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Climate change is affecting human wiedlingand is costly to mitigatd-irms will be exposed

to the costs of investing in new, clean and expensive technology and divesting old, cheap and
dirty technology(e.g., Acemoglu et al., 2016laszeldine, 2009 Customers will demand new
products and services with lower environmemtgbacts. And, suppliers will be required to
reduce the environmental impacts of the supply chain. These changes represent a new source
of risk, but also a new source of reward for firfAancial markets play an important role as
aggegrators and processasf informationand by continuouslyproducing information on

f i r emgodurego climaterisk. Carbon risk, that contains any influence on a firm of the
transitionto a green, low carbon econorgocessjs the mostimportant part of climate risk

and the focus of our paper

There are numerous national and internatioivitiatives and legislatiod addressing
climate changeOne of the most fareaching initiatives is the 21st Conference of the Parties
(COP21) in Paris 2015, which resulted in an agreement of 195 nations to limit global warming
to below 2°C above prandustrial levels (United Nations, 2013)he global commitmet to
achieving emission targets was reaffirmed with the Katowice Cli@laémge Package (United
Nations,2018).Such agreementsderlinethe worldwide commitment to actively pursue the
transition to a green, low carbon econotmtiatives such as the ERAkction Planon Financing
Sustainable Growtlassigna key role to the financial system in order to achieve the goals
make financial flows consistent with a lesarbon economyUnfortunately, there is little
comprehensive information ocarbonrisks in asset prices. Our paper fills this gapd

represents the first comprehensive study of carbon risk and reward in equities.

Numerous recent papers suggest that climate risk, of which carbon emissions are an
important factor, are price@limate isk is costly to hedge and systemdingleet al.,2018)
making understanding central to the pricing of asse@hoi, Gao, and Jiang (2018) show that

high carbon firms underperform low carbon firms during extreme heat events. Hong, Li, and

1 For instance: The EPA reports that Of@akes up 81% of emitted Green House Gases that are responsible for
trapping heat in the atmosphehgtps://www.epa.gov/ghgemissidoserviewgreenhousgasey

2 For example: EU Action Plan on Financing Sustainable Growth, Sustainable Development Goals (SDGs),
Greenhouse Gas (GHG) Protocol Corporate Accounting and Reporting Standards, Recommendations of the Task
Force on Climateelated Financial Disclosures (TCFD

3 For example: Implementations of several cap and trade emission trading schemes, e.g. in the European Union,
Canada, USA, or China, as well as national legislation, e.g. the French Energy Transition Law.



Xu (2019)demonstratehat food firms exposed to climate risks underperform in the-tang

Delis, de Greiff, and Ongena (2018) show that banks price climate policy risks in their loans
and lanks have started to develompaderpolicies on the financing of brown hossses (e.qg.,
Rainforest Action Network et al., 201®rtega and Taspinal@18, Murfin and Spiegel
(2018) and Rehse et al. (2018) portthat climate riskis priced in the real estate market.
Barnett, Brock, and Hanse(2018) demonstratetheoretically how climate uncertainty,
including climate risk,can bepriced in a dynamic stochastic equilibrium modé&lrtiger,
Sautner, and Starks (201@sults suggeshat climate concerns are an important factor in the
investment decisions of largestitutional investorsDivestment movementike the Portfolio
Decarbonization Coalition (’C) promotehedivesiture of high carbon firms maikg it more

difficult and costlierfor firms to acquire funding (e.g., Cheng et al., 2014).

Measuring carbon riskcompreheasively is a challengebecause systematic and
fundamentainformationo n  f i r mexposwes nob-existentand disclosure iseither
universally mandatory nastandardizedWe define carbon risk as the role carbon playa in
firmsd value chain, the publ andtheabilitycotapfitm o n
with respect to regulatory and technology charfgise main contribution of this papes to
developarigorous andstraightforwardcapitatmarketsmeasure of i r garban riskcarbon
betga which can be estimated absent any carbon risk informatierconstructa carbon risk
factor fibrown minus green(BMG) from over 1,600 glob# listedfirms with detailed carbon
risk informationcompiled from four major ESG databas@é categorizd firms asbrownor
greenusingyearly carbon risk score€RS. This CRSis a composite measure of three carbon
risk indicatorscapturing the impaatf the transition process on the value chaifirais (e.g.,
current emissionsput also a the public perception (response to perceived emissims)n
the adaptability of a firm (such as future carbon emissions and mitigation straté(pee¥t
the BMG factorin common asset pricing modelad $iow that itsignificantlyincreasesheir
explanatory powerThe factor will be made freely accessible so that financial market

participans will be able to measure the carbon rigkheir portfaio therebyclosingthegap in

4 Our carbon risk scoring methodology was crdate cooperation with data providers, climate consultancies,
NGOs, asset managers and central banks in a series of workslipsp#carimaproject.de/en/expertemworkshop/
andhttps://carimeproject.de/en/Zxperterworkshop/

of


https://carima-project.de/en/experten-workshop/
https://carima-project.de/en/2-experten-workshop/

measuring carbon risk asset pricesmportantly our appraoch does not rely on climate change

being real or a hoax, it merely depends on how investors perceive the associated risks.

As thetransition from a highabon economy to a low carbon economy is onga@nd
climate models and policy respsesare unclear, capital markets may not yet agree on new
equilibrium pricesDaniel, Litterman, and Wagner (2018) present a model in which climate
uncertainty is resolved over tinheading totransition period between equilibriums makg
traditional riskfactor premium argumentfficult to interpret Hence, we are not proposing a
new priced risk factor. Instead, vecumentthe timeseries and crossection ofmarket
perceived carbon risk equity prices. Weise the carbon risk factor to estimate ancaabon
betas for more than 39,000 globally listed firms. We show tlaabon betsincrease over time
andare high in South Africa, Brazil, and Cameaahd lower inEuropean countriesndJapan
As expectedtech firmshave thelowestcarbon betawhile basic material and energy firms
have the highestarbon beta

We also show that investors can achieve similar Sharpe Ratiosimitar exposures to
traditional systematic risksuch as the Fama and Frent®93) factors or to specific industries
while eliminating highcarbon betdirms from their portfoliosFroma n  a n perspestived s
we show thatarbon betas relatedtoa f i r mé s  clhdeperadent of their sxdustrg s
firms investing innnovation and clean technolggyroxied by R&D expenditures, fatmwver
carbon riskwhile firms with dirty o r i s t assets,dpeodied by property, plant and
equipment (PPE) assets, face higher carbon figking theperspective of the financial
industy, we show thatvaluations of bank&nd other financial services firms are strongly

related to thearbon risk oflomestidirms theyare likely tofinance

An interesting question is what is drivingrbon bets. We employthe methoddogy used
in Campbell (1991) and Campbell and Vuolteenaho (26®4ecomposéhe market beta of
carbon betaorted portfoliognto cashflow news(fundamental) and discoumite news (risk
premium). We showhatcarbon bet#s determinegredominantly byhecashflow component
ratherthanthe discountrate component This suggestghat during our sample perio@rmon
risk is driven by expectationsboutfuture cashflows rather tharan increase in the discount

rate investors apply tihnesecashflows.



The remainder of the paper is structured as follows: Sectooriy reviews the literature
Section 2 describes oarethodologyto quantify carbon riskia the carbon risk factor. Section
3 presents the data. In Section 4,describe and test oaarbon risk factor on relevance using
common asset pricing tesSection Seportsthe arbonbetaover time, across countries and
industriesand analyzes the drivers adrbonbeta via risk decompositiorsection 6 provides

practical implication®f thecarbon betaSection7 concludes.

1 Related literature

Literature concerned with climate finance takes on different perspectives. Strands of literature
may be concerned withclimate science,policy impacts, financial stability, investor

perspectives, anaturn implications.

