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information passthrough channel. We find that price informativeness is
non-monotonic in institutional sector’s size, monotonically decreasing
in institutional sector’s concentration, and monotonically decreasing in
the size of the passive sector both due to decrease in aggregate infor-
mation capacity and an additional amplification through endogenous
information allocation response.

∗We thank Valentin Haddad, Hugo Hopenhayn, Pedro Matos, Maureen O’Hara, Chris-
tine Parlour, Alexi Savov, Martin Schmalz, Luminita Stevens, Luke Taylor, Laura Veld-
kamp, Marek Weretka, Wei Wu, Yizhou Xiao, and seminar participants at Boston College,
Boston University, CEPR Plato Conference, Econometric Society Winter Meetings, Euro-
pean Finance Association, Federal Reserve Board, FRIC Conference, Frontiers of Finance,
Gerzensee AP Symposium, Helsinki Finance Summit, HSE Moscow, IDC Herzliya-Eagle
Finance Conference, Imperial College Business School, LSE Finance Theory Group, Na-
tional Bank of Poland, NBER Asset Pricing Meeting, New Economic School, Rome EIEF,
SED Conference, Texas A&M, UBC Winter Finance Conference, UC Davis Napa Valley
FMA Conference, UNC, UT Austin, University of Bonn for helpful discussions. Kacper-
czyk acknowledges research support from European Research Council Consolidator Grant.
Contact: m.kacperczyk@imperial.ac.uk, nosalj@bc.edu, s.sundaresan@imperial.ac.uk.



1 Introduction

Institutional investors constitute an important part of financial landscape

due to their economic size and amount of information they bring in. As of 2018,

the institutional ownership of an average stock in the U.S. equals around 60%.

Within the institutional sector, investors who actively produce information

play a dominant role but passive investors who do not trade for information

reasons also hold an economically significant 25% of shares outstanding. The

ownership structure is heavily skewed, with ten largest investors (some active

and some passive) holding an average 35% of total shares outstanding. The

economic importance of large institutional investors, and their impact on mar-

ket stability has drawn considerable attention from market participants, policy

makers, and academics.

One major consideration is the implication of changing market structure

on asset prices, specifically the effect of large active and passive investors on

price discovery and, more broadly, on the efficiency of capital allocation in the

economy. On the one hand, large active investors have greater capacity to con-

duct fundamental research, which would increase the amount of information

revealed in their trading. On the other hand, they also recognize the price

impact of their trades, which makes them trade less on any information they

have. The questions that interest us in this paper are threefold: First, what

happens to the informational content of prices as the size of large investors

changes? Second, what happens to the informational content of prices as the

concentration of large investors changes? Third, what happens to the infor-

mational content of prices as the share of passively managed funds changes?

To address the issues, a new, generalized theory is necessary. This paper
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builds such a theory by combining elements of some well-established litera-

tures. Our framework has a novel combination of two distinct elements: (i)

investors have different sizes, and therefore different degrees of price impact;1

(ii) investors have different abilities to acquire information, and make endoge-

nous learning and portfolio decisions across several assets.2 The interaction

of these two elements allows us to study the impact of a particular market

structure not only on trading decisions, but also on the ex-ante learning deci-

sions of investors. We are therefore able to increase the breadth of analysis on

factors that would impact price informativeness.

We define the informational content of a price as the covariance of the price

with the fundamental, normalized by the volatility of the price. This measure is

becoming prevalent in the literature,3 and is suited to our analysis for several

reasons: (i) the measure is intuitive, as it can be expressed as the product of

the correlation between the price and the fundamental and the volatility of

the fundamental. Such a measure is higher when correlation is higher, which

is intuitive, but also increases when the fundamental is more volatile, because

higher correlation is more meaningful when the unobserved variable is more

volatile; (ii) price informativeness gives the reduction in posterior beliefs if

agents used price as a signal about fundamentals. That is, our definition is

exactly the object that enters an agent’s beliefs when she learns from the price,

which would appear to be a good basis for a price-informativeness measure;

(iii) as was shown by Bai, Philippon, and Savov (2016), the measure can be

derived as a welfare measure using Q-theory. The definition we use is not

essential for our comparative static results, but for the reasons discussed here,

1See the literature started by Kyle (1985).
2See, for example, Van Nieuwerburgh and Veldkamp (2009, 2010), and Kacperczyk, Van

Nieuwerburgh, and Veldkamp (2016)
3See Bai, Philippon, and Savov (2016) and Farboodi, Matray, and Veldkamp (2018)
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is the one that best fits our framework.

Given the formulation of price informativeness described above, we can an-

alytically decompose the impact of any market structure on the informational

content of prices into three channels. The first is the covariance channel,

which captures how well large players’ learning makes the price load more

on the fundamental shock. This channel is determined by the linear com-

bination of oligopolists’ learning, weighted by their ownership shares of an

asset. It hence favors ownership structures that concentrate ownership on

the oligopolist that invests the most information capacity in that asset. The

second channel is the information passthrough channel, which captures how re-

sponsive investors’ trades are to their private signals about asset payoffs. We

show that the information passthrough for each oligopolist is a hump-shaped

function of their size. As an oligopolist grows in size of assets under man-

agement, initially it implies larger responses of their trades to their signals.

However, above a certain size, the price impact of the oligopolist becomes too

big, and actually the response of their trades to signals begins to shrink. This

channel favors intermediate size of each oligopolist and the sector as a whole,

and it is responsible for non-monotonic responses of price informativeness to

size. The third channel impacting price informativeness is the concentration

channel, expressed by a learning-weighted HHI index, which captures how con-

centration in investors’ holdings leads to errors in signals being compounded

into the price. The more concentrated the ownership of an asset, the larger is

the impact on the price of errors in signals of the large holders of that asset,

leading to larger price variability orthogonal to the fundamental.

Two additional results combine with the channels above to determine the

responses of the model to different market structures. One is that, unlike in

a perfectly competitive model, here size introduces a concavity in investor’s
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learning decision. Because of price impact, there are decreasing returns to

learning about any one asset, and those returns decrease faster, the bigger is

the investor. In equilibrium, it means that as an investor increases in size,

they diversify their learning into more assets. The second result is that price

informativeness is concave in any large investor’s learning decision. Therefore,

spreading oligopolists’ learning helps average price informativeness through

this result, and also through the concentration channel and potentially the

information passthrough channel above, while hurting each individual asset’s

price informativeness through the covariance channel. The combination of all

these forces is what drives our results, and we provide detailed decompositions

of each of our findings.

We conduct a set of numerical exercises for typical parameterization of the

model, in oder to study the effects of different market structures on price in-

formativeness, as well as to determine the relative importance of the channels

we identify. Our first result is that increases in the size of the large investor

sector have a non-monotonic effect on average price informativeness. This is

true in the aggregate and for individual assets and is driven by the hump-

shaped nature of the information passthrough channel, which quantitatively

dominates this result. Our second result is that increases in the concentration

of the large investor sector, have a monotonically negative effect on average

price informativeness. On the asset level, this is driven by passthrough channel

and the concentration channel. In terms of information passthrough, when one

investor gets big at the expense of others, both groups hit the diminishing in-

formation passthrough region. In terms of aggregation, these asset level effects

get amplified by the fact that when the sector size is more evenly distributed,

agents learn roughly evenly about all the assets, which increases the aggregate

price informativeness due to its concavity. Our third result is that moving
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assets from being actively managed to passively managed reduces price infor-

mativeness through two channels. The first is the quantity channel—less smart

money reduces price informativeness. The second is the learning channel—a

smaller active sector is relatively more likely to specialize in its learning, which

has a negative impact on aggregate price informativeness. An additional impli-

cation is that as active investors specialize more, some assets actually exhibit

growth in their price informativeness and some less desirable assets exhibit

a decrease in price informativeness. A heterogenous cross-sectional response

to a growing passive sector has been documented in Farboodi, Matray, and

Veldkamp (2018), which is consistent with this result. Finally, we contrast all

of the results from our experiments with those from a model with exogenous

information, as in prior literature. We find that the conclusions are very differ-

ent in a model with exogenous information, which highlights the importance

of modeling information choice when studying price informativeness.

