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Abstract
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goods or to the multiple social welfare functions that arise when individual preferences

are incomplete, and policymakers do not need to provide the preference comparisons

that individuals are unable to make for themselves. The utilitarian orderings that

result, although also incomplete, can generate a unique optimum. Nonseparabilities
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the utilitarian optima drops substantially relative to the Pareto optima.
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1 Introduction

Economic models of irrational decision-making have increasingly interpreted an individual

who fails to choose consistently as a set of agents acting at di¤erent frames. An individual

whose value for a good depends on his endowment is seen as a set of preference relations, one

for each endowment (Tversky and Kahneman (1991)). A hyperbolic discounter becomes a

set of agents that apply discount rates that depend on the date they choose (Laibson (1997)).

But when individuals are viewed as sets of agents, it is no longer clear how to de�ne their

welfare. The most popular approach has been to narrow the set of welfare judgments for

an individual to a behavioral preference that all versions of the individual agree on (Bern-

heim and Rangel (2007, 2009)).1 When the frame-based versions of an individual i disagree

about how to order x and y then i is declared to not have a preference between x and y: the

behavioral preference for individual i is incomplete. This incompleteness can lead Pareto

optimality to become highly indecisive. In an economy of individuals with incomplete be-

havioral preferences, the set of Pareto optima can be vast with the same dimension as the

entire set of allocations (Mandler (2014)). Every allocation in the neighborhood of an opti-

mum will be another optimum and the characteristic lessons of policy analysis break down:

if an economy�s initial allocation is Pareto optimal and a small externality is introduced the

allocation will remain optimal. In some cases every allocation will be Pareto optimal.

This paper argues that maximizing the sum of utilities �the second-most popular welfare

criterion �can close the decisiveness gap. Standard utilitarian models cannot make this

case, since they require completeness, but the construction o¤ered here shows how to make

interpersonal comparisons of utility when preferences are incomplete. Without some remedy,

utilitarianism is left in a precarious position: preferences presumably display incompleteness

in at least a corner of their domain.

Individuals will have utilities de�ned on groups of goods, which can take the consumption

of goods in other groups as arguments, but do not take a decisive stand on how to aggregate

these utilities. Their attitudes to aggregation can depend on their decision-making frames,

leaving preferences incomplete. For example, an individual might have von Neumann-

1See also Rubinstein and Salant (2008) and Mandler (2004, 2005).
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Morgenstern utilities for the goods delivered at particular states but use di¤erent probabilities

to weight these utilities as the decision-making frame varies.

The planner meanwhile follows classical utilitarian guidelines: for each group of goods,

the planner judges how the utility functions of di¤erent individuals for that group should be

combined. The planner can but does not have to �ll in individuals�incomplete preferences:

a solution to the decisiveness problem would not be convincing if planners had to impose

the preference judgments individuals themselves were unable to supply.

If the planner comes equipped with a full set of judgments, both across individuals

and across groups for single individuals, then as in classical utilitarianism a single objective

function rules. Less dictatorial planners will apply a family of utilitarian objective functions

and judge allocation x to be superior to y only if they all recommend x over y. The resulting

�utilitarian superiority�ordering will be incomplete but this does not lead to a large set of

optima. I �rst show that when the individuals� utilities for any group depend only on

the consumption of the goods in that group � �separability� � and are strictly concave,

there is a unique utilitarian optimal allocation. In practice advocates and policymakers

presume separability when they debate policy questions; arguments about, say, public health

expenditures are rarely conditioned on individuals�consumption of other goods.

When separability is not satis�ed, there can be multiple utilitarian optima but the set

of optima has measure 0 and a dimension that never rises above the number of goods minus

1. Utilitarianism thus escapes the extreme dimensional expansion of the Pareto optima in

behavioral settings. The dimension of the utilitarian optima in fact compares favorably

with the dimension of the Pareto optima in a complete preference model.

These results illustrate the broader principle that Pareto optimality delivers sharp advice

only in arti�cial settings �such as a general equilibrium model where the policymaker has

certain knowledge of the economy�s primitives �while utilitarian methods are robust to a

wide array of modeling environments. Even a little preference incompleteness is enough of

a wedge for this usefulness gap to appear.

The utilitarian project is hardly trouble-free. A utilitarian planner must compare the

utilities of di¤erent individuals and come to a normative judgment as to who gains the most

from an extra increment of a good. The di¢ culty of making these comparisons is made

2



neither harder nor easier by preference incompleteness.

Though formal models of utilitarianism assume complete preferences, the classical utili-

tarians from the beginning recognized the di¢ culty individuals face in comparing di¤erent

types of satisfaction: John Stuart Mill (1863) famously acknowledged the diversity of kinds

of pleasure and the early neoclassical economists recognized that individuals waver in their

weighting of present versus future consumption and the costs of uncertainty. The presence

of con�ict within individuals did not however undermine the utilitarians�con�dence that

marginal utility diminishes and is interpersonally comparable. This paper models exactly

this combination of positions: individuals who do not weight groups of goods consistently

and planners that nevertheless can judge how goods should be distributed across individuals.

This paper�s reformulation of utilitarianism clari�es the Sen (1979, 1986) charges against

the �welfarism,� the doctrine that social decisions should be a function only of individual

welfare levels rather than the social and psychological content of the policy options. For

a welfarist, these details matter only insofar as they feed into individual utility levels. In-

complete preferences �t with Sen�s view since then there are no utility numbers that rep-

resent the whole of an individual�s welfare: the raw material of welfarism is missing. The

present version of utilitarianism lets deliberation about interpersonal comparisons proceed

autonomously in di¤erent domains; decisions about, say, education can draw on the par-

ticulars of how schooling a¤ects individual lives while decisions about the environment can

depend on the details of that sphere. Though Sen suggests that utilitarianism must rely on

welfarist foundations, the present version does not.

The �nal part of the paper addresses the fact that utilitarian optimal allocations will

sometimes fail to be Pareto optimal. From a strict utilitarian perspective, Pareto subopti-

mality does not present a problem: utilitarian judgments should trump individual judgments.

More helpfully, I will show that as the extent of individual preference incompleteness in-

creases, the potential for con�ict between utilitarian and Pareto optimality disappears. For

su¢ ciently incomplete preferences, utilitarian optima are sure to be Pareto optimal.

When utility is non-separable �the utility for one group of goods is potentially a¤ected

by consumption of all of society�s goods �the calculation of the dimension of the optima

presents technical challenges. By interpreting each of the sums-of-utilities that the planner
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takes as goals as the utility function of a hypothetical agent, the utilitarian optima can be

understood as the Pareto e¢ cient allocations of an economy composed of these hypothetical

agents. Smale�s (1974) concept of an isolated community then provides just the right

mathematical tool once it is adapted to groups of goods rather than individuals. Though

some hurdles must be cleared, due to the twist that each of the hypothetical agents can

experience an externality from the consumption levels of the other hypothetical agents, one

message of this paper is that this old general equilibrium machinery is fruitful for a topic as

far-�ung as utilitarianism with behavioral preferences.

Several papers address the problem of how to make welfare decisions in the presence

of behavioral preferences. Like this paper, Kahneman et al. (1997) attempt to apply a

classical utilitarian rather than a Paretian approach. Fleurbaey and Schokkaert (2013) and

Apesteguia and Ballester (2015) both recognize the danger of indecisiveness that accom-

panies the Paretian ban on policies that overrule observable individual choices. FS o¤ers

methods for distributive decision-making compatible with incomplete preferences while AB

propose brokering among the con�icting preferences that individual behavior reveals. List

(2004) provides a general social-choice setting that incorporates individuals with incomplete

(�multidimensional�) preferences. Danan et al. (2015) and Argenziano and Gilboa (2018)

propose versions of utilitarianism when preferences are incomplete. In most of the above

work, social welfare judgments are posited whereas in this paper they are built from compar-

isons of individual satisfaction, as in Edgeworth and Marshall. Moreover our main target is

the size of the set of optima, which has not been the focus of preceding research.

2 Behavioral preferences and Pareto optima

An individual�s preferences over a domainX depend on how decision-making is framed. The

frame could be the date the individual chooses or the individual�s endowment. Let f denote

a frame, drawn from a set of frames F , and let %f be the preferences that rule at f .

De�nition 1 The behavioral preference %, a binary relation on X, is the unanimity
ordering of the frame-based preferences: x % y if and only if x %f y for all f 2 F .
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As usual strict preferences � are de�ned by x � y , (x % y and not y % x). So x � y
obtains if at every frame x is weakly preferred to y and for at least one frame x is strictly

preferred to y: x is a Pareto improvement over y for the individual�s frame-based selves.

