Rental Markets and the Effects of Credit Conditions on House Prices

Daniel Greenwald1 Adam Guren2

1MIT Sloan
2Boston University

AEA Meetings, January 2019
What Role Did Credit Play in the Housing Boom and Bust?

- Divergent views in literature
 - Faviliukis-Ludvigson-Van Nieuwerburgh; Justiniano-Primiceri-Tambalotti: Credit can explain essentially all of movement in prices.
 - Kaplan-Mitman-Violante: Credit had virtually no effect on prices.

- Why?
 - Rental market key.
 - FLVN, JPT: Fixed homeownership rate. Prices move when demand changes.
 - KMV: Perfect arbitrage by deep-pocketed investors. When credit changes, renters buy from their landlord, prices pinned down by NPV of landlord rents.

- This Paper:
 - Model intermediate cases with imperfect arbitrage.
 - Calibrate model to match empirical impact of credit on price/rent, homeownership
 - Finding: credit conditions important, explain between 47% and 57% of price-rent rise.
What Role Did Credit Play in the Housing Boom and Bust?

- Divergent views in literature
 - Faviliukis-Ludvigson-Van Nieuwerburgh; Justiniano-Primiceri-Tambalotti: Credit can explain essentially all of movement in prices.
 - Kaplan-Mitman-Violante: Credit had virtually no effect on prices.

- Why?
 - Rental market key.
 - FLVN, JPT: Fixed homeownership rate. Prices move when demand changes.
 - KMV: Perfect arbitrage by deep-pocketed investors. When credit changes, renters buy from their landlord, prices pinned down by NPV of landlord rents.

- This Paper:
 - Model intermediate cases with imperfect arbitrage.
 - Calibrate model to match empirical impact of credit on price/rent, homeownership
 - Finding: credit conditions important, explain between 47% and 57% of price-rent rise.
Outline

- Intuition: Modified Supply and Demand
- Empirics: Estimate Sensitivity
 - Data and Empirical Approach
 - Estimation Results
- Theory: Quantify Impact
 - Calibrated Model
 - Quantitative Results
Time Series: Price-Rent Ratio vs. Home Ownership Rate

Intuition: Modified Supply and Demand

Plot demand for owner-occupied housing against supply (willingness of landlords to sell).
Intuition: Modified Supply and Demand

- Price-rent ratio and homeownership rate robust to changes in housing stock.
Intuition: Modified Supply and Demand

- Credit expansion: demand for owner-occupied housing shifts right.

![Diagram showing the relationship between P/R and Homeownership Rate with a shift to the right indicating an increase in demand for owner-occupied housing due to credit expansion.]
Intuition: Modified Supply and Demand

- Fixed supply (e.g., FLVN) \(\implies\) all adjustment through price-rent ratio.
Intuition: Modified Supply and Demand

- Perfect rental market (e.g., KMV) \(\implies\) all adjustment through homeownership rate.
Intuition: Modified Supply and Demand

- In this world, increase in price-rent requires \textit{separate} shock to supply.
 - E.g., change in lender beliefs, \textit{lender credit conditions}.

![Diagram showing the relationship between P/R and Homeownership Rate.]
Intuition: Modified Supply and Demand

- Alternative view: credit expansion + \textit{upward sloping supply} (imperfect rental market).
Intuition: Modified Supply and Demand

- Any intermediate combination of upward sloping supply and supply shift also possible.
 - Need a way to identify slope of supply curve.
Data

- CBSA- and State-Level Panels 1990-2017

- Prices: CoreLogic Repeat Sale HPI (CBSA), FHFA (State)

- Rents: CBRE Economic Advisors Totoro-Wheaton Index (CBSA)
 - High-quality repeat sale rent index for multi-family (single family index behaves similarly).
 - Measures rent commanded by newly rented unit

- Homeownership Rate: Census Housing and Vacancy Survey
 - CBSA definitions change over time. Drop periods where definitions change.
 - State level HOR and price panel to have fixed HOR definitions.