We present a set of additional results relating to price informativeness in

the cross section of assets as well. We find that large investors prefer to learn

about volatile assets, which, in turn means that price informativeness is highest

for more volatile assets, and less so for less volatile assets. Further, we find that

assets that have high levels of concentration in holdings tend to have somewhat

lower levels of price informativeness, as the errors in an agents learning pollute

the price. The effects for concentration of holdings are smaller in magnitude

than they are for size of holdings. Additionally, we solve special cases of the

model to find closed-form solutions for price informativeness and learning, as

well as for the thresholds of size at which investors decide to start spreading

their learning across many assets. We are able to compare these thresholds to

those at which it would be optimal when maximizing price informativeness.

Finally, we present an extension of our framework in which fringe investors
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are allowed to learn from the price signal at no capacity cost.4 This extension

introduces significantly more complexity to the equilibrium, and as a result

only numerical solution is possible. In our simulations of this extension of

the model, however, we find the same set of conclusions as in the benchmark

model in terms of the shape and monotonicity of price informativeness relative

to market structures.

1.1 Related Literature

Our paper spans several research themes. The literature on informed trad-

ing with market power dates back to Kyle (1985) and Grinblatt and Ross

(1985) whose setup is one strategic trader, and Holden and Subrahmanyam

(1992), which extends the model of Kyle into an oligopolistic framework. Lam-

bert, Ostrovsky, and Panov (2018) extend the Kyle’s model to study the re-

lation between the number of strategic traders and information content of

prices.5 In all these studies, information is an exogenous process, which is

a key dimension along which our model works. Also, these studies do not

examine the role of concentration and active/passive traders, both being the

central focus of our study. Kyle, Ou-Yang, and Wei (2011) allow for endoge-

nous information acquisition but their mechanism depends on differences in

risk aversion. Also, they focus on the contracting features of delegation and

only consider one risky asset. In turn, our framework utilizes heterogeneity in

information capacity and multi-asset economy.

4If the price signal is costly in terms of information capacity, agents would never find
it optimal to use it. For a detailed discussion of this result, see Kacperczyk, Nosal, and
Stevens (2017). Our baseline results all come in a setting in which any learning uses up
capacity, which allows for analytical characterization of the price informativeness and the
decomposition.

5Models in which traders condition on others’ decisions also include Foster and
Viswanathan (1996) and Back, Cao, and Willard (2000).
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Our general equilibrium model is anchored in the literature on the endoge-

nous information choice, in the spirit of Sims (1998, 2003). More closely related

to our application are the models of costly information of Van Nieuwerburgh

and Veldkamp (2009, 2010), Mondria (2010), Kacperczyk, Van Nieuwerburgh,

and Veldkamp (2016), and Kacperczyk, Nosal, and Stevens (2017). Ours is the

first theoretical study to introduce market power into a model with endoge-

nous information acquisition. This novel aspect allows us to study strategic

responses of oligopolistic traders in terms of their demand and information

choices.

We also contribute to the literature on information production and asset

prices. Bond, Edmans, and Goldstein (2012) survey the literature on informa-

tion production in financial markets, emphasizing the differences between new

information produced in markets (revelatory price efficiency: RPE) and what

is already known and merely reflected in prices (forecasting price efficiency:

FPE). Our focus is solely on RPE and is largely dictated by the modeling

framework we use.6 Stein (2009) develops a model of market efficiency and so-

phisticated (arbitrage) capital in the presence of capital constraints. Garleanu

and Pedersen (2015) examine the role of search frictions in asset management

for price efficiency. Breugem and Buss (2018) study the impact of benchmark-

ing on price informativeness in a costly information acquisition competitive

equilibrium model. Davila and Parlatore (2017) explore the equilibrium rela-

tion between price informativeness and price volatility, and characterize the

conditions under which volatility and price informativeness co-move.

On an empirical front, Bai, Philippon, and Savov (2016) show that price

6Theoretical work on asset prices and real efficiency also includes Dow and Gorton
(1997), Subrahmanyam and Titman (1999), Kurlat and Veldkamp (2015), and Edmans,
Goldstein, and Jiang (2015).
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informativeness is greater for stocks with greater institutional ownership. We

confirm their findings for the range of the ownership values. However, we

show that beyond certain levels (not observed in their data) ownership may

in fact reduce price informativeness. Separately, we also investigate the role

of ownership concentration and provide a micro-founded general equilibrium

model that allows us to study the underlying economic mechanism in more

depth. In a contemporaneous work, Farboodi, Matray, and Veldkamp (2018)

examine differences in price informativeness between companies included and

not included in the S&P 500 index. They show that the indexed companies

exhibit larger efficiency, which they attribute to composition effect of these

companies, being older and larger. Their focus, however, is not on market

power and changes in market structure.

Finally, we add to a growing empirical literature that studies the impact

of market structure in asset management on various economic outcomes. Fol-

lowing the diseconomies of scale argument of Chen et al. (2004), Pástor,

Stambaugh, and Taylor (2015) show significant diseconomies of scale at the

industry level. Using a merger between BlackRock and BGI as a shock to

market power, Massa, Schumacher, and Yan (2016) study the asset allocation

responses of their competitors. They find that competitors scale down posi-

tions which overlap with those held by the merged entity. Our work comple-

ments these studies by studying theoretically the effect of ownership structure

on price informativeness.

2 Motivating Facts

In this section, we present the three empirical facts that motivate our study.

First, institutional stock ownership is economically important, averaging about
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60% over the last 35 years. Second, the ownership structure is skewed towards

the largest owners. Third, the ownership mix includes significant shares of both

active and passive investors. Except for the recent paper by Bai, Philippon,

and Savov (2016) which emphasizes the first fact, no other study has exploited

the implications of these facts for longer-horizon price informativeness.7

To provide more details related to the above facts, we collect data on in-

stitutional stock ownership from Thomson Reuters. The data span the period

1980–2015. Even though the formal requirements to report holdings allow for

smaller companies to not report, the coverage of institutions in the data is

more than 98% in value-weighted terms. We calculate the stock-level institu-

tional ownership by taking the ratio of the number of stocks held by financial

institutions at the end of a given year to the corresponding number of shares

outstanding. Next, we aggregate the measures across stocks by taking a simple

average across all stocks in our sample. Using equal weighting, rather than

value weighting, gives a more conservative metric of the trends in the data.

Subsequently, we calculate a similar measure, but only taking into account

the holdings of the top-10 largest holders for a given stock. We present the

time-series evolution of the two quantities in Figure 1.