The status quo, the most common frame, can induce an endowment e¤ect or status quo

bias where individuals agree to move away from their ex ante allocation only if o¤ered a

substantial reward. If an individual begins with the status quo endowment e in Figure 1,

a drop in good 1 consumption to the level at x would require a large increase in good 2 as

compensation, while given the status quo endowment e0 a drop in good 2 consumption to the

level at x would require a large increase in good 1.2 As the Figure illustrates, the individual

will then exhibit indi¤erence curves at di¤erent frames that cross.

However the diversity of frames behind Figure 1 arises, the behavioral preference % labels
the bundles to the northeast of both indi¤erence curves to be %-superior to x and the bundles
to the southwest of both indi¤erence curves to be %-inferior to x. The remaining bundles

such as z are unranked relative to x: the preference is incomplete. The kink in the set of

%-superior bundles that results is characteristic.
Beyond the Pareto rationale that no frame-based preference should be overruled, behav-

ioral preferences can be given positive explanations. If the state of nature determines the

bene�ts delivered by goods the individual is not sure how to value then the individual�s

decision-making frame can be viewed as a probability distribution and the Aumann (1962)

and Bewley (1986) theory of multiple priors will allow for a diversity of frames. The op-

erative prior can vary with, say, the individual�s endowment or mood, and the preference

judgments backed by all of an individual�s priors then provide a model for % that can capture
phenomena like status quo bias.

A multiple priors model of behavioral preferences An individual at state s consumes

a bundle of goods xs = (xs(1); :::; xs(`)) � 0 evaluated by the von Neumann-Morgenstern

utility us. A frame f 2 F is a probability distribution �f over a �nite set of states S, and

the agent at frame �f has the preference %f de�ned by

x %f y if and only if
P

s2S �
f
sus(xs) �

P
s2S �

f
sus(ys).

2See Kahneman et al. (1990), Knetsch (1989), Samuelson and Zeckhauser (1988), and Thaler (1980).
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The behavioral preferences % that result are then given by De�nition 1.3

For status quo bias, let the �rst of two goods have uncertain value and suppose the utility

at state s equals

us(xs(1); xs(2)) = sv1(xs(1)) + v2(xs(2)).

The coe¢ cient s is the realization of the uncertain good�s bene�t at state s. If when the en-

dowment of good 1 is large the agent�s frame �f assigns high probability to the states s where

s is large then the agent will display endowment-driven status quo bias. If we restrict the

individual to the two-dimensional domain where consumption is state-independent, the upper

contours of % will display the kinks pictured in Figure 1. The overlap of the indi¤erence

curves that hold at di¤erent frames/priors indicate that % is incomplete.

In Aumann (1962) or Bewley (1986), the individual entertains all priors in F simulta-

neously and x % y holds only if x defeats y at every prior. Here each prior is interpreted

as a distinct decision-making frame. �

With a judicious de�nition of states, the multiple priors model can cover diverse behav-

ioral in�uences on preferences, including for example mood-driven variations in the extent

of diminishing marginal utility or risk aversion. These in�uences are embedded in an indi-

vidual�s cardinal vNM utilities while the frame a¤ects only the probability weights on the

utilities. But the weights that vary by frame need not be probabilities and individuals do

not, even hypothetically, have to foresee the possible frames. With hyperbolic discount-

ing, the cardinal utilities are given by the individual�s preferences at any �xed date and the

weights are the discount rates that agents apply to future goods.

Hyperbolic discounting An individual consumes at several time periods, dates 1 through 3

for concreteness. A consumption bundle is thus a x = (x1; x2; x3) � 0 where each xi consists

of ` goods. The frame is the date t = 1; 2; 3 at which decisions are made. Under hyperbolic

discounting, for each t the preference %t of the date-t decision-maker can be represented by
3So x % y if and only if P

s2S �
f
sus(xs) �

P
s2S �

f
sus(ys)

for all f 2 F , or, equivalently, P
s2S e�sus(xs) �Ps2S e�sus(ys)

for all e� = Pf2F �
f�f with

�
�f
�
f2F � 0 and

P
f2F �

f = 1 (assuming F is �nite). The individual could

therefore instead have a decision-making frame for each of the convex combinations of the �f .

6



the utility function ut : R(4�t)`+ ! R de�ned by

u1(x) = u(x1) + �
�
�u(x2) + �

2u(x3)
�
,

u2(x) = u(x2) + ��u(x3),

u3(x) = u(x3),

where u : R`+ ! R is the agent�s concave within-period utility and � and � lie in [0; 1].

Since consumption prior to t has already occurred for the date t agent, that agent chooses

only among bundles that specify the same consumption from 1 to t� 1. Almost every pair

of bundles speci�es di¤erent values of x1 and only the date 1 agent can reveal a preference

between such pairs: there is no con�ict among the di¤erent dated versions of the individual

for almost every x.

To give the model some bite, we restrict the domain by letting one time period pass with

x1 consumed and consider the individual�s preferences over the remaining two goods yet to

be consumed, i.e., over the set X = fx : x1 = x1g. The dates 1 and 2 agents have complete

preferences over X represented by the utilities u1(x1; �; �) and u2 respectively. For bundles

x and y in X with x2 6= y2, the preferences of the date 3 agent are irrelevant (since again

that agent does not choose from such pairs). Following Bernheim and Rangel (2009), the

behavioral preference % consists of the preference judgments that the individual�s multiple

selves agree on: set F = f1; 2g and, on the domain of pairs x; y 2 X such that x2 6= y2,

de�ne % by De�nition 1.

As in the multiple priors model, % will be incomplete and its upper contour sets will

display kinks, as in Figure 1 when ` = 1. �

In a society where a typical individual i has one of the behavioral preference relations

%i we have considered, the set of Pareto optima will expand markedly. The kinks in the

sets of bundles %i-superior to an arbitrary reference bundle imply that an interval of prices
supports the reference bundle: for x in Figure 1, the boundaries of this interval are p and p0.

Given a Pareto optimal allocation (x1; :::; xI) for a society of I individuals, the second welfare

theorem reports that there must be a common supporting price vector: the individuals�price

intervals intersect. If moreover the intersection is robust in that one of these supporting price
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vectors, p in Figure 1, does not lie exactly on the boundary of any individual i�s interval and

if the boundaries of each i�s interval varies continuously with xi then, as (x1; :::; xI) changes

slightly, the intervals of supporting prices will continue to intersect. By the �rst welfare

theorem, the new allocation must be Pareto optimal too. The Pareto optimal allocations

with these properties therefore have the same dimension as the entire set of allocations and

hence have positive measure.4

Theorem 1 (Mandler 2014) If the Pareto optimum (x1; :::; xI) has a common supporting

price vector p such that, for each individual i, p lies in the interior of the set of prices that

support xi and i�s set of supporting prices varies continuously in the allocation then any

allocation su¢ ciently near x is Pareto optimal.

The expansion of the Pareto optima is the problem this paper addresses.

3 Classical utilitarianism

Classical utilitarianism, most importantly Edgeworth (1881), argued that the incremental

or marginal value of resources to individuals should be equalized: a shift of a resource from

agents with low marginal values for the resource to agents with high marginal values leads

to an improvement. Though their discussions of measurement were casual, the classicals

understood that a rescaling of units of pleasure or utility would not (and should not) change

any ranking of allocations.

We use the following measurement terminology throughout the paper.5 If u : Y ! R is

a function and a and b are real numbers, let au+ b denote the function h : Y ! R de�ned by

h(y) = au(y)+ b for all y 2 Y . Call U a cardinal set of functions if there is a u : Y ! R

such that U equals u and its increasing a¢ ne transformations, that is, for all bu : Y ! R,

bu 2 U () there exist real numbers a > 0 and b such that bu = au+ b.
4To qualify as an allocation, there can be no disposal of goods. Throughout the paper, �dimension�refers

to the dimension of C0-manifolds with boundary.
5The following account follows the tradition of modeling measurement via sets of utilities. See Sen

(1970), d�Aspremont and Gevers (1977), Roberts (1980), Bossert and Weymark (1996).
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De�ne bU to be a cardinal selection from a Cartesian product of cardinal sets of functions

U = U1 � :::� Un if there is a u 2 U such that, for all bu 2 U ,
bu 2 bU () there exist real numbers a > 0; b1; :::; bn such that bu i = aui + bi for i = 1; :::; n.
If both u and bu lie in the same cardinal selection then the �units�of the functions in bu

share a common rescaling relative to the functions in u: each bu i is rescaled from ui using the
same constant a. Viewing each ui as a utility, the ratios of utility increments (or marginal

utilities) are consequently preserved across u and bu drawn from the same cardinal selection:

bu i(x)� bu i(y)bu j(w)� bu j(z) = ui(x)� ui(y)
uj(w)� uj(z)

for all i and j and bundles x; y; w; and z. The constancy of these ratios leads to two di¤erent

types of decisiveness, both of which will be important. If i and j represent individuals,

the common ratio arises when a utilitarian planner can weigh one individual�s gain against

another individual�s gain. If i and j denote groups of consumption goods for a single

individual then that individual or a planner can weigh one group�s bene�t relative to another

group�s bene�t. As we will see, a planner can be decisive in the �rst sense even when an

individual or planner fails to be decisive in the second sense.

