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Abstract

In empirical work in economics it is common to report standard errors that account
for clustering of units. Typically, the motivation given for the clustering adjustments is
that unobserved components in outcomes for units within clusters are correlated. However,
because correlation may occur across more than one dimension, this motivation makes it
difficult to justify why researchers use clustering in some dimensions, such as geographic, but
not others, such as age cohorts or gender. This motivation also makes it difficult to explain
why one should not cluster with data from a randomized experiment. In this paper, we argue
that clustering is in essence a design problem, either a sampling design or an experimental
design issue. It is a sampling design issue if sampling follows a two stage process where in the
first stage, a subset of clusters were sampled randomly from a population of clusters, and in
the second stage, units were sampled randomly from the sampled clusters. In this case the
clustering adjustment is justified by the fact that there are clusters in the population that
we do not see in the sample. Clustering is an experimental design issue if the assignment is
correlated within the clusters. We take the view that this second perspective best fits the
typical setting in economics where clustering adjustments are used. This perspective allows
us to shed new light on three questions: (i) when should one adjust the standard errors
for clustering, (ii) when is the conventional adjustment for clustering appropriate, and (iii)
when does the conventional adjustment of the standard errors matter.
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1 Introduction

In empirical work in economics, it is common to report standard errors that account for cluster-

ing of units. The first issue we address in this manuscript is the motivation for this adjustment.

Typically the stated motivation is that unobserved components of outcomes for units within

clusters are correlated (Moulton [1986, 1990], Moulton and Randolph [1989], Kloek [1981],

Hansen [2007], Cameron and Miller [2015]). For example, Hansen [2007] writes: “The cluster-

ing problem is caused by the presence of a common unobserved random shock at the group

level that will lead to correlation between all observations within each group” (Hansen [2007],

p. 671). Similarly Cameron and Miller [2015] write: “The key assumption is that the errors are

uncorrelated across clusters while errors for individuals belonging to the same cluster may be

correlated” (Cameron and Miller [2015], p. 320). This motivation for clustering adjustments

in terms of within-group correlations of the errors makes it difficult to justify clustering by

some partitioning of the population, but not by others. For example, in a regression of wages

on years of education, this argument could be used to justify clustering by age cohorts just as

easily as clustering by state. Similarly, this motivation makes it difficult to explain why, in a

randomized experiment, researchers typically do not cluster by groups. It also makes it difficult

to motivate clustering if the regression function already includes fixed effects. The second issue

we address concerns the appropriate level of clustering. The typical answer is to go for the most

aggregate level feasible. For example, in a recent survey Cameron and Miller [2015] write: “The

consensus is to be conservative and avoid bias and to use bigger and more aggregate clusters

when possible, up to and including the point at which there is concern about having too few

clusters.” (Cameron and Miller [2015], p. 333). We argue in this paper that there is in fact

harm in clustering at too aggregate a level, We also make the case that the confusion regarding

both issues arises from the dominant model-based perspective on clustering.

We take the view that clustering is in essence a design problem, either a sampling design

or an experimental design issue. It is a sampling design issue when the sampling follows a

two stage process, where in the first stage, a subset of clusters is sampled randomly from a

population of clusters, and in the second stage, units are sampled randomly from the sampled

clusters. Although this clustered sampling approach is the perspective taken most often when a

formal justification is given for clustering adjustments to standard errors, it actually rarely fits

applications in economics. Angrist and Pischke [2008] write: “Most of the samples that we work

with are close enough to random that we typically worry more about the dependence due to a

group structure than clustering due to stratification.” (Angrist and Pischke [2008], footnote 10,

p. 309). Instead of a sampling issue, clustering can also be an experimental design issue, when

clusters of units, rather than units, are assigned to a treatment. In the view developed in this

manuscript, this perspective fits best the typical application in economics, but surprisingly it

is rarely explicitly presented as the motivation for cluster adjustments to the standard errors.

We argue that the design perspective on clustering, related to randomization inference

(e.g., Rosenbaum [2002], Athey and Imbens [2017]), clarifies the role of clustering adjustments

to standard errors and aids in the decision whether to, and at what level to, cluster, both

in standard clustering settings and in more general spatial correlation settings (Bester et al.
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[2009], Conley [1999], Barrios et al. [2012], Cressie [2015]). For example, we show that, contrary

to common wisdom, correlations between residuals within clusters are neither necessary, nor

sufficient, for cluster adjustments to matter. Similarly, correlations between regressors within

clusters are neither necessary, not sufficient, for cluster adjustments to matter or to justify

clustering. In fact, we show that cluster adjustments can matter, and substantially so, even

when both residuals and regressors are uncorrelated within clusters. Moreover, we show that

the question whether, and at what level, to adjust standard errors for clustering is a substantive

question that cannot be informed solely by the data. In other words, although the data are

informative about whether clustering matters for the standard errors, but they are only partially

informative about whether one should adjust the standard errors for clustering. A consequence

is that in general clustering at too aggregate a level is not innocuous, and can lead to standard

errors that are unnecessarily conservative, even in large samples.

One important theme of the paper, building on Abadie et al. [2017], is that it is critical

to define estimands carefully, and to articulate precisely the relation between the sample and

the population. In this setting that means one should define the estimand in terms of a finite

population, with a finite number of clusters and a finite number of units per clusters. This is

important even if asymptotic approximations to finite sample distributions involve sequences

of experiments with an increasing number of clusters and/or an increasing number of units per

cluster. In addition, researchers need to be explicit about the way the sample is generated from

this population, addressing two issues: (i) how units in the sample were selected and, most

importantly whether there are clusters in the population of interest that are not represented

in the sample, and (ii) how units were assigned to the various treatments, and whether this

assignment was clustered. If either the sampling or assignment varies systematically with

groups in the sample, clustering will in general be justified. We show that the conventional

adjustments, often implicitly, assume that the clusters in the sample are only a small fraction of

the clusters in the population of interest. To make the conceptual points as clear as possible, we

focus in the current manuscript on the cross-section setting. In the panel case (e.g., Bertrand

et al. [2004]), the same issues arise, but there are additional complications because of the time

series correlation of the treatment assignment. Analyzing the uncertainty from the experimental

design perspective would require modeling the time series pattern of the assignments, and we

leave that to future work.

The practical implications from the results in this paper are as follows. First, the researcher

should assess whether the sampling process is clustered or not, and whether the assignment

mechanism is clustered. If the answer to both is no, one should not adjust the standard errors

for clustering, irrespective of whether such an adjustment would change the standard errors.

Second, in general, the standard Liang-Zeger clustering adjustment is conservative unless one

of three conditions holds: (i) there is no heterogeneity in treatment effects; (ii) we observe only

a few clusters from a large population of clusters; or (iii) a vanishing fraction of units in each

cluster is sampled, e.g. at most one unit is sampled per cluster. Third, the (positive) bias from

standard clustering adjustments can be corrected if all clusters are included in the sample and

further, there is variation in treatment assignment within each cluster. For this case we propose

a new variance estimator. Fourth, if one estimates a fixed effects regression (with fixed effects
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at the level of the relevant clusters), the analysis changes. Then, heterogeneity in the treatment

effects is a requirement for a clustering adjustment to be necessary.

2 A Simple Example and Two Misconceptions

In this section we discuss two misconceptions about clustering that appear common in the

literature. The first misconception is about when clustering matters, and the second about

whether one ought to cluster. Both misconceptions are related to the common model-based

perspective of clustering which we outline briefly below. We argue that this perspective obscures

the justification for clustering that is relevant for most empirical work.

