𝑛 , low-turnover investors 

do not save enough on MER fees to justify their higher liquidity costs in B, and hence have an incentive to 

switch to ETF A. The full derivation of the Nash equilibrium in this model is presented in Appendix 2.  
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Panel A: Propensity for separating equilibrium as a function of 𝒘𝑭 and 𝒉𝑭𝑺 parameters 

 
 

Panel B: Propensity for separating equilibrium as a function of 𝑿 and 𝒘𝑭 parameters 

 

 
 

Panel C: Propensity for separating equilibrium as a function of 𝑿 and 𝒉𝑭𝑺  parameters 
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Panel D: Propensity for separating equilibrium as a function of 𝒇𝒇𝒊𝒙 and 𝒘𝑭 parameters 

 
 

Panel E: Propensity for separating equilibrium as a function of 𝒇𝒇𝒊𝒙 and 𝒉𝑭𝑺 parameters 

 
 

Fig. 2. Propensity for separating equilibrium as a function of model parameters.  

This figure plots the propensity for separating equilibrium (𝑦) against the model parameters. 𝑤𝐹  is the share of 

AUM in an ETF with the highest MER per index, ℎ𝐹𝑆 is the ratio of holding horizons of the high-MER and low-

MER ETFs per index, 𝑓𝑓𝑖𝑥 is the fixed cost faced by ETF issuers in a given index (in $ mln), 𝑋 is the combined 

AUM of all ETFs in a given index (in $ bn). Separating equilibrium occurs when 𝑦 > 0 and 𝑤𝐹 > ℎ𝐹𝑆 . The non-

varying model parameters are fixed as follows: 𝑤𝐹 = 0.83, 𝑓𝑓𝑖𝑥 = 3.28, ℎ𝐹𝑆 = 0.55, 𝑐 = 0.078, 𝑋 = 56.34. The 

parameter values are estimated by computing index-level average from the sample of 24 indices. For the derivation 

of separating equilibrium conditions, see Appendix 3. 
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Panel A: MER vs bid-ask spread for same index ETFs 

 
 

Panel B: MER vs turnover for same index ETFs 
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Panel C: MER vs dollar volume for same index ETFs 

 
 

Fig. 3. MERs vs liquidity measures for ETFs tracking the same index. 

This figure plots excess MERs against excess liquidity measures on a log-scale. An excess MER in an ETF 

is the percentage difference between this ETF’s MER and the average MER across all ETFs tracking the 

same index as this ETF. The log transformation of MERs and liquidity measures is done by taking a natural 

logarithm of (1+% Excess MER) and (1+% Excess Liquidity Measure) respectively. The bubble size is 

proportional to assets under management (AUM) of a given ETF. The sample contains 60 same index US-

domiciled ETFs based on 24 unique indices. All variables are calculated from the daily frequency data and 

averaged per ETF over the year 2017. MER is net expense ratio, relative spread is absolute bid-ask spread 

divided by midpoint, turnover is annualized percentage ratio of daily dollar volume divided by assets under 

management (AUM). 
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Fig. 4. MER differentials and the value of ETF liquidity. 

This figure plots the MER differentials between same index ETFs, as well as the value of liquidity from in 

each index tracked by multiple ETFs. The MER differential is the difference between management expense 

ratios (MERs) the high-fee ETF and the low-fee ETF tracking the same index. The value of ETF liquidity is 

estimated as the profit of the high-fee ETF issuer less the profit of the low-fee ETF issuer. For details on 

welfare analysis, see Appendix 5. The sample contains 60 same-index US-domiciled ETFs based on 24 

unique indices. All variables are calculated from the daily frequency data and averaged per ETF over the year 

2017.  

 

 

 

 

 