Throughout the paper, individuals will be indexed by the �nite set I = f1; :::; Ig and

goods by the �nite set L = f1; :::; Lg, a consumption for individual i is a xi = (xi(1); :::; xi(L)),

and an allocation is a pro�le x = (x1; :::; xI) 2 RIL+ of consumptions for each individual.

A superscript attached to an object will now indicate the individual associated with that

object, e.g., %i for individual i�s behavioral preference.
In the usual complete preferences understanding of classical utilitarianism, an individual

i 2 I is described by a cardinal set of utilities U i, where each ui 2 U i is a utility function on

the non-negative bundles of L goods. A classical utilitarian planner decides on a cardinal

selection Y from U1 � ::: � U I and judges allocation x to be weakly superior to y if, for

any (and therefore all) (u1; :::; un) 2 Y,
P

i2I u
i(xi) �

P
i2I u

i(yi). This �weak superiority

relation�is complete: for any pair x; y 2 RIL+ either x is weakly superior to y or y is weakly

superior to x. If we specify a feasible set of allocations fx 2 RIL+ :
P

i2I x
i(k) � e(k) for
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k 2 Lg, where e(k) is society�s endowment of good k, and if, for each individual i, some

and therefore every ui in U i is strictly concave and continuous there will be exactly one

utilitarian optimum.

When individual preferences are even a �little� incomplete, the starting point of this

standard model of utilitarianism, the U i, will be missing. One task ahead is to �ll this void.

As it happens, the classical utilitarians did not suppose that individuals had a global utility

assessment of all possible alternatives and so the overhaul applies to their theories too.

4 Utilitarianism with behavioral preferences

To extend utilitarianism to behavioral or other forms of incomplete preferences, consider

�rst individuals for whom various disjoint groups of goods deliver satisfaction separably.

For the early neoclassical economists, each good formed such a group while in expected

utility theory or in most intertemporal models, the goods delivered at a particular state or

date form separable groups.

Suppose each individual can specify a cardinal set of utility functions for each group.

For example, in expected utility theory these functions consist of the increasing a¢ ne trans-

formations of the vNM utility that holds at a particular state s (us in the multiple priors

model). As in a complete preferences model, the planner takes these sets as data but now for

every individual there is one cardinal set for each group of goods. If an individual i weights

the utilities of groups di¤erently at the various frames then the behavioral preference %i

that results will be incomplete: i cannot pin down a cardinal selection from the utilities of

the di¤erent groups. But since individuals possess cardinal judgments about the utilities

that govern any single group g, a utilitarian planner can compare the utilities of di¤erent

individuals for group g goods, that is, make a cardinal selection from the individuals�sets

of utilities for the goods in g. If anything, it should be easier to compare the utilities of

individuals for a group of goods than for all goods.

The planner can in addition but does not have to make comparisons of an individual�s

utilities for groups. With or without these further comparisons, there will be a unique

utilitarian optimum. For dictatorial planners ready to make utility comparisons across all
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individuals and groups, this result reproduces Edgeworth�s conclusions and his reasoning.

For agnostic planners, the result shows that policy-making does not require planners or

individuals to make the di¢ cult decisions that compare the values of di¤erent groups.

4.1 Individual utilities and preferences

A group of goods will have utilities that planners can interpersonally compare and that may

satisfy a separability assumption. Formally, a group g is a subset of the set of goods L

and the entire set of groups G is a partition of L with G cells. Each individual i is endowed

with a cardinal set of utility functions V ig for each group g 2 G, where each vig 2 V ig maps RL+
to R and indicates i�s utility for goods in g. Expected utility theory furnishes a canonical

example: if we associate a state s with the group g of contingent goods delivered at s then

the functions in V ig are the von Neumann Morgenstern cardinal utilities for these goods

multiplied by a probability of state s. Let xig 2 R
jgj
+ denote i�s consumption of the goods in

g and xi(k) 2 R+ denote i�s consumption of good k.

The utilities of individual i for the groups are aggregated into a behavioral preference by

a (not necessarily cardinal) selection V i � V i1 � :::�V iG with typical element vi = (vi1; :::; viG).

Any vi 2 V i preference de�nes a utility function
P

g2G v
i
g on RL+ that weights i�s utilities of

groups and represents one of i�s complete frame-based preferences %if .6

Each
P

g2G v
i
g formed from a vi 2 V i or the %if it represents is an equally legitimate way

for i to evaluate bundles and i therefore prefers xi to yi only when all of these objective

functions concur. De�ne V i to generate the behavioral preference %i on RL+ when

xi %i yi ()
X
g2G

vig(x
i) �

X
g2G

vig(y
i) for all vi 2 V i.

If V i is a cardinal selection from V i1 � :::�V iG, then
nP

g2G v
i
g : v

i 2 V i
o
forms a cardinal

set of functions and the %i that V i generates will be complete. But when V i consists of a
6I have assumed that the %if are represented by sums of vig�s to �t with the expected utility and intertem-

poral preference models and with the Jevons-Marshall tradition. As long as utilities do not have to satisfy
the separability condition I introduce below, the assumption brings only a modest loss of generality in terms
of the %i�s that can be generated: for example any %i with a utility representation, whether additive or not,
can be generated by some Vi. See Appendix A.
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larger set of functions (in the extreme, all of V i1 � ::: � V iG), individual i backs con�icting

ways of weighting the group utilities. The frame-based preferences then con�ict and the

%i that V i generates will be incomplete. For example, if %i is a behavioral preference for
the multiple priors model then, as vi 2 V i varies, the probabilities implicit in the expected

utility function
P

g2G v
i
g will vary as well. In all cases, %i will be transitive.

Though it plays no formal role, it is natural to associate each decision-making frame f

with a cardinal selection V if � V i1 � :::� V iG interpreted as a representation of the complete

preferences %if that hold for the individual at f : xi %if yi ,
P

g2G v
i
g(x

i) �
P

g2G v
i
g(y

i)

for all vi 2 V if . Each V i then equals a union of cardinal selections from V i1 � ::: � V iG and

xi %i yi obtains if and only if the utilities formed by draws from the V if all judge xi to be

superior to yi.7

Utilities satisfy separability relative to the set of groups G when each vig 2 V ig can vary

only with respect to i�s consumption of the goods in g: for any g 2 G and xig 2 R
jgj
+ , v

i
g 2 V ig

must be constant on fyi 2 RL+ : yig = xigg.8 In the absence of separability, the consumption

levels of the goods in non-g groups can be complements or substitutes for the g goods.

To illustrate how the V ig sets of cardinal utilities, the frame-based preferences %if , and
the %i interrelate and to see how the V ig can be inferred from behavior, we return to the

multiple-priors and hyperbolic discounting models. The utilities in both satisfy separability.

Multiple priors redux An agent with von Neumann-Morgenstern utility uis(xs) at state

s 2 S chooses at various frames f where each f 2 F is a probability �f on S.