Both series indicate a clear pattern underlying the recent policy discussions:

Institutional ownership has grown and the increase has been mostly fueled by

the growing concentration of ownership. The magnitudes of the growth are

economically large: Over the period of over 35 years, each ownership statistic

has more than doubled. While we focus here on the average effects in the

data, even stronger results can be observed in the cross section of stocks with

7A parallel microstructure literature (Boehmer and Kelley (2009)) examines empirically
the relation between institutional ownership and price efficiency due to trading intensity.
Efficiency there is measured using variance ratios and pricing errors. Their conclusions are
akin to ours.
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different characteristics.

In our model, a more natural way to measure concentration is the

Herfindahl-Hirshman Index (HHI), defined as the sum of squared shares of

all institutional owners of a given stock. However, the problem with using the

index is its mechanical correlation with the number of investors. To the extent

that the number of institutions has been growing steadily over the same pe-

riod the unadjusted index would reflect two effects going in opposite direction.

To filter out this mechanical sorting, we take out the predicted component in

the HHI accounted by the number of investors. We plot the filtered series in

Figure 2.

The results indicate that the concentration levels have been generally go-

ing up over time. This pattern has been particularly visible since the early

1990s. The magnitude of the growth is economically large and the large values

of concentration, especially in the last few years, reflect the concerns policy

makers have voiced with regard to this phenomenon.

To illustrate the effects on ownership mix we define active investors as

those engaged in information acquisition process and passive investors as those

who strictly invest in pre-defined index portfolios. The latter group includes

both index mutual funds and ETFs. Because identifying passive funds in

the institutional investors data is not trivial, we use the evidence from the

Investment Company Institute Fact Book. We show the time-series evolution

of the percentage of passively managed equity mutual funds in the U.S. in

Figure 3. The results indicate a significant increase in passive ownership in

the period 2001–2016. While in early 2000’s passive funds accounted for less

than 10% of total equity fund market in the U.S., this share has increased to

25% by 2016.

To conclude, we note that while the motivating facts we present relate to
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institutional investors, the model we present next is a general theory of asset

allocation and information acquisition by investors with market power. We

believe institutions are natural candidates for this type of investors. Moreover,

even though here we present the time-series evidence on our motivating facts,

our study is motivated more by the mere economic size and interesting features

of the distribution of institutional holders. In particular, since our model is

static we do not aim to explain any of the dynamic effects in the data and

rather take the trends as given.

3 Model

This section presents a noisy rational expectations portfolio choice model

in which investors are constrained in their capacity to process information

about assets payoffs. The setup departs from standard information choice

models (e.g., Van Nieuwerburgh and Veldkamp (2010) or Kacperczyk et al.

(2017)) by introducing market power for some investors. In the model, we

solve for price informativeness of the aggregate economy and individual assets

differentiated by their volatility.

3.1 Setup

The model features a finite continuum of traders, divided into L+ 1 many

segments, represented by λj, j ∈ {0, ..., L}. The λs represent the size of the

investor and map monotonically to assets under management.8 Mass λ0 of

traders, indexed by h, are atomistic. These traders act as a competitive fringe,

in that they pay attention to innovations in asset prices, but do not have

8Because of this monotonic relationship, we use assets under management as also de-
noting λs.
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any price impact (market power). Masses {λ1, λ2, ..., λL} of investors act as

oligopolists, indexed by j. Each oligopolist collects information and trades, as

the fringe does, but the each oligopolist realizes the impact of their learning

and trading decisions on prices and returns, and hence acts strategically in

information and trading strategy choice. Investors of both types maximize a

mean-variance utility function, with common risk aversion ρ.

The market comprises one risk-free asset in unlimited supply, with a price

normalized to one and a net payout of r, and n > 1 risky assets, indexed by i,

with prices pi and independent payoffs zi = z̄ + εi, where εi ∼ N(0, σ2
i ). Each

risky asset has a stochastic supply with mean x̄ and variance {σxi} - we can

think of these as noisy supply shocks.

Each investor is endowed with information capacity, Kj for oligopolist j

and Kh for each member of the fringe. They can use that capacity to obtain

information about innovations to the payoff for some or all of the risky assets.

In particular, every member of the fringe and every oligopolist observes signals

about innovations in zi. The vector of signals for oligopolist j and assets 1

through n is sj = (s1j...snj), and the vector of signals for a member of the

fringe h is sh = (s1h...snh). Signal choice is modeled using entropy reduction as

in Sims (2003), and is governed by an information capacity constraint where

for each investor the vector of signals is subject to an information capacity

constraint based on Shannon’s (1948) mutual information measure: I(z; sj) ≤

Kj for each oligopolist j and I(z; sh) ≤ Kh for each member of the fringe.

After observing the signals and updating their beliefs using Bayes’ rule, all

investors choose quantities traded given the observed price.

We denote an agent j’s posterior variance on asset i as σ̂2
ji ≤ σ2

i . We
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conjecture and later verify the following price structure:

pi = ai + biεi − ciνi −
L∑
j=1

djiζji (1)

where εi and νi are the innovations in the payoff and noisy supply shocks,

respectively. The last term is new relative to the literature and it captures the

noise in oligopolists signals. It is given by

ζji ≡ δji −
1

αji
εi

where αji =
σ2
i

σ̂2
ji

and δji as the data loss of oligopolist j: δji ≡ zi − sji. Then,

pi ∼ N
(
ai, σ

2
pi

)
, where σpi is given by:9

σ2
pi = b2

iσ
2
i + c2

iσ
2
xi +

L∑
j=1

d2
ji

(
1− 1

αji

)
σ̂2
ji (2)

Before solving the oligopolists’ problem, we first analyze the problem faced by

the competitive fringe.

3.1.1 Competitive Fringe

Portfolio Problem Given posterior beliefs and equilibrium prices, each

competitive investor h solves the following problem:

Uh = max
{qhi}ni=1

Eh(Wh)−
ρ

2
Vh(Wh) s.t. Wh = r

(
W0h −

n∑
i=1

qhipi

)
+

n∑
i=1

qhizi

(3)

9See the Appendix for the derivations.
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where Eh and Vh are the perceived mean and variance of investor h condi-

tional on her information set, and W0h is her initial wealth. Optimal portfolio

holdings are given by:

qhi =
µ̂hi − rpi
ρσ̂2

hi

(4)

where µ̂hi and σ̂2
hi are the mean and variance of investor h’s posterior beliefs

about payoff zi.

Information Problem Given the portfolio choice solution, ex-ante each

member of the fringe faces the following information problem:

max
{σ̂2

hi}
n

i=1

U0h ≡
1

2ρ

n∑
i=1

E0h (µ̂hi − rpi)2

σ̂2
hi

(5)

subject to the relative entropy constraint

n∏
i=1

σ2
i

σ̂2
hi

≤ e2Kh . (6)

The information problem can be rewritten as:

U0h =
n∑
i=1

Gi
σ2
i

σ̂2
hi

, (7)

and the optimum is a corner solution: each investor h learns about one asset

lh ∈ arg max{Gi}. The gain to the competitive investors from learning about

asset i, derived in the Appendix, is:

Gi ≡
(z − rai)2

σ2
i

+ (1− rbi)2 + r2c2
i

σ2
xi

σ2
i

+ r2

(
L∑
j=1

d2
ji

(
1− 1

αji

)
σ̂2
ji

)
− σ̂2

hi

σ2
i

(1− 2rbi)

The gain from learning about a particular asset is the same across all compet-
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itive investors. However, this gain is a function of the learning by the fringe

sector as a whole and by the oligopolists. The gains to learning about an as-

set’s payoff are negatively related to the information about zi reflected in the

price already (second term) and positively related to the noise in price (third

term and fourth term). The last term drops out of the objective function once

multiplied by the reduction in uncertainty.