2.1 The Model-based Approach to Clustering

First let us briefly review the textbook, model-based approach to clustering (e.g., Cameron and

Miller [2015], Wooldridge [2003, 2010], Angrist and Pischke [2008]). Later, we contrast this

with the design-based approach starting from clustered randomized experiments (Donner and

Klar [2000], Murray [1998], Fisher [1937]). Consider a setting where we wish to model a scalar

outcome Yi in terms of a binary covariate Wi ∈ {0, 1}, with the units belonging to clusters,

with the cluster for unit i denoted by Ci ∈ {1, . . . , C}. We estimate the linear model

Yi = α + τWi + εi = β>Xi + εi,

where β> = (α, τ) and X>
i = (1, Wi), using least squares, leading to

β̂ = argmin
β

N
∑

i=1

(

Yi − β>Xi

)2

=
(

X>X
)−1 (

X>Y
)

.

In the model-based perspective, the N -vector ε with ith element equal to εi, is viewed as the

stochastic component. The N × 2 matrix X with ith row equal to (1, Wi) and the N -vector C

with ith element equal to Ci are viewed as non-stochastic. Thus the repeated sampling thought

experiment is redrawing the vectors ε, keeping fixed C and W.

Often the following structure is imposed on the first two moments of ε,

E[ε|X, C] = 0, E

[

εε
>
∣

∣

∣X, C
]

= Ω,

leading to the following expression for the variance of the ordinary least squares (OLS) estima-

tor:

V(β̂) =
(

X>X
)−1 (

X>ΩX
)(

X>X
)−1

.

In the setting without clustering, the key assumption is that Ω is diagonal. If one is also willing

to assume homoskedasticity the variance reduces to the standard OLS variance:

VOLS = σ2

(

X>X
)−1

,
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where σ = Ωii = V(εi) for all i. Often researchers allow for general heteroskedasticity and use

the robust Eicker-Huber-White (EHW) variance (White [2014], Eicker [1967], Huber [1967])

VEHW(β̂) =
(

X>X
)−1

(

N
∑

i=1

ΩiiXiX
>
i

)

(

X>X
)−1

.

In settings with clusters of units, the assumption that Ω is diagonal is often viewed as not

credible. Instead, Kloek [1981], Moulton and Randolph [1989], Moulton [1990] use the (ho-

moskedastic) structure

Ωij =







0 if Ci 6= Cj,

ρσ2 if Ci = Cj, i 6= j,
σ2 if i = j.

Assuming the clusters are equal size this leads to the following variance for the slope coefficient

τ̂ :

VKLOEK(τ̂) = VOLS ×
(

1 + ρερW

N

C

)

, (2.1)

where ρε and ρW are the within-cluster correlation of the errors and covariates respectively.

Often researchers (e.g., Liang and Zeger [1986], Diggle et al. [2013], Bertrand et al. [2004],

Stock and Watson [2008], William [1998]) further relax this model by allowing the Ωij for pairs

(i, j) with Ci = Cj to be unrestricted. Let the units be ordered by cluster, and let the Nc ×Nc

submatrix of Ω corresponding to the units from cluster c be denoted by Ωc, and the submatrix

of X corresponding to cluster c by Xc. Then:

VLZ(β̂) =
(

X>X
)−1

(

C
∑

c=1

X>
c ΩcXc

)

(

X>X
)−1

.

This can be viewed as the extension to robust variance estimator from the least squares variance,

applied in the case with clustering.

The estimated version of the EHW variance is

V̂EHW(β̂) =
(

X>X
)−1

(

N
∑

i=1

(Yi − β̂>Xi)
2XiX

>
i

)

(

X>X
)−1

. (2.2)

The estimated version of the LZ variance is

V̂LZ(β̂) =
(

X>X
)−1







C
∑

c=1





∑

i:Ci=c

(Yi − β̂>Xi)Xi









∑

i:Ci=c

(Yi − β̂>Xi)Xi





>






(

X>X
)−1

.

(2.3)
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2.2 Clustering Matters Only if the Residuals and the Regressors are both

Correlated Within Clusters

There appears to be a view, captured by the expression in equation (2.1), that whether the

cluster correction to the standard errors matters depends on two objects. First, it depends

on the within-cluster correlation of the residuals, ρε, and second, it depends on the within-

cluster correlation of the regressors of interest, ρW . It has been argued that clustering does not

matter if either of the two within-cluster correlations are zero. If this were true, an implication

would be that in large samples the cluster adjustment makes no difference in a randomized

experiment with completely randomly assigned treatments. This would follow because in that

case the within-cluster correlation of the regressor of interest is zero by virtue of the random

assignment. A second implication would be that, in a cross-sectional data context, if one

includes fixed effects in the regression function to account for the clusters, there is no reason

to cluster standard errors, because the fixed effects completely eliminate the within-cluster

correlation of the residuals. Although the latter implication is known to be false (e.g., Arellano

[1987]), the perception has lingered.

To illustrate the fallacy of this view, we simulated a single data set with N = 100, 323

units, partitioned into C = 100 clusters or strata with an average approximately 1,000 units

per cluster, where the actual number of units per cluster ranges from 950 to 1063. Both the

number of clusters and the number of units per cluster are substantial to avoid small sample

problems of the type analyzed in Donald and Lang [2007] and Ibragimov and Müller [2010,

2016]. Below we discuss exactly how the sample was generated, here we wish to make the basic

point that whether the clustering adjustment matters in a given sample is not simply a matter

of inspecting the within-cluster correlation of the errors and covariates. For each unit in our

sample we observe an outcome Yi, a single binary regressor Wi ∈ {0, 1}, and the cluster label

Ci ∈ {1, . . . , C}. We estimate a linear regression function,

Yi = α + τWi + εi,

by OLS.

For our sample set we first calculate the within-cluster correlation of the residuals and the

within-cluster correlation of the regressors. We estimate these by first calculating the sample

variance of the residuals (regressors) with and without demeaning by cluster, and then taking

the ratio of the difference of these two to the overall variance of the residuals (regressors),

leading to:

ρ̂ε̂ = 0.001, ρ̂W = 0.001.

Both within-cluster correlations are close to zero, and because there is only modest variation

in cluster sizes, the standard Moulton-Kloek (Kloek [1981], Moulton [1986], Moulton and Ran-

dolph [1989], Moulton [1990]) adjustment given in (2.1) would essentially be zero. However,

when we calculate the least squares estimator for τ and both the EHW and LZ standard errors,

we find that the clustering does matter substantially:

τ̂ ls = −0.120 (seEHW = 0.004) [seLZ = 0.100].
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This demonstrates that inspecting the within-cluster correlation of the residuals and the within-

cluster correlation of the regressors is not necessarily informative about the question whether

clustering the standard errors using the Liang-Zeger variance estimator matters.

Instead, what is relevant for whether the Liang-Zeger variance adjustment matters is the

within-cluster correlation of the product of the residuals and the regressors. Calculating that

correlation, we find

ρε̂W = 0.500.

This correlation is substantial, and it explains why the clustering matter. Note that this does

not mean one should adjust the standard errors, merely that doing so will matter.

If we use a fixed effects regression instead of OLS, the same conclusion arises, not surprisingly

given the Arellano [1987] results. We estimate the fixed effects regression

Yi = τWi +

C
∑

c=1

αcCic + εi,

where Cic = 1Ci=c is a binary indicator equal to one if unit i belongs to cluster c, and zero

otherwise. We run this regression and estimate both the regular and the clustered standard

errors (without degrees of freedom corrections, which do not matter here given the design),

leading to:

τ̂ fe = −0.120 (seEHW = 0.003) [seLZ = 0.243].

Again, the clustering of the standard errors makes a substantial difference, despite the fact that

the within-cluster correlation of the residuals is now exactly equal to zero.