Each group g 2 G consists of the goods delivered at some state s 2 S and so G can be

identi�ed with S. To adjust the domain of the utilities to equal the entire set of goods, de�ne

vis : RL+ ! R by vis(x) = uis(xs) for each s. A V is then equals the cardinal set of functions

that contains vis. Separability is satis�ed. Since a decision-making frame f is a probability

7A Vi that does not equal a union of cardinal selections
S
f Vif would weaken the frame interpretation

but otherwise have no e¤ect. Such a Vi deletes some vi�s from some Vif�s without changing the %i thatS
f Vif represents.
8Although I call this assumption �separability�for brevity, it is a limit on the operative domain of each

vig. The link to standard usage is that the assumption implies that the
P

g2G v
i
g functions, which collectively

represent %i, will satisfy �additive separability�in Gorman (1959) or �groupwise separability�in Jorgenson and
Lau (1975). Since %i might not have a utility representation, however, none of the preference de�nitions of
separability apply to %i. I reserve �additive�for functions equal to a sum of group utilities that do represent
a preference.
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�f , the individual�s frame-based preference %if is represented by the cardinal selection from
V i1 � :::� V iS given by

V i�f =
n�
a�f1v

i
1 + b1; :::; a�

f
Sv

i
S + bS

�
: a 2 R++ and b1; :::; bS 2 R

o
.

The multiple-priors behavioral preference %i is then generated by the selection V i =
S
�f2F V i�f .

The V is can be inferred from individual i�s preferences over lotteries with objective prob-

abilities. Alternatively, each vis and hence each V
i
s can be deduced from the vNM represen-

tation of the %if that holds at one of the frames �f . �

Hyperbolic discounting redux At dates 1 and 2, which are the frames, an individual i

has the preferences %i1 and %i2 on the domain X (de�ned in section 2) that are represented

by the utilities ui1(x) = u
i(x2) + �u

i(x3) and ui2(x) = u
i(x2) + ��u

i(x3). The two groups are

the goods that appear at dates 2 and 3 respectively.

For the cardinal selections, de�ne vit : X
i ! R by vit(xi) = ui(xit) for t = 1; 2. Letting t

indicate the date t group, V it equals the cardinal set of functions that contains v
i
t. Separability

is again satis�ed. The frame-based preferences %i1 and %i2 are represented by the cardinal
selections

V i1 =
��
avi2 + b2; a

�
�vi3
�
+ b3

�
: a 2 R++ and b2; b3 2 R

	
and

V i2 =
��
avi2 + b2; a

�
��vi3

�
+ b3

�
: a 2 R++ and b2; b3 2 R

	
,

and V i = V i1 [ V i2 generates the hyperbolic behavioral preference %i.
Both V i1 and V

i
2 can be inferred from the additive representations of either %i1 or %i2. �

Finally, in the less formal early neoclassical model each group consists of a single good

and utilities again satisfy separability: for each good k, the utilities in V ik vary only with

respect to xik = x
i(k). The di¢ culty recognized by J.S. Mill that individuals may not know

how to weight the utilities of goods can lead individuals to adopt di¤erent weights on the vik

in various circumstances and thus to di¤erent cardinal selections. Each selection in e¤ect

corresponds to a frame-based preference.
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4.2 Social welfare

Our utilitarian planner takes as data a set of cardinal utilities V ig for each individual i

and group g. Just as a classical utilitarian selects interpersonally comparable utilities

for individuals, the planner selects interpersonally comparable utilities for individuals for

each group g, a cardinal selection from V 1g � ::: � V Ig , denoted Wg. A typical element

of Wg is a vg =
�
v1g ; :::; v

I
g

�
, a group g utility for every individual i. Each Wg de�nes a

group g utilitarian ordering that deems allocation x weakly superior to y if, for any and

hence all vg 2 Wg,
P

i2I v
i
g(x

i) �
P

i2I v
i
g(y

i). Each
P

i2I v
i
g coincides substantively and

mathematically with a classical utilitarian objective function.

The planner may also compare an individual�s utilities across groups. All of the planner�s

judgments taken together are given by a selection W �
Q
(g;i)2G�I V

i
g that places individual

and group comparisons on the same mathematical footing: a vector of functions in W,

denoted v = (vig)(g;i)2G�I , identi�es a utility v
i
g for each group-individual pair (g; i). The

selection W must be compatible with the Wg: we require for each g that the projection of

W onto V 1g � ::: � V Ig equals Wg. Comparisons of individual utilities across groups thus

do not dilute the planner�s within-group comparisons of individual utilities, in line with the

classical utilitarian position that individuals�vacillations about the worth of goods do not

undermine interpersonal comparisons.

The model gives the planner wide latitude to embrace or abstain from comparisons of an

individual�s utilities for groups. At the abstention end of the spectrum, a planner refrains

from all across-group comparisons when, for each i, the projection of W onto V i1 � :::� V iG
equals V i1 � ::: � V iG itself, and we then say the planner or W is group agnostic. At

the opposite pole, a dictatorial W imposes a single relative weighting of each individual�s

utilities for groups by requiring W to be a cardinal selection.

While we have assumed implicitly that a planner begins with the individual welfare

comparisons �theWg �the alternative where a planner constructsW in one integrated step

works equally well. The sequential view more closely resembles Edgeworth (1881) where the

case for redistributing resources to high marginal utility individuals applies to any resource

or �means�that can generate pleasure. There is no �ction of an aggregate consumption good

14



in Edgeworth nor any claim that a single all-encompassing utility function covers all sources

of pleasure at all dates. The utilitarian optima moreover are determined solely by the Wg

when separability holds rather than by all of W.

Each v 2 W de�nes a welfare function
P

i2I
P

g2G v
i
g, the sum across individuals i of one

of the utilities thatW assigns to i. For the early neoclassical economists, adding individual

utilities to form social welfare functions was an assumption; for choice under uncertainty, the

Harsanyi (1955) aggregation theorem and speci�cally Hammond (1981) provide rationales.9

Each of the
P

i2I
P

g2G v
i
g objective functions represents a complete ordering and thus

can compare any pair of allocations.10 Under separability each
P

i2I
P

g2G v
i
g gives classical

utilitarian advice: welfare increases when the goods in some group g0 are transferred from an

agent i with low marginal utility for these goods (according to vig0) to an agent j with high

marginal utility (according to vjg0). But the di¤erent welfare functions drawn from W can

rank allocations di¤erently. For example if x is an improvement over y with respect to the

group g utilitarian ordering but a worsening with respect to the g0 ordering and W is group

agnostic then the welfare functions drawn from W that assign large weight to the group g

utilities will approve a move from y to x while other welfare functions drawn from W will

reject the move. Due to this diversity, we require unanimous consent before declaring an

allocation to be an improvement. Letting e = (e1; :::; eG) � 0 be the economy�s endowment

of goods, de�ne the feasible allocations F = fx 2 RIL+ :
P

i2I x
i � eg.

De�nition 2 Allocation x is utilitarian superior to y if
P

i2I
P

g2G v
i
g(x

i) �
P

i2I
P

g2G v
i
g(y

i)

for all v 2 W and strict inequality holds for at least one v 2 W, and is a utilitarian opti-

mum if x is feasible and there is no feasible y that is utilitarian superior to x.

Though the unanimity in De�nition 2 leads to a cautious ranking, utilitarian optimality

discriminates with precision. We put aside optima that deliver the same utility levels by

9The probabilities in the utility representations in Hammond coincide across individuals. Since individ-
ual utilities in the present paper are state-dependent (as in Hammond), we may let probabilities vary by
individual, as we must when a change in the vector of utilities drawn from W indicates only a change in the
probability frame of a single individual.
10Each

P
i2I

P
g2G v

i
g arises at one frame and it is natural, as in individual decision-making, to associate

each frame f with a cardinal selection Wf�
Q
(g;i)2G�I V

i
g . Any two v�s drawn from the same Wf will then

generate, up to a¢ ne transformation, the same welfare function and W will equal the union
S
f2FWf .
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assuming that the vig 2 V ig are strictly concave on the goods in g. Let vig : RL+ ! R be

strictly concave on g if it is strictly concave when restricted to the goods in g.11

Theorem 2 If separability is satis�ed and, for each group g and individual i, vig 2 V ig is

strictly concave on g and continuous then there is a unique utilitarian optimum.

Proof. Fix some g 2 G, y�g = (yig0)i2I;g02Gnfgg, and v 2 W. For any i,

X
g02G

vig0(x
i
g; y

i
�g) = v

i
g(x

i
g; y

i
�g) +

X
g0 6=g

vig0(x
i
g; y

i
�g)

and, due to separability,
P

g0 6=g v
i
g0(x

i
g; y

i
�g) equals the same constant for all x

i
g � 0. Thus

x0 solves maxx�0
P

i2I
P

g02G v
i
g0(x

i
g; y

i
�g) s.t.

P
i2I x

i � e if and only if, for each g, x0g solves

maxxg�0
P

i2I v
i
g(x

i
g; y

i
�g) s.t.

P
i2I x

i
g � eg.