3.1.2 Oligopolists

Portfolio Problem Oligopolists have a similar trading problem as the

fringe, and the quantity demanded by each oligopolist is:

qji =
µ̂ji − rpi (qji)
ρσ̂2

ji + r
dpi(qji)

dqji

, (8)

The price impact term in the denominator reflects the fact that oligopolists

have market power. Each oligopolist internalizes the fact that their asset

purchase decisions affect the equilibrium price. Using market clearing, we can

solve for this derivative to get:

dpi(qji)

dqji
=

λjρσ
2
i

λ0r(1 + Φhi)
> 0, (9)

where

Φhi ≡ mhi

(
e2Kh − 1

)
, (10)

and mhi is the mass of competitive investors learning about asset i. Hence,

how sensitive the price is to an oligopolist’s demand depends positively on

oligopolist’s size λj relative to the size of the fringe, λ0 scaled by fringe learning

about that asset.
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The oligopolist’s demand becomes:

qji =
µ̂ji − rpi

ρ
(
σ̂2
ji + λ̂jiσ2

i

) (11)

where λ̂ji =
λj

λ0(1+Φhi)
is again the relative size ratio. Given the expression for

quantity demanded, we can calculate indirect utility, derived in the Appendix,

as:

Uj =
1

2ρ

n∑
i=1

(µ̂ji − rpi)2

 σ̂2
ji + 2λ̂jiσ

2
i(

σ̂2
ji + λ̂jiσ2

i

)2

 . (12)

As with the fringe, oligopolists’ expected utilities depend positively on the

deviations of their personal estimates of payoffs from the equilibrium price

(larger deviations mean larger quantities demanded). Further, the smaller is

the oligopolists’ posterior variance the larger is their utility. The larger is the

oligopolists’ market power (or conversely the smaller is the fringe, or the less

informed the fringe), the larger is the oligopolists’ price impact, and therefore

the smaller their utility.

Information Problem The oligopolist’s information problem is

max
{σ̂2

ji}ni=1

U0j s.t.
n∏
i=1

σ2
i

σ̂2
ji

≤ e2Kj . (13)

We can also write the constraint, defining the increase in precision of beliefs

as αji ≡ σ2
i

σ̂2
ji

, as
n∏
i=1

αji ≤ e2Kj ⇔
n∑
i=1

lnαji ≤ 2Kj. (14)

with

lnαji ≥ 0. (15)
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The Lagrangean is (dropping the 1/2ρ term)

L =
n∑
i=1

[ui (αji)− µlnαji + ηilnαji] + nγ2Kj, (16)

and the optimality conditions are

u′i (αji)−
µ

αji
+

ηi
αji

= 0, ∀i = 1, ..., n. (17)

The capacity constraint is always binding, so
∑n

i=1 lnαji = 2Kj and µ > 0.

Let P denote the set of assets that are learned about by the oligopolist. We

have that

αjp > 1 and ηp = 0 and µ = αjpu
′
p (αjp) ∀p ∈ P (18)

and ∑
p=P

lnαjp = 2Kj. (19)

For assets i /∈ P ,

αjp = 1 and ηp = µ− u′i (1) ≥ 0 ⇔ αjiu
′
i (αji) ≥ u′i (1) ∀p ∈ P. (20)

These conditions yield the oligopolist’s allocation of attention across assets,

{αji}, as a function of the equilibrium price coefficients, ai, bi, ci, di, and the

share of competitive investors’ learning about each asset, mhi. Given the

oligopolist’s choice of the set {αji}, variance of the posterior belief of the

oligopolist is σ2
i /αji and the corresponding mean is just the signal sji. The
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signal is distributed, conditional on the realizations zi = z̄ + εi, as

E(sji|zi) = z̄ +

(
1−

σ̂2
ji

σ2
i

)
εi = z̄ +

(
1− 1

αji

)
εi,

V ar(sji|zi) = σ2
i

(
1−

σ̂2
ji

σ2
i

)
σ̂2
ji

σ2
i

=

(
1− 1

αji

)
1

αji
σ2
i .

3.2 Equilibrium

We solve for the coefficients of equation (1): ai, bi, ci, dki, and dji (derivation

in the Appendix):

ai =
z̄

r
− x̄

r

Niρσ
2
i

λ0(1 + Φhi)
(21)

bi = Ni

(
L∑
j=1

Mji(αji − 1)

rαji
+

Φhi

r(1 + Φhi)

)
(22)

ci =
Niρσ

2
i

rλ0(1 + Φhi)
(23)

dji =
NiMji

r
(24)

where Mji ≡ λ̂jiσ
2
i

(σ̂2
ji+λ̂jiσ

2
i )

and Ni ≡ 1

1+
∑L
j=1Mji

.

The fundamental component of the price, ai, depends positively on z̄. An

increase in supply also decreases ai, as do increased risk aversion and funda-

mental volatility. As the fringe’s size or attentional capacity increase, their

demand increases, and thus prices increase. As the oligopolists’ size increases,

or as their attention to asset i increases, demand goes up, Mji increases, and

Ni decreases, again driving up the price.

The coefficient bi depends almost exclusively on the information choices of

the fringe and oligopolists. If the fringe does not pay attention, then Φ drops
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to zero, and so does the second term of the expression. If the oligopolists does

not pay attention, each αji goes to one. bi is increasing in Φhi and αji, because

increased attention increases investors’ ability to predict the fundamental, and

therefore their information will be better reflected in prices. The same reasons

for demand’s fluctuation in ai apply to ci, as ci corresponds to the random

component, while ai corresponds to the mean component. We next show the

existence of an equilibrium.

Proposition 1. An equilibrium is defined as: A set of posterior beliefs of the

fringe N(µ̂hi, σ̂
2
hi) and of the oligopolists N(µ̂ij, σ̂

2
ij), a set of learning alloca-

tions {mi}, and {αij}, and a set of quantity allocations {qhi} and {qij} such

that the asset market clears, and such that oligopolists solve equations (12) and

(13) and the fringe solves equations (3) and (5). Such an equilibrium exists.

All proofs are in the Appendix.

3.3 Price Informativeness and its Determinants

Price informativeness in the model is given by the covariance of the price

with the fundamental shock, normalized by the standard deviation of the

price:10

PIi =
biσi√

b2
i + c2

iσ
2
xi/σ

2
i +

∑
j d

2
ji
αji−1

α2
ji

,

where ai, bi, ci, and dji are the coefficients of the equilibrium price function.

In the expression for PIi, bi parameterizes the covariance of the price with

the shock zi; the second term in the denominator captures the noise in the

price coming from the noise trader demand shock, and the third term in the

10Equivalently, it is the correlation of the price with the fundamental, multiplied by the
asset’s price variance.
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denominator captures the noise in the price coming from the noise in the

oligopolists’ private signals.

