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1 Introduction

Asset pricing models are routinely rejected when confronted with data. This state of affairs is

not unusual in many fields. All practitioners profess to accept the truism that “all models are

misspecified.”Yet, with notable few exceptions, inference methods and decision making proceed

as though the data generating process (DGP) is either known or the model uncertainty around

it is asymptotically inconsequential. DGP is a latent, possibly unknowable, object and models

of it are — by construction — only simplified, incomplete or directed maps. This is especially

true when models are partially specified and are estimated by moment matching. While it seems

natural that model uncertainty should be explicitly recognized and adequately incorporated in

statistical inference, this is rarely done in data analysis of moment condition models. Standard

practice typically acknowledges only sampling variability and parameter uncertainty but not model

uncertainty. Model averaging or aggregation, discussed below, provides an intriguing alternative

for dealing with irreducible model uncertainty in order to elicit some features of the latent object

of interest.

Misspecified models can still be useful for informing policy makers and investors in their decision

making. While earlier attempts to accommodate misspecified models in econometrics date back to

the late 70s and early 80s (Maasoumi, 1977, 1978, 1990; White, 1982; Gouroeroux, Monfort and

Trognon, 1984; among others), the analysis of uncertain moment condition models is still in its

infancy. This is a fertile ground for future research (see Lars Hansen’s (2013) Nobel lecture and

advances in misspecification-robust inference in moment condition models that include Maasoumi

and Phillips, 1982; Inoue and Hall, 2003; Gospodinov, Kan and Robotti, 2013; among others).

These attempts generally focus on inference on model parameters. There are some conceptual and

implementational hurdles, however, that arise in the analysis of multiple misspecified models. With

several candidate models, each is characterized by its own ‘pseudo-true’objects and parameters that

are specific to each model and even to estimation criteria, instrument sets, smoothing parameters

etc. (Antoine, Proulx and Renault, 2018). Analytical and policy objectives may not coincide with

these pseudo-true objects.

An important recent strand of literature in mathematical sciences and engineering shifts the

statistical paradigm away from parameter estimation and places the risk of model choice at the

center of statistical inquiry. This is appropriate and productive when an aggregate object serves

as an optimal inference for the output of models. Some traditional objects of inference, especially
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partial effects, require far more careful reconsideration when all models are expressly misspeci-

fied. For instance, different partial effects are referenced by different conditional distributions and

parameters in each model. Instead, an empirical counterpart of an optimal aggregate/average is

a properly defined object that represents desired outcomes, such as forecast density, functionals,

stochastic discount factor etc.1

Most model averaging methods assume that the set of candidate models contains the true model.

For example, the Bayesian approach assumes that the true model is contained under the support

of the prior. Diebold (1991) provides an illuminating example of this in the context of Bayesian

forecast combination. In this approach (Bernando and Smith, 1994), the ambiguity about the true

model is resolved asymptotically and in the limit, the mixture that summarizes the beliefs about

the individual models would assign a weight of one to a single model. In the limit, this is akin

to model selection since it is designed to choose only one of the candidate models and ignores the

information in the remaining models. This model selection procedure loses its consistency and

robustness properties when the true DGP is not in the set of candidate models. As Maasoumi

(1993) argues, “if models are misspecified in an indeterminate manner, we should not be aiming at

the discovery of the ‘true data generating process’.”Similarly, Monfort (1996) remarks that “the

search for a well-specified model is something like the quest for the Holy Grail.” Our approach

dispenses completely with the self-contradictory notion of a true model and treats the candidate

models as genuinely misspecified.

In econometrics, our approach is similar in spirit to Geweke and Amisano (2011, 2012) for

prediction pooling from misspecified models. In contrast, we develop a generalized entropy-based

approach to mixing information from different models. The minimum Shannon entropy or Kullback-

Leibler information criterion used by Geweke and Amisano (2011, 2012) and Hall and Mitchell

(2007) is a special case of our framework.2 Importantly, unlike Geweke and Amisano (2011), we

choose a proper metric for selecting the mixture weights which is a “distance”since it is symmetric

and satisfies the triangle inequality. Our closeness metric is also useful for clustering subsets

of models which might be ranked as more informative in a large set of candidate models. The

model clustering will identify similar attributes across models and act effectively as a “dimension”

reduction device. This is a ‘big data’problem and we will briefly allude to penalization methods

1An early example of thinking of unknown functions as an aggregation problem is Maasoumi (1987).
2 In this paper, our generalization is facilitated by the fact that we are not mixing densities, necessarily, so that

the aggregator does not need to commute with any possible marginalization of the distributions involved (McConway,
1981; Genest, Weerahandi and Zidek, 1984).
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that are similar in spirit. The data-driven model weights can also identify situations in which linear

aggregation is optimal.3

The stochastic discount factor (SDF) framework for asset pricing provides an evidently suitable

setting for assessing the benefits of model aggregation. It is widely documented that most, if not

all, asset pricing models of equity returns are strongly rejected by the data, and finding a robust

set of factors that adequately span the space of SDFs remains elusive.4 Despite this evidence of

misspecification, these asset pricing models can still collectively provide a useful guide for investment

decisions or measuring investment performance. Gospodinov, Kan and Robotti (2013) propose a

general methodology for model comparison and ranking of competing, possibly misspecified, asset

pricing models that are estimated and evaluated using the Hansen and Jagannathan (1991, 1997)

distance. Stutzer (1995) considers an information-theoretic approach to diagnosing asset pricing

models. In a recent paper, Ghosh, Julliard and Taylor (2017) develop an entropy-based modification

of the SDF that may price assets correctly. Gagliardini and Ronchetti (2016) and Antoine, Proulx

and Renault (2018) characterize the properties of pseudo-true SDFs in a conditional framework.

Unlike these papers, we use the generalized entropy measures of divergence to combine information

from a set of misspecified models and elicit some features of the SDF. The latter is our ‘latent’

object or process.

Our contributions can be summarized as follows. On methodological side, we propose an

information-theoretic approach to aggregating information in misspecified asset pricing models.

The optimal aggregator takes a harmonic mean form with geometric and linear weighting schemes

as special cases. The generalized entropy criterion that underlies our approach allows us to circum-

vent two serious drawbacks of the standard linear pooling. First, it ensures that the divergence

measure between the densities of the pricing errors of candidate models is a proper distance mea-

sure that is positive, symmetric and satisfies the triangular inequality (Maasoumi, 1993). Second,

3 It is also important to contrast the model aggregation approach with the model ambiguity literature. While both
approaches are trying to accommodate model misspecification, model ambiguity framework chooses a single reference
model a priori based on certain considerations such as analytical tractability, for instance. The aim there is to express
the costs of such a model being misspecified when it is the center of an “epsilon ball”of other undefined models/laws
(see the seminal work of Hansen and Sargent, 2001, 2008, as well as some recent extensions such as Bonhomme and
Weidner, 2018, and Christensen and Connault, 2018). The cost of this model ambiguity is represented in terms
of wider asymptotic confidence intervals for inferential objects (such as parameters and partial effects) from the
reference model, when the “epsilon” deviation is of a certain small order of magnitude in the sample size. Unlike
model aggregation, there are no expressed models competing unambiguously with the focus model in this approach.