Due to continuity, there is a xg =
�
x1g; :::; x

I
g

�
that solves the latter problem and, due

to strict concavity on g, this solution xg is unique. Due to separability the solution does

not depend on the choice of y�g and, since the projection of W onto V 1g � :::� V Ig equals a

cardinal selection, the solution does not depend on the choice of v 2 W. Hence (x1; :::; xG)

is the unique optimum.

Theorem 2 places no restrictions on W beyond each Wg being a cardinal selection: the

planner can fall anywhere between the group agnostic and dictatorial extremes. With group

agnosticism, planners make no comparisons of groups and utilitarian superiority reduces to

the unanimity ordering of the group-by-group utilitarian orderings. De�ne allocation x

to be group-unanimously superior to y when
P

i2I v
i
g(x

i) �
P

i2I v
i
g(y

i) for all g 2 G

and vg 2 Wg with at least one strict inequality and a group-unanimity optimum if x is

feasible and no feasible y is group-unanimously superior to x.

Proposition 1 If W is group agnostic then the group-unanimity and utilitarian superiority

orderings coincide. For any W, any utilitarian optimum is a group-unanimity optimum.12

Proposition 1 clari�es just how conservative the utilitarian superiority relation can be:

when W is group agnostic, a change in allocations must be recommended by every group

11That is, for all xi 2 RL+, vig is strictly concave on
�
yi 2 RL+ : yi(k) = xi(k) for all k =2 g

	
.

12Omitted proofs are in Appendix B.
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utilitarian ordering. In a model of uncertainty, for example, a change must deliver an im-

provement for the group g utilitarian ordering even when the group g goods appear at a

highly unlikely state. While cautious orderings ordinarily make it easier to declare alloca-

tions optimal and therefore invite indecisiveness, Theorem 2 shows that under separability

there is a unique utilitarian optimum. In fact under the assumptions of Theorem 2 any

across-group comparisons made by W end up being irrelevant: the proof of Theorem 2

(or the second sentence of Proposition 1) shows that the utilitarian optimum is the unique

group-unanimity optimum.

For dictatorial planners, Theorem 2 and its proof restate the uniqueness reasoning of a

standard model of utilitarianism: the planner judges every trade-o¤ across both goods and

individuals via one utilitarian ordering, as a traditional utilitarian would, and the unique

optimum is found by maximizing one function subject to the resource constraints. If in

particular there is just one group, planners are necessarily dictatorial and the %i are com-
plete. But when there is more than one group, planners have good reason not to go to

the dictatorial extreme: they may be stymied by the same decisions that individuals cannot

resolve consistently for themselves. A planner�s judgment that the marginal utility of a

group of goods is higher for the poor than for the rich need not make it any easier to decide

which types of goods and pleasures deserve priority, decisions that the classical utilitarians

themselves considered challenging. Even when planners feel they can make such decisions,

they may want to respect individuals�equivocations about how groups of goods should be

weighed. A middle ground therefore has some appeal, for example, a W such that for

each individual i the projection of W onto V i1 � :::� V iG equals V i, the representation of i�s

behavioral preferences.

Hyperbolic discounting continued. A society of I individuals with the hyperbolic

preferences of section 2 will have a large set of Pareto optima. Suppose for concreteness

that there is one good per time period, ` = 1, which implies that each good is a group.

If the feasible set F is fx 2 X1 � ::: � XI
:
P

i2I x
i
t � et for t = 2; 3g, the dimension of

the Pareto optima will equal 2(I � 1), which is also the dimension of the frontier of F (the

non-disposal points where the inequalities that de�ne F hold with equality). As explained
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in section 2, each indi¤erence curve for each %i has a continuum of supporting prices, at

a Pareto optimum those continua for the I individuals will intersect, and the intersection

will typically persist following any small adjustment in the allocation. By the �rst welfare

theorem, the new allocation must then also be Pareto optimal.

A utilitarian planner speci�es for each t = 2; 3 a cardinal selectionWt from V 1t � :::�V It ,

possibly supplemented by further intrapersonal comparisons of utility across goods. For

t = 2; 3, there will be a unique distribution of the date-t good that is utilitarian optimal,

found by selecting some vt 2 Wt and maximizing
P

i2I v
i
t(x

i
t) subject to

P
i2I x

i
t � et and�

x1t ; :::; x
I
t

�
� 0. Specifying the cardinal selection may present a normative challenge, but

the di¢ culties should be no more formidable than with complete preferences. �

4.3 Social welfare: nonseparable utilities

So far utilities have satis�ed separability: each vig has been a function only of goods in

group g. Without this assumption there need not be a unique utilitarian optimum. For

example, suppose each good is a singleton group and that the utility of good 1 depends on

the consumption of good 2 and vice versa while the utilities for other goods are functions

only of their own consumption levels. When W is group agnostic, the utilitarian optima

will coincide with the Pareto e¢ cient allocations of a society of hypothetical agents with the

group g utilitarian orderings, one for each g 2 G (Proposition 1). If the groups 1 and 2

utilitarian orderings display su¢ cient diversity regarding how goods 1 and 2 are optimally

distributed across individuals there will be a one-dimensional set of utilitarian optima for

the economy that consists of just goods 1 and 2: given a pair
P

i2I v
i
1 and

P
i2I v

i
2 that

de�ne these two orderings, the utility possibility frontier will be one-dimensional just as the

utility possibility frontier of a standard two-agent economic model is one-dimensional. As

there remains a unique optimum for the distribution of goods 3; :::; L, the utilitarian optima

for the economy of all L goods will also be one-dimensional.

Our goal will be to show that even in worst cases the size of the set of utilitarian optima

compares favorably with the size of the set of Pareto optima (as de�ned by the %i not
by the hypothetical agents above) both in terms of dimension and measure. Since the

utilitarian optima always form a subset of the group unanimity optima (Proposition 1),
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we can �nd a bound on the dimension or measure of the utilitarian optima by considering

the group-unanimity optima. The above example lies far from the worst case: it displays

the minimum extent of nonseparability in consumption and accordingly the dimension of

the group-unanimity optima expands modestly, from 0 to 1. The greatest expansion occurs

when, for each group g, the
P

i2I v
i
g that de�ne the group g utilitarian ordering are nontrivial

functions of all L goods in the model and each good is its own group: the dimension of

the group-unanimity optima can then rise to G � 1 = L � 1. This case is similar but

not identical to a standard general equilibrium model where the dimension of the Pareto

e¢ cient allocations would normally equal the number of individuals I minus 1. In our

setting, the role of an individual is played by a group g with the associated �utility�
P

i2I v
i
g.

The planner thus has G objective functions which suggests that the dimension of the group-

unanimity optima will be G � 1. But while standard utilities are functions of di¤erent

variables (the agents� private consumptions) each
P

i2I v
i
g is potentially a function of all

LI of the model�s consumption variables. Externalities in e¤ect appear since the goods

that a¤ect the �utility�
P

i2I v
i
g can also a¤ect the �utility�

P
i2I v

i
g0, where g

0 6= g. These

externalities imply that the set of optima need not have a well-de�ned dimension (it need

not be a manifold) and consequently Theorem 3 below will provide only an upper bound on

the dimension of the optima.13 �Upper�is the bound of interest since we are interested in

worst-case scenarios.

Dimension is neither the sole nor indisputable way to gauge the size of a set. Our result

on dimension, Theorem 3, will imply that the utilitarian optima also form a measure-0 subset

of society�s allocations. The Pareto optima in contrast can have positive measure as we saw

in section 2. There are other yardsticks, however, for example the diameter of the set of

optima, that Theorem 3 will not address.

To �nd a bound for the dimension of the group-unanimity optima, which in turn will

bound the dimension of the utilitarian optima, I adapt the concept of an �isolated community�

(Smale (1974)) from the general equilibrium theory of Pareto e¢ ciency. A classical isolated

community is a subset of individuals that consumes only goods that individuals outside the

13For a simple case of the complications introduced by these externalities, notice that it is possible to haveP
i2I v

i
g =

P
i2I v

i
g0 for distinct groups g and g

0. There are then e¤ectively fewer than G objective functions
in the model and the dimension of the group-unanimity optima accordingly falls.
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community do not consume, for example when community members and nonmembers have

utilities that are increasing on disjoint sets of goods. An �isolated basket�will be a set of

groups of goods where for each group g in the basket the vig can be nontrivial functions only

of goods in the groups the basket contains. De�ne h : RL+ ! R to be variable on group

g if there is a pair x; y 2 RL+ such that xg0 = yg0 for each g0 6= g and h(x) 6= h(y).