2.3 If Clustering Matters, One Should Cluster

There is also a common view that there is no harm, at least in large samples, to adjusting the

standard errors for clustering. Therefore, one should cluster at the highest level of aggregation

possible, subject to finite sample issues: if clustering matters, it should be done, and if it does

not matter, clustering the standard errors does no harm, at least in large samples. Based

on this perception, many discussions of clustering adjustments to standard errors recommend

researchers to calculate diagnostics on the sample to inform the decision whether or not one

should cluster. These diagnostics often amount to simply comparing standard errors with and

without clustering adjustments. We argue that such attempts are futile, and that a researcher

should decide whether to cluster the standard errors based on substantive information, not

solely based on whether it makes a difference.

To discuss whether one ought to cluster, we step back from the previously analyzed sample

and consider both the population this sample was drawn from, and the manner in which it was

drawn. We had generated a population with 10,000,000 units, partitioned C = 100 clusters, each

cluster with exactly 100,000 units. Units were assigned a value Wi ∈ {0, 1}, with probability

1/2 for each value, independent of everything else. The outcome for unit i was generated as

Yi = τCi
Wi + νi.
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where νi was drawn from a normal distribution with mean zero and unit variance independent

across all units. The slope coefficients τc are cluster-specific coefficients, equal to τc = −1 for

exactly half the clusters and equal to τc = 1 for the other half, so that the average treatment

in the population is exactly zero. We sample units from this population completely randomly,

with the probability for each unit of being sampled equal to 0.01.

In this example, the EHW standard errors are the appropriate ones, even though the LZ

standard errors are substantially larger. We first demonstrate this informally, and present some

formal results that cover this case in the next section. For the informal argument, let us 10,000

times draw our sample, and calculate the least squares estimator and both the EHW and LZ

standard errors. Table 1 gives the coverage rates for the associated 95% confidence intervals

for the true average effect of zero. The LZ standard errors are systematically substantially

larger than the EHW standard errors, and the LZ-based confidence intervals have substantial

over-coverage, whereas the EHW confidence intervals are accurate. This holds for the simple

regressions and for the fixed effect regressions.

Table 1: Standard Errors and Coverage Rates Random Sampling, Random Assign-

ment (10,000 replications)

No Fixed Effects Fixed Effects
EHW variance LZ variance EHW variance LZ variance√
VEHW cov rate

√
VLZ cov rate

√
VEHW cov rate

√
VLZ cov rate

0.007 0.950 0.051 1.000 0.007 0.950 0.131 0.986

The reason for the difference between the EHW and LZ standard errors is simple, but

reflects the fundamental source of confusion in this literature. Given the random assignment

both standard errors are correct, but for different estimands. The LZ standard errors are based

on the presumption that there are clusters in the population of interest beyond the 100 clusters

that are seen in the sample. The EHW standard errors assume the sample is drawn randomly

from the population of interest. It is this presumption underlying the LZ standard errors of

existence of clusters that are not observed in the sample, but that are part of the population

of interest, that is critical, and often implicit, in the model-based motivation for clustering the

standard errors. It is of course explicit in the sampling design literature (e.g., Kish [1965]). If

we changed the set up to one where the population of 10,000,000 consisted of say 1,000 clusters,

with 100 clusters drawn at random, and then sampling units randomly from those sampled

clusters, the LZ standard errors would be correct, and the EHW standard errors would be

incorrect. Obviously one cannot tell from the sample itself whether there exist such clusters

that are part of the population of interest that are not in the sample, and therefore one needs

to choose between the two standard errors on the basis of substantive knowledge of the study

design.
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3 A Formal Result

In this section we consider a special case with a single binary covariate to formalize the ideas

from the previous subsection. We derive the exact variance to an approximation of the least

squares estimator, taking into account both sampling variation and variation induced by the

experimental design, that is, by the assignment mechanism. This will allow us to demonstrate

exactly when the EHW and LZ variances are appropriate, and why they fail when they do so.

To make the arguments rigorous, we do need large sample approximations. To do so, we build a

sequence of finite populations where the sample size and the number of clusters goes to infinity.

However, the estimands are defined for finite populations.

We start with the existence of a pair of potential outcomes for each unit. This implicitly

makes the stable-unit-treatment-value assumption (sutva, Rubin [1980]) that rules out peer

effects and versions of the treatment. There is a part of the clustering literature that is con-

cerned with clusters of units receiving different treatments (e.g., clusters of individuals receiving

services from the same health care provider, where the exact set of services provided may vary

by provider), see for example Lee and Thompson [2005], Roberts and Roberts [2005], Weiss

et al. [2016]. Our analysis can be thought of applying to that case keeping fixed the health

care provider associated with each individual, rather than focusing on the average effect over

all possible health care providers that an individual might receive care from.

3.1 The Sequence of Populations

We have a sequence of populations indexed by n. The n-th population has Mn units, indexed

by i = 1, . . . , Mn, with Mn strictly increasing in n. The population is partitioned into Cn

strata or clusters, with Cn weakly increasing in n. Cin ∈ {1, . . . , Cn} denotes the stratum that

unit i belongs to. Cicn = 1Cin=c is a binary indicator, equal to 1 if unit i in population n

belongs to cluster c and zero otherwise. The number of units in cluster c in population n is

Mcn =
∑n

i=1
Cicn, with Mn = n =

∑Cn

c=1
Mcn. For each unit there are two potential outcomes,

Yin(0) and Yin(1) for unit i, corresponding to a control and treated outcome (e.g., Imbens and

Rubin [2015]) . We are interested in the population average effect of the treatment in population

n,

τn =
1

Mn

Mn
∑

i=1

(

Yin(1)− Yin(0)
)

= Y n(1)− Y n(0),

where, for w = 0, 1

Y n(w) =
1

Mn

Mn
∑

i=1

Yin(w).

It is also useful to define the population average treatment effect by cluster,

τcn =
1

Mcn

∑

i:Cin=c

(

Yin(1)− Yin(0)
)

, so that τn =

Cn
∑

c=1

Mcn

Mn

τcn.
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Define also the treatment-specific residuals and their cluster averages, for w = 0, 1,

εin(w) = Yin(w) − 1

Mn

Mn
∑

j=1

Yjn(w), εcn(w) =
1

Mcn

∑

i=1

Cincεin(w).

All these objects, Yin(w), εin(w), εcn(w), and functions thereof are non-stochastic.

There are some restrictions on the sequence of populations. These are mild regularity

conditions, and most can be weakened. As n increases, the number of clusters increases without

limit, the relative cluster sizes are bounded, and the potential outcomes do not become too large

in absolute value.

Assumption 1. The sequence of populations satisfies (i)

lim
n→∞

C−1
n = 0,

(ii) for some finite K,

maxc Mcn

minc Mcn

≤ K,

and (iii) for some L,

max
i,w

|Yin(w)| ≤ L, and
1

Mn

Mn
∑

i=1

|Yin(w)|k −→ µk
w,

with µk
w finite for k ≤ 2.

3.2 The Sampling Process and the Assignment Mechanism

We do not observe Yin(0) and Yin(1) for all units in the population, and so we cannot directly

infer the value of τn. In this section we describe precisely the two components of the stochastic

nature of the sample. There is a stochastic binary treatment for each unit in each population,

Win ∈ {0, 1}. The realized outcome for unit i in population n is Yin = Yin(Win), with εin =

εin(Win) the realized residual. We observe for a subset of the Mn units in the n-th population

the triple (Yin, Win, Cin), with stochastic sampling indicator Rin ∈ {0, 1} describing whether

(Yin, Win, Cin) is observed (Rin = 1), or not (Rin = 0). The number of sampled units is

Nn =
∑Mn

i=1
Rin.

Table 2 illustrates the set up. We observe Yin(0) or Yin(1) for a subset of units in the

population: we observe Yin(0) if Rin = 1 and Win = 0, we observe Yin(1) if Rin = 1 and

Win = 1, and we observe neither Yin(0) nor Yin(1) if Rin = 0, irrespective of the value of Win.