Climate change will affect the entire economy and is a general source of uncertainty for
society as a whole (Stern, 2008; Weitzman, 20R€C, 208). Despite extensive analyses on
unprecedented climate events (e.g., Diffenbaugh ,€2@18) and on possible climate change
scenarios (Rogelj et al., 2018), tinensitionpathof the economy remains highly uncertan.
variety of models exist that assess the effects of global warming atotbed economy, see
for instance Stern (2007) @Mordhaus (2013). Most models translate economic activity into
greenhouse gas emissions and transform these via various functions into an estimate of
damages and mitigation costs (Nordhaus 1989@Jb, 1993; Rogel;j et al., 2013). The models
treat the atrasphere as an exhaustible resource with a fceeldonholding capacity. In order
to link science, economics, and policies of climate change, several integsatstraent
models emergahe most populaand Nobel Prizevinning modelis the Dynamic Integrated
model of Climate and the Economy (DICE; Nordhaus, 1993) and the Regional (RICE;
Nordhaus and Yang, 1996) one, respectivel vy.
find an optimal climate policy that trades off currentldature consumption in the face of

climate change effecend uncertainty

Optimal policy generally reduces to providing tax incentives for clean technologies and
taxinggreenhouse ga&SHG) emissions efficiently (Goulder and Mathai, 208@emoglu et
al., 2016, Lemoine and Rudik, 2017he effectiveness of markbased policies (Fowlie et

al., 2016), demandide solutions (Creutzig et al., 2018), or 4éxes (Mardones and Flores,



2018) is still undetermined. That these policy incursions will leavedastflows unchanged
is unlikely. The uncertainties surrounding the economics of climate claagentral to the
design of climate policies (Hsiang et al., 2017) arela key component driving climate and
carbon risk.

Dietz et al. (2016) estimate a chte value at risk model for global financial assets with
average climate risks of 1.8% (US$ 2.5 trillion) and & p@rcentile of 16.9% (US$ 24.2
trillion). Campiglio et al. (2018) highlight the relationship between climate change and global
financial stéility.

Institutional investors have been shown to increase their allocations towards sustainable
portfolios after climate change induced natural disasters (Brandon and Kriiger, 2018). Some
investors are inclined to forgo financial performance to satisfiy social preferences (Riedl
and Smeets, 2017) and activ@nership engagement and letagm investing can even lead to
improved shareholder value (Dimson et al., 200iguyen et al., 2017). Krtiger (2@&)
demonstratethat equity prices fall when firm&port negative corporate social responsibility
news of whichenvironmental news is an important subset. Flammer (2013) shows that stock
prices increase for environmentally respbles firms and Heinkelet al. (2001) in turn
demonstrate that polluting firms have lower stock prices and thus higher cost of capital due to

ethical investing.

Lastly, Oestreich and Tsiakas (2015) constiidatopeancountrys pe c i f-amousidi r t y
cl eand port f oumbersffree ansissiah altowanceshderingthe first two phases
of the EU Enission Trading Scheme (ET&hich display positive returns during those time
periods. De Haan et al. (2012) examine the relationship between corporate environmental
performance (CEPgNnd stock returns and find a negative relationship between CEP and stock
returns. Chava (2014) and El Ghoul et al. (2011) show that firms with higher carbon emissions
also have higher costs of capital. Real estate prices have been shown to be directly and
negatively related to climate change induced flooding and storms (Bernstein et al., 2018; Rehse
et al., 2018).

Our studyis closely related tthe last strand of literature and measures carbon risk with a

capitalmarketsbasedapproach. We show that carbon risk can be quantified by a traditional



asset pricing model and derive important implicationgHeruse of thearbon betas a risk

measure.

2 Carbon risk factor construction

In this section, welescribe in detaihow wequantify carbon risby our scoring concepta
three distinct risk indicatorgi) value chain(ii) public perception, anlii) adaptability. By
combining these three risk indicators, we calculate the carbon risk &R8gnabling us to
distinguish irms into brown and green. Finally,enderive the carbon risk factboom these
two types offirms using a longshort portfolio construction.

2.1 Carbon risk scoring concept

To create a longhortcarbon risk factoportfolio from the returns of browmand green
firms, wecalculatehe carbon risk ahdividual firms by caculatinga carbon risk scor€€RS.
The score is based @me three maigsomponentsf carbon risk: value chain, public perception,
and adaptability. Value chain comprises production, prosessehnology, and the supply
chain andaccounts fothe current carbon emissions of a firm. Public perceptaershow
carbon emissi ons anate parceifeiby its takehaders customers,0 |l 1 cy
investors, creditors, and supplier&flaptability captures strategies and policies that prepare a
firm for changes with respect to the price of carbon, new technologies, regudatd future

emissions reduction.

We review the financial impacts oflatedrisk indicators in the carbon, comabe social
responsibility, and ESG literatute provide further economic intuitiofor our conceptA
firmdéds value chain i s drongnidrapsitianfprocess.tPedlctiony ¢ h a
processes as well as applied technologies cannot sfamaned instantly and without high
conversion costs K(k | eapce Reichelstein, 2Qi Lyubich et al., 2018).Regulatory
interventions may provide support for required textbgcal changes (Acemoglu et al., 2012)
and prevent carbon leakage (Martin et &014). Worldwide supply chains and their
environmental impact are difficult to analyze, highly interrelated, and therefore extraordinarily

vulnerable to climate related risk sources (Faruk et al1;200 et al., 2017).



A f i r poblis perceptiorcan crete value by establishing a comprehensive reporting
system (Kruger2015 . On the one hand, a firmds perfor
negative eventsn the form ofreputational riskS.On the other hand, firms are valued higher
if they can showase their status and further action in the transition process and are thus able

to make use of positive media coverage (Cahan et al., 2015; Byun and Oh, 2018).

Stakeholders and shareholders are concerned avithf i r mdé sadaptbquidkly toy t o
deviations in the transition proces#ich may prevent underperformance due to current risks
in its own value chain or public perception (Lins et al., 2017). Investors already value
environmental corporate policies as a necessary riskeption measuré~ernando et al.,
2017).Afimds adaptability is therefore a key indi
by unexpected deviations from various carbon risk sources (Deng et al., 2013; Fatemi et al.,
2015). In this frameworlkadaptabilityfunctions as a mediator for the positioning in the value
chain and public perception categoRygure 1 illustrates tle® componentsf carbon risk

reflectedin thecarbon risk factor.
[Insert Figure 1 here.]

To compute theCRSwe first calculate the medianof each ofthe 55 carbon riskproxy
variables® We assign a value of 0 if the variable is below the median, and a value of 1 if it is
above the media®©ur logic of linking brown and green with high and IG@RSis as follows.
Facingthe uncertainties surrounding the transition process, both brown and green firms are
risky per se. Howeverf we are on the presumed path towards a green economy then brown
firms are worse off than green firms and thus, have a higher carbon risk anenrgaé\s a
consequence, 0 represents low carbon risk whereas 1 indicates high carbon risk for each
variable’ In the next step, we assign all 55 variables to their appropaabenrisk indicator.

By averaging all values within each risk indicator catggwe obtain three different subscores.

5 One recent example to be named here is the Volkswagen emissions scandal.

6 A more detailed description on the dataset used can be fowhder 3.1. For a full list of all variables and

their codes see the Internet appendix Table IA.1.

7 Each variable has been labelled in such a way that a high value represents high carbon risk and vice versa. Some
variables have been standardized, fothfer information see Section 3.