4 It is possible that the null of correct specification is not rejected even when the model is misspecified due to
a failure of the rank condition. Gospodinov, Kan and Robotti (2017) show that the power of invariant tests for
overidentifying restrictions in linear asset pricing models does not exceed the nominal size when the rank condition
is violated.
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the use of the harmonic mean as an aggregator relaxes the infinite substitutability assumption

between models which is implicit in linear aggregation (pooling). On the practical side, our mix-

ing procedure employs information from all models by assigning data-driven weights depending on

the model’s contribution to the overall reduction of the pricing errors. The weighted stochastic

discount factor preserves the integrity of each structural model and pools the relevant information

from each model in a bounded risk sense. This stands in sharp contrast with the existing methods

in the literature that either select factors from a set of candidate factors or choose a single (‘least

misspecified’) model from a set of candidate models. Both of these cases result in loss of informa-

tion from omitting factors or models. Our empirical analysis reports non-trivial improvements (in

terms of pricing error reduction) from aggregation.

It is instructive to preview the form and the empirical performance of our aggregator using a

simple example of 12-month ahead forecasting of U.S. core inflation (CPI less food and energy).

The models considered are the Phillips curve model, integrated moving average (1,1) model (Stock

and Watson, 2007), commodity-based (convenience yield) model (Gospodinov, 2016), historical

average and the Blue Chip survey of expected CPI inflation. The individual model forecasts at

time t are denoted by fi,t, i = 1, ...,M . Our general aggregator takes the form

f̃t =

[∑M

i=1
wif

−ρ
i,t

]−1/ρ

.

We set ρ = −1/2 and the aggregation weights wi are estimated by minimizing the “distance”

between the aggregator and a pivot/desired density. The data is at monthly frequency for the period

1988:01—2018:09 with 2002:01-2018:09 for out-of-sample evaluation. The out-of-sample forecasts for

the “pivot”(Blue Chip survey) and the aggregator are plotted in Figure 1.

Figure 1 about here

Forecast performance is evaluated using a wide range of Bregman loss functions (Patton, 2018).

The forecast improvements of the aggregate over the individual model forecasts was substantial

across all loss functions (in excess of 60% over the bests performing (convenience yield) model).

The aggregate forecast is unbiased and the forecast weights exhibit interesting dynamics over time

as the relative performance of the individual models changes. This should be viewed against the

backdrop of the well-documented challenges in forecasting core inflation.

The rest of the paper proceeds as follows. Section 2 introduces the stochastic optimization par-

adigm. Section 3 discusses the main setup for evaluating asset pricing models/SDFs and introduces
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our ideal aggregate functions as well as the stochastic, risk-based approach to model aggregation.

Section 4 describes the candidate consumption-based asset pricing models and presents the empir-

ical results. Section 5 concludes.

2 Stochastic Optimization as a General Program for Misspecified
Models

2.1 Some Preliminaries

Suppose one is interested in estimating an unknown functional f (·). Information from a set of

auxiliary (partially specified) models is available about this latent f (·). Examples of f (·) include

conditional mean functions in regression models, densities, and other latent objects such as sto-

chastic discount factors (SDFs). We consider a shift the statistical paradigm from (parameter)

estimation to a “stochastic optimization”paradigm that is detailed below.

Let there be a finite list (dictionary) F of candidate models that intend to embed certain

theoretical or empirical features of the underlying DGP. The stochastic optimization approach does

not require a fully articulated structural model and does not assume that this dictionary contains a

‘true’model. It will construct an aggregator that minimizes an empirical risk relative to a pseudo-

best aggregate. Because it is data driven, it has the potential to adapt to a least misspecified,

or the true DGP, were it to be in the class. The aggregation estimator satisfies certain oracle

inequalities on expected error, or probability of errors (Rigollet, 2012; Rigollet and Tsybakov,

2012). Model selection, that assigns weights of one or zero to individual models, proves to be

suboptimal. When the dictionary contains a mixture of linear and nonlinear, possibly non-nested,

models, the aggregation scheme arrives at a “comprehensive”model. The aggregation provides an

approximate mapping between the comprehensive and auxiliary models but this mapping, unlike

in the standard case of a fully specified structural model, is perturbed by a component that reflects

uncertainty about the underlying object f(·).

For simplicity, we introduce the main ideas and notation in the context of probability density

functions but they can be easily adapted to more general functions of fixed mass. Let Z1, ..., ZT

denote observations of the random variable Z with an unknown density f ∈ F , and L : Z ×F →R

be a measurable loss function with a corresponding risk function R : F →R defined as

R(fZ , f) = E[L(fZ , f)], f ∈ F , (1)
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where fZ denotes any candidate distribution for Z. The oracle f∗ is defined as

f∗ = argmin
f∈F

R(fZ , f) (2)

or R(fZ , f
∗) ≤ R(fZ , f) for all f ∈ F . Let

RT (fT , f) =
1

T

∑T

t=1
L(ft, f) (3)

be the empirical risk functionR(fZ , f), where fT is the sample analog of fZ . In the case of quadratic

risk it is RT (fT , f) = ‖fT − f‖2 = 1
T

∑T

t=1
(ft − f)2, where ‖·‖2 denotes the L2 norm.

When interest lies in density or model aggregation, one constructs a sample aggregator f̃T of

available functions f1, ..., fM in the F dictionary by mimicking the oracle inff∈F R(fZ , f). The

functions f1, ..., fM are either given or obtained from prior training samples (by sample splitting,

for example). These functions are evaluated at the sample values Z1, ..., ZT . Then, for a constant

C ≥ 1, the following is an “expectations”oracle inequality (Rigollet, 2015)

E[RT (f̃T , f)] ≤ C inf
f∈F
R(fZ , f) +4T,M , (4)

where 4T,M > 0 is a remainder term that characterizes the performance of the aggregator f̃T .5

Furthermore, for every δ > 0, the following error probability bound is established under certain

conditions:

Pr

{
RT (f̃T , f) ≤ C inf

f∈F
R(fZ , f) +4T,M,δ

}
≥ 1− δ. (5)

More generally, a balanced oracle inequality takes the form

E[RT (f̃T , f)] ≤ C
[

inf
f∈F
R(fZ , f) + 4̃T,M (f)

]
, (6)

with 4T,M = C supf∈F 4̃T,M (f). An exact or sharp oracle inequality is obtained when C = 1.

It is instructive to illustrate some of the main ideas with the popular example of quadratic risk

and regression model

Yt = f(Xt) + εt, (7)

where εt is N(0, σ2). f(·) is unknown and is modelled by functions in the dictionary F =

{f1, ..., fM}.6 Consider the linear aggregator

f̃
(w)
T =

M∑
i=1

wifi. (8)

54T,M is free of f and f̃T and varies depending on the process and underlying assumptions; often for iid samples.
6The functions fi, i = 1, ...,M , are either given or estimated with prior data samples.
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The bound for the risk E[RT (f̃
(w)
T , f)], where ŵ denotes the least squares estimator of w =

(w1, ..., wM )′

ŵ = argmin
w∈RM

1

T

T∑
t=1

(Yt − f̃ (w)
T (Xt))

2, (9)

is provided in Rigollet and Tsybakov (2012) and Rigollet (2015). A few remarks are warranted here.