- Credit: HMDA
 - Following Favara-Imbs, use no. of loans, dollar volume of originations, loan/income ratio (IRS).
Empirical Approach

▶ Specification:

\[
\Delta \log(\text{outcome}_{i,t}) = \xi_i + \psi_t + \beta \Delta \log(\text{credit}_{i,t}) + \gamma \Delta \log(\text{outcome}_{i,t-1}) + \varepsilon_{i,t}
\]

▶ Problems:
- Credit is endogenous.
- Measurement error in credit: loan volume picks up refinancing.

▶ Instrument: Loutskina and Strahan (2015)
- Idea: change in conforming loan limit has bigger bite in cities with more homes priced near CLL.
- Instrument: interact fraction of originations within 5% of CLL at \(t - 1\) with % change in CLL.
- Include triple interaction with Saiz elasticity as well for power.
- Slightly weak instrument (\(F\) between 6 and 9), but 2SLS and LIML similar.

▶ Future work: augment with additional instruments.
Empirical Approach

▶ Specification:

\[
\Delta \log(\text{outcome}_{i,t}) = \xi_i + \psi_t + \beta \Delta \log(\text{credit}_{i,t}) + \gamma \Delta \log(\text{outcome}_{i,t-1}) + \varepsilon_{i,t}
\]

▶ Problems:

- Credit is endogenous.
- Measurement error in credit: loan volume picks up refinancing.

▶ Instrument: Loutskina and Strahan (2015)

- Idea: change in conforming loan limit has bigger bite in cities with more homes priced near CLL.
- Instrument: interact fraction of originations within 5% of CLL at \(t - 1\) with % change in CLL.
- Include triple interaction with Saiz elasticity as well for power.
- Slightly weak instrument (\(F\) between 6 and 9), but 2SLS and LIML similar.

▶ Future work: augment with additional instruments.
Regression Results: Price-Rent Ratio

- CBSA-level IV regressions.
- Substantial increase in price-rent ratio.
- Homeownership response not significantly different from zero.

<table>
<thead>
<tr>
<th></th>
<th>Δ log(# Loans)</th>
<th>Δ log(Vol. Loans)</th>
<th>Δ log(Loan/Income)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ log(Price/Rent)</td>
<td>0.297**</td>
<td>0.229***</td>
<td>0.235**</td>
<td>1404</td>
</tr>
<tr>
<td></td>
<td>(0.114)</td>
<td>(0.067)</td>
<td>(0.078)</td>
<td></td>
</tr>
<tr>
<td>Δ log(Homeownership Rate)</td>
<td>-0.004</td>
<td>-0.004</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.030)</td>
<td>(0.031)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1404</td>
<td>1404</td>
<td>1346</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1729</td>
<td>1729</td>
<td>1653</td>
<td></td>
</tr>
</tbody>
</table>
Impulse Response: Credit Shock

- CBSA level: price-rent ratio peaks at over 0.4 relative to 0.03 for HOR.
- State level (not shown): house prices peak at 0.6 relative to 0.1 for HOR.
Impulse Response: Credit Shock

- Conservative estimate: elasticity of PRR is 5x elasticity of HOR (likely higher).
- Use **5x ratio** as calibration target to pin down supply elasticity (lender heterogeneity).
Model Overview

- Endowment economy, endogenous investment in housing stock.

- Realistic mortgages: long term, fixed-rate, prepayable.
 - Loan-to-value (LTV) and payment-to-income (PTI) limits at origination only.

- Three types: borrowers (B), landlords (L), savers (S).
 - Borrowers: consume owned and rented housing, borrow in mortgages ($\beta_B < \beta_S$).
 - Landlords: risk-neutral, own housing to rent to borrowers (full model: can also borrow).
 - Savers: finance borrower mortgages (full model: landlord mortgages too).

- Key modeling contribution: borrower and landlord heterogeneity.
Model Overview

- Endowment economy, endogenous investment in housing stock.

- Realistic mortgages: long term, fixed-rate, prepayable.
 - Loan-to-value (LTV) and payment-to-income (PTI) limits at origination only.

- Three types: borrowers (B), landlords (L), savers (S).

- Key modeling contribution: borrower and landlord heterogeneity.
 - Without any heterogeneity, 0% or 100% home ownership.
 - How heterogeneity falls on borrowers vs. landlords determines slope of demand vs. supply.
Model Overview

▶ Endowment economy, endogenous investment in housing stock.

▶ Realistic mortgages: long term, fixed-rate, prepayable.
 - Loan-to-value (LTV) and payment-to-income (PTI) limits at origination only.