By combining themfollowing Eg. (1) we finally arrive aia CRSof each firmi in each year
t.8

CRS= 0.Vial ue €0 a8Burbl i c_Peyception (1)

) _ liAdaptahQility

I 0.Vral ue+¢t0aPBurbl [ c_Pigtr—c—e—ng—e—n
The value chain subscore has a weight of 70% irCREreflecting its relative importance.
The public perceptiosubscore carries 30% weight in 8BRS In order to take into account
the mediating role of adaptability, we subtract skhen of thetwo previous subscores up to a
third of theirvalued e pendi ng on t he f i. Annadaptabditdsulpscom bfi | i t vy
0 implies that a firm is in an exident position todealwith the transition procesfiowevera
firm may still have current and perceived carbon risk reflectatdanwo other carbon risk
indicators!! As a result, th€RSranges between 0 and 1, where 0 denotes low alethdtes
high caibon riskin the logic stated abov&Vhile the selection of variables, the determination
of risk indicators, and the aggregating weights of the subscores may seem arbitrary, the
outcomeis i) the result of a workshop with acknowledged susthaility andfinance experts
from international instutions, consultancies, universities, and NGOs we hosted for this
purpose andi) subject to data availability and the correlation structure. Moreover, the
weighting scheme has been intensively tested for robustaedsour results remain

economically the same.

2.2 Long-short factor construction

For the construction dhecarbon riskfactor, we first determinehe annualcarbon risk score

CRSfor each firm Subsequently, we followhe approach of Fama and French (1998) a

8 We calculate th€RSonly if at least 10% of all variables are available for a firm during a month to guarantee
that it is meaningful and suitable to assess a firm.

% We assume value chain to be the most important riskdtat, since production, process, and supply chain
management constitute the core of a firm. Moreover, governmental climate change related regulations are focused
predominantly on current emissions, which are part of this indicator.

10 Our results remairobust by changing the weights to 90% and 10% or 75% and 25%.

11 As a robustness check, we allow firms to reduce their combined valuearfthpublic perceptiosubscores

up to a half by their ability to adapt to the transition process. We can statel tfestults remain qualitatively

similar.
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unconditionally allocate all firms each year into six portfoli@sed on their market equity
(size) andCRSusing the median antdrcilesas breakpointgespectivelySimilar to Fama and
Frenchos (19HW)weusathavaluekightedaverage monthly returns of the
four portfoliosii s ni& li Ig h ¢ a rSh)pirbiitrgi gtk o0c & rBbl)pfins i édbhstarimon (

r i s3)pandi biilogg c a r b o nBL)rto caléulkate gubrown minus greemarbon risk
factor (BMG) following Eq. (2). ThusBMG is the return in month of a zersinvestment
portfolio which is long in high carbon risk (brown) firms and short in low carbon risk (green)

firms:
BMG= OSH+BH 0.SL+8 L) (2)

Figure 2 plots cumulative returns of the carbon risk fadd®G and the corresponding long

and short positions for the sample period from January 2010 to December 2016. The figure
shows a strong contraist the performance of the portfolios over time. While the cumulative
return of the carbon risk factor is slightpositive in the period from 2010 to the end of 2012,

the effect reverses in the period from 2013 to the end of 2015, in which the cumulative return
of the carbon risk factor drops from around +6% to ard@®o, followed by an increase to
aroundi 20% in2016. Hence, we conclude that firms with high carbon risk performed worse

in the last years than firms facing lower carbon risk.

[Insert Figure2 here.]

3 Data

For the construction of the carbon risk factwe usea distinct datasetovering 1,600 firms
and55 variables with carbonsk information. We apply this factor to a sample of more than

39,000globalfirms without any firm specific carbon risk information

3.1 Carbon risk scoresample

For the construction of the carbon risk factor, we use data from a unique datapaéd from
four major ESG databases(i) the Carbon Disclosure Project (CDP) Climate Change
questionnaire datasetj) the MSCI ESG Statdand the IVA ratings(iii) the Sustainalytics

2 Formerly KLD Stats.
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(SUST) ESG Ratings data and carbon (GHG) emissions datasefis/) émel Thomson Reuters

(TR) ESG datasét to form acarbon risk scor¢§CRS data sampleThis sample is used to
construct ouCRSand thereafter the carbon risk factor.iBtegrating the respective variables

into one consistent dataset, we create a unique dataset with firms that are part of at least one of
the datasets. Ehoverall combinedampleconsistof 41,752 firms. By merging four databases

each with different approachescollectingdata we ensure that little sedporting bias enters

our sample. We are aware that some selection bias may exist, a possibility we explore in a later
section However,by making use of databases that also engage analysts in their data collection

procedure we address this bias as aspbssible.

To quantify a firmés carbon risk we selec
variablesavailable in the combinedatset. 363 variables thereof are potentially relevant for
describing environmental issues leaving out social and governance aspects. In a next step, we
identify variables relevant for describing carbon risk. This leaves a sample of 131 variables.
After ched&ing for data availability andnformational redundancy, i.ehigh correlations

between variables, the final variable set is comprised off&on riskproxy variables*

We exclude all firms that are not identified as equity or which are not prilstay and
del ete all observations of zero returns at
account firms operating in the financial secfoin the transition process, these firms behave
quite differently from conventional ones. For example,dtrrent practice of assigniogrbon
emissions does not apply to equity financing or loans leading financial institutions to appear to
be less prone to carbon ri¥kWe conduct an analysis of the carbon risk of the financial
industry inSection6.3 usingcarbon betato provide further insights on their true carbon risk
exposureFurthermorefo ensure that the pricing of the stocks used to construcothenon
carbon risk factors relativelyinformation efficient\we set as a condition that firmsust be

part of all four datasetand provide detailed information for the majority of tabon risk

B Formerly ASSET4 ESG database.

4 We checked for empirical exclusionary criteria and used the expertise of the participants of the workshop to
derive our final variable set.

15 Technically, we eslude all firms classified with a TRBC code equal to 55.

16 There exists a separate strand of literature focusing on CSR particularly for the banking sector (e.g., Wu and
Shen, 2013; Barigozzi and Tedeschi, 2015; Cornett et al., 2016).

12



proxy variables This is a hard condition but gives us the possibility to overcome potential
biases typical within one dataset. Overall, this leads tdfioal CRSdatasampleof 1,637

globdly listedfirms.

We obtain monthly returns as well asther financial information such as the monthly
marketvalue of equityandnetsales from iomsonReuters Datastreanihe prearation of
the financial datdollows the recommendations of Ince and Porter (20B6jther,we get
monthly risk factorfrom the Kenneth R. French Data LibrarfyTable 1 reports summary
statistics for financial ahenvironmental variables of 0GR Sdatasample The average market
cgpitalization of a firm is roughly US$ 21 billion while the median is roughly US$ 8.5 billion.
Thus, the dataset includes many small and a few very large'fiffine same applies for net
sales.To avoid penalizing largBrms concerning absolutearbonemissions, energy usand

expenditures, we standardize a¥l continuous
[Insert Table 1 here.]

Besides continuous variables, the sample contains a number of déswetaaryvariables,
or variables rangingithin a preefined bandwidth, such as the dataset specific scores. For all
discrete variables, we align the direction of the variable values with a higher value standing for

a higher exposure to carbon risk.

3.2 Full sample

Apart from theCRSdatasample we use a full saple absent any fundamental carbon risk
related informatiorto show carbon riskia thecarbon betdn a broad universe of stocks
Therefore, weobtain data onhe primary major equity listings ofall global firms asof May

2018 from Morningstar DirectVe obtaina final selection of 39,53iktedfirms. A geographic

17 http://mba.tuck.damouth.edu/pages/faculty/ken.french/data_library.html#Research.

18 Compared to the NYSE breakpoint of French, our sample consists of four times larger firms regarding the
median.

19 Standardized variables fall in the following categories: 6C@missions, emgy use, environmental
expenditures, and provisions, and are marked in Table 1.

20 Note that theull dataset partially coincides with ti@RSdata sample. The level of coincidence, however, is
low at 3.82%. Alternatively, we eliminate all stocks that apfuded in theCRSdata sample from the full sample.

The results remain basically the same.