De�nition The nonempty pairwise-disjoint subsets of groups B1; :::;Bn � G form isolated

baskets if, for each Bj, (i) any vig 2 V ig , where g 2 Bj and i 2 I, is variable only on a

nonempty set of goods in the groups in Bj and (ii) no nontrivial partition of Bj has cells

that satisfy (i).

A model
�
V ig
�
i2I;g2G has a unique family of isolated baskets, which may consist of just

one basket.14 Each Bj in a family de�nes a corresponding set of objective functions, theP
i2I v

i
g such that g 2 Bj and vg 2 Wg, that are variable only on groups drawn from the same

basket. Separability is the prominent example. Each
P

i2I v
i
g then varies only as a function

of x1g; :::; x
I
g while the remaining

P
i2I v

i
g0, g

0 6= g, are constant in these variables: each group

g by itself forms an isolated basket. As the extent of nonseparabilities in consumption

increase from the �oor given by separability, the sizes of the isolated baskets increase in

tandem.

In general equilibrium theory, nontrivial isolated communities cause the dimension of the

Pareto e¢ cient allocations to fall below the number of individuals minus 1. The individ-

uals in each isolated community form a free-standing economic model and the dimension

of the Pareto e¢ cient allocations for this community equals the number of individuals in

the community minus 1. The dimension of the optima for the uni�ed model then equals

the sum of the community-speci�c dimensions, which must be less than the total number of

individuals minus 1. For example, with two communities of I1 and I2 individuals, where

I1 + I2 = I, the dimension of the optima will equal I1 � 1 + I2 � 1 < I � 1. In our model,

where groups play the role of individuals, this accounting continues to hold: the dimension of

the group-unanimity optima will fall below G� 1 when some of the isolated baskets contain

more than one group. Theorem 2 is a case in point.
14The family need not form a partition of G: if, for some g 2 G and every i 2 I, vig 2 V ig is a constant

function then g is not an element of any basket.
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It will be easier to work directly with welfare vectors for the group utilitarian orderings

rather than the allocations that give rise to those vectors, which will also allow us to drop

the strict concavity assumption. Given W, �x an arbitrary vg =
�
v1g ; :::; v

I
g

�
2 Wg for each

g 2 G. The set of feasible welfare vectors is

W = fw 2 RG : there exists x 2 F such that
X
i2I
vig(x

i) = wg for g 2 Gg

and the set of optimal welfare vectors is

WO = fw 2 W : there does not exist x 2 F such that
X
i2I
vig(x

i) � wg for g 2 G

and with strict equality for some g 2 Gg.

Any change in the choice of vg 2 Wg will only rescale the vectors in W and WO and/or

change each coordinate by a constant, leaving the dimension of the sets una¤ected.

If we were to assume that the vig are strictly concave (on the variables x
i(k) that a¤ect

vig) then, for each w 2 WO, there would be only one feasible allocation that achieves w, that

is, one x 2 F such that
P

i2I v
i
g(x

i) = wg for g 2 G. The dimension of the optimal welfare

vectors would then coincide with the dimension of the group-unanimity optimal allocations

which in turn must be at least as great as the dimension of the utilitarian optimal allocations.

Think of the contract curve of an Edgeworth box and its utility possibility frontier: under

strict concavity both are one-dimensional.15

Theorem 3 Suppose, for any group g and individual i, that each vig 2 V ig is continuous and

there are n isolated baskets with d1; :::; dn groups. Then the set of optimal welfare vectors is

contained in a set of dimension
Pn

j=1(dj � 1), a number that cannot exceed G� 1.

The dimensional expansion of the set of optimal welfare vectors thus depends on the

sizes of the isolated baskets, which in turn depend on the extent of the nonseparabilities in

consumption and on the sizes of the groups. The worst case, where the dimension of the

15The set WO, however, need not be a manifold which stops us from pinning down the dimension of the
set of optimal allocations.
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optimal welfare vectors reaches L � 1, occurs when the entire set of goods forms the sole

isolated basket and each good is a singleton group. Even here the utilitarian optima have not

undergone the L(I � 1) explosion of dimensionality that occurs for the Pareto optima when

preferences are incomplete (see section 2). If, as one presumes in market settings, the number

of individuals is larger than the number of goods, I > L, then with incomplete preferences

the dimension of the utilitarian optimal welfare vectors will be less than the dimension of

the utility possibility frontier that obtains when preferences are complete. Moreover with

incomplete preferences the Lebesgue measure of the Pareto optima will typically be positive

while the Lebesgue measure of the utilitarian optima will typically be 0.

Theorem 2 is not a corollary of Theorem 3, �rst due to our transition to welfare vectors

and second since Theorem 3 states only that when each dj = 1 the set of optima is a discrete

set of points (a 0-dimensional set) rather than a single point.

5 Utilitarian versus Pareto optimality

Utilitarian optima can fail to be Pareto optimal when individual preferences are given by

the %i. A utilitarian planner weights an individual i�s utility for group g according to

the planner�s judgment about the satisfaction i derives from g and that weighting might

not be compatible with the weightings implicit in %i. For example, suppose there are two
individuals a and b, two goods each of which forms a group, and that utilities are separable

and di¤erentiable. LetW1 place equal weight on va1 and v
b
1 and letW2 place equal weight on

va2 and v
b
2 which, with strictly concave utilities that coincide across individuals, would lead

to a utilitarian optimum where xa = xb. Depending on the %i, Pareto improvements may
be possible. If, at some frame f , the va 2 Vaf assigns weights 2 and 1 respectively to va1 and

va2 while v
b 2 Vbf assigns weights 1 and 2 to vb1 and vb2 then the marginal rates of substitution

of the agents at f cannot align at the utilitarian optimum.16 Some transfer between the

individuals will therefore deliver a Pareto improvement for %af and %bf . Whether each

individual i is %i-better o¤with this transfer will depend on the diversity they display across
frames. But if at every frame each individual places nearly the same relative weights on the

16If Dva1 (x
a
1) = Dv

b
1(x

b
1) and Dv

a
2 (x

a
2) = Dv

b
2(x

b
2) then

2Dva1 (x
a
1 )

Dva2 (x
a
2 )
6= Dvb1(x

b
1)

2Dvb2(x
b
2)
.
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utilities for goods then both individuals�behavioral preferences will back the transfer.17 As

this example suggests, both the compatibility and incompatibility of utilitarian and Pareto

optimality are robust possibilities.

For the orthodox utilitarian, a failure of utilitarian optimality to achieve Pareto optimality

is not a problem: the planner�s judgments take precedence over the agents. The hyperbolic

discounting example in section 4 is a case in point. In the pre-WWII heyday of utilitarianism,

it was common to hold that impatience and discounting amounted to failures of rationality

�an o¤ense �against the rules of economic reason�in Schumpeter�s words (1912, p. 35). A

utilitarian planner therefore might well ignore individuals�time preferences altogether and,

for every date t, use the same cardinal selection Wt from V 1t � :::� V It .

Whether or not utilitarian-Pareto con�icts are problematic, planners might want to avoid

them. A liberal planner could deliberately choose weights on an individual�s utility for groups

to match the individual�s weights. Or the planner could just choose W and a utilitarian

optimum x such that x is Pareto optimal. Since this choice would impose an additional

restriction beyond utilitarian optimality, it will not expand the set of optima.

More productively, I show that the potential for a clash between utilitarian and Pareto

optimality diminishes as preference incompleteness increases. First I de�ne what it means

for a liberal planner to match the weights of an incomplete preference.

De�nition 3 Given V i for i 2 I, preference compatibility is satis�ed for W if there

exists v 2 W such that vi 2 V i for i 2 I.

Suppose that we now adjust the preferences, letting them get progressively more incom-

plete by expanding the selections V i that de�ne the %i while keeping the sets V ig and the
selection W �xed. If each selection V i is large enough �there is enough incompleteness

�then preference compatibility must be satis�ed. In particular, when V i = V i1 � ::: � V iL
for each i, any W is preference compatible: with su¢ cient incompleteness, every planner

becomes a liberal. As we will see, if incompleteness is in this sense su¢ ciently substantial

and separability holds then any utilitarian optimum will be Pareto optimal.