We can use the equilibrium expressions for the price coefficients to express

PIi as

PIi =
σi
∑

j ωji
αji−1

αji
+ Φhi√(∑

j ωji
αji−1

αji
+ Φhi

)2

+ 1
(
∑
j Ωji)2

σ2
xi

σ2
i

+
∑

j ω
2
ji
αji−1

α2
ji

, (25)

where ωji is the average share of asset i held by oligopolist j, given by

ωji ≡
Qji∑
kQki

,

Qji is the average quantity of asset i held by oligopolist j, and Ωji is the

responsiveness of the quantity traded of asset i by oligopolist j to the private

signal of oligopolist j. We call Ω the information passthrough, and calculate

it as,

Ωji =
∂λjqji
∂µ̂ji

=
λjαji

ρσ2
i (1 + λ̂jiαji)

. (26)

And Φhi is the informational contribution of the fringe.

Expression (25) allows us to express price informativeness of any asset as

determined by three channels. First is the covariance channel, defined by the

term
∑

j ωji
αji−1

αji
, which is the ownership share-weighted average of the reduc-

tion in uncertainty11 about asset i’s payoffs due to learning by oligopolist j.

PIi is increasing in the covariance channel, which in turn is maximized when all

the ownership weight (i.e. ω = 1) is placed on the oligopolist with the largest

reduction in uncertainty. Hence, with heterogeneous learning, the covariance

channel favors specialized learning. Second is the information passthrough

11Note that (αji − 1)/αji = (σ2
i − σ̂2

ji)/σ
2
i
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channel. By (26), the passthrough of oligopolist’s j signals to quantities is

hump-shaped in their size λj. Hence, as λj increases, initially the information

passthrough goes up, but above a threshold level of size λj further increases

in size result in less information pass-through, decreasing PIi. This chan-

nel implies that very unequal sizes - as in a high concentration of ownership

case - will mean that both the small and the large oligopolists will be on the

lower end of the information passthrough curve, implying low PIi. Also, at

very low and very high overall sizes of oligopolists, PIi will be low as well.

Finally, the third channel is the concentration channel expressed by the term∑
j ω

2
ji
αji−1

α2
ji

, which is given by the weighted sum of the noise in private signals,

with weights given by the square ownership shares of each oligopolist. This

term can be thought of as a learning-weighted HHI index. To see that this

expression is related to ownership concentration, notice that, in a symmetric

case of αji = αi, it simplifies to αi−1
α2
i
HHIi, where HHIi is the Herfindahl index

for asset i. Therefore, if the noise in oligopolists’ signals is equally volatile,

high concentration hurts PIi through this channel. In the general case, the

effect of this channel depends on learning choices as well. However, in our

numerical experiments, we find that it always favors lower concentration.

The expression in (25) highlights the importance of modeling the choice of

information for price informativeness. For an exogenously fixed learning struc-

ture (that is, fixed {αji}j=1,..,L,i=1,...,n), putting high weight on the highest-α

oligopolist is beneficial as it always increases PIi through the covariance chan-

nel. However, working through the third term in the denominator, high con-

centration of ownership could be detrimental (e.g., for equal αs), or beneficial

(e.g., for very unequal distribution of α). Hence, the information structure

one assumes in an exogenous information model dictates the conclusion on

the benefits of concentration.
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We next present two results that together with the three channels identified

above drive our results. The first one is that as oligopolists get bigger (their λ

increases), they prefer to spread their information acquisition across a larger

number of assets. This follows directly from the shape of the indirect utility

function of the oligopolists which, unlike the fringe, is concave in own learning:

Proposition 2. An oligopolist’s utility function is concave in her own learn-

ing.

The result follows from the proof of the existence of an equilibrium. We

provide detailed analysis of the expansion of learning with size in Section 5.

The second result is that for each asset, the PIi function is concave in each

oligopolist’s learning, which means that spreading learning of each oligopolist

across a larger number of assets is beneficial for the aggregate measure of PI:

Proposition 3. Price Informativeness of asset i is concave in αji, ∀i. That

is, ∂2PIi
∂α2

ji
< 0.

The concavity of the aggregate PI function interacts with the three eco-

nomic channels identified by us to drive the numerical results of the next

section.

4 Numerical Analysis

In this section, we provide a set of quantitative results from the solution to

the equilibrium of the model.12 We select parameter values for the return

distribution z̄ and {σi}ni=1, the liquidity distribution x̄ and {σxi}ni=1, the risk-

free return r, risk aversion ρ, fringe and oligopolists’ learning capacities Kh and

12This involves solving a fixed point of the best responses of the oligopolists to each
other’s learning and trading policies.
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{Kj}Lj=1, and their respective sizes λ0 and {λj}Lj=1. The simulation generates

equilibrium levels of price informativeness, oligopoly holdings, and oligopoly

concentration for each asset.

In our simulations, we choose the parameters with two goals in mind: they

have to be in an empirically relevant region of the parameter space and the

solution needs to involve some degree of learning. Specifically, we consider

parameters such that the benchmark model exhibits: (i) learning about all

assets, (ii) aggregate oligopoly holdings of between 60% and 70% (which cor-

responds to the data in Figure 1), (iii) market excess real return of around 7%

(which corresponds to the average over 1980-2015). For the results reported

below, we set the number of assets to n = 10 and the number of oligopolists

to L = 6.13 We report parameter values in Table 1.

Table 1: Parameter values

Parameter Symbol Value

Mean payoff, supply z̄i, x̄i 10, 5 for all i

Number of assets n,L 10, 6

Risk-free rate r − 1 2.5%

Vol. of noise shocks σxi 0.41 for all i

Vol. of asset payoffs σi ∈ [1, 1.5], linear distribution

Risk aversion ρ 1.3

Information capacities Kh, {Kj} 0, 4.5, constant

Investor masses λ0, λl/λ1 0.45, 4 λjs linearly distributed

4.1 Market Structure Experiments

We begin by analyzing the effect of different market structures on the

aggregate price informativeness. In our exercise, each point corresponds to

13The choice is largely dictated by the computational speed. Experiments with larger
values of each parameter do not change the conclusions from this exercise.
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one solution of the model. The experiments are useful as a way to isolate

the relative effects of levels and concentration of oligopoly holdings on price

informativeness.

Size of the Oligopoly Sector In our first experiment, we look at how

average price informativeness across assets changes in response to different

levels of λ0. Holding the relative distribution of λj fixed, we look at simulations

of the model by varying λ0 from 0.05 to 0.95. The type of change we test here

could be thought of as a limit on entry, or a limit on a per-agent size in a given

market, which would then affect the composition of ownership in the market

between the fringe and the oligopolists, keeping the total mass of all investors

constant.

Figure 4 shows the relation between the size of the oligopoly sector (pa-

rameterized by 1− λ0) and endogenous variables of interest. The price infor-

mativeness in Panel (a) shows a hump-shaped relation with the parameterized

size, on average and also for each asset (as indicated by interquantile 10-90

range), and also with the actual realized ownership which is monotonically

increasing (Panel (b)). The model’s results point to an interior solution for

optimal oligopoly sector size. The forces that drive price informativeness up

as the size of the oligopoly sector increases are: more efficient (that is, diversi-

fied) learning due to convexity of aggregate PI (Panel (d), Propositions 2 and

3), and the positive effect of decreased concentration due to the concentration

channel (Panel (c)). The forces that push PI down as the size of the sector in-

creases are the covariance channel and—above a certain size—the information

pass-through channel (Section 3.3).