13



and sectoral breakdawcan be found in appendix Adovering botithe CRSdata sample and

thefull sample.

4 Relevanceof the carbon risk factor

In this section, w providefirst of all (i) descriptive statistics and correlations of common risk
factors. In the nextwo subsection, we demonstrat¢hat the unique characteristics of the
carbon risk factor are able to expldiil CRSdecile portfolios as well aii) single stock

returns meased byan increase in the adjusted R2.

4.1 Carbon risk factor summary statistics

To gain an economic understanding of tlagbon risk factqrTable 2 shows summary statistics
and correlationsvith traditionalrisk factors during our sample period. The average monthly
return of the carbon risk factor is negative @25%. The correlations between the carbon risk
factor and the market factor, ti&@maand French (1993) factors, and the Carhart (1997)
momentum factor aneslatively low.The correlations are low enough to assume that the carbon
risk factor possesses unique returfluencing characteristics that enhance the explanatory

power of common factor models of systematic variations in stockigetur

[Insert Table 2 here.]

4.2 CRSdecile portfolio analysis

To testif the carbon risk factois able toenhance the explanatorpwer of common factor

models we construct annually rebaland@BSdecile portfolios from the firms ithe CRSdata

sample such that decile 1 contains fines with the lowestCRSand decile 10 contains the

firms with the highesCRS We runtimes er i es regr essi o-waghtedf t he

monthly excess returns on tBarhart mode(Eq. 3) and on &ve factorCarhart +8MG model
(Eq. 4).
epi= p8 pfervi+ pdBMB+ FHMLi+ VML + 50 (3)

2l value-weighted decile portfolios show the same patterns, therefore our results remain robust.

14



ernt= p¥ pfervi+ pABMB+ FHMLi+ pHVML+ pFBMG + o0 (4)

erpt is themonthlyreturn of portfoliop in montht in excess of the riskeerate,enu; is the
monthly excess return on the global market portfolio at tji8& B andHML; are the monthly
returns on the global size and value factors (Fama and French, Y@9R) is the global

momentum factor (Carhart, 199@nd(}; is a zeremean error term.

In order to test whethd8MG is able to increase the explanation of the variation of excess
stock returns we apply thetEst on nested models (Kutner et al., 2085)he resultof the
global CRSdecile analysisre shownin Table 3 withour five factor modebn the left and
differences to th€arhart modeobn the right. The market betas are significant and close to 1

for all deciles.
[Insert Table 3 here.]

A comparison of the adjusteddkand the results of thetEst confirm hat the new carbon risk
factor significantly enhances the explanatory power of the sta@atdhrt modelespecially

for the high carbon risk portfolios. In the cas&®tSdecile 10, the adj. Rncreases ypmore

than 2 percentage pointRegarding thearbon bets, the table shows the expected pattern,

i.e. the loading increases strictly monotonically from the @©RSdecile, which displays a
significantly negative loading af0.328, to the higiCRSdecile with a significantly positive
loading of 1.019being on the same level as the market factor loading. Thus, our new carbon
risk factor delivers the expected results and significantly enhances the explanatory power of
standard common factor models. For additional details o€Rf&deciles, all differenes in

the alpha and the coefficients compared toGhehart modetare shown.

4.3 Carbon risk in single stocks

To test the relevance of the carbon risk faster compardhe results of a variety of factor
modelsusing thefull sample?® Table 4 shows theesults. For example, iow (4) of Panel A

2Two models are finestedo if one of them is a subset
23 For our regressions we use only firms with a tigeeies of at least 12 months to obtain robust results. Also, we
conduct this analysis for tHeRSdata sample only, which can be found in the Internet appendix (Table IA.2).
Results remain basically therse.
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we test if addingthe carbon risk factoto the three factorFama and Frencfil993) model
enhances t he r egacoerdirsyitoothe &est (Bh:d js i @).fThe tbur Rictor
Fama and French BMG modelyields an on average percentage pointsgher adjusted
R? than the standarthree factor modelin contrast, the&arhart modeyields an increase of
solely Q10 percentage pointsompared to thehree factor mode(row 3), illustrating the

importanceof the carbon risk factor.
[Insert Table 4 here.]

To assessthe economic importance we present comparisonacross various model
specifications with and without the carbon risk factor. For exampléhtae factor moddias

an on average 1.02ercentage gnts higher adjusted Rthan theCAPM mode] whereas a
CAPM +BMG model has an on average O@centage pointsigher adjusted R Adding the
Pastor and Stambaugh (2003) traded liquidity faéttr the Carhart modelenhances the
adjusted Ron average by 0.0dercentage poinishereas adding the carbon risk factor instead

yields an average 0.Gf®rcentage poinigcrease in R

On single stock level, @ding the carbon risk factor to the factor models significantly
enhances the explanatoryvper in about 11% to 12% of atocksin the various factor models
according to the fests. For a more detailed assessment of the impact of the carbon risk factor
on the stock returns of single firms, Panel B of Table 4 reports the number of signéatant f
betas fronourglobalfive factor modelBased on twsided ttests, 4,493 firms (11.91%) show
a significantcarbon beteon a 5% significance level. This is comparable to the number of
significantSMBbetas (4,420) and higher than the number of signifiddfit (2,590) andVML
betas (2,381). The averagarbon betas positive with 0.190verall, compared ttraditional

factorbenchmarks, our carbon risk factor performs wagjhlightingits relative inportance?®

220bt ai ned f r om:Hg/Katutiyrcllicagoboethenldlgpes.pastor/research/. We use the US traded
illiquidity factor for the global sample knowing that there is a significant number of US firms in the respective
sample. (Pastor and Stamiay2003)

25 We have carried out numerous further investigations, including a factor spanning test, a comparison of the
carbon risk factor with further prominent factors as well as latest asset pricing tests for different single and
combined test assets. ditlonally, we apply a democratic orthogonalization to make our factor perfectly
uncorrelated to the Carhart model. We provide descriptive statistics, a decile table and a comparison of common
factor models with our orthogonalized risk factors. All restdtaain robust and the carbon risk factor is essential

in asset pricing. For all those analyses see Tables 15A39.
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5 Carbon beta as a risk measure

In this section, we highlightescriptive properties andferences abouhe BMG factor and

carbon beta

5.1 Development over time country and industry exposures

We estimate firm& y ecarboh etafrom their daily returndata usingour five factor
model?® We demonstrate that thearbon betavariesover time,countries and industriesind
therebyidentify countriesas well as industries that goesitively and negativelyexposed to
carbon risk

Figure3 displays averagearbon betsof firms covered in our two sampleger time The
results show that firma the full smple have on average a higlvarbon betdghan firms
covered by th&€€CRSsample. Whether or not this is driven by strategic-disolosure or by
other characteristics of reporting versus #neporting firms is an open questioGenerally,
firms disclosing their emissions and environmental agenda might have an incentiverto repo
their actions in a more positilight. Carbon betain both samples increase in magnitude over
time. For theCRSsample the avagecarbon betancreases from0.17 at the beginning of the
sample period t00.03 in 2016. In the full sample, tlrarbonbetaincreasegrom 10.08 in
2010 to 0.08 in 2016. This positive trepdtentiallymirrors the increased awareses the

capital market, thenportance of carbon risland the increase inefprice of carboA’

[Insert Figure3 here.]

For the countrypreakdowrusing the full samplenve aggregate themarbon betaf a country as
the average of all firms operating in the respective couAsyllustrated in Figurel, carbon
betas are high irmost countries except in EuropedJapa. Thisis consistent wh theintuition
thatthe European Union i®llowing an ambitiouslimate policy e.g. with its 2030 climate
and energy framework and the EU Action PlBime countries with thenost negative exposure
to carbon risk are European countries like Italp.§63), Spain1(0.591), and Portugal
(10.505). The contry with the highest averagarbon betas South Africa (0.433), consistent

26 We use the daily carbon risk factor to estimate more stable yearly carbon betas.
2TWe can state this due to the fact that the carbon risk factor volatility remains stable over time.
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with the fact thathe countrydelays climate action on a political level (Climate Action Tracker,
2018).South Africa isclosely followed by Brazil (0.410) and Canada (0.40%e resultof
this analysiss not obviously correlated with GDP.