Uncertainty reflects the fact that our sample could have been different. In the table under

the columns “Alternative Sample I” a different sample is given. This sample differs from the

actual sample in two ways: different units are sampled, and different units are assigned to the

treatment. Given an estimand, e.g., the average effect of the treatment τn, standard errors are

intended to capture both sources of variation.
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Table 2: Random Sampling, Random Assignment (X is observed, ? is missing)

Unit Actual Sample Alternative Sample I . . .

Rin Yin(0) Yin(1) Win Cin Rin Yin(0) Yin(1) Win Cin . . .

1 1 X ? 0 1 0 ? ? ? 1 . . .
2 0 ? ? ? 1 1 X ? 0 1 . . .

3 0 ? ? ? 1 0 ? ? ? 1 . . .
...

...
...

...
... 1

...
...

...
... 1 . . .

M1n 1 ? X 1 1 0 ? ? ? 1 . . .

M1n+1 1 X ? 0 2 0 ? ? ? 2 . . .
M1n+2 0 ? ? ? 2 0 ? ? ? 2 . . .

M1n+3 0 ? ? ? 2 0 ? ? ? 2 . . .
...

...
...

...
... 2

...
...

...
... 2 . . .

M1n + M2n 1 ? X 1 2 0 ? ? ? 2 . . .

M1n + M2n+0 0 ? ? ? 3 0 ? ? ? 3 . . .
M1n + M2n+2 0 ? ? ? 3 1 X ? 0 3 . . .

M1n + M2n+3 0 ? ? ? 3 1 ? X 0 3 . . .
... 0

...
...

... 3
...

...
...

... 3 . . .
M1n + M2n + M3n 0 ? ? ? 3 0 ? ? ? 3 . . .

...
...

...
...

...
...

...
...

...
...

... . . .

∑Cn−1

c=1
Mcn + 1 1 ? X 1 Cn 1 X ? 0 Cn . . .

∑Cn−1

c=1
+2 0 ? ? ? Cn 1 X ? 0 Cn . . .

∑Cn−1

c=1
+3 0 ? ? ? Cn 1 ? X 1 Cn . . .

...
...

...
...

... Cn

...
...

...
... Cn . . .

Mn 1 ? X 1 Cn 0 ? ? ? Cn . . .

The sampling process that determines the values of Rin is independent of the potential

outcomes and the assignment. It consists of two stages. First clusters are sampled with cluster

sampling probability PCn. Second, we randomly sample units from the subpopulation consisting

of all the sampled clusters, with unit sampling probability PUn. Both PCn and PUn may be

equal to 1, or close to zero. If PCn = 1, we have completeley random sampling. If PUn = 1, we

sample all units from the sampled clusters. If both PCn = PUn = 1, all units in the population

are sampled. PCn close to zero is the case that is covered by the LZ standard errors: we

only observe units from a few clusters randomly drawn from a population consisting of a large

[10]



number of clusters.

The assignment process that determines the values of Win for all i and n, also consists of

two stages. In the first stage, for cluster c in population n, an assignment probability qcn ∈ [0, 1]

is drawn randomly from a distribution f(·) with mean µn and variance σ2
n. To simplify the

algebra, we focus here on the case with µn = 1/2. The variance σ2
n ≥ 0 is key. If it is zero, we

have random assignment. For positive values of σ2
n we have correlated assignment within the

clusters, and if σ2
n = 1/4 then qcn ∈ {0, 1}, all units with a cluster have the same assignments.

In the second stage, each unit in cluster c is assigned to the treatment independently, with

cluster-specific probability qcn.

The parameters σ2
n, PCn and PUn are indexed by the population n to stress that they can be

population specific. The sequences are assumed to converge to some limits, which may include

zero and one for pCn and pUn to capture random sampling from a large population.

Formally we can summarize the conditions on the sampling and assignment processes as

follows.

Assumption 2. The vector of assigments Wn is independent of the vector of sampling indi-

cators Rn.

Assumption 3. (Sampling)

pr(Rin = 1) = PCnPUn,

pr(Rin = 1|Rjn = 1, Cin 6= Cjn) = PCnPUn,

pr(Rin = 1|Rjn = 1, Cin = Cjn) = PUn.

Assumption 4. (Assignment)

pr(Win = 1) = µn = 1/2.

pr(Win = 1|Wjn = 1, Cin 6= Cjn) = µn = 1/2.

pr(Win = 1|Wjn = 1, Cin = Cjn) = µn + σ2
n/µn = 1/2 + 2σ2

n.

Assumption 5. (Population Sequences) The sequences σ2
n, PCn and PUn satisfy

σ2
n ∈ [0, 1/4], and σ2

n → σ2 ∈ [0, 1/4],

PCn > 0, and PCn → PC ∈ [0, 1],

PUn > 0, and PUn → PU ∈ [0, 1],

(nPCnPUn)−1 → 0.

[11]



Table 3: First Two Moments and Within-Cluster Covariances for Selected Ran-
dom Variables

Variable Expected Value Variance Within Cluster Covariance

Rin PCnPUn PCnPUn(1− PCnPUn) PCn(1 − PCn)P 2
Un

Win 1/2 1/4 σ2
n

RinWin PCnPUn/2 PCnPUn(2− PCnPUn)/4 PCnP 2
Un(1 − PCn)/4 + σ2

nPCnP 2
Un

3.3 First and Second Moments of the Assignment and Sampling Indicators

We are interested in the distribution of the least squares estimator for τn and in particular in

its approximate mean and variance. The estimator is stochastic through its dependence on two

stochastic components, the sampling indicators Rn and the assignment indicators Wn. The

approximate mean and variance depend on the first and second (cross) moments of Rin and

Win. The first two moments, and the within-cluster covariance of Rin, Win, and the product

RinWin are presented for reference in Table 3. Note that the covariance between any of these

variables not in the same cluster is zero.

The within-cluster covariance of Rin is zero if PCn = 0 or PCn = 1, that is, if either all

clusters are sampled or a vanishing number is sampled. The within-cluster covariance of Win

is zero if the assignment probability is constant across clusters (σ2
n = 0).

3.4 The Estimator

We are interested in the least squares estimator for τ in the regression

Yin = α + τWin + εin.

Define the averages

Rn =
1

Mn

Mn
∑

i=1

Rin, Wn =
1

Nn

Mn
∑

i=1

RinWin,

Y n =
1

Nn

Mn
∑

i=1

RinYin.

Note that except for Rn these averages are defined over the units in the sample, not the units

in the population. Now we can write the least squares estimator τ̂ as

τ̂ =

∑n
i=1

Rin(Win − Wn)Yin
∑n

i=1
Rin(Win − Wn)2

= Y n1 − Y n0,

where

Y n1 =
1

Nn1

Mn
∑

i=1

RinWinYin, Nn1 =

Mn
∑

i=1

RinWin,

[12]



Y n0 =
1

Nn0

Mn
∑

i=1

Rin(1− Win)Yin, Nn0 =

Mn
∑

i=1

Rin(1− Win).

We are interested in the variance of τ̂ , and how it compares to the two standard variance

estimators, the Eicker-Huber-White (EHW) variance estimator given in (2.2) and the Liang-

Zeger (LZ) variance estimator given in (2.3).

The first step is to approximate the estimator by a sample average. This is where the large

sample approximation is important.

Lemma 1. Suppose Assumptions 1-5 hold. Then:

√

Nn(τ̂n − τn)− 2√
MnPCnPUn

Mn
∑

i=1

Rin(2Win − 1)εin = op(1).

Lemma 1 implies we can focus on properties of the ηn, the linear approximation to
√

Nn(τ̂n−
τn), defined as:

ηn =
2√

nPCnPUn

Mn
∑

i=1

ηin, where ηin = Rin(2Win − 1)εin.