First, infwR(f (w), f) > 0 when the candidate models are misspecified and a ‘true’model is not

part of the dictionary. Obtaining a sharp oracle inequality (C = 1) in this case is important since

it minimizes the impact of this systematic bias term (Rigollet and Tsybakov, 2012). Alternatively,

one could construct adaptive weights by judiciously parameterizing the parameter space of w as

a function of the sample size in such a way that this bias vanishes asymptotically. Finally, to

minimize the magnitude of the remainder term in bounding the empirical risk, one could resort

to penalized convex aggregation as discussed below (see also Rigollet and Tsybakov, 2012). Birgé

(2013) shows that in the case of quadratic risk, the remaining term can be quite large and suggests

a different way of aggregation based on T-estimators (Birgé, 2006).

Another interesting example is the density function of a variable Yt : f(Yt). Suppose we have

M density forecast models for the conditional density of Yt|Xit for i = 1, ...,M , f(Yt|Xit) = fi. We

would like to aggregate the information in the M candidate models to form a density forecast for

Yt. Since we are interested in the unconditional density of Yt, the aggregation weights should be

based on the divergence between f(Yt) and the unconditional version of f(Yt|Xit):

git = EXi {f(Yt|Xit)} =

∫
f(Yt|x)dPit(x), (10)

where Pit is the marginal distribution of Xit. If P̂it denotes an estimate of Pit, then

g∗it =

∫
f(Yt|x)dP̂it(x). (11)

This can be performed by resampling only the predictors Xit, and g∗it is an empirical average of

f(Yt|Xit) over the Xit.

2.2 Convex Aggregation

The distinction between ‘model selection’and ‘model aggregation’is important. The former has a

zero-one weighting scheme that picks the model with smallest risk. This is known to be suboptimal

relative to ‘model aggregation’in which many weights (and aggregation penalties) are obtained in

order to optimize a risk measure (Yang, 2000; Rigollet and Tsybakov, 2012).
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The approach outlined below offers generality with respect to the risk function R(f̃ , f).7 As-

sumption 1 below states some regularity conditions on the data.

Assumption 1. Let (Z,A) be a measurable space and v be a σ-finite measure on (Z,A). Let

(Z1, ..., ZT ) denote a sample of T iid observations from an unknown density f on Z with respect

to v. Finally, let F be a finite dictionary of cardinality M of density functions {f1, ..., fM} such

that maxfi∈F ‖f/fi‖∞ <∞.

Further, consider the flat simplex for a set of model weights w = (w1, ..., wM ) :

WM =

{
w ∈ RM : wi ≥ 0,

∑M

i=1
wi = 1

}
. (12)

Then, the convex (weighted average) aggregator of the candidates {f1, ..., fM} is given by

f (w) =
M∑
i=1

wifi, w ∈ WM , (13)

with its estimator denoted by f̃ (w)
T . Model selection is a special case with w ≡ ei = (0, 0, ..., 1, 0, ..., 0)

with i = 1, ...,M .

Let the pseudo-true density aggregator be defined as

f∗w = argmin
w∈WM

E[L(f (w), f)]. (14)

Oracle inequalities are established relative to R(f∗w, f) = E[L(f∗w, f)] both in terms of expectations

and probability. The following lemma summarizes these results.

Lemma 1. Suppose that Assumption 1 holds. Then, for some C ≥ 1,

E[RT (f̃
(w)
T , f)] ≤ C min

w∈WM
R(f (w), f) +4T,M (15)

and for every δ > 0,

Pr

{
RT (f̃

(w)
T , f) ≤ C min

w∈WM
R(f (w), f) +4T,M,δ

}
≥ 1− δ, (16)

where 4T,M and 4T,M,δ are remainder terms that do not depend on f or fi, i = 1, ...,M .

When the density properties of the w are recognized, one may incorporate penalties for de-

partures of the distribution of weights (w) from a priori distributions or desired distributions of

7As before, the arguments in this section are developed for probability density functions but can be extended to
more general functions.
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weights (π) that may reflect an ordering of the models. For example, consider the linear aggregator

f̃w =
∑M

i=1wifi of an unknown regression function f . Then, the aggregation weights may solve the

following penalized optimization problem

min
w∈WM

[
M∑
i=1

wiRT (f̃
(w)
T , f) +

β

T
KL(w, π)

]
, (17)

where β > 0 is a penalty parameter, KL(w, π) =
∑M

i=1wi ln
(
wi
πi

)
is the Kullback-Leibler divergence

between w and π, and π ∈ WM is a prior probability density. This could also be a convenient device

when M is large relative to T , as in variable selection problems with ‘big data’attributes. The so-

lution for the above penalized optimization problem is driven by the form of the entropy divergence

function. With the Kullback-Leibler divergence, the aggregation weights take an exponential form

w∗i =
exp(−TRT (f̃

(w)
T , f)/β)πi∑M

j=1 exp(−TRT (f̃
(w)
T , f)/β)πj

. (18)

Note that this is the quasi-Bayesian approach of Chernozhukov and Hong (2003) where the estimates

of w can be obtained using MCMC methods.

Rigollet and Tsybakov (2012) show that the aggregator f̃ (w)
T =

∑M
i=1w

∗
i fi in the regression

setup above with β ≥ 4σ2 satisfies the following balanced oracle inequality

E[RT (f̃
(w)
T , f)] ≤ min

w∈WM

[
M∑
i=1

wiR(fi, f) +
β

T
KL(w, π)

]
. (19)

Furthermore, by restricting R(fi, f) to the vertices of the simplex WM with the choice of π to be

the uniform distribution on {1, ...,M} we have the oracle inequality8

E[RT (f̃
(w)
T , f)] ≤ min

1≤i≤M
R(fi) +

β ln(M)

T
. (20)

By contrast, a model selection procedure that selects only one function in the dictionary is subopti-

mal as its remainder term is of higher order
√

ln(M)/T (see Rigollet and Tsybakov, 2012) whereas

ln(M)/T is the desired minimax rate.

2.3 General Aggregation

To infer the form of the aggregator, we follow a general entropy-based approach proposed by

Maasoumi (1986) for characterizing the solution for f̃ by selecting a distribution which is as close

8Note that the vertices are the selector vectors ei, i = 1, ...,M , introduced above and
∑M
i=1 wiR(fi, f̃) =∑M

i=1 eiR(fi, f) = R(fi).
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as possible to the multivariate distribution of fi’s. We assume that fi,t ≥ 0 for all i and t. This

is automatically satisfied for density functions and no-arbitrage stochastic discount factors as well

as positively-valued variables. In other situations, this condition will require a more judicious

choice of variables; gross returns instead of net returns, for example. Maasoumi (1986) shows

that generalizing the pairwise criteria of divergence to a general multivariate context results in the

following measure of divergence:

D̃ρ(f̃ , f ;w) =
M∑
i=1

wiRT,ρ(f̃ , fi), (21)

where

RT,ρ(f̃ , fi) =
1

ρ(ρ+ 1)

T∑
t=1

f̃t

[(
f̃t
fi,t

)ρ
− 1

]
. (22)

RT,ρ(f̃ , fi) is the generalized entropy divergence between the aggregator f̃ and each of the prospec-

tive models fi. The aggregator that minimizes D̃ρ(f̃ , f ;w) is given by

f̃∗t ∝
[
M∑
i=1

wif
−ρ
i,t

]−1/ρ

. (23)

Note that the linear and convex pooling of models are obtained as special cases. For example, the

dominant (convex) aggregator f̃ (w)
t =

∑M
i=1wifi,t is an ideal aggregator function by the Kullback-

Leibler divergence (ρ = −1).