▶ Three types: borrowers \(B\), landlords \(L\), savers \(S\).

▶ Key modeling contribution: borrower and landlord heterogeneity.
 - Model as het. ownership benefits/costs \((h = \text{housing services}, H = \text{owned housing})\):
 \[
 V_{i,t}^B = \log(c_{i,t}^B) + \xi_B \log(h_{i,t}^B) + \omega_{i,t}^B H_{i,t}^B,
 \quad \omega_i^B \sim \Gamma^B
 \]
 \[
 V_{i,t}^L = c_{i,t}^L + \omega_{i,t}^L H_{i,t}^L,
 \quad \omega_i^L \sim \Gamma^L
 \]
 - \(\omega_i^B\) stands in for life cycle, preferences, ability to come up with down payment, etc.
 - \(\omega_i^L\) stands in for suitability of renting (urban multifamily vs. rural detached).
Model Solution

- Key optimality conditions (ignore landlord credit for today):

\[
p_t^{\text{Demand}} = \left(1 - C_t\right)^{-1} E_t \left\{ \Lambda_{t+1}^B \left[\bar{\omega}_t^B + \text{rent}_t + (1 - \delta - (1 - \rho_{t+1})C_{t+1})p_{t+1} \right] \right\}
\]

\[
p_t^{\text{Supply}} = E_t \left\{ \Lambda_{t+1}^L \left[\bar{\omega}_t^L + \text{rent}_t + \left(1 - \delta\right)p_{t+1} \right] \right\}
\]

- At equilibrium, \((\bar{\omega}_t^B, \bar{\omega}_t^L)\) ensure \(p_t^{\text{Demand}} = p_t^{\text{Supply}}\) and \(H_t^B + H_t^L = \bar{H}_t\), where

\[
H_t^B = \left(1 - \Gamma^B\omega(\bar{\omega}_t^B)\right)\bar{H}_t, \quad H_t^L = \left(1 - \Gamma^L\omega(\bar{\omega}_t^L)\right)\bar{H}_t
\]

- Key parameter is dispersion of \(\Gamma^L\omega\) distribution (more dispersed \(\Rightarrow\) more inelastic supply).
Calibration: Supply Elasticity

- Model change in CLL as shock to real mortgage spreads for borrowers.
- Choose dispersion of Γ^L_ω to ensure 5x larger price-rent vs. homeownership response.
 - Requires substantial deviation from frictionless rental markets with no landlord heterogeneity.

![Graphs showing IRF to Mortgage Spread for Log Price-Rent, Log Homeown. Rate, and Loan-to-Income over Quarters 0 to 20.](graph.png)
Credit Expansion Experiment

- Credit expansion: increase max LTV ratio from 85% to 99%, max PTI ratio from 36% to 65%.
- Start in 1998 Q1, surprise reversal in 2007 Q1, compute nonlinear perfect foresight paths.
Credit Expansion Experiment

- Benchmark: credit explains 47% of peak price-rent increase, 58% of peak LTI increase.

- Perfect rental markets: credit explains 0% of price-rent, only 28% of peak LTI increase.
Boom Counterfactuals: Benchmark Model

- Add observed fall in interest rates, then set house price expectations (expected rental growth) to explain entire boom in price-rent ratio and credit growth.
 - Fall in landlord discount rates, mortgage rates, credit limits in bust.

- Now removing credit expansion kills 57% of boom in price-rent ratios, 74% of boom in LTI.
Boom Counterfactuals: Benchmark Model

- Why does order credit is added/removed matter?
 - Loose credit amplifies low rate + expectation effects on demand.

- Takeaway: credit changes played important role in the boom for both debt and house prices.
Conclusion

- What role did credit play in the housing boom and bust?

- Empirical results:
 - 5x or larger elasticity for price-rent ratio than homeownership rate along supply curve.
 - Next steps: more instruments, expanded evidence.

- Quantitative model calibrated to match empirical findings (landlord supply elasticity):
 - Allows us to consider cases between fixed homeownership rate and perfect arbitrage.
 - Main finding: credit conditions explain 47 – 57% of price-rent growth during boom.
 - Next steps: investigate role of landlord credit, improve model fit.