We can calculate the exact (finite sample) variance of ηn for various values of the parameters

and the corresponding normalized EHW and LZ variance estimators, in order to analyze the

implications of the two types of clustering and the importance (or not) of adjusting the standard

errors for clustering.

Proposition 1. Suppose Assumptions 1-5 hold. Then (i), the exact variance of ηn is

V (ηn) =
1

Mn

Mn
∑

i=1

{

2
(

εin(1)2 + εin(0)2
)

−PUn(εin(1)− εin(0))2 +4PUnσ2
n(εin(1)− εin(0))2

}

+
PUn

Mn

Cn
∑

c=1

M2
cn

{

(1− PCn)(εcn(1)− εcn(0))2 + 4σ2
n(εcn(1) + εcn(0))2

}

,

(ii) the difference between the limit of the normalized LZ variance estimator and the correct

variance is

VLZ − V(ηn) =
PCnPUn

Mn

Cn
∑

c=1

M2
cn(εcn(1)− εcn(0))2 ≥ 0, (3.1)

and (iii), the difference between the limit of the normalized LZ and EHW variance estimators

is

VLZ − VEHW = −2PUn

Mn

Mn
∑

i=1

{

(εin(1)− εin(0))2 + 4σ2(εin(1) + εin(0))2
}

+
PUn

Mn

Cn
∑

c=1

M2
cn

{

(εcn(1)− εcn(0))2 + 4σ2 (εcn(1) + εcn(0))2
}

.
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This result follows from Lemma 1 and Appendix Lemmas A.1-A.3. Part (i) gives the

exact variance for the linear approximation of
√

Nn(τ̂n − τn), which is the correct variance

of interest. The first sum in V(ηn) is approximately the EHW variance. If the sample is

small relative to the population, so that PUn is close to zero, this first term simplifies to

VEHW =
∑N

i=1
(εin(1)2+εin(0)2)/Mn. The second sum in V(ηn) captures the effects of clustered

sampling and assignment on the variance. There are two components to that sum. The first

set of terms has a factor 1 − PCn. The presence of this 1 − PCn factor captures the fact that

these terms disappear if we have a random (non-clustered) sample (in which case PCn = 1).

The second set of terms has a factor σ2, which implies they vanish if there is no clustering in

the assignment.

Part (ii) of the proposition compares the LZ variance to the correct variance. It highlights

the fact that the LZ variance estimator captures correctly the component of the clustering

due to clustered assignment (the component that depends on σ2). However, the LZ variance

does not capture component due to clustered sampling correctly unless PCn is close to zero:

implicitly the LZ variance estimator relies on the assumption that the sampled clusters are a

small proportion of the population of clusters of interest. This leads to the difference between

the LZ variance and the true variance being proportional to PCn.

Part (iii) of the proposition compares the LZ variance to the EHW variance, highlighting

the conditions under which using the LZ variance makes a difference relative to using the EHW

variance. Note that this is different from the question whether one should cluster, which is

captured by part (ii) of the proposition. The first sum in the difference VLZ − VEHW is small

relative to the second term when there is a substantial number of units per cluster relative

to the number of clusters. For example, if the number of units per cluster Mcn = M/C is

constant across clusters and large relative to the number of clusters, then the second sum is

proportional to Mn/C2
n, and large relative to the first sum. In that case, the clustering matters

if there is heterogeneity in the treatment effects (εcn(1) − εcn(0) differs from zero) or there is

clustering in the assignment. Note that the difference does not depend on whether the sampling

is clustered: this follows directly from the fact that one cannot tell from the data whether or

not the sampling was clustered.

The following corollary describes two special cases under which clustering is not necessary.

Corollary 1. Standard errors need to account for clustering unless one of the following two

pairs of conditions hold: (i) there is no clustering in the sampling (PCn = 1 for all n) and there

is no clustering in the assignment (σ2 = 0); or (ii) there is no heterogeneity in the treatment

effects (Yi(1)− Yi(0) = τ for all units) and there is no clustering in the assignment (σ2 = 0).

Our next result highlights three special cases where the LZ clustering is correct.

Corollary 2. The LZ variance is approximately correct if one of three conditions hold: (i) there

is no heterogeneity in the treatment effects, Yi(1) − Yi(0) = τ for all units; (ii) PCn is close

to zero for all n, so that we observe only few clusters in the population of clusters; (iii) PUn

is close to zero so that there is at most one sampled unit per cluster (in which case clustering

adjustments do not matter).
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The first of these three conditions (no heterogeneity in the treatment effects) is unlikely to

hold in practice. The third condition is easily verifiable by assessing the distribution of the

number of sampled units per cluster, or by comparing the standard errors with and without

clustering adjustments. The second condition cannot be assessed using the actual data. To

assess this condition one needs to consider the facts about the sampling process and investigate

whether there are clusters in the population of interest that are not included in the sample.

If one were to conclude that all the clusters in the population are included in the sample,

the LZ variance is in general conservative. Then, there are two possibilities. If the assignment

is perfectly correlated within the clusters, there is no general improvement over the LZ variance

available. However, if there is variation in the treatment within the clusters, one can estimate

VLZ − V(ηn) and subtract that from V̂LZ. Define

τ̂c = Y c1 − Y c0

to be the difference in average outcomes by treatment status in cluster c, an estimator for

the average treatment effect within the cluster. Then our proposed cluster-adjusted variance

estimator is

V̂CA(τ̂) = V̂LZ(τ̂) − 1

N 2

C
∑

c=1

N 2
c (τ̂c − τ̂)2.

4 The Fixed Effects Case

The importance of clustering adjustments to standard errors in settings where the regression

includes fixed effects is also a source of confusion. Arellano [1987] shows clearly that even

with fixed effects included in the regression, the clustering adjustment may matter. Here we

extend the results from the previous section to the case with fixed effects. In the fixed effect

case the assignment within clusters cannot be perfectly correlated, so we focus on the case with

σ2
n < 1/4. We consider the regression of the outcome on the cluster dummies and the treatment

indicator:

Yi = αCin
+ τWin + ε̇in.

First we strengthen the assumptions on the sequence of populations. The main difference is

that we require the number of units per cluster to go to infinity so that we can estimate the

fixed effects consistently.

Assumption 6. The sequence of populations satisfies (i)

lim
n→∞

C−1
n = 0,

(ii) for some finite K,

maxc Mcn

minc Mcn

≤ K,

and (iii)

max
c

M−1
cn → 0.
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Assumption 7. The sequences σ2
n, PCn and PUn satisfy

σ2
n ∈ [0, 1/4), and σ2

n → σ2 ∈ [0, 1/4),

PCn > 0, and PCn → PC ∈ [0, 1],

PUn > 0, and PUn → PU ∈ [0, 1],

min
c

(McnPCnPUn)−1 → 0.

Define the cluster specific treatment rate:

qcn = E[Win|Cin = c].

Also define

κ = V(qCin
(1 − qCin

)), and κj,k = E[qj
Cinn(1− qCinn)k],

Note that

E[qCin
(1− qCin

)] =
1− 4σ2

4
,

and note that κ can only be positive if σ2 > 0.

Define the adjusted residual as

ε̇in = εin − qcnεCinn(1)− (1− qcn)εCinn(0).

Lemma 2. Suppose Assumptions 1-7 hold. Then:

√

Nn(τ̂ fe
n − τn) − 4

(1− 4σ2)
√

MnPCnPUn

Mn
∑

i=1

Rin(Win − qCin
)ε̇in = op(1).

Analogous to our analysis of the case without fixed effects, we can now focus on the prop-

erties of the linear approximation to
√

Nn(τ̂ fe − τn), where

ηfe
n =

4

(1 − 4σ2)
√

MnPCnPUn

Mn
∑

i=1

Rin(Win − qCin
)ε̇in.