What emerges from the literature is quite compelling. First, risk of aggregator functions dom-

inates the model selection approach in terms of oracle bounds on expected losses. Second, the

commonly used L2 risk function has bounds that depend on dominating measure, and risk may be

unbounded (see Birgé, 2006, 2013). Finally, quadratic risk is not a distance between distributions

as it depends on the particular dominating measure. Hellinger distance is invariant to this and is

a measure of distance between distributions and suitable regression functions.

This aspect of distance functions for distributions is emphasized in Maasoumi’s (1993) survey of

entropy functions and relative entropy functions. Granger, Maasoumi and Racine (2004) advocate

a member of the generalized entropy divergence measures (see also Cressie and Read, 1984) which

is a scaled normalization of the Hellinger distance. More specifically, let P and Q be probability

measures with densities p and q with respect to a dominating measure ν. The generalized entropy

or Cressie-Read divergence from Q to P is given by

Dη(P,Q) =

∫
φη (dQ/dP ) dQ, (24)
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where

φη(x) =
1

η(η + 1)

(
xη+1 − 1

)
(25)

is the Cressie-Read power divergence family of functions. More specifically,

Dη(P,Q) =

∫ (
1−

(
p

q

)η)
qdν for η ∈ R. (26)

When η → 0, we obtain the Kullback-Leibler divergence measure

D0(P,Q) =

∫
ln

(
p

q

)
qdν = KL(P,Q). (27)

Similarly, the case η = −1/2 corresponds to the Hellinger distance measure

D−1/2(P,Q) =

∫ (
p1/2 − q1/2

)2
dν = H(P,Q). (28)

Unlike the other measures in the Cressie-Read divergence family, the Hellinger distance is a proper

measure of distance since it is positive, symmetric and it satisfies the triangle inequality. Kitamura,

Otsu, and Evdokimov (2013) show the robustness of the Hellinger distance to perturbations of

probability measures.

To fix the notation for what follows, let f̃ (w) =

[∑M

i=1
wif

1/2
i

]2

be the aggregator based on the

Hellinger distance for the dictionary {f1, ..., fM} with f̃ (w)
T being its sample analog. Furthermore,

H(f̃ (w), f) is the corresponding risk function, where H denotes the Hellinger distance. Finally, let

inf f̃ (w) supf∈F H(f̃ (w), f) denote the minimax risk over F . The following result is adapted from

Birgé (2006) and provides a justification for our proposed aggregation approach in the rest of the

paper.

Lemma 2. Suppose that Assumption 1 holds. Then,

E[HT (f̃
(w)
T , f)] ≤ C

[
min
w∈WM

H(f̃ (w), f) +4T,M

]
, (29)

where C ≥ 1 and 4T,M is a remainder term. Moreover, the minimax risk over F is bounded by

C4T,M .

As mentioned above, H(f̃ (w), f) > 0 under model misspecification. But with Hellinger distance

and minimaxity, the risk remains under control even if the models are misspecified.

The bounds so far are established under the assumption that the data are iid. The extensions to

the time series context are more involved and can be implemented using the conditional predictive

density approach of Yang (2000) or the composite marginal likelihood approach (see Varin, 2008;
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Varin, Reid and Firth, 2011; among others). While our empirical application uses time series data,

the returns and the risk factors are largely serially uncorrelated. Some of the bound results may

continue to hold if the independence is replaced by a martingale difference assumption. However,

a rigorous treatment of the time series case is left for future research.

3 Aggregation of Misspecified Asset Pricing Models

In the SDF setup considered below, the distance minimization is performed subject to restrictions

imposed by the asset pricing model. The primal problem which targets the unknown functional

of interest can be conveniently transformed to a dual problem. The immutable part (unknown

functional) of the risk function falls out of the dual problem. It is important to stress that while

this approach explicitly recognizes that the auxiliary models are misspecified, the “oracle SDF”is

still guided and proscribed by economic theory. An alternative would be a data-driven (model-free)

approach to approximating the unknown function using (semi) non-parametric methods (see, for

example, Donoho and Johnstone, 1994; Cai, Ren, and Sun, 2015). This approach is better tailored

for model fit or prediction (as in machine learning) and will not be considered in this paper. In

contrast, our aggregation method can be regarded as formal information nesting (information-

theoretic) of various theory-based factor models that would inform policy makers and investors of

data based support. Our data dependent model weights, wi, will rank competing models, if so

desired.

3.1 SDF and Hansen-Jagannathan Distance

Let R denote the returns on N test assets and m ∈M be an admissible stochastic discount factor

(SDF) that prices the test assets correctly,

E[Rm] = z, (30)

where z denotes a non-zero N × 1 vector of payoffs (a vector of ones if R are gross returns). In

order to make this pricing equation consistent with the absence of arbitrage opportunities,M may

need to be replaced by the set of nonnegative admissible SDFs M+. Furthermore, let y(γ) be a

candidate stochastic discount factor that depends on a k-vector of unknown parameters γ ∈ Γ,

where Γ is the parameter space of γ. If y(γ) prices the N test assets correctly, then the vector of

pricing errors, e(γ), of the test assets is exactly zero:

e(γ) = E[Ry(γ)]− z = 0N . (31)

12



However, the pricing errors are nonzero when the asset-pricing model is misspecified. The squared

Hansen-Jagannathan (Hansen and Jagannathan, 1991, 1997) distance

δ2 = min
γ∈Γ

min
m∈M

E[(y(γ)−m)2] (32)

provides a misspecification measure of y(γ) and can be used for estimating the unknown parameters

γ. This is the standard L2 norm between the functionals y(γ) and m. It is sometimes more

convenient to solve the following dual problem:

δ2 = min
γ∈Γ

max
λ∈<N

E[y(γ)2 − (y(γ)− λ′R)2]− 2λ′z, (33)

where λ is an N×1 vector of Lagrange multipliers.9 The term λ′R provides the smallest correction,

in mean squared sense, to y(γ) in order to make it an admissible SDF. Note that for a given SDF

y(γ) and γ, the vector of Lagrange multipliers and the squared Hansen-Jagannathan distance can

be expressed as

λ = U−1e(γ), (34)

and

δ2(γ) = e(γ)′U−1e(γ), (35)

where U = E[RR′].

Importantly, Hansen and Jagannathan (1991) provide a maximum pricing error interpretation

of the distance δ(γ). Consider a portfolio a with unit second moment, i.e., a′Ua = 1. By the

Cauchy-Schwartz inequality, the squared pricing error of this portfolio is

(a′e(γ))2 = (a′U
1
2U−

1
2 e(γ))2 ≤ (a′Ua)[e(γ)′U−1e(γ)] = δ2(γ). (36)

Specifically, the portfolio a = U−1e(γ)/δ(γ) has a pricing error δ(γ). Then,

max
a: a′Ua=1

|a′e(γ)| = δ(γ), (37)

and δ(γ) can be interpreted as the maximum pricing error that one can obtain from using y(γ) to

price the test assets.