17This argument bears some similarity to the di¢ culties of implementing Pareto e¢ cient outcomes with
separable preferences identi�ed by Le Breton and Sen (1999).
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It�s worth pausing to consider the other extreme: if each V i is a cardinal selection from

V i1 � ::: � V iL, which implies that the %i generated by V i is complete, then preference com-
patibility e¤ectively eliminates a planner�s ability to specify the Wg independently. Given

V ig for i 2 I and g 2 G, de�ne group g0 to be nontrivial if each V ig0 contains nonconstant

functions.

Proposition 2 If each V i is a cardinal selection then, given Wg0 for some nontrivial group

g0, there is only one Wg for each g 6= g0 such that W satis�es preference compatibility.

As one would expect, the combination of preference compatibility and complete preferences

will sti�e a planner�s latitude to impose interpersonal comparisons.

The Pareto optimality of an allocation x has the standard de�nition: x 2 F and there

does not exist y 2 F such that yi %i xi for all i 2 I and yj �j xj for some j 2 I, where each
%i is generated by V i.
Whether preference compatibility holds due to preferences being substantially incomplete

or the careful choice of a liberal planner, the assumption is not quite enough to guarantee

that utilitarian optima are Pareto optimal. The following example, driven by a failure of

separability, illustrates.

Example Suppose there are two individuals a and b and two goods, each of which is a

group, and de�ne

va1(x
a
1; x

a
2) = lnxa1 + 2 lnx

a
2, v

a
2(x

a
1; x

a
2) = 2 ln x

a
1 + lnx

a
2,

vb1(x
b
1; x

b
2) = 2 ln xb1 + lnx

b
2, v

b
2(x

b
1; x

b
2) = lnx

b
1 + 2 lnx

b
2.

Let these four functions be the pro�le given by preference compatibility. For each i, one

of the vi1 + v
i
2 formed by the v

i 2V i is then lnxi1 + lnxi2. So, if V i is a cardinal selection

the %i it generates is the complete preference represented by lnxi1 + lnxi2. If e1 = e2 (the

Edgeworth box is square) it is then easy to con�rm that the Pareto optima satisfy xi1 = x
i
2

for i = a; b (the 45� line). On the other hand, the planner�s good 1 objective function is

lnxa1 + 2 ln x
a
2 + 2 ln x

b
1 + lnx

b
2 which is maximized subject to the resource constraints at the

allocation xa = (1
3
e1;

2
3
e2), xb = (23e1;

1
3
e2). Since this allocation is the unique global optimum
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for the good 1 objective function, it must be a utilitarian optimum whenW is group-agnostic.

�

The problem in the Example is that each individual i�s utility for one good is a¤ected by i�s

consumption of the other good and though this �side e¤ect�is cancelled in the construction

of %i by i�s utility for the other good, the cancellation does not enter into the planner�s
maximization of the good 1 objective function. Separability blocks this path for trouble.

Theorem 4 If separability is satis�ed, W is preference compatible, and any vig 2 V ig is

strictly concave on g for all g and i, then any utilitarian optimum is Pareto optimal.

Proof. Suppose x Pareto dominates y: xi %i yi for all i 2 I and xj �j yj for some j 2 I,
where each %i is generated by V i. Then for the (vi1; :::; viG) 2 V i, i 2 I, given by preference
compatibility,

P
g2G v

i
g(x

i) �
P

g2G v
i
g(y

i) for all i 2 I. Due to strict concavity, the z

de�ned by zi = 1
2
xi + 1

2
yi for each i 2 I satis�es

P
g2G v

i
g(z

i) �
P

g2G v
i
g(y

i) for all i and,

since xj 6= yj,
P

g2G v
j
g(z

j) >
P

g2G v
j
g(y

j). Hence
P

i2I
P

g2G v
i
g(z

i) >
P

i2I
P

g2G v
i
g(y

i).

But if x is feasible then y cannot be a utilitarian optimum: if it were then y and hence z would

be feasible, by Proposition 1 separability would therefore imply
P

i2I v
i
g(y

i) �
P

i2I v
i
g(z

i)

for each g 2 G, and hence
P

g2G
P

i2I v
i
g(y

i) �
P

g2G
P

i2I v
i
g(z

i), a contradiction. Any

utilitarian optimum is therefore Pareto optimal.

In the absence of separability, utilitarian-Pareto disagreements will still typically dis-

appear as preference incompleteness increases. Call y a maximum for bv if y is feasible
and X

i2I

X
g2G

bv ig(yi) �X
i2I

X
g2G

bv ig(xi)
for any feasible x. Proposition 3 in Appendix A shows that it will normally be the case

that a utilitarian optimum is a maximum for some bv 2 W. Comparably to utilitarian-

Pareto clashes under separability, it may well be that some bv i will fail to be in individual
i�s selection V i. But if we again let preferences become more incomplete by expanding the

selection V i then eventually V i will contain bv i for each i. The following Theorem implies that
there will then be no utilitarian-Pareto disagreements. De�ne vig : RL+ ! R to be strictly

coordinately concave if it is strictly concave on the variables that a¤ect vig, that is, there

25



is a nonempty set of coordinates K � L such that, for all xi 2 RL+, vig is strictly concave on�
yi 2 RL+ : yi(k) = xi(k) for k =2 K

	
and constant on

�
yi 2 RL+ : yi(k) = xi(k) for k 2 K

	
.

Theorem 5 If y is a maximum for bv, where bv i 2 V i for each i, and vig 2 V ig is strictly
coordinately concave for each g and i, then y is Pareto optimal.

Proof. Since y is a maximum for bv ,Pi2I
P

g2G bv ig(yi) �Pi2I
P

g2G bv ig(zi) for any feasible
z. But, as in the proof of Theorem 4, if the feasible x Pareto dominates y then, for the

feasible z de�ned by zi = 1
2
xi + 1

2
yi for each i,

P
i2I
P

g2G bv ig(zi) >Pi2I
P

g2G bv ig(yi).
6 Conclusion

The métier of utilitarianism is the division of a resource among competing individual claims.

It is accordingly the precision of decisions about the optimal distribution of goods that is

compatible with the incompleteness of individual preferences. The theory provided here

o¤ers no help for nondistributive decisions that individuals themselves do not know how to

make. If each individual cannot decide how much current output should be invested in the

future �how much consumption should be sacri�ced to lessen carbon pollution? �then a

utilitarian planner will likely also be unable to judge those trade-o¤s. But the incompleteness

of preferences that inevitably accompanies challenging decisions, such as carbon pollution,

need not interfere with distributive decision-making: utilitarian advisors can recommend

how to divide up any given stock of goods.

Appendix A: Further results

Generatable preferences

Any %i that has a utility representation u can be generated by some V i regardless of the
partition of groups G: set V ig = fau+ b : a 2 R++; b 2 Rg for each g 2 G and let V i be
any selection from V i1 � ::: � V iG. At the other end of spectrum, as long as L > 1 we
can admit the extreme incomplete preference relation %i that orders no pair of distinct
bundles: letting u satisfy u(xi) = u(yi) if and only if xi = yi (see Mandler (2015)), set V if1g =
fau+ b : a 2 R++; b 2 Rg, V if2;:::;Lg = f�au+ b : a 2 R++; b 2 Rg and V i = V i1 � ::: � V iG.
Less dramatically, we can admit the %i with xi %i yi if and only if xi � yi by setting
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G = ff1g; :::; fLgg, V ifkg = fahk + b : a 2 R++; b 2 Rg for each good k, where hk : RL+ ! R
is de�ned by hk(xi) = xik, and V i = V if1g � :::� V ifLg.
Utilitarian optima maximize a social welfare function

We show that the assumption that a utilitarian optimum is a maximum for some
�bv ig�g2G;i2I

is mild. Call the utilitarian optimum x interior if
P

i2I v
i
g(x

i) >
P

i2I v
i
g(0) for each g 2 G,

where (v1g ; :::; v
I
g) 2 Wg for each g. De�ne the function vig to be strongly increasing if

xi � yi and xi 6= yi imply vig(xi) > vig(yi).

Proposition 3 If each vig 2 V ig is concave and strongly increasing for all i and g and if x is
an interior utilitarian optimum then there exists

�bv ig�g2G;i2I, where each bvg 2 Wg, such that

x is a maximum for
�bv ig�g2G;i2I.

Proof. Letting x be a utilitarian optimum, Proposition 1 implies x is a group-unanimity
optimum. Hence, for each k, x is a solution to maxy

P
i2I v

i
g(y

i
g) s.t.