[Insert Figured here.]

Onindustry level, thearbon betaareas expectednd illustrated in Figurb. We find low and
negativecarbonbetas in financial services and technoldgyns, and positivecarbon bets in
industrieswith extraordinaity high carbon emissions and which greclaimed to be sensitive
to climate change and mitigation policies, i.e. the basic materials and endagy%ec

[Insert Figures here.]

Overall, he breakdown of thearbon betaover time, countriesand industriess consistent

with our expectation on how carbon risk is likely to be prié&@. show thatarbon bets of
individual firms have increased in osample periodMoreover, energy and basic materials
firms are morepositively exposed to carbon risk, i.exhibit a highercarbon betdahan the
technology secto-urthermore, the boxplots demonstrate that within industries, it is possible
to cover a larg bandwidth otarbon bets, e.g., in the Basic Materials sector we find negative
as well as positivearbon bets.

5.2 Risk decomposition ofcarbon beta

In this section, we analyzbe economic mechanisms dig the BMG factor and the market
factor broken dwn into carbon étaportfolios. Wefollow the beta decompositi@approach of

Campbell (1991)and Campbell and Vuolteenaho (200Fhe analysis is geared towards
understanding whether or changes in expectations about firafloashor changes in discount

rates is driving the BMG factor and the correlation of firms returns with market returns.

The methodlogyis based on saimple discounted cash flow modeherechanges of firm
valuesresultfrom changing expectations regarding cash flamddiscountrates.Cash flow

changeshavepermanent wealth effects anohy therefore be interpreted as fundamental re

28 Both country and industry breakdown of betas shasgically the same results for t8&Sdata sample which
can be found in Figures IA.1 and IA.2 of theemet appendix.
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evaluationgowards a new equilibriunDiscount rate changes hatemporary wealth effects

on the aggregate stock market driven by investor sentiment

We use the VAR methodologgtroduced byCampbell (1991)}o decompose thBMG
factorand assume that the data are generateaffiost-order VAR modef® For the variance
decomposition,@ mo di f y s @3 pppreacH using tBMG time series as thast
state variableWe use globaVersions of the Shiller REatio, the terrspreadand the small
stock value spreads additional state variables as @ampbell and Vuolteenaho (2004).
Table 5 wereport theabsolute and normalizedsults of the variance decompositiorBdfiG
as well as correlations between the compondit86% of the totaBMG variance can be
attributed todiscount rée newswhereas the remainir@.14% araldriven bycashflow news
This suggestghat thecarbon rsk factor is mainly determined bgxpectations about future
cashflows and not about changes in the discount rate that investors apply to thefleessh
This is consistent with the transitiolnom a brown towardga green economghat is highly
senstive to changes in technologies (investments) and customers preferences for goods and

services (revenuesy

[Insert Tables here.]

In a second testve follow Campbell and Vuolteenaho (2004) more closely decompose

market beta of carbon betasorted portfoliodnto a casklow and a discounrtate beta! In

their original paper, thauthorsapplythis approacht¢-ama and Fr Mbooktth 6 s 25
market sorted portfolios to explain the value anomalystock returns.To adopt their
methodology we construct 4@arbon betandsize sortedest asset portfolios by sorting the

over 39,000stocks of the full sample intB0 5%quantilesbased on their individuadarbon

betaand splitting eacportfolio by the stock8median market capitakation

[Insert Figure 6 here.]

2% For further details on the model specification see Appefdix

30 Campbell, Polk, and Vuolteenaho (2010) explain that movements in stock prices are either driven by the
characteristics of cash flows (fundamentals view) or by investainsent (sentiment view).

31 For this analysis, we stick to the model specification of Campbell and Vuolteenaho (2004) using the excess
market return as first state variable. Details are given in Appendix A.1. Results for the decomposition using the
carbonrisk factor as first state variable can be found in Figure A.1.
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As shown in Figure 6, the ca#low betais higher tharthe discountate betdor all portfolios
This confirms that, during our sample period, returns are driven by fundameevaluations
of investor expectations abocashflow news rather thaabout discount rategurthermore,
the discountate betas virtually the same for all 4portfolios whereas the casdlow betas
show aU-shaped patteri.his suggests théhe extreme portfoligs.e. green and brown firms,
have higher casfiow betas and are thus more exposed to foretdalre-evaluations of firm

values®?

Motivated by this finding, we evaluate the psoé cashflow and discoutirate beta risk.
Following Campbell and Vuolteenaho (2004), rational investsiould demand higher
compensatiorior fundamental and therefopermanent casfiow shocksthan for transitory
discountrateshocks In Table6, we prowde evidence in favor of this argumdmyt applying
the asset pricing models described in Campbell andlt¥¢enaho (20040 our 40carbon
betdsize sorted test asset portfolidhe pricefor cashflow beta risk in the crossection is
almost ten times higher than for discouate beta risk (15% vs.1.6% p.a. intte unrestricted
factor model) When congtining the price for the discourdte beta to the market variance
(two-beta ICAPM) the results remain economically the s&irece carbon sensitive portfolios
are predominantly prone to cabw news, we conclude that conservative investors demand
a hicherreturnfor holding those portfolios due to their risk aversion for fundamentalftash

risks.

[Insert Tables here.]

6 Practical applications of carbon beta

In this section we provide further insights into the relationship betbvaamce sheet data that
proxy for investment irtleantechnologies and stranded etssandthe carbon betaf a firm.
We also show that investors are not worse off in terms of thngirp® Ratios (SRsyhen
investing in low carbon risk portfolios holdingher factor loadings aniddustry allocations

constant. Finally, we make the case that financial services firms, and banks in particular, are

321n Figure 1A.3, we find that the extreme portfolios display higher systematic risk per se, which is primarily
driven by casHlow risk as shown in Figure.6
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more involved in financing high carbon risk firms in high carlbgk countriesthan in low

carbon risk countriegnd thus more exposed to carbon risk.

6.1 Carbonbet a from an investords perspective

Investorsweigh betweenrisk and return irtheir portfolios. To show that it is possible to
construct a portfolio with similar ris&djusted returnand similar exposure tivaditional risk
factors butiower carbon riskwe first estimate the beta loadingsooir five factor modefor

all stocks in the full sample. Then, we construeb*% conditionally sorted portfolios based
on market beta quintilespllowed by SMB beta quntiles andsubsequently byHML beta
quintiles. The resulting 125 portfolios consist of firms with similar characteristics regarding
thefactors of thefive factor modebut potentially cover a broad range with respeaaidon
beta In the following, we keep only the firms with below averagarbon bets (bestin-class)
with respect to atarbon betawithin the portfolio or only the firswith above averagarbon
betas (worstin-class). For all three casésall firms, bestin-class,and worstin-classi we
calculate equalveighted portfolio returns as well as rialljusted performance measures over

time.

The results are presented in Panel A of Tabl€he average podfio has an annual SR

of 0.44 while the low carbomisk portfolio generates a SR 0f8. This representsraeight
percentage poistsignificantly higher SR for the low carbon risk portfolithan for the high
carbon risk portfolioThe low carbon risk portfolio also exhibits lower volatility 8604 More
importantly, he carbon betalifference between the low carbon risk and the high carbon risk
portfolios is10.91, which means thaa n i n vperddios changedfrom being highly
positively correlated with carbon risk to being negatively correlated. Even though investors
change tkir exposure to carbon risk, their exposurehi® marketSMB and HML remairs

roughly the same.