The Hansen-Jagannathan distance has an information-theoretic interpretation too. Let P be

the data generating measure and Φ denote a family of probability measures that satisfy the asset

9To ensure non-negativity of the SDF, it may be necessary to replace (y(γ) − λ′R) with (y(γ) − λ′R)+, where
(a)+ ≡ max[a, 0]. See Gospodinov, Kan and Robotti (2016) for the analysis in this case. The nonlinear SDFs that
we consider below satisfy automatically the non-negativity constraint and this modification is superfluous.
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pricing restrictions (m ∈ M). The goal is to find a probability measure Q with minimal entropy

divergence from the empirical measure P , defined as the solution to the following inverse problem

min
Q∈Φ

Dη(P,Q) =

∫
φη (dQ/dP ) dQ (38)

subject to
∫
e(γ)dQ = 0N , (39)

where φη (·) denotes again the Cressie-Read divergence family. A candidate SDF y(γ) defines a

measure Qy with density dQy = y(γ)
E[y(γ)]dP and a relative entropy (with respect to P ) given by

E
[

y(γ)
E[y(γ)]φη

(
y(γ)

E[y(γ)]

)]
. The model (SDF) y(γ) is misspecified if y(γ) /∈M.

Almeida and Garcia (2012) show that for a fixed vector of parameters γ, the primal and dual

problems in the SDF framework can be written as

δη(γ) = min
γ∈Γ

min
m∈M

E

[
(1 +m− y(γ))η+1 − 1

η(η + 1)

]
(40)

and

δη(γ) = max
λ∈<N

λ′z − E
[

(ηλ′R)
η+1
η

η + 1
+ (y(γ)− 1)λ′R+

1

η(η + 1)

]
, (41)

respectively. The dual problem for the Hansen-Jagannathan distance is obtained for η = 1 (see

Almeida and Garcia, 2012; Ghosh, Julliard and Taylor, 2017).

There is a small but growing literature on evaluating asset pricing models using entropy measures

(Stutzer, 1995; Kitamura and Stutzer, 2002; Almeida and Garcia, 2012; Backus, Chernov and Zin,

2014; Bakshi and Chabi-Yo, 2014; Ghosh, Julliard and Taylor, 2016; among others). Several of

these papers derive optimal lower bounds on the SDFs and develop diagnostics that measure how

far a model deviates from these entropy bounds. However, this analysis does not fully embrace the

inherent misspecification of all asset pricing models and is still conducted in a “model selection”

mode. Also, while some of the used entropy divergence measures nicely help to demonstrate how

higher-order moments of the distribution can account for much of the entropy of the SDFs, they are

not “distance”measures (metricness). Our point of departure from the existing literature is two-

fold. First, we adopt an entropy-driven approach to model aggregation that explicitly recognizes

the misspecification of the candidate SDFs. Second, we employ the Hellinger distance, due to

its metricness and other theoretical and robustness properties, in estimating and aggregating the

individual models.
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3.2 Cross-Validation Inference

In-sample evaluation and model comparison of asset pricing models is the dominant approach for

assessing their pricing performance. But this in-sample framework is plagued by econometric prob-

lems that can have serious adverse effects on inference in and across models. For example, presence

of weak or spurious factors, rank failure, parameter instability, non-invariance to normalizations

etc. have been shown to result in highly misleading inference procedures. Also, the asymptotic

framework for model evaluation and comparison changes abruptly depending on whether the models

are correctly specified or misspecified, nested, non-nested or overlapping etc.

While out-of-sample evaluation is immune to some of these problems, the structure of the

traditional asset pricing models is not well-suited for that without fully specifying the dynamics

of the factors. For this reason, we will resort to cross validation that adapts better to the model

uncertainty in constructing pseudo out-of-sample pricing errors for model evaluation and estimation

of aggregation weights.

Let êi,(−t)(γi) = 1
T−1

∑
j 6=tRjyi,j(γi) − 1N and Û(−t) = 1

T−1

∑
j 6=tRjR

′
j be the leave-one-out

estimators of ei(γi) and U for model i = 1, ...,M . These estimators are obtained by removing the

t-th observation from R and yi(γ) and computing the sample quantities with the remaining T − 1

observations. Parameters for model i are then estimated as

γ̂i,(−t) = arg min
γi∈Γ

êi,(−t)(γi)
′Û−1

(−t)êi,(−t)(γi). (42)

This, in turn, is used for constructing the leave-one-out estimator of the SDF ŷi,(−t) = yi,(−t)(γ̂i,(−t))

and the cross-validation version of the Hansen-Jagannathan distance

δ̂i,(−t) =
√
êi,(−t)(γ̂i,(−t))

′Û−1
(−t)êi,(−t)(γ̂i,(−t)). (43)

If Rt or yi,t(γi) are serially correlated or h-dependent for some h > 1, the leave-one-out procedure

should be replaced with a leave-h-out cross-validation which removes h−1 data points on both sides

of the t-th observation. The cross-validation distance is expected to reflect better the underlying

model uncertainty and to provide a more reliable statistical measure of pricing performance. The

next section uses the cross-validation approach for estimating aggregation weights.

Under some regularity conditions (see Gospodinov, Kan and Robotti, 2013), if δ > 0,

√
T (δ̂

2

i,(−t) − δ2
i )

d→ N(0, Vδi), (44)

where Vδi =
∑∞

k=−∞E[vi,t(γ
∗
i )vi,t+k(γ

∗
i )] and vi,t(γ

∗
i ) = yi,t(γ

∗
i )

2 − [yi,t(γ
∗
i )− λ∗′i Ri,t]2 − 2λ∗′i z − δ2

i .
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A similar result can be used for pairwise model selection between models i and j. Under the

null H0 : δ2
i = δ2

j , we have (Hansen, Heaton and Luttmer, 1995; Gospodinov, Kan and Robotti,

2013)
√
T (δ̂

2

i,(−t) − δ̂
2

j,(−t))
d→ N(0, Vδij), (45)

where Vδij =
∑∞

k=−∞E[vij,tvij,t+k] > 0 and vij,t = vi,t(γ
∗
i )− vj,t(γ∗j ). It is important to emphasize

that the result in (45) holds only if σ2
d 6= 0.

Unfortunately, the implementation of the model selection test will depend on whether the

models are nested, non-nested or overlapping. This makes its implementation quite cumbersome

with further complications for multiple model comparison. As a related issue, since all candidate

models are believed to be misspecified, choosing only one will result in loss of information and

inflated risk. In a simplified context, Yang (2003) shows that the ratio of the risks associated with

a test-based model (density) selection and model (density) averaging, respectively is strictly greater

than one.

3.3 SDF Aggregator

Suppose there areM proposed misspecified models for the unknowable true model m with ŷi,(−t) =

yi,(−t)(γ̂i,(−t)), i = 1, ...,M and t = 1, ..., T , denoting their corresponding leave-one-out SDF esti-

mates. We allow for both linear and nonlinear SDF specifications as well as nested and non-nested

SDFs. For the sake of argument, we assume that the model parameters for each model are esti-

mated by minimizing the Hansen-Jagannathan distance.10 Our approach in this paper is to treat

each model as an incomplete ‘indicator’of the latent DGP. Then, a model averaging rule would

aggregate information from all of these models and construct a pseudo-true SDF ỹ.