Figure 5 decomposes the overall average PI response into the three channels

identified in Section 3.3. The black line represents the total effect on PI, and
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each of the color lines represents PI as in equatiion (25), where the value of one

of the channels has been fixed at its λ0 = 0.05 level. Several patterns emerge

from the decomposition. First, the information passthrough is responsible for

the hump shape in aggregate PI—the blue line fixes information pass-through

at the initial level, which PI response monotonically decreasing. Second, the

covariance channel—as discussed earlier—favors a small, specialized oligopoly

sector, as can be seen from the red line that fixes the covariance channel.

Third, the concentration channel works to increase PI as the size of the sector

increases. This is because we are keeping the distribution of λjs intact, and

hence growing the size of the sector results in less concentration (also see

Figure 4, Panel c).

The Concentration of the Oligopoly In our second experiment, we con-

sider the effects of a change that affects the concentration of actively trading

oligopolists. Holding λ0 constant, we vary the size distribution of {λj} in order

to measure an impact on the concentration measure. Specifically, we vary λ1

relative to the rest of the oligopoly sector in order to vary the share of assets

owned by the largest oligopolist (indexed j = 1) from 26% to 78%. In doing

so, we keep the sum of all λjs equal to 1−λ0 to isolate the effect of concentra-

tion on endogenous variables. Figure 6 presents the aggregate PI response as

well as the decomposition where we keep each key channel fixed at the level

corresponding to the initial point.

Overall, price informativeness is downward sloping in the level of concentra-

tion of oligopolist ownership. The results of the decomposition are consistent

with the intuition we build in Section 3.3. Fixing the covariance channel at

the initial level – corresponding to high diversification – lowers the PI curve

across the experiment. On the other hand, fixing the concentration channel
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at the initial level raises the PI curve across all cases. The quantitatively

dominant force, just as in the size experiment, turns out to be the information

passthrough channel, which in this case is responsible for the downward sloping

nature of the PI response. Fixing the information passthrough channel at the

initial level, the covariance and concentration channels cancel each other out,

resulting in a flat PI response. The information passthrough channel works

towards generating a downward sloping PI response as when ownership shares

become more unequal, both the increasingly small and the increasingly big

oligopolists are going down the hump-shaped information passthrough curve.

Active/Passive Effects The importance of oligopoly traders results from

two sources: their informational advantage and their size. While all

oligopolists exert price impact, not all of them are necessarily equally informed.

In particular, passive investors do not directly participate in the market for

information. In this section, we explore the predictions of the model with re-

spect to the size of such passive investors. In this exercise, we split oligopolists

half-half into passive (zero information capacity) and active (positive informa-

tion capacity). We then vary the size of the passive versus active sector. The

results are presented in Figure 7. Overall, PI decreases as we increase the size

of the passive sector, and the main channel at play is the covariance channel.

This is due to the fact that (i) the active investors are getting smaller, and

(ii) they adjust their information choices in order to specialize more, hence

decreasing the aggregate PI via the aggregate concavity property.

More specialization among the active investors also means a heterogeneous

PI response for individual assets. Those assets that are being specialized in

will increase in PI while those that are being ’dropped’ will decrease in PI.

Such heterogeneity in asset PI responses over time has been documented in

26



Farboodi, Matray, and Veldkamp (2018). Our framework links such responses

to the rise of passive investing, which can be one of the channels driving the

data trends.

4.2 Cross-sectional Patterns

We next analyze the cross section of equilibrium output variables across

assets for the benchmark parameter values in Table 1. Figure 8 presents the

relation between equilibrium price informativeness per asset (on the y-axis)

and equilibrium oligopoly holdings per asset (on the x axis). We find that

price informativeness is increasing in underlying volatility, and so are total

oligopoly holdings.14

Figure 9 presents the relation between equilibrium price informativeness

and equilibrium oligopoly concentration. The larger an oligopolist’s presence

in a particular asset’s market, the more likely she is to internalize the price

effect of her trade. As such, she would like to be less informed than she would

be if she had a small presence. As a result, concentration in a particular asset

is associated with lower levels of price informativeness.

4.3 The Role of Endogenous Learning Choice

In this section, we present a comparison of the predictions of our benchmark

model with endogenous learning choice with a model in which the information

structure is exogenously given. The model with a fixed information structure

is similar in spirit to that presented in Kyle (1985), in that the effect of mar-

ket power in the absence of endogenous reoptimization of information choices

14Volatility is the only asset heterogeneity we model. More generally, these patterns will
hold across any type of heterogeneity that affects the return from learning, for example size
(x̄i) or the volatility of the noise/liquidity shocks (σix).
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depends entirely on how the quantities adjust.

Figure 10 presents the interaction of oligopoly ownership and price infor-

mativeness in the two models, where the different points are generated by

varying λ0, i.e. the size experiment of the previous section. The black dots

represent the benchmark case in which we allow both quantities and informa-

tion choices to adjust, while the red crosses correspond to a case with a fixed

learning structure. For the fixed learning cases, the information choice is either

fixed at the benchmark value (i.e., λ0 = 0.45, Panel (a)), or at values such that

information structures are optimal at λ0 = 0.95 (small oligopolists, Panel (b))

and λ0 = 0.05 (large oligopolists, Panel (c)). In all the fixed-information cases,

the level of price informativeness is below that of the benchmark model for

which capacity choice adjusts optimally. The gains in price informativeness

from optimal learning can be quite large. For example, for the benchmark

specification of fixed alphas, price informativeness is reduced by up to 40%.

More important, fixing the learning choices leads to very different conclusions

about the optimal size of the oligopoly sector. Depending on what values

of learning one exactly fixes, the optimal size lies either below or above the

actual optimum derived when all the choices are endogenous. This finding

underscores the importance of modeling the information choice margin when

making normative statements about the size of the oligopoly sector.

Next, we evaluate the concentration of oligopoly exercise of Section 4.1, in

which we hold λ0 fixed but vary the distribution of λs. Figure 11 presents the

relation between concentration of ownership and price informativeness for the

benchmark model with endogenous information choice (black dots), as well as

three cases of fixing the information choice at the benchmark values (largest

oligopolist owns 64%, Panel (a)), as well as at values that are optimal at two

extremes of the size distribution of the oligopolists, (largest oligopolist owns
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26% (Panel (b)) or 78% (Panel (c)). For all three cases, the exogenous and en-

dogenous information models give remarkably different predictions in terms of

the relation of concentration and price informativeness. In particular, for the

benchmark model, lower concentration always increases price informativeness.

In contrast, models with fixed information structure exhibit a hump-shaped

relation between concentration and price informativeness. Similar to the previ-

ous exercise, the two models give very different recommendations regarding the

level of concentration that maximizes price informativeness. The exogenous

information models optimally imply an intermediate level of concentration,

while at the same time the fully endogenous model prescribes a concentration

level that is at the lower bound of the potential values.

Overall, we conclude that the predictions resulting from a model with en-

dogenous learning choices are not a simple extension of the model where infor-

mation choices are fixed. The differences are not only quantitatively important

but also qualitatively relevant from the perspective of policy making.