[Insert Table7 here.]

In Panel B, we conduct a similar analysis using industry portfoli@etoonstrate that it is
possible to construct industry pimlios of low (bestin-class)carbon betéirms within a sector

without having significant lower returns but significantly lowelatility than that of high
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carbon betdirms (worstin-class). Panel B presents the restdtsequatweighted portfolio
returnsand riskadjusted performance measurAs investor can construct a pialio with a
significanty lower carbon betaf 1 1.03and without changing the sector allocatiorhaf or
herportfolio, but with the same SR and a significantly lower volatility @04.32 Overall, the
results suggest that investors caiangeheir carbon exposure without sacrificing exposure to

traditional risk factors or industry preferences.

6.2 Carbonbetafromananalysb s per spective

To determine influencing factors & i r acarbam bets, we conducpanel regressiaFor the
CRSdatasample, we explaitheannualarbon betasingthethree carbomisk subscores value
chain, public perceptigrand adaptabilityused to compte theCRS Further, we use specific
firm fundamentalss well asountry, industry, and time fixed effeésThe results presented
in Panel A ofTable8 showthatall subscoregre positively angignificantly correlated with

carbon bets. This suggests for instance that firms with higladue chain sudcores also have

higher carbon beta The same interpretation holds for public perception and adaptability.

Moreover higherR&D expendituresead tolowercarbon bets This reinforces the assumption
that more innovativéirms exhibitlower carbon beta On the othehand the Property, Plant,
and Equipment (PPB)ariable suggestthat firms with high PPEasset valugswvhich might

representegacyproduction equipment as well as stranded as8atyehighercarbon bets

[Insert Table &erre.]

Panel Bshows the result®r the full samplewithout the carbonrisk scoreindicators,as this
data is not available for all firm$he results hold across both samples inweatind that R&D

reduceshe carbon betaand PPE increases iTThesepanel regressions shawat thecarbon

betais partially explainedy firm characteristics related ofimé s exposure to

Thus,analysts can considearbon betas a measure to redefine their forecasts for firms and

take into account carbatsks for their valuation strategy

33 The results remairobustfor valueweighted portfolios.
34The analysis with solely the carbon risk indicators can be found in the appendix (Table A.3).
35 For a definition of stranded assets have a look at Carbon Tracker Initiative (2013).
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6.3 Carbon betas in the financial industry

Firms operating in the financial services sectlar not generally emit carbon in their daily
operations and thus aret directly exposedto carbon risk However, hey can behighly
involved in the financing oliocal firms with high carbon riskmakinga banké loan portfolio
correlated with carbon riskio study this relationshipwe conduct an analysts the carbon
betaof banks and otheinancial services firm our full sample conditionalon thecarbon
betaof the country in which they agomiciled By dividing courtries according to the average
carbon betaf all their firms into two groupswe identify high and low carbon risk countries
(CRQ. In Table9 Panel Aresults of &CRCdivision by terciless shown

[Insert Table %here.]

A bank in dow CRChas on averageaarbon betaf 1 0.337. In comparison with AighCRC,

it hasa significanly lower carbon betaf 1 0.587.A bank in a middl€€RChas a lowecarbon
betathanin a high CRC but a highercarbon betahan a lowCRC (significant negative
difference between low and middRRCbetas) In PanelC, we use quatrtiles to highlight the
fact that the results are not conditional on datasaiting These resultsemain robust if we
use financial services firms in generadcluding banks(see Panel B and DYhrough their
financing decisionseven he financial industrys strongly affected bgarbon risk

7 Conclusion

The global economy is transitioning from a high carpasito a low carborfuture Some firms
are well positioned toehlwith the risk associated with the transition process, whereasother
arenot. The risk in this transition proggispresengt the irm, industry, anctountry level.

We introduce a new measure for this kind of risk, the carbon risk, whictamecarbon
beta The arbon risk factoBMG, necessary to measure ttarbon betawill be made freely
available for everybody to us&he information contained in trearbon betaan be used by
e.g.,analystsinvestorsand regulatorsAnalystscan use thearbon betato integrate readily
available information and sharpen their forecdsigestors can assess the carbon risk in their
portfolio and makgortfolio allocation decisiosnto changetheir exposure to carbon risk. We

show that thiss possible without hurting performance. Teterbon bets can also be used by
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portfolio managers tshow investors the stefisey cantake with respect to climate change.
Investors, pension fundandinsurancdirms can use this information to hedge carbon risk in
their portfolios and their operatiorfSinally, regulators and national governments asethe
carbon betdo assess the carbon risk in the economy as a whakeinformation will allow

for more direaédpolicy and for an external assessment of the carbon risk of an individual firm.

The decomposition afarbon bets into casklow anddiscountrate componestreveals
that brown and green firms, respectively, have higher-taghbetas and are thus more
exposed to fundamental -exaluations of firm valueghan to discountrate changes
Furthermore, the price for caflbw betas is highethan for discountate betas, since investors

demand a highgsremium for fundamental risks.

Carbon risk and the transition process may impact fas¥s by increasing current
expensesnvestmentsand discount rates via changes in public percepfiesessing changes
in carbon risk (betas) around regoly and policy changes & fruitful avenue of future
researchkor instancesimplecarbon bet&vent studies can be used to assess the impact of the
introduction of carbon pricing, taxation, capdtrade, R&D credit, or similar policies for the
whole economy, within an industry and for individual firrds.broadening of carbon and
environmental disclosure to make disclosure mandatory and make disclosure comparable

across jurisdictions is important.

The quantificatiorof carbon risk ishusa step towards a lowarbon futuréoy aligning the

incentives of investors, firmsegulatorsand everyone that is impacted by climate change.
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Figures and Tables

Figure 1
Carbon risk scang concept
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This figure showsur carbon risk scoreCRSg concept. It reflects the change in the climate change trans
process, which can be expressethigerisk sources, namely a change in international and national agreer
an alteration of the interests of stakeholdensl a transformation of thimancing conditions. The risk sourct
have arimpact on the value chain as wellasthe public perception of a firm, buti# mediated by the ability
to adapt to the transition proce$tie exposure to carbon risk can be measured in the volafiityransition
linked change in financing costs, cash flows, or profits.
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Figure 2
Cumulative returns ahe BMG factor ancthe long and short positions
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This figure shows cumulative returns of B®G factor and theveightedunderlying long $H+BH) and
short positions$L+BL) for the sample period from Janu&®10to December 208
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Table 1
Descriptive statistics of variables