Proposition 2. Suppose Assumptions 1-7 hold. Then (i), the exact variance of ηfe
n is

V

(

ηfe
n

)

=
1

Mn

Mn
∑

i=1

{

(1− PUn)

(

1 + κ
16

(1− 4σ2)2

)

(εin(1)− εin(0))2

+
16κ3,1

(1 − 4σ2)2
(εin(1) − εCinn(1))2 +

16κ1,3

(1 − 4σ2)2
(εin(0)− εCinn(0))2

}

+
PUn

Mn

Cn
∑

c=1

M2
cn

{

(1 − PCn) +
16κ

(1 − 4σ2)2

}

(εcn(1)− εcn(0))2,

and (ii) the difference between the limit of the normalized LZ variance estimator and the correct

variance is

VLZ − V(ηfe
n ) =

PCnPUn

Mn

C
∑

c=1

M2
cn(εcn(1)− εcn(0))2. (4.1)
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Compared to the case without fixed effects given in (3.1), there is no difference in the relation

between the LZ variance estimator and the true variance, given in (4.1).

Compared to the case without fixed effects, however, there is a difference in when one should

adjust the standard errors for clustering. Without fixed effects, one should cluster if either (i)

both PCn < 1 (clustering in the sampling) and there is heterogeneity in the treatment effects,

or (ii) σ2 > 0 (clustering in the assignment). With fixed effects, one should cluster if either

(i) both PCn < 1 (clustering in the sampling) and there is heterogeneity in the treatment

effects, or (ii) σ2 > 0 (clustering in the assignment) and there is heterogeneity in the treatment

effects. In other words, heterogeneity in the treatment effects is now a requirement for clustering

adjustments to be necessary, and beyond that, either clustering in sampling or assignment makes

the adjustments important.

5 Conclusion

We develop a new perspective on clustering adjustments to standard errors. We argue that

there are two potential motivations for such adjustments, one based on clustered sampling, and

one based on clustered assignment. Although when researchers look for formal justification

for clustering, they typically rely on clustered sampling justifications, we argue that clustered

assignment is more commonly the setting of interest. This leads to new conclusions about when

to adjust standard errors for clustering, and at what level to do the adjustment.

The practical implications from the results in this paper are as follows. The researcher

should assess whether the sampling process is clustered or not, and whether the assignment

mechanism is clustered. If the answer to both is no, one should not adjust the standard errors

for clustering, irrespective of whether such an adjustment would change the standard errors.

We show that the standard Liang-Zeger cluster adjustment is conservative, and further, we

derive an estimator for the correct variance that can be used if there is variation in treatment

assignment within clusters and the fraction of clusters that is observed is known. This analysis

extends to the case where fixed effects are included in the regression at the level of a cluster,

with the provision that if there is no heterogeneity in the treatment effects, one need not adjust

standard errors for clustering once fixed effects are included.
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Appendix
It is useful to work with a transformation of Win:

Tin = 2Win − 1 so that Win =
Tin + 1

2
, 1 − Win =

1 − Tin

2
.

Note that in terms of Tin we can write

Yin = WinYi(1) + (1 − Win)Yi(0) = Tin

Yin(1) − Yin(0)

2
+

Yin(1) + Yin(0)

2
,

εin = Tin

εin(1) − εin(0)

2
+

εin(1) + εin(0)

2
,

and

Tinεin =
εin(1) − εin(0)

2
+ Tin

εin(1) + εin(0)

2
.

Proof of Lemma 1: First,

√

Nn(τ̂n − τn) − 2√
nPCnPUn

n
∑

i=1

Rin(2Win − 1)εin

=
√

Nn(τ̂n − τn) − 2√
nPCnPUn

n
∑

i=1

RinTinεin

=
√

Nn

(

2
1

n

∑n

i=1
RinYin(Tin − Tn)

1

n

∑n

i=1
Rin(Tin − Tn)2

− 1

n

n
∑

i=1

(Yin(1) − Yin(0))

)

− 2√
nPCnPUn

n
∑

i=1

RinTinεin.

(A.1)

Substituting

Yin = Tin

Yin(1) − Yin(0)

2
+

Yin(1) + Yin(0)

2

= Tin

εin(1) − εin(0)

2
+ Tin

Y n(1) − Y n(0)

2
+

εin(1) + εin(0)

2
+

Y n(1) + Y n(0)

2

= εin + Tin

τn

2
+

Y n(1) + Y n(0)

2
,

into (A.1) leads to

√

Nn

(

2
1

n

∑n

i=1
Rinεin(Tin − Tn)

1

n

∑n

i=1
Rin(Tin − Tn)2

+ τn

1

n

∑n

i=1
RinTin(Tin − Tn)

1

n

∑n

i=1
Rin(Tin − Tn)2

− τn

+(Y n(1) + Y n(0))
1

n

∑n

i=1
Rin(Tin − Tn)

1

n

∑n

i=1
Rin(Tin − Tn)2

)

− 2√
nPCnPUn

n
∑

i=1

RinTinεin

=
√

Nn

2 1

n

∑n

i=1
RinTinεin

1

n

∑n

i=1
Rin(Tin − Tn)2

− 2√
nPCnPUn

n
∑

i=1

RinTinεin

−
√

Nn2Tn

1

n

∑n

i=1
Rinεin

1

n

∑n

i=1
Rin(Tin − Tn)2
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+
√

Nn

(

τn

1

n

∑n

i=1
Rin

1

n

∑n

i=1
Rin(Tin − Tn)2

− τn

)

−
√

NnTn

1

n

∑n

i=1
RinTin

1

n

∑n

i=1
Rin(Tin − Tn)2

.

To prove that this is op(1), it is sufficient to prove the following four claims,
(i)

√

Nn

∑n

i=1
RinTinεin

∑n

i=1
Rin(Tin − T n)2

− 2√
nPCnPUn

n
∑

i=1

RinTinεin = op(1), (A.2)

(ii)

√

NnTn

1

n

∑n

i=1
Rinεin

1

n

∑n

i=1
Rin(Tin − Tn)2

= op(1), (A.3)

(iii)

√

Nn

(

τn

∑N

i=1
Rin

∑n

i=1
Rin(Tin − Tn)2

− τn

)

= op(1), (A.4)

(iv)

√

NnTn

1

n

∑n

i=1
RinTin

1

n

∑n

i=1
Rin(Tin − Tn)2

= op(1). (A.5)

First a couple of preliminary observations. By the assumptions it follows that

1

n

n
∑

i=1

(Rin − PCnPUn)
p−→ 0 (A.6)

and so that

Nn

nPCnPUn

p−→ 1. (A.7)

In addition,
√

NnTn = Op(1), (A.8)

and

√

Nn

1

n

n
∑

i=1

Rinεin = Op(1). (A.9)

�

Lemma A.1. Suppose Assumptions 1 and 5 hold. Then (i)

NnV̂EHW → AVEHW =
4

nPCnPUn

n
∑

i=1

=
2

n

n
∑

i=1

{

εin(1)2 + εin(0)2
}

,

and

NnV̂LZ → AVLZ

[22]



=
2

n

n
∑

i=1

{

εin(1)2
(

1 − PUn(1 + 4σ2)
)

+ εin(0)2
(

1 − PUn(1 + 4σ2)
)

+ εin(0)εin(1)PUn(2 − 8σ2)
}

+
PUn

n

Cn
∑

c=1

n2

cn

{

(εcn(1) − εcn(0))
2

+ 4σ2 (εcn(1) + εcn(0))
2
}

.

Proof of Lemma A.1: First (i):

AVEHW =
4

nPCnPUn

n
∑

i=1

E[η2

in].