P
i2I v

i
g0(y

i
g0) �P

i2I v
i
g0(x

i
g0) for each g

0 2 Gnfgg,
P

i2I y
i
g � eg for each g 2 G, and y � 0, where (v1g ; :::; vIg) 2

Wg. Due to the strong increasingness and interiority assumptions there is a y0 such that each
inequality constraint is slack. Hence the Slater (1950) constraint quali�cation is satis�ed
(Boyd and Vandenberghe (2004, 5.2.3 and 5.3.2)) and hence there exist �gg0 � 0 for g0 2 Gnfgg
such that X

i2I
vig(x

i
g) +

X
g02Gnfgg

�gg0
X
i2I
vig0(x

i
g0) �

X
i2I
vig(y

i
g) +

X
g02Gnfgg

�gg0
X
i2I
vig0(y

i
g0)

for all y. Summing over g,X
g2G

X
i2I
vig(x

i
g) +

X
g2G

X
g02Gnfgg

�gg0
X
i2I
vig0(x

i
g0) �

X
g2G

X
i2I
vig(y

i
g) +

X
g2G

X
g02Gnfgg

�gg0
X
i2I
vig0(y

i
g0)

for all y. For each g 2 G and i 2 I, set bv ig = vig +Pg02Gnfgg �
g0

g v
i
g =

�
1 +

P
g02Gnfgg �

g0

g

�
vig.

Since 1 +
P

g02Gnfgg �
g0

g does not depend on i,
�bv 1g; :::; bv Ig� 2 Wg.

Appendix B: Remaining proofs

Proof of Proposition 1. Fix some W which need not be group agnostic, let x be group-
unanimously superior to y, and set some (vg)g2G 2 W. Then

P
i2I v

i
g(x

i) �
P

i2I v
i
g(y

i) for
all g and with strict inequality for some g. Hence

P
i2I
P

g2G v
i
g(x

i) >
P

i2I
P

g2G v
i
g(y

i):
x is utilitarian superior to y. Any utilitarian optimum x is therefore a group-unanimity
optimum. If not there would be a feasible y that is group-unanimously superior to x and
hence utilitarian superior to x.
Conversely, let x be utilitarian superior to y and now assume in addition that W is

group agnostic. Fix v 2 W. Suppose for some g0 that
P

i2I v
i
g0(x

i) <
P

i2I v
i
g0(y

i). Then,
letting bv 2 W equal v except that bvig0 = �vig0 for each i, we would have Pi2I

P
g2G bvig(xi) <P

i2I
P

g2G bvig(yi) for � su¢ ciently large. Hence Pi2I v
i
g(x

i) �
P

i2I v
i
g(y

i) for each g. We
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also cannot have
P

i2I v
i
g(x

i) =
P

i2I v
i
g(y

i) for all g since then, by the assumption that each
Wg is a cardinal selection,

P
i2I
P

g2G evig(xi) = P
i2I
P

g2G evig(yi) for all (evig)(g;i)2G�I 2 W.
Hence x is group-unanimously superior to y.

Proof of Theorem 3. Label groups so that B = f1; :::; djg is an isolated basket. Given�
v1g ; :::; v

I
g

�
2 Wg, let the functions

�P
i2I v

i
g(�)
�dj
g=1

be de�ned on the goods in groups 1; :::; dj

(rather than on all L goods). Due to continuity, we may choose
�P

i2I v
i
g(�)
�dj
g=1

so that

vig(x
i) > 0 for all i, g, and xi such that 0 � xig � eg for g 2 B. It is su¢ cient to show

that the utilitarian optimal welfare vectors for each isolated basket taken as an entire model
are contained by a C0-manifold of dimension dj � 1: the utilitarian-optimal welfare vectors
in a model formed by n such isolated baskets will then be contained by a set of dimensionPn

j=1(dj � 1). Accordingly, let xi now denote
�
xig
�
g2B, and F now denote fx 2 RIdj+ :P

i2I x
i
g � eg for g 2 Bg. For positive integers l, let �l denote the l-dimensional unit

simplex
n
z 2 Rl+1+ :

Pl+1
k=1 zk = 1

o
. De�ne the set of feasible weakly optimal welfare vectors

Wweak =
n
w 2 W : there does not exist x 2 F such that

X
i2I
vig(x

i) > wg for g = 1; :::; dj
o

and the convex hull of Wweak, coWweak. Due to continuity of the vig and the compactness of
F ,Wweak and hence coWweak are compact. De�ne �weak � �dj�1 by � 2 �weak if and only if
there exist a � 0 and w 2 coWweak such that a� = w. De�ne h : �weak ! coWweak by h(�) =
maxfa� : a� 2 coWweakg. The compactness of coWweak ensures that the max is well-de�ned.

Since, for �; �0 2 �dj�1 with � 6= �0,
n
a� 2 Rdj+ nf0g : a 2 R

o
\
n
a�0 2 Rdj+ nf0g : a 2 R

o
= ?,

h is one-to-one.
To see that h is continuous and hence, since�weak is compact, that h is a homeomorphism

between�weak and h(�weak), suppose � 2 �weak and let h�ni be a sequence in�weak such that
�n ! �. For each �n there exist, by Carathéodory, w�n 2

Qdj+1
l=1 Wweak and �

�n 2 �dj+1 such

that h(�n) =
Pdj+1

l=1 w
�n(l)��n(l). Let x�n 2

Qdj+1
l=1 F satisfy

P
i2I v

i
g(x

i
�n
(l)) = w�ng (l) for

g 2 B and l = 1; :::; dj+1. SinceWweak��dj+1�
Qdj+1
l=1 F is compact, there is a subsequence of


w�n ; ��n ; x�n
�
that converges to

�
w; �; x

�
2 Wweak��dj+1�

Qdj+1
l=1 F . Restricting ourselves

to the subsequence, the continuity of the vig implies v
i
g(x

i
�n
(l)) ! vig(x

i(l)) for each i and l
and therefore limh(�n) 2 coWweak. To exclude the possibility that limh(�n) < h(�), set
�n ! � so that there is a � and a �n 2 [0; 1] for each n such that �n = �n�+(1��n)� for each
n. So then �n ! 1. For any n, the convexity of co Wweak means there is a a�n 2 co Wweak

with a � 0 such that a�n = �nh(�) + (1 � �n)h(�). Hence h(�n) � �nh(�) + (1 � �n)h(�)
and therefore limh(�n) � h(�).
The continuity of the vig and compactness of F imply that �weak is closed and the con-

vexity of coWweak imply that �weak is convex: given that �dj�1 has dimension dj � 1, �weak

is a C0-manifold with boundary of dimension no greater than dj � 1. Given that h is a
homeomorphism between �weak and h(�weak), h(�weak) is also a C0-manifold with boundary
of dimension no greater than dj�1. SinceWO � Wweak,WO is a subset of a (dj�1)-manifold
with boundary.

Proof of Proposition 2. Suppose V i for i 2 I are cardinal selections such that g0 is
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nontrivial and let W and W 0 be preference-compatible cardinal welfare selections such that
Wg0 = W 0

g0. Let vg =
�
v1g ; :::; v

I
g

�
2 Wg and v0g =

�
v10g ; :::; v

I0
g

�
2 W 0

g for g 2 G denote
the corresponding pro�les given by preference compatibility. Since vg0 and v0g0 are both
elements of Wg0, there exist a 2 R++ and b 2 RI such that vg0 = av0g0 + b. De�ningbv i = a (vi01 ; :::; vi0L)+(bi; :::; bi), we have bv i 2 V i for i 2 I (since (vi01 ; :::; vi0L) 2 V i by preference
compatibility) and bvg � (bv 1g; :::; bv Ig) 2 W 0

g for g 2 G.
Fix some i 2 I. Since vi 2 V i and bv i 2 V i there exist �i 2 R++ and �i 2 RL such

that bv i = �ivi + �i. Let x; y 2 RL+ satisfy vig0(x) 6= vig0(y). Since bv ig0 = vig0, we have
vig0(x) = �

ivig0(x) + �
i
g0 and v

i
g0(y) = �

ivig0(y) + �
i
g0 which implies (1��i)(vig0(x)� vig0(y)) = 0

and hence �i = 1. As this argument applies to each i 2 I, bvg = vg + (�1g; :::; �Ig) for each
g 2 G. Given that vg 2 Wg for each g 2 G, we have bvg 2 Wg for each g 2 G. Since
for any g 2 G and v00g 2 W 0

g, bvg 2 W 0
g implies there exist a

00 2 R++ and b00 2 RI such thatbvg = a00v00g + b00, we conclude that v00g 2 Wg.
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