Here, we followMaasoumi (1986) in characterizing the solution for ỹ. Let ŷ(−t) = (ŷ1,(−t), ..., ŷM,(−t))
′

be the t-th row of the T×M matrix Y and ỹ = h(ŷ(−1), ..., ŷ(−T )), where h is an aggregator or index

function. Similarly, let ê(−t) = (ê1,(−t), ..., êM,(−t))
′ denote the corresponding vector of leave-one-out

pricing errors. We are interested in constructing the aggregator ỹ with a distribution that is as

close as possible to the multivariate distribution of ŷi’s. Maasoumi (1986) generalized the pairwise

10Alternatively, one could estimate the parameters using other entropy-based estimators (Almeida and Garcia,
2012), including the Hellinger distance. Furthermore, one could estimate the parameters and the aggregation weights
by sample splitting instead of cross-validation. An earlier version of the paper explored this possibilities but the
results are not reported here to conserve space.
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criteria of divergence to a general multivariate context as follows

Dρ(ỹ, Y ;w) =

M∑
i=1

wi

{
T−1∑
t=1

ỹ(−t)

[(
ỹ(−t)
yi,(−t)

)ρ
− 1

]/
ρ(ρ+ 1)

}
. (46)

The aggregator that minimizes Dρ(ỹ, Y ;w) takes the form

ỹ∗t ∝
[
M∑
i=1

wiy
−ρ
i,(−t)

]−1/ρ

. (47)

Note that the linear pooling of models is obtained as a special case when ρ = −1 and the Hellinger

distance aggregator is obtained for ρ = −1/2.

In what follows, we set ρ = −1/2 that renders the Hellinger distance aggregator ỹ(−t)(w) =[∑M

i=1
wiŷ

1/2
i,(−t)

]2

. In order to implement the this aggregation scheme, we need to estimate the

unknown parameters w = (w1, ..., wM )′ The estimation of w is performed by minimizing the dis-

tance of the aggregator’s distribution from a desired distribution. Let P be a probability measure

associated with pricing errors from some benchmark model (pivot) with density p, and q denote

the density of (leave-one-out) pricing errors of the Hellinger distance aggregator ỹ(−t)(w). Using

the generalized entropy (Cressie-Read) divergence from Q to P defined in (24)-(25) and imposing

η = −1/2, we obtain the scaled Hellinger distance H ∝ D−1/2(P,Q)

H =
1

2

∫ (
p1/2(x)− q1/2(x)

)2
dx. (48)

Estimate of x is obtained by minimizing H with respect to w, subject to the relevant restrictions.

In practical implementation, we estimate p and q by a kernel density estimator and the integral in

(48) is evaluated numerically. The choice of a benchmark model is discussed in the next section.

4 Empirical Analysis

4.1 Data and Asset-Pricing Models

We analyze four popular nonlinear asset-pricing models. The SDF for these models is log-linear in

the factors and takes the form yt(γ) = exp(γ′f̃t).

1. CAPM of Brown and Gibbons (1985):

yCAPMt (α, β) = β(1− k)−αR−αm,t (49)

or

ln(yCAPMt (γ)) = γ0 + γ1 ln(Rm,t), (50)
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where Rm is the gross market return, β is the discount rate, α > 0 is the coeffi cient of relative

risk aversion, k is the proportion of wealth consumed in every period, γ0 = −α ln(β(1 − k))

and γ1 = −α.

2. Consumption CAPM (CCAPM):

yCCAPMt (α, β) = β
(

Ct
Ct−1

)−α
(51)

or

ln(yCCAPMt (γ)) = γ0 + γ1ct, (52)

where C denotes real per capita consumption of non-durable goods (seasonally adjusted),

ct = ln(Ct)−ln(Ct−1) is the growth rate in nondurable consumption, γ0 = ln(β) and γ1 = −α.

3. Non-expected utility (EZ) model of Epstein and Zin (1989, 1991) and Weil (1989):

yEZt (α, β, σ) = β
1−α
1−σ

(
Ct
Ct−1

)−σ( 1−α1−σ )
R
σ−α
1−σ
m,t , (53)

where 1/σ ≥ 0 is the elasticity of intertemporal substitution. Note that the restriction α = σ

reduces the model to the standard expected utility model (nonlinear CCAPM). The logarithm

of the SDF is given by

ln(yEZt (γ)) = γ0 + γ1ct + γ2 ln(Rm,t), (54)

where γ0 = 1− ln(β), γ1 = − (1−α)(σ(1−φ)+φ)
1−σ , and γ2 = σ−α

1−σ .

4. Durable consumption CAPM (D-CCAPM) of Yogo (2006):

yD−CAPMt (α, β, σ, φ) = β
1−α
1−σ

(
Ct
Ct−1

)−σ( 1−α1−σ )( Cd,t/Ct
Cd,t−1/Ct−1

)φ(1−α)

R
σ−α
1−σ
m,t , (55)

where Cd is consumption of durable goods and φ ∈ [0, 1] is the budget share of durable

consumption. When φ = 0, we have the classical non-expected (Epstein-Zin) utility model.

By imposing the additional restriction α = σ, we obtain the standard expected utility model

(nonlinear CCAPM). After taking logarithms, we have

ln(yD−CAPMt (γ)) = γ0 + γ1ct + γ2cd,t + γ3 ln(Rm,t), (56)

where γ0 = 1− ln(β), γ1 = − (1−α)(σ(1−φ)+φ)
1−σ , γ2 = φ(1− α), and γ3 = σ−α

1−σ .
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In summary, the traditional CCAPM is nested within the EZ model when α = σ while D-

CCAPM nests EZ (φ = 0) and CCAPM (φ = 0 and α = σ).

As a ‘pivot’for computing the Hellinger distance, we use a model with a constant as a single

factor. This choice is intended to robustify the aggregator with respect to the least favorable model

specification. This is an important point that should be taken into account in the performance

evaluation of the Hellinger aggregator. We also report results for the three-factor (FF3) model of

Fama and French (1993)

yFF3
t (γ) = γ0 + γ1rm,t + γ2smbt + γ3hmlt, (57)

where rm denotes the excess return on the market portfolio, smb is the return difference between

portfolios of stocks with small and large market capitalizations, and hml is the return differ-

ence between portfolios of stocks with high and low book-to-market ratios (“value”and “growth”

stocks, respectively). The FF3 model is one of the most successful empirical models and the in-

formation contained in the smb and hml factors is somewhat orthogonal to the information in

the consumption-based CAPM models considered above.11 It should be noted that this model

is not used in the estimation of aggregation weights and only as a benchmark for single model

performance.

The test asset returns are the monthly gross returns on the value-weighted 25 Fama-French

size and book-to-market ranked portfolios, and the 17 industry portfolios from Kenneth French’s

website. The sample period is January 1969 to December 2015. The consumption data that is used

to construct the growth rates ct, cst and cd,t, is real per capita, seasonally adjusted consumption

of non-durable and durable goods from the Bureau of Economic Analysis. The excess return rm,t

on the value-weighted stock market index (NYSE-AMEX-NASDAQ) is obtained from Kenneth

French’s website. The gross market return is constructed by adding the one-month T-bill rate to

the excess return. The data for the smb and hml factors is also collected from Kenneth French’s

website. The factors, as well as the returns on the test assets, do not exhibit serial correlation and

their statistical properties provide a reasonable approximation to our regularity conditions and the

leave-one-out cross validation framework.
11Another candidate for a benchmark model would be the non-parametric estimate of a comprehensive model.