Because

E[η2

in] = E[R2

inT 2

inε2

in] = E[Rinε2

in] = PCnPUnE[ε2

in]

= PCnPUn

{

Tin

εin(1) − εin(0)

2
+

εin(1) + εin(0)

2

}2

=
1

4
PCnPUn

{

εin(1)2 + εin(0)2 − 2εin(1)εin(0) + εin(1)2 + εin(0)2 + 2εin(1)εin(0)
}

=
1

2
PCnPUn

{

εin(1)2 + εin(0)2
}

it follows that

AVEHW =
2

n

n
∑

i=1

{

εin(1)2 + εin(0)2
}

,

finishing the proof for part (i).
Next, consider (ii). The normalized LZ variance estimator is

AVLZ =
4

nPCnPUn

n
∑

i=1

n
∑

j=1

E [RinTinεinRjnTjnεjn]

=
4

nPCnPUn

Cn
∑

c=1

n
∑

i=1

n
∑

j=1

CinCjnE [RinTinεinRjnTjnεjn|Cin = Cjn] .

Consider the expectations:

E [RinTinεinRjnTjnεjn|Cin = Cjn]

= E

[

RinTin

{

Tin

εin(1) − εin(0)

2
+

εin(1) + εin(0)

2

}

RjnTjn

{

Tjn

εjn(1) − εjn(0)

2
+

εjn(1) + εjn(0)

2

}∣

∣

∣

∣

Cin = Cjn

]

= E

[

Rin

{

εin(1) − εin(0)

2
+ Tin

εin(1) + εin(0)

2

}

Rjn

{

εjn(1) − εjn(0)

2
+ Tjn

εjn(1) + εjn(0)

2

}∣

∣

∣

∣

Cin = Cjn

]

.

If i = j, the expectation is, per the earlier calculation for AVEHW, equal to

E [RinTinεinRjnTjnεjn|Cin = Cjn, i = j] =
1

2
PCnPUn

{

εin(1)2 + εin(0)2
}

.

If the i 6= j, the expectation is

E [RinTinεinRjnTjnεjn|Cin = Cjn, i 6= j]

[23]



=
1

4
{(εin(1) − εin(0)) (εjn(1) − εjn(0)) E[RinRjn|Cin = Cjn, i 6= j]

+ (εin(1) − εin(0)) (εjn(1) + εjn(0)) E[RinRjnTjn|Cin = Cjn, i 6= j]

+ (εin(1) + εin(0)) (εjn(1) − εjn(0)) E[RinRjnTin|Cin = Cjn, i 6= j]

+ (εin(1) + εin(0)) (εjn(1) + εjn(0)) E[RinRjnTinTjn|Cin = Cjn, i 6= j]}

=
1

4

{

(εin(1) − εin(0)) (εjn(1) − εjn(0))PCnP 2

Un

+(εin(1) + εin(0)) (εjn(1) + εjn(0)) 4PCnP 2

Unσ2
}

.

Hence

n
∑

i=1

n
∑

j=1

CincCjncE [RinTinεinRjnTjnεjn|Cin = Cjn, i 6= j]

=
PCnP 2

Un

4

n
∑

i=1

n
∑

j=1

CincCjnc

{

(εin(1) − εin(0)) (εjn(1) − εjn(0)) + (εin(1) + εin(0)) (εjn(1) + εjn(0)) 4σ2
}

−PCnP 2
Un

4

n
∑

i=1

Cin

{

(εin(1) − εin(0))
2
+ (εin(1) + εin(0))

2
4σ2

}

=
PCnP 2

Un

4

n
∑

i=1

n
∑

j=1

n2

cn

{

(εcn(1) − εcn(0))
2

+ (εcn(1) + εcn(0))
2
4σ2

}

−PCnP 2
Un

4

n
∑

i=1

Cin

{

(εin(1) − εin(0))
2
+ (εin(1) + εin(0))

2
4σ2

}

.

Thus

AVLZ =
4

nPCnPUn

Cn
∑

c=1

n
∑

i=1

n
∑

j=1

CinCjnE [RinTinεinRjnTjnεjn|Cin = Cjn]

=
2

n

n
∑

i=1

{

εin(1)2 + εin(0)2
}

−PUn

n

n
∑

i=1

{

(εin(1) − εin(0))
2
+ 4σ2 (εin(1) + εin(0))

2
}

+
PUn

n

Cn
∑

c=1

n2

cn

{

(εcn(1) − εcn(0))2 + 4σ2 (εcn(1) + εcn(0))2
}

=
1

n

n
∑

i=1

{

εin(1)2
(

2 − PUn(1 + 4σ2)
)

+ εin(0)2
(

2 − PUn(1 + 4σ2)
)

+ εin(0)εin(1)PUn(2 − 8σ2)
}

+
PUn

n

Cn
∑

c=1

n2

cn

{

(εcn(1) − εcn(0))
2

+ 4σ2 (εcn(1) + εcn(0))
2
}

.

�

Next we split ηn into two uncorrelated sums.
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Lemma A.2.

ηn =
2√

npCpU

n
∑

i=1

RinTinεin = Sn + Dn,

where

Sn =
1√

nPCnPUn

n
∑

i=1

(Rin − PCnPUn)(εin(1) − εin(0)),

and

Dn =
1√

nPCnPUn

n
∑

i=1

RinTin(εin(1) + εin(0)).

Proof of Lemma A.2: Substituting εin = Tin(εin(1) − εin(0))/2 + (εin(1) + εin(0))/2, we have

2√
nPCnPUn

n
∑

i=1

RinTinεin =
2√

nPCnPUn

n
∑

i=1

{

Rin

εin(1) − εin(0)

2
+ RiTin

εin(1) + εin(0)

2

}

.

Because
∑n

i=1
εin(0) =

∑n

i=1
εin(1) = 0, this is equal to

1√
nPCnPUn

n
∑

i=1

(Rin − pCpU )(εin(1)− εin(0))+
1√

nPCnPUn

n
∑

i=1

RinTin(εin(1)+ εin(0)) = Sn +Dn.

�

Comment: The S here refers to sampling, because Sn captures the sampling part of the clustering, and
D refers to design, as Dn captures the design part of the clustering. For Sn only the clustering in the
sampling (in Rin) matters, and the clustering in the assignment (in Tin) does not matter. For Dn it is
the other way around. Even if Rin is clustered, if Tin is not, the covariance terms in the variance of Dn

vanish. �

Lemma A.3. The first two moments of Sn and Dn are

E[Sn] = 0, E[Dn] = 0,

E[S2

n] =
1 − PUn

n

n
∑

i=1

(εin(1) − εin(0))2 +
PUn(1 − PCn)

n

C
∑

c=1

n2

c(εcn(1) − εcn(0))2,

E[D2

n] =
1 − 4σ2

nPUn

n

n
∑

i=1

(εin(1) + εin(0))2 +
4σ2

nPUn

n

C
∑

c=1

n2

s(εcn(1) + εcn(0))2,

and

E[SnDn] = 0

so that

E





(

2√
nPCnPUn

n
∑

i=1

RinTinεin

)2




=
1

n

n
∑

i=1

{

(2 − PUn(1 + 4σ2

n))εin(1)2 + (2 − PUn(1 + 4σ2

n))εin(0)2 + PUn(2 − 8σ2

n)εin(1)εin(0)
}

+
PUn

n

C
∑

c=1

n2

c

{

(1 − PCn)(εcn(1) − εcn(0))2 + 4σ2

n(εcn(1) + εcn(0))2
}

[25]



Proof of Lemma A.3: Because E[Rin] = PCnPUn, it follows immediately that E[Sn] = 0. Be-
cause E[RinTin] = 0, it follows that E[Dn] = 0. Because E[(Rin − PCnPUn)RinTin] = E[(Rin −
PCnPUn)Rin]E[Tin] = 0, it follows that E[SnDn] = 0. Next, consider E[S2

n]:

E[S2

n] =
1

nPCnPUn

n
∑

i=1

n
∑

j=1

E [(Rin − PCnPUn)(εin(1) − εin(0))(Rjn − PCnPUn)(εjn(1) − εjn(0))]

=
1

nPCnPUn

n
∑

i=1

(

PCnPUn(1 − PCnPUn) − P 2

UnPCn(1 − PCn)
)

(εin(1) − εin(0))2

+
1

nPCnPUn

Cn
∑

c=1

n
∑

i=1

n
∑

j=1

CinCjn

(

P 2

UnPCn(1 − PCn)
)

(εin(1) − εin(0))(εjn(1)− εjn(0))

=
1 − PUn

n

n
∑

i=1

(εin(1) − εin(0))2

+
PUn(1 − PCn)

n

Cn
∑

c=1

n
∑

i=1

n
∑

j=1

CinCjn(εin(1) − εin(0))(εjn(1) − εjn(0))

=
1 − PUn

n

n
∑

i=1

(εin(1) − εin(0))2 +
PUn(1 − PCn)

n

Cn
∑

c=1

n2

cn(εcn(1) − εcn(0))2.