Variable N Mean SD  Median  Variable N Mean SD  Median
Panel A.Thomson Reuters Financials Panel C. Sustainalytics
Returns (%) 76,700 0.74 9.01 0.69  Carbon Intensity 59,492 45.07 39.03 50.00
Market equity (US$ mio.) 76,700 20,959 38,749 8,557 Renewabldénergy Use 59,492 85.08 34.78  100.00
Net sales (US$ mio.) 76,405 18,528 35,278 7,643  Supplier Environmental Programme¢ 29,321 64.37 34.59 70.00
R&D (US$ mio.) 51,153 82 512 5  Sustainable Products & Services 33,978 73.55 30.90 75.00
PPE(US$ mio.) 120,554 1,068 5,782 95  Scope of GHG Reporting 58,948 28.85 37.87 0.00
Leverageratio 120,274 0.22 0.23 0.18  Environmental Policy 72,552 39.84 33.38 50.00
Book-to-marketratio 121,508 0.80 3.56 0.59  Green Procurement Policy 72,552 55.99 33.16 60.00
Cash(US$ mio.) 104,558 288 2,481 29  Renewable Energy Programmes 59,428 78.94 27.49 75.00
Return on Assets 121,481 0.04 7.07 0.03  Environmental Management Syster 72,552 25.52 30.78 20.00
Net sales full sample (US$ mio.) 121,532 2,351 10,998 294  Air Emissions Programmes 26,915 67.59 33.23 75.00
Panel B. Thomson Reuters ESG Overall ESG Score 72,552 34.22 8.66 34.38
Energy Use Tota(std.) 51,480 119,343 6,682,551 630.74 Panel D. CDP
CO; Equivalents Emission Totéstd.) 63,959 7,672 465,116 59.69 Greenhouse Gas Emissions (std.) 61,760 47,611 1,541,905 61.29
Clean Technology 72,991 0.76 0.43 1.00 Regulatory Opportunities Sources 70,670 2.64 2.37 2.00
Emission Reduction Prod. Process 72,806 0.49 0.50 0.00 Climate relatedpport Sources 70,670 1.18 1.04 1.00
Sustainable Supply Chain 72,806 0.23 0.42 0.00 Regulatory Risks Sources 70,670 1.85 1.87 1.00
Renewable Energy Use 72,806 0.32 0.47 0.00 Climate related Risks Sources 70,670 1.22 1.25 1.00
Climate Chang®isks/Opportunities 72,806 0.23 0.42 0.00 Regulatory Opportunities 62,675 0.08 0.27 0.00
Energy Efficiency Policy 72,806 0.11 0.31 0.00 Climate related Opportunities 62,648 0.14 0.34 0.00
Emission Reduction Target/Objectivv 52,780 0.03 0.16 0.00 Regulatory Risks 62,792 0.94 0.24 1.00
Energy Efficiency Target/Objective 36,525 0.05 0.22 0.00 Climate related Risks 62,720 0.81 0.39 1.00
Environmental Investments Initiative 75,350 0.33 0.47 0.00 Emission Reduction Target 6,871 0.72 1.18 0.00
Environmental Explnvestments 75,350 0.51 0.50 1.00 Disclosure Score 55,676 22.31 18.80 19.00
Environmental Expenditurgstd.) 29,999 0.01 0.04 0.00 Performance Band 58,595 4.30 2.12 3.00
Environmental Partnerships 75,350 0.76 0.43 1.00 Panel E.MSCI ESG
Environmental Provisiongstd.) 17,677 0.04 0.16 0.01  Opportunities in Clean Tech 21,758 0.66 0.47 1.00
Policy Emissions 75,350 0.89 0.32 1.00 Energy Efficiency 7,039 0.57 0.50 1.00
Environmental R&D Exp(std.) 8,881 0.09 0.01 0.09  Opportunities Renewable Energy 2,280 0.57 0.49 1.00
Emission Reduction Score 72,806 16.18 19.76 7.64  Carbon Emissions 51,357 0.48 0.50 0.00
Resource Reduction Score 72,806 16.11 19.59 7.93  Regulatory Compliance 13,137 0.10 0.30 0.00
EnvironmentaScore 72,806 16.14 19.66 7.41  Climate Change Controversies 58,358 0.03 0.18 0.00
Innovation Score 75,330 38.21 26.05 33.86  Industryadjusted Overall Score 75,171 4.25 2.30 4.20
Emissions Score 75,330 26.26 20.74 21.52 Carbon Emissions Score 63,802 2.87 2.46 2.67
Climate Change Theme Score 46,298 2.83 2.67 2.30
Environmental Pillar Score 75,146 4.32 2.03 4.40
Panel F. Morningstar
Returns (%) 2,686,759 1.13 17.08 0.00
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This table reports the descriptive statistics for all variabiébe CRSdata sample as well as for the full sample fomtegod from January 2010 to December 20d&riables
with (std.) are standardized by net salesountry and sector breakdown da@ found in appendiA.1. A list of all variable codes can be found in internet appehlik.
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Table 2

Risk factor descriptivstatistics and correlations

Meanexcess Correlations
Factor return(%) SD (%) T-stat. BMG erv SMB HML WML
BMG -0.25 1.% -1.17 1.00
efy 0.76 4.02 1.74 0.09 1.00
SMB 0.06 1.39 0.37 0.20 -0.02 1.00
HML 0.00 1.68 -0.02 0.27 0.19 -0.06 1.00
WML 0.57 2.53 2.06 -0.24 -0.20 0.00 -0.41 1.00

This table displays descriptivestatistics and correlations of the monthly risk factors of
4F Carhartmodelandthe BMG factor for the sample period from Janu2810to December 20. The factors
eny, SMB HML, WML, and the riskfree rateare provided b¥enneth French
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Table 3

CRSdecile portfolio performance

Low CRS

8
9

High CRS

5F Carhart+ BMG model

a&Carhart 4F model

Median -

CRS Alpha ey SMB HML WML BMG A?(;))Rz & Al e wr & SM & HMI & WMI ae(gng

0.24 -0.001  1.143%*= 0.142* -0.062  -0.159*** -0.328*** 95.32 -0.002  -0.003*** -0.099 -0.083*  0.036** 1.60%**
(-0.44) (39.59) (1.71) (-0.81) (-3.20) (-5.28)

0.32 0.001 1.012%** 0.105 0.018 -0.078* -0.288*** 95.61 -0.002  -0.003*** -0.087 -0.073 0.032 1.58***
(0.93) (41.12) (1.48) (0.28) (-1.84) (-5.42)

0.37 0.002**  1.028**  0.169** -0.055 -0.116** -0.143** 94.59 -0.008**  -0.002*** -0.043 -0.037 0.016==* 0.32*
(2.10) (36.86) (2.10) (-0.76) (-2.40) (-2.38)

0.42 0.001 1.046***  0.171* -0.023 -0.077 -0.096 94.06 0.00G¢ -0.00P***  -0.029=* -0.02% 0.01F 0.09
(0.45) (35.14) (1.99) (-0.30) (-1.49) (-1.50)

0.45 0.000 1.011%** 0.142 0.006 -0.101* -0.015 93.55 0.00G  0.00Q@-*** -0.00% -0.003 0.002* -0.08
(-0.32) (33.35) (1.62) (0.08) (-1.92) (-0.24)

0.49 0.001 0.945**  0.200** 0.060 -0.094*  0.127* 93.99 0.00G¢  0.00P**+*  0.038**= 0.032 -0.015** 0.26**
(0.67) (34.03) (2.49) (0.82) (-1.97) (2.11)

0.53 0.001 0.991**  0.212** -0.007 -0.074  0.415%* 94.06 0.002  0.004***  0.126**= 0.10% -0.046* 3.12%*=*
(0.57) (33.55) (2.49) (-0.09) (-1.45) (6.52)

0.58 0.000 1.084***  0.226** 0.022  -0.195*** 0.448*** 94.45 0.00F  0.0053#***  (0.13@*** 0.114  -0.050*** 2.93%**
(0.04) (34.06) (2.46) (0.26) (-3.54) (6.54)

0.64 -0.003**  1.078** 0.085 -0.035 -0.072  0.688*** 93.06 0.002**  0.00P**  0.209** 0.173 -0.07P* 6.88***
(-2.34) (30.07) (0.83) (-0.37) (-1.16) (8.90)

0.73 -0.001  1.092*** 0.214* -0.008  -0.165** 1.019*** 91.52 0.002  0.010***  0.309*** 0.258 -0.114** 12.47%**
(-0.76) (25.00) (1.70) (-0.07) (-2.18) (10.82)

This table showmonthly median carbon risk scef€CRS, alpha performancand beta coefficientsf the5F Carhart + BMG modefor annually rebalanced, equakighted decile portfolios base
on theCRSof the stocks in th€RSdata sampléor the sample period from January 2010 to December ZDb6. t he r i
+ BMG modeland the4F Carhart model *, **, *** denote significance on the 10%, 5%, and 1&wel, respectively. For alphasd beta coefficients, significance statistics are based ositled
r es p e c tTiestseoh the diffédremces aecoeff@iénts @re based orsitedl tt e st s o f

t-testsS, ®, and® denote significancen the D%, 3%, and 1%d e v e |
Significancesymbols in the last column are based on thesied Ftest for nested models ¢H p=4D).
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Table4
Comparison of commofactormodels