Such a model is examplified in Cai, Ren, and Sun (2015). On the other hand, a robust pivot can be provided by a
constant SDF model which is the least favorable specification for pricing the test assets.
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4.2 Results

The parameters for each model and the aggregation weights for the Hellinger aggregator are es-

timated as described in Sections 3.2 and 3.3. For the sake of comparison, we also report an-

other aggregator with weights that are the inverse of the Hansen-Jagannathan distances, i.e.,

ŵi = (1/δ̂i)/
∑M

i=1(1/δ̂i) for i = 1, ...,M . All models are then evaluated using the cross-validation

version of the Hansen-Jagannathan distance. It should be emphasized that the Hellinger distance

aggregator is put at disadvantage since its risk function used for aggregation and estimation of

weights is different than the one used for evaluation.12

Table 1 reports the values of the Hansen-Jagannathan (HJ) distances of the four consumption-

based asset pricing models, the external benchmark (FF3) model and the two aggregators. The table

also presents the aggregation weights for the Hellinger distance (ŵ−1/2). The resulting aggregator

SDF is used for computing the corresponding HJ distance. Again, the choice of different risk

functions for model evaluation (HJ distance) and estimation (Hellinger distance) is dictated by our

desire to ensure consistency across the different models and the appealing economic interpretation

of this risk function. Specification test (HJ distance test) comfortably rejects the null of correct

specification for all models. Thus, aggregation is over misspecified models.

In order to assess the robustness of the aggregation procedure across different portfolios of test

assets, we consider the following portfolios: (1) 25 Fama-French and 17 industry portfolios, (2) only

25 Fama-French portfolios, and (3) only 17 industry portfolios. As documented in the literature,

the 3-factor Fama-French model performs best for pricing the 25 Fama-French portfolios. This

should present a challenge for our aggregation since none of the consumption-based models provide

proxies of the smb and hml factors in the FF3 model.

The results in Table 1 clearly illustrate the advantages of our aggregation method. Aggregation

reduces the pricing errors relative to the candidate models. In all cases, the Hellinger aggregation

(HEL agg.) approach dominates the individual models with sometimes significant pricing improve-

ments.13 The documented improvements are against the backdrop that the HJ distance of asset

pricing models are usually fairly small (given their high degree of misspecification) and the use of

12The Hansen-Jagannathan distance is, in fact, a non-optimal GMM estimator with a fixed weighting matrix. The
fixed weighting matrix, set to the inverse of the second moment matrix of the test asset returns, provides an objective
criteria for comparing pricing errors across competing asset pricing models. While maximum-entropy estimation,
including the Hellinger distance estimator, can also be interpreted as a GMM-type estimator, it results in an implicit
weighting matrix that is model-specific and makes the comparison of pricing performance across models diffi cult.
13 In unreported results, we relax the positivity constraint on w which allows some poorly behaved models to receive

a negative weight in the aggregation procedure. Interestingly, this provides a further reduction of the pricing errors.
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very naive model (constant SDF) as a pivot for estimating the aggregation weights. The Hellinger

aggregator also fares very well relative to the empirically best performing (Fama-French) model

when the 25 Fama-French portfolios are used as test assets. This is reassuring since in general

practice, the latter may be unknown or indeterminate. Another interesting observation is that

EZ and D-CCAPM dominate FF3 model for combined (25 Fama-French and 17 industry) set of

portfolio returns. But since the cross-validation has the flavor of “out-of-sample” evaluation, the

higher pricing errors of the FF3 model may reflect its larger parameter instability over time.

Table 1 about here

The HJ-distance aggregator (HJD agg.) also delivers improvements over individual models.

It is interesting to note that the HJD involves linear aggregation of models. That is the case of

infinite substitution between models. The model with the smallest HJD will ultimately get the

highest weight. In the case of the Hellinger distance, the models are “finitely substitutable.”This

implies more “hedging”by the Hellinger distance aggregation as it takes away weight from EZ, for

example, and assigns it to the D-CCAPM model. Even when candidate model’s performance is

erratic, aggregate model’s performance, whatever the aggregator, is stable and reliable. Overall,

the aggregation approaches appear robust and adapt well to “regime changes”in the data.

Figure 2 plots the SDFs for four models and the Hellinger-weighted SDF that uses information

from all models for the combined 25 Fama-French and 17 industry portfolios. Since, for these test

assets, the aggregator SDF assigns most of the weight to the EZ model, it adapts to the volatility

of the SDF for this model.

Figure 1 about here

In summary, the aggregation method appears to be quite robust to different sets of test assets

as it recalibrates the weights across the different models. It is interesting to note that the Hellinger

aggregator loads largely on the EZ and D-CCAPM models with the weights on the other models

being near zero. This sparsity of the aggregation scheme may prove to be particularly beneficial

when the set of candidate models is large. Our experiments reveal that this sparsity is even more

pronounced when the aggregation is achieved via linear pooling where the shrinkage is done towards

the best performing model. By contrast, the Hellinger aggregator appears to robustify away from

the best performing individual model and distribute weights more evenly across models. Overall, the

robust performance of the proposed aggregation method suggests that combining information from
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different, possibly misspecified models, may offer substantial advantages. Even if the aggregator

is dominated by an individual model, we can not know, a priori, which model will do well over

a particular sample for a particular set of test assets. Therefore, in the risk sense, the model

aggregation is preferable.

4.3 Simulations

We conduct a small Monte Carlo simulation experiment to assess the properties of the proposed

model aggregators. The time series sample size is T = 200 and the number of Monte Carlo

replications is 1,000. Let Yt = [f ′t , r
′
t]
′, where rt = ln(Rt), with

µ = E[Yt] =

[
µ1

µ2

]
(58)

and

V = Var[Yt] =

[
V11 V12

V21 V22

]
. (59)

For test asset returns, we use the 17 industry portfolios. We consider four consumption-based

models —CAPM, CCAPM, EZ and D-CCAPM —with factors ln(Rm,t), ct, and cd,t. As in the

empirical application, the Hellinger aggregator assigns weights to these models with a pivot given

by the constant SDF. Also, the external benchmark model is the Fama-French 3 factor model with

factors rm,t, smbt, and hmlt. We assume that[
ft

rt

]
∼ N

([
µ1

µ2

]
,

[
V11 V12

V21 V22

])
. (60)

The covariance matrix of the simulated factors and returns, V , is is set equal to the sample covari-

ance matrix from the data.

We investigate two scenarios: first, when all of the models are misspecified and second, when

one of the models (D-CCAPM, in particular) is correctly specified. In the first case (misspecified

models), the means of the simulated returns are set equal to the sample means of the actual returns

since all of the estimated models are rejected by the data. For generating data from a correctly

specified model, we use the properties of the log-normal distribution and write the pricing errors

for a log-linear SDF as

e(γ) = E[Rtyt(γ)]− 1N = E[exp(rt + γ0 + γ′1ft)]− 1N

= exp
(
γ0 + µ2 + 0.5γ′1V11γ1 + V21γ1 + 0.5Diag(V22)

)
− 1N . (61)
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It then follows that a model is correctly specified if and only if

µ2 = −0.5Diag(V22)−
(
γ0 + 0.5γ′1V11γ1

)
1N − V21γ1. (62)

Thus, we can set the mean of the simulated returns µ2 as in (62) to ensure that one of the models

is correctly specified.