Next, consider E[D2
n].

E[D2

n] =
1

nPCnPUn

n
∑

i=1

n
∑

j=1

E [RinTin(εin(1) + εin(0))RjnTjn(εjn(1) + εjn(0))]

=
1

nPCnPUn

n
∑

i=1

(

PCnPUn − 4σ2

nPCnP 2

Un

)

(εin(1) + εin(0))2

+
1

nPCnPUn

Cn
∑

c=1

n
∑

i=1

n
∑

j=1

CinCjn4σ2

nPCnP 2

Un(εin(1) + εin(0))(εjn(1) + εjn(0))

=
1 − 4σ2

nPUn

n

n
∑

i=1

(εin(1) + εin(0))2 +
4σ2

nPUn

n

Cn
∑

c=1

n2

cn(εcn(1) + εcn(0))2.

�

Lemma A.4.

ηfe

n =
2√

npCpU

n
∑

i=1

Rin(Tin − qCin
)ε̇in = Sfe

n + Dfe

n ,

where

Sfe

n =
1√

nPCnPUn

n
∑

i=1

(Rin − PCnPUn)(1 − q2

Cin
)(ε̇in(1) − ε̇in(0)),

and

Dfe

n =
1√

nPCnPUn

n
∑

i=1

Rin(Tin − qCin
{(ε̇in(1) + ε̇in(0)) − qCin

(ε̇in(1) − ε̇in(0))} .
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The proof follows the same argument as the proof for Lemma A.2 and is omitted.
Proof of Proposition 2: By definition

ε̇in = εin − qcnεCinn(1) − (1 − qcn)εCinn(0)

= Winεin(1) + (1 − Win)εin(0) − qcnεCinn(1) − (1 − qcn)εCinn(0)

= (Win − qcn)(εin(1) − εin(0)) + qcn(εin(1) − εCinn(1)) + (1 − qcn)(εin(0) − εCinn(0)).

Hence

1√
Mn

Mn
∑

i=1

Rin(Win − qcn)ε̇in =
1√
Mn

Mn
∑

i=1

ηi1n +
1√
Mn

Mn
∑

i=1

ηi2n +
1√
Mn

Mn
∑

i=1

ηi3n

where

ηi1n = Rin(Win − qcn)2(εin(1) − εin(0))

ηi2n = Rin(Win − qcn)qcn(εin(1) − εCinn(1))

ηi3n = Rin(Win − qcn)(1 − qcn)(εin(0) − εCinn(0)).

Note that for the covariance terms the we can look at the three terms separately because

E [ηi1nηj2n|i 6= j, Cin = Cjn] = 0,

E [ηi1nηj3n|i 6= j, Cin = Cjn] = 0,

and

E [ηi2nηj3n|i 6= j, Cin = Cjn] = 0.

In addition,

E [ηi2nηj2n|i 6= j, Cin = Cjn] = 0,

and

E [ηi3nηj3n|i 6= j, Cin = Cjn] = 0,

so that we only need to consider the covariance terms from the first term. For this first term note that
because

Mn
∑

i=1

(εin(1) − εin(0)) = 0,

it follows that

1√
Mn

Mn
∑

i=1

ηi1n =
1√
Mn

Mn
∑

i=1

Rin(Win − qcn)2(εin(1) − εin(0))

=
1√
Mn

Mn
∑

i=1

(

Rin(Win − qcn)2 − PCnPUn

1 − 4σ2

4

)

(εin(1) − εin(0)).

Let us first look at the covariance terms:

E [ηi1nηj1n|Cin = Cjn, i 6= j]
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= E

[(

Rin(Win − qCinn)2 − PCnPUn

1 − 4σ2

4

)

(εin(1) − εin(0))

(

Rjn(Win − qCjnn)2 − PCnPUn

1 − 4σ2

4

)

(εjn(1) − εjn(0))

∣

∣

∣

∣

Cin = Cjn, i 6= j

]

=

{

PCnP 2

Un

(

κ +

(

1 − 4σ2

4

)2
)

− P 2

CnP 2

Un

(

1 − 4σ2

4

)2
}

(εin(1)− εin(0))(εjn(1)− εjn(0))

=

{

PCnP 2

Un(1 − PCn)

(

1 − 4σ2

4

)2

+ κPCnP 2

Un

}

(εin(1) − εin(0))(εjn(1) − εjn(0)).

Hence

E





Mn
∑

i=1

Mn
∑

j=1,j 6=i

ηi1nηj1n





=

Cn
∑

c=1

{

PCnP 2

Un(1 − PCn)

(

1 − 4σ2

4

)2

+ κPCnP 2

Un

}

M2

cn(εcn(1) − εcn(0))2

−
Mn
∑

i=1

{

PCnP 2

Un(1 − PCn)

(

1 − 4σ2

4

)2

+ κPCnP 2

Un

}

(εin(1) − εin(0))2.

In addition we need to collect the variance terms:

E[η2

i1n] = E

[

(

Rin(Win − qcn)2 − PCnPUn

1 − 4σ2

4

)2

(εin(1) − εin(0))2

]

=

{

PCnPUn

(

κ +

(

1 − 4σ2

4

)2
)

− P 2

CnP 2

Un

(

1 − 4σ2

4

)2
}

(εin(1) − εin(0))2

=

{

PCnPUn(1 − PCnPUn)

(

1 − 4σ2

4

)2

+ PCnPUnκ

}

(εin(1) − εin(0))2

E[η2

i2n] = E

[

{Rin(Win − qcn)qcn(εin(1) − εCinn(1))}2
]

= PCnPUnκ3,1(εin(1) − εCinn(1))2,

and

E[η2

i3n] = E

[

{Rin(Win − qcn)(1 − qcn)(εin(0) − εCinn(0))}2
]

= PCnPUnκ1,3(εin(0) − εCinn(0))2.

Thus

E[(ηfe

n )2] = E





(

4

(1 − 4σ2)
√

MnPCnPUn

Mn
∑

i=1

Rin(Win − qCin
)ε̇in

)2




=
16

(1 − 4σ2)2MnPCnPUn







Mn
∑

i=1

E[η2

i1n] +

Mn
∑

i=1

Mn
∑

j=1,j 6=i

E[ηi1nηj1n] +

Mn
∑

i=1

E[η2

i2n] +

Mn
∑

i=1

E[η2

i3n]







=
1

Mn

Mn
∑

i=1

{

(1 − PUn)

(

1 + κ
16

(1 − 4σ2)2

)

(εin(1) − εin(0))2

+
16κ3,1

(1 − 4σ2)2
(εin(1) − εCinn(1))2 +

16κ1,3

(1 − 4σ2)2
(εin(0) − εCinn(0))2

}

+
1

Mn

Cn
∑

c=1

{

PUn(1 − PCn) + κPUn

16

(1 − 4σ2)2

}

M2

cn(εcn(1) − εcn(0))2.

�
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