5 Additional Results and Extensions

In this section, we discuss an extension of the model in which we allow

the fringe to learn from the price observation for ‘free’, i.e. without using

information capacity. This extension significantly increases the complexity of

the equilibrium of the model, making only numerical solutions possible. In

simulations, we show that the expanded model gives qualitatively the same

predictions in terms of the relationship of market structure and price infor-

mativeness. Then, we provide a discussion of a number of additional results

that shed more light on the importance of oligopolists’ size and asset prices

for learning process in the benchmark model.
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5.1 Learning from Prices

Our benchmark model studies the effects of oligopolists’ trades, and re-

sulting price movements, on price informativeness. In the model, the more

informed oligopolists are about an asset in equilibrium, and the more assets

under management they have, the bigger is the price impact of their trades,

which diminishes their ability to generate rents from their superior informa-

tion. In this section, we extend the benchmark model to study the effects of

an additional force—that price movements may additionally directly reveal the

signal that an oligopolist received. Such an extension unfortunately reduces

the tractability of the model quite substantially and precludes analytical char-

acterization. Hence, we present numerical results from the solution to the

model only.

Specifically, we allow the fringe to learn from the price realization about

the shock z. For simplicity, we assume that the fringe has zero information

capacity, Kh = 0, but that they update their beliefs about the shock after

observing the price, without using any capacity.15 The details for the rest of

the model remain the same.

Formally, each competitive investor demands

qhi =
yi − rpi
ρσ2

yi

, (27)

where yi and σ2
yi are the mean and variance of the fringe investor’s posterior

beliefs about payoff zi after observing the price signal: pi = ai + biεi − ciνi −∑L
j=1 djiζji.

15If we imposed the same constraint on reduction in entropy using the price signal as for
the private signals, no member of the fringe would ever choose to use the price signal, as it
is strictly dominated by the strategy of using private signals. For detailed arguments, see
Kacperczyk, Nosal, and Stevens (2017).
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yi ∼ N(ȳi, σ
2
yi) is generated using Bayes’ rule given the price signal, that

is:

σ2
yi = σ2

i −
cov2(zi, pi)

σ2
pi

= σ2
i − PI2

i

ȳi = z̄i +
cov(zi, pi)

σ2
pi

(pi − p̄i)

where

p̄i = ai

cov(zi, pi) = biσ
2
i

σ2
pi = b2

iσ
2
i + c2

iσ
2
xi +

L∑
j=1

d2
ji

(
1− 1

αji

)
σ̂2
ji.

Note that since now the demand of the fringe depends on the posterior be-

lief which in turn depends on the price functional, then the equilibrium solution

becomes a fixed point on the coefficients of the price: given {ai, bi, ci, dji}’s,

fringe Bayes’ rule and implied fringe demand and the optimal oligopolists de-

mand must give market clearing consistent with those coefficients. Hence,

there is no closed-form solution for the price coefficients and we must resort

to numerical solutions to the model. Also, note that in the framework with

learning from prices, our price informativeness measure, PIi, enters directly

the updating process as the reduction in noise of the volatility parameter. This

feature provides a strong economic rationale for our informativeness measure.

The main result coming from this extension of the model is that the in-

centives to diversify learning are the same as in the benchmark model and

the results on the effects of overall institutional ownership and concentration

on PI remain the same. Figures 12 and 13 below present the case for two
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oligopolists. As in the benchmark model, PI is hump-shaped in the aggregate

institutional ownership, holding concentration of assets under management

constant (Figure 12). Similarly, when we increase the concentration of owner-

ship among oligopolists, holding the aggregate institutional size constant, PI

monotonically decreases, just like in the benchmark model (Figure 13).

5.2 Thresholds

In this section, we derive closed-form solutions for the size thresholds at

which investors find it privately optimal to specialize in their learning, and

at which it would be optimal for them to specialize in their learning from a

price informativeness standpoint. We relate these thresholds to changes in

the monopolist’s capacity and differences in volatilities between most volatile

assets. We find that the optimal thresholds vary depending on what objec-

tive function a monopolist maximizes and also depending on the assumptions

about her information capacity and underlying asset volatilities. These results

suggest that the objective function plays an important role to establish the

optimality conditions in learning behavior.

Our model shows that oligopolists try to spread their learning across assets

whenever possible to mitigate their price impact. In particular, the point at

which the oligopolist stops specializing in her learning might be different from

the point at which she would stop specializing if her objective was to maxi-

mize aggregate PI. For analytical tractability, we consider a special case of a

monopolist, of size λ1, who has a positive K and a fringe that is uninformed.

From our earlier discussion, we know that, for sufficiently small levels of λ1,

the monopolist will choose to specialize in her learning, and learn only about

the most volatile asset. This specialization result arises from the fact that the
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monopolist’s returns to learning are diminishing when she has positive size.

We can characterize this threshold implicitly using the following expression:

e2Kj

(1 + 2 T
λ0
e2Kj)2

((
ρ

λ0

)2

(x̄2 + σ2
x)σ

2
1 + 1 + 2

T

λ0

)

=
1

(1 + 2 T
λ0

)2

((
ρ

λ0

)2

(x̄2 + σ2
x)σ

2
2 + 1 + 2

T

λ0

)

where σ1 is the volatility of the most volatile asset, and σ2 is the volatility of

the second-most volatile asset. If the monopolist specializes, she learns only

about asset 1. When the marginal benefit of additional learning about asset 1

when the agent specializes is equal to the marginal benefit of starting to learn

about asset 2, an increase in the agent’s size will make her not specialize.

Next, we characterize the size threshold between specialization and diver-

sification from the perspective of a monopolist maximizing aggregate price

informativeness. This threshold is given by comparing the derivative of price

informativeness for the most volatile asset with respect to the monopolist’s

learning (assuming specialization) to the derivative of price informativeness

of the second-most volatile asset with respect to the monopolist’s learning

(assuming no learning):

∂PIi
∂α

= mP (α, λ1) ≡ σ2
i (((2λ

2
1 + 2λ1λ0)ρ2σ2

x + λ2
0 + λ2

1)αi + (2λ0λ1 + 2λ2
1)ρ2σ2

x − λ2
0 − λ2

1)

2(λ2
0 + λ2

1)
(

(αi − 1)2σ2
i + (αi − 1)σ2

i +
(λ0+λ1αi)2ρ2σ4

i σ
2
x

λ2
0λ

2
1

)3/2

mP (e2K , T ) = mP (1, T )

We can analyze the sensitivity of the threshold level with respect to the

monopolist’s capacity and differences in volatilities between asset 1 and 2. To
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provide a numerical solution to the above equations, for the analysis based

on changes in capacity, we choose the following parameter values: Kh = 0,

σ1 = 2, σ2 = 1, x̄ = 5, ρ = 1.3, and σx = 0.41, consistent with our calibration

exercise. We plot the results in Figure 14 below.

The two size thresholds vary with the parameters as follows: First, they

are both decreasing in K. As the monopolist has greater capacity to learn,

specializing in learning means better ability to trade that asset, and higher

price impact. Therefore, a monopolist wants to diversify her learning at smaller

sizes. Similarly, the more information a monopolist can collect, the more

quickly a planner might want her to spread her wealth (learning-wise) to other

assets. For lower values of K, the monopolist wants to specialize later than the

planner. For higher values of K, the monopolist wants to specialize sooner.

For the analysis based on differences in volatilities, we set Kh = 0, Kj = 2,

x̄ = 5, ρ = 1.3, and σx = 0.41. We report the results from this analysis in

Figure 15.

As is evident from the graph, the larger the gap in volatilities, the more a

monopolist wants to specialize. However, the opposite is true for the planner.