Unlike the empirical example, which spans several business cycles, crisis periods and structural

changes, the lack of regime-switching in the data generating process allows the aggregators to assign

weights based purely on pricing performance and not on the statistical stability of the models. This

is expected to induce more mixing across models.

Tables 2 and 3 report the simulation results for the individual asset pricing models and the

Hellinger distance aggregator (HEL agg.). The estimation of the parameters and the construction

of the aggregator is exactly the same as described in the previous sections. Tables 2 and 3 report

the mean, median, 10% and 90% quantiles of the empirical distribution of the Hansen-Jagannathan

distance as a metric for evaluating the pricing performance of all models. The tables also present

the mean of the Monte Carlo distribution of estimated weights that the aggregator assigns to each

model.

Table 2 about here

For the case when all models are misspecified (Table 2), SDF aggregation offers a substantial

improvement in pricing performance. The aggregator dominates uniformly the HJ-distance mea-

sures of individual models used for aggregation. Despite the mismatch between the risk functions

for aggregation and pricing performance evaluation, the Hellinger aggregator achieves the smallest

pricing errors. Interestingly, the aggregator does not assign the largest weight to the model with

smallest HJ distance. Instead, it distributes the weights across models with the largest loading

being assigned to the most comprehensive (D-CCAPM) model.

Table 3 about here

The results are similar when one of the models is true (Table 3). Since D-CCAPM nests the

other model specifications, it is not surprising that the more parsimonious parameterizations have

smaller HJ distances. The aggregator again dominates all individual models. It continues to load

mostly on the D-CCAPM model but the aggregation weights are still fairly equally distributed over

competing models even if the true model is in the candidate set. This illustrates the “insurance”
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value of mixing by attaching a “premium” to the possibility of choosing catastrophically false

individual models.

5 Conclusions

Economic models are misspecified by design as they try to approximate a complex and often an

unknown (and possibly unknowable) true data generating process. Instead of selecting a single

model for pricing assets, decision making or forecasting, aggregating information from all these

models may adapt better to the underlying uncertainty and result in a more robust approxima-

tion. Information theory and generalized entropy provide the natural theoretical foundation for

dealing with these types of uncertainty and partial specification. We capitalize on some insights

from the information-theoretic approach and propose a new generalized mixture method for ag-

gregating information from different misspecified asset pricing models. The optimal aggregator

takes a harmonic mean form with geometric and linear weighting schemes as special cases. In ad-

dition, the generalized entropy criterion that underlies our approach allows us to circumvent some

serious drawbacks of the standard linear pooling. The application of the aggregator to combining

consumption-based asset pricing models demonstrates the advantages of our approach.

Ultimately, the reason why so many studies find that almost all kinds of pooling and mixing

methods ‘perform well’can be readily gleaned from the classical results in a standard linear regres-

sion. Constraints (such as omitted components), even false constraints, are variance (uncertainty)

reducing, with a cost on correct centering (bias). But the latter has an uncertain value when

the true DGP/model is not known. Stochastic optimization techniques, paired with information

criteria as suitable risk measures, reflect more deeply this phenomenon.

Density forecasting using a large set of diverse, partially specified models is another natural

application of the proposed method. Extending the oracle inequality approach, which is used to

bound the risk of the aggregation method, to dependent data and more general entropy measures

is a promising venue for future research.
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Table 1: Empirical results for individual models and SDF aggregators.

CAPM CCAPM EZ D-CCAPM FF3 HJD agg. HEL agg.
25 Fama-French + 17 industry portfolios

δ̂ 0.4605 0.4678 0.4401 0.4436 0.4478 0.4405 0.4367
ŵ−1/2 0.0253 0.1788 0.7943 0.0017

25 Fama-French portfolios
δ̂ 0.3571 0.3991 0.3653 0.3682 0.3383 0.3468 0.3428

ŵ−1/2 0.1432 0.0132 0.0928 0.7508
17 industry portfolios

δ̂ 0.1450 0.1436 0.1421 0.1466 0.1322 0.1385 0.1373
ŵ−1/2 0.0749 0.0025 0.0020 0.9206

Notes: This table reports the estimates for the Hansen-Jagannathan distance δ̂ for individual
models and two aggregators: HJD agg. with aggregation weights that are inverses of the δ̂i’s
(scaled to sum up to one) and HEL agg. with aggregation weights ŵ−1/2 obtained by minimizing
the Hellinger distance between the densities of the aggregator and a benchmark (constant SDF)
model.
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Table 2: Simulation results for individual models and SDF aggregators.

Case (i): all models are misspecified.

CAPM CCAPM EZ D-CCAPM HEL agg.
mean δ̂ 0.3203 0.3315 0.3295 0.3393 0.3026
median δ̂ 0.3217 0.3337 0.3333 0.3504 0.3042
10% quant. δ̂ 0.2462 0.2540 0.2510 0.2560 0.2247
90% quant. δ̂ 0.4002 0.4224 0.4258 0.4483 0.3849
mean ŵ−1/2 0.0929 0.2657 0.0991 0.5423

Notes: This table reports the Monte Carlo estimates for the Hansen-Jagannathan distance δ̂ (mean,
median, 10% quantile, and 90% quantile), and the mean aggregation weights ŵ−1/2 for the method
based on minimizing the Hellinger distance (HEL agg.) between the densities of the aggregator and
the pivot (constant SDF model). The sample size is 200 and the number of Monte Carlo simulations
is 1,000.
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Table 3: Simulation results for individual models and SDF aggregators.

Case (ii): D-CCAPM is correctly specified.

CAPM CCAPM EZ D-CCAPM HEL agg.
mean δ̂ 0.2826 0.2898 0.2893 0.2981 0.2666
median δ̂ 0.2834 0.3000 0.2983 0.3172 0.2680
10% quant. δ̂ 0.2165 0.2203 0.2169 0.2200 0.1991
90% quant. δ̂ 0.3557 0.3735 0.3725 0.3912 0.3421
mean ŵ−1/2 0.1002 0.2787 0.1007 0.5205

Notes: This table reports the Monte Carlo estimates for the Hansen-Jagannathan distance δ̂ (mean,
median, 10% quantile, and 90% quantile), and the mean aggregation weights ŵ−1/2 for the method
based on minimizing the Hellinger distance (HEL agg.) between the densities of the aggregator and
the pivot (constant SDF model). The sample size is 200 and the number of Monte Carlo simulations
is 1,000.
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Figure 1: 12-month ahead, out-of-sample, forecasts of core inflation from the Blue Chip survey and
the proposed aggregator.

33



1960 1980 2000 2020
0

0.5

1

1.5

2

2.5

3

3.5

4

1960 1980 2000 2020
0

0.5

1

1.5

2

2.5

3

3.5

4

1960 1980 2000 2020
0

0.5

1

1.5

2

2.5

3

3.5

4

1960 1980 2000 2020
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 2: SDFs for individual models and aggregator based on the Hellinger distance for the January
1994 —December 2013 evaluation sample.
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