As the gap in volatilities grows, the monopolist would diversify sooner to

increase PI. Notably, we only analyze the threshold conditions for two sets

of parameter values, because increases in ρ, x̄, and σx all increase the size

threshold for a monopolist by economically small margins.

6 Concluding Remarks

The last few decades have witnessed important changes in equity owner-

ship structure, with significant consequences for financial stability and social

welfare. These trends have triggered an active discussion among financial reg-
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ulators and finance industry. While several participants in the debate have

raised important reasons for or against regulatory changes, the ultimate ver-

dict is difficult to reach in the absence of a well-specified economic model. This

paper aims to take one step in this direction by offering a general equilibrium

model in which asymmetric information, market power, and heterogeneity of

assets play an important role. We think this setting is a good way to charac-

terize the world of equity ownership. Our goal is to rank various equilibria by

comparing their implications for average price informativeness.

We show that for the level of ownership equal to the currently observed lev-

els in the U.S. (roughly 60%), the average price efficiency is positively related to

the levels of large ownership and negatively related to its concentration. This

cross-sectional result is strongly supported by the data. Further, we show that

the average price informativeness across assets is maximized for the values of

ownership and concentration that are strictly within the range of admissible

outcomes. This result suggests an interesting role for policy makers to enforce

optimal structure of equity ownership.

Our model can be flexibly applied to settings with rich cross-section of

assets, differences in information asymmetry across agents, and differences in

market power. Hence, it can generate interesting policy implications at the

aggregate and cross-sectional dimensions. It can also be a good tool to evaluate

asset pricing implications in the presence of market power and information

asymmetry. We leave these questions for future research. At the same time,

while our research can inform the debate for the role of large owners for price

informativeness and learning in the economy, it naturally abstracts from other

important dimensions relevant for policy makers, such as investment costs or

flows of funds in and out of the sector, as we take the size distribution as an

input in our analysis.
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Figure 1: The black line plots the fraction of S&P 500 equities that are held by firms that
have at least $100 million in assets. The red, dashed line plots the fraction held by the 10
largest such holders of any stock.
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Figure 2: Adjusted Ownership Concentration. The line plots the residual of a regression
of the HHI of the institutional holdings of each stock in the S&P 500 equities on the number
of institutional investors in that stock.

RECENT MUTUAL FUND TRENDS 45

FIGURE  2.13

Index Equity Mutual Funds’ Share Continued to Rise
Percentage of equity mutual funds’ total net assets; year-end, 2001–2016
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Net New Cash Flow to Index Mutual Funds
Billions of dollars; annual, 2007–2016
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Figure 3: Passive Equity Fund Share. This figure is taken from the ICI FactBook 2017,
and shows the fraction of institutional equity holdings that are invested by passive funds.
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Figure 4: Response of equilibrium allocations to increasing the size of oligopoly sector
(1− λ0).
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Figure 5: Price Informativeness decomposed into the relative contribution of the three
channels as the size of the oligopoly sector varies from 5% to 95% of assets under manage-
ment.
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Figure 10: Aggregate price informativeness and oligopoly ownership with varying λ0
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Figure 14: Optimal size thresholds for the monopolist as a function of her
capacity.

Figure 15: Optimal size thresholds for the monopolist as a function of differ-
ences in asset volatilities.
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7 Appendix: Proofs

7.0.1 Derivation of Equation 2
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7.0.2 Derivation of Equation 8
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∑n
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Posterior beliefs and prices are conditionally independent given payoffs.
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Expected utility becomes Hence U0h = 1
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7.0.3 Derivation of Equation 12

Market clearing for each asset i is

xi =
L∑
j=1
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∫
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=
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)
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Niρσ
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The market clearing condition is

rpi =

∑L
j=1

λ̂jiρσ
2
i

ρ(σ̂2
ji+λ̂jiσ

2
i )
µ̂ji + z̄ + Φhi

1+Φhi
εi −

ρσ2
i

λ0(1+Φhi)
xi(

1 +
∑L

j=1
λ̂jiρσ2

i

ρ(σ̂2
ji+λ̂jiσ

2
i )

) (28)

From here we identify the price coefficients as a function of the monopolist learning
and the competitive fringe learning. Now, conditionally on zi, we have

µ̂ji = sji

and sji is normally distributed with mean z̄+(1− 1
αji

)εi and variance (1− 1
αji

) 1
αji
σ2
i .

What we want is to express the posterior mean in terms of delta as in zi = si + δi.
Given that,

δji = zi − sji = − 1

αji
εi + noise

rpi = Ni

L∑
j=1

Mji

(
z̄ +

(
1− 1

αji

)
εi − ζji

)
+Ni

[
z̄ +

Φhi

1 + Φhi
εi −

ρσ2
i

λ0(1 + Φhi)
xi

]
(29)

rpi = z̄ − x̄ Niρσ
2
i

λ0(1 + Φhi)
+ εiNi

 L∑
j=1

Mji(αji − 1)

αji
+

Φhi

1 + Φhi


− Niρσ

2
i

λ0(1 + Φhi)
νi −Ni

L∑
j=1

Mjiζji

7.0.5 Derivation of Proposition 1

Proof. In order to apply Kakutani’s Fixed Point Theorem, we need to define a few
terms. Agents select αi First, define Ai ({α−j}) to be the best response correspon-
dence for oligopolist j. Next define α = {α1, α2, ..., αL}, and let ℵ define the set of
all possible α. Then the best response correspondence can be defined as A : ℵ ⇒ ℵ
such that for all α ∈ ℵ, we have that A(α) = [Aj(α−j)]j∈L. This best response
function takes into account the associated demand schedule for every oligopolist,
as well as the learning and demand decisions for the fringe. Now we need to check
whether there is a fixed point to A.

48



• ℵ is compact and convex. Each αj must satisfy the capacity constraint. There-
fore each αj is convex, closed, and bounded, and therefore compact. Therefore
ℵ is as well.

• A is non-empty. This is trivially true if an interior solution exists. If an
interior solution does not exist, then the solutions are corners, so A is always
non-empty.

• A has a closed graph. The first order conditions of the oligopolist are contin-
uous, so this is trivial. (see above).

• A is convex-valued. A is convex iff Ai are all convex. The oligopolist’s objec-
tive function is weakly more concave than the fringe’s due to size. We show
here that the second derivative is negative.

We just need to show that the utility function is concave in α.To show this, we can
write the utility function down:
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1
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∑
i
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And we can rewrite this as:

U0j =
Ni(1 + λ̂jiαji)

(1 + λ̂jiαji)2

αji
σ2
i

[
X + Y

(
αji − 1

αji

)]
where X and Y are positive. This in turn can be rewritten as:

U0j =

1
1+
∑
Mji

(1 + λ̂jiαji)

(1 + λ̂jiαji)2

αji
σ2
i

[
X + Y

(
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And rewriting yet again:

U0j =
1
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1+λ̂jiαji

1 + 2λ̂jiαji

(1 + λ̂jiαji)2
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[
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Where Z > 1. To finally get to:

U0j = X
λ̂jiαji + 2λ̂2

jiα
2
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2
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3
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Both terms are concave in α, and the sum of concave functions is concave, so the
proof is completed.

7.0.6 Derivation of Proposition 3

Proof.
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7.0.7 Derivation of Proposition 2

Proof. The sign of ∂2U
∂α2

ji
was shown in the proof of Proposition 1.
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