Panel A. Significance tests foexplanatory power of various models

Avg. e i Ftestatsign.level 5%
(%) (%)
(1) CAPM-3FFF 1.02 11.49
(2) CAPM- 2F CAPM +BMG 0.84 12.05
(3) 3FFF- 4F Carhart 0.10 5.98
(4) 3FFF- 4FFF +BMG 0.71 11.55
(5) 4F Carhart- 5F PS 0.01 5.01
(6) 4F Carhart- 5F Carhart +BMG 0.69 11.55

Panel B. Significance tests for risk factor betas for théF Carhart + BMG model

T-test of significance of coefficients

10% level 5% level 1% level
Avg. coeff.
# % # % # %
erv 0.935 24,627  65.30 21,587 57.24 15,957 42.31
SMB 0.674 7,113 18.86 4,420 11.72 1,475 3.91
HML -0.011 4,652 12.34 2,590 6.87 685 1.82
WML -0.023 4,312 11.43 2,381 6.31 586 1.55
BMG 0.190 6,824 18.09 4,493 11.91 1,892 5.02

This table provides a comparison of comnfantor models.Panel Ar e por t s

t ladj. Réetweeen

different factor models run on single stocks from fnd sample in the sample period from Janua@y 0 to

December2016 Significance statistics ateased on onsided Ftess for nested models @4 ,s4D). Panel B
shows average coefficients as well as the aibsdl#) and relative (%) numbef statistically significant bet
coefficients frombF Carhart + BMG modelregressions run on single stocks from filié samplein the sample
period Statistical significance is based on tgided ttests.The factorserny, SMB HML, andWML are providec

by Kenneth French, tHeastor Stambaugh (PS) liquidity factor is provideddboyu b o g . P8st or
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Figure 3
Carbonbetain time
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This figure showshe average annuahrbon betaf the CRSdata sample and tHall samplefor the period
from January 2010 to December 20A8.firm carbon bets are estimated based on daily return data.
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Figure 4
Carbonbeta landscape
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This figure showshe carbon betaf the full sample across the worl#Ve include all countries with at least 30 firms in our full sanmpleorrect for outliers. A
greenistcolor indicates a low averagarbon betaf the countrywhereas a deep red color states, on averaget he count r i e cdbor bete ms
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Figure 5
Carbonbetaindustrybreakdown
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This figure showsa boxplot ofthe carbon betaf thefull sample acrossectors The sectoral breakdown is based on the super sectors bfottmngstar Global Equity
Classification Structur@MGECS). The sectorare sorted in ascending order their carbon beta
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Table5
Variance decomposition

variance components

Var(Ncp) Var(NDR) 12 COV(I\bF, NDR) COI’I’(NCF, NDR)
Absolute (%) 0.0394 0.0045 -0.0057 21.44
(0.00) (0.00) (0.00) (0.01)
Normalized (%) 103.13 11.86 -14.99 21.44
(0.17) (0.02) (0.04) (0.01)

This table showthe results of the variance decomposition ofddmdon risk factofor the sample period fror
January2010 to December 2018Ve report both the absolute and normalized valuesaofances ant
covariance of theashflow news anddiscountrate newsfor the @arbon risk factor. Thetandard errors it
parenthesearecalculatedusingajackknife method
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Figure 6
Beta decomposition of 40 test assets
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This figure showshebeta decomposition of the 40 test assets built out of the full samples. Firms are sor
20 portfolios based on their individuzdrbon betgportfolio group) and then split into small abig) subsamples
with the median of the size as breakpoint. The dlasth and discountate betas are obtained by following t
methodology of Campbell and Vuolteenaho (2004).
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Table 6
Asset pricingests

unrestricted factor model two-beta ICAPM
unrestricted h=0 unrestricted h=0

RzblessRi (go) 0.003 0 0.003 0

% pa 3.837 0 3.763 0
std. error (0.004) (0.003)

I premium (@) 0.013 0.016 0.013 0.017
% pa 15.934 18.687 15.941 20.881
std. error (0.004) (0.002) (0.003) (0.001)
I premium (@) 0.001 0.008 0.002 0.002
% pa 1.571 10.054 1.907 1.907
std. error (0.012) (0.008) (0.000) (0.000)
R2 0.275 0.261 0.275 0.248

This table showpremiaestimated in the sample period from January 2010 to December 2016. Tl
asset pricing models are an unrestricted-b@ta model and a twheta ICAPM with the discousrate
beta price constrained to equal the market variance. The second column per mesgel stamel with
the zerebeta rate equaltotheriskr ee r at e ( U=0) . Bectionammegtession usin
valueweighted portfolio returns of 40 test assets basethdoon betand size. Standard errors are
from the respective crossectonal regression.

44



Table 7
Matching exposures

SR Excess returr SD Carbon beta MKTRFbeta  SMBbeta HML beta
Panel A. 125 Portfolos
All firms 0.44 0.18 0.41 -0.02 0.65 0.88 0.21
High carbon beta 0.40 0.18 0.44 0.47 0.65 0.87 0.20
Low carbon beta 0.48 0.19 0.39 -0.44 0.65 0.89 0.22
Low-High carbonbeta 0.08*** 0.01 -0.04*** -0.91%** 0.00 0.02 0.03
PanelB. 11 Industry Portfolios
All firms 0.41 0.17 0.41 0.01
Worstin-class 0.40 0.17 0.43 0.52
Bestin-class 0.43 0.17 0.39 -0.50
Bestworst 0.04 0.00 -0.04*** -1.03***

This table shows the yearly average of the Sharpe (8R9, excess returnand volatility as well as thearbon betaand theMKTRF,

SMB andHML beta of 125 portfoliogh Panel A The portfolios are conditionally constructed onMi€TRF, SMB andHML beta of all
stocks in the full sample and aggregatedatgeighted. The high (lowgarbon betaortfolios include only stocks of the original portfol
with acarbon betabove (below) its portfolio meaRor PaneB, a stock is categorized as weistclass (besin-class) if itscarbon beta
t carleon betarean I heiadudtry dassificatiomikaset! onyhé super sectors of the Morning
Global Equity Classification Structure (MGECS)**, *** denote significance on the 10%, 5%, and 1% level of th#fedences,
respectively. Significance tests are based ondided ttests.

is above (bel ow)
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Table 8
Panel rgressions

Panel A.CRSdata sample

Panel B. Full sample

()

)

(©)

(4)

()

(6)

(@)

(8)

Value Chain 0.49™ 0.19™ 0.32" 0.54™

Public Perception 0.58™ 0.23™ 0.52™ 0.60™

Adaptability 0.74™ 0.23" 0.64™ 0.69™

R&D -0.035" -0.026™ -0.060™ -0.034" -0.020™ -0.020™ -0.021" -0.021"
PPE 0.066" 0.080™ 0.058 0.066" 0.036" 0.0084 0.035™ 0.036™
Leverage Ratio 0.040" -0.029 0.060™ 0.040" 0.015" -0.0075" 0.015™ 0.015™
Book-to-market Ratio  -0.20™ 0.013 -0.22™ -0.19™ -0.16™ -0.0037 -0.16™ -0.15™
Cash 0.011 0.013 -0.0039 0.013 -0.040™ -0.0069™ -0.040” -0.038"
RoA 0.094™ -0.030" 0.073" 0.10™ -0.0033 -0.011™ -0.0043 -0.00019
Net Sales -0.0053 -0.056™ 0.033 -0.0043 -0.022™ 0.0030 -0.020” -0.021"
Country fixed effects no yes no no no yes no no
Industry fixed effects no no yes no no no yes no
Time fixed effects no no no yes no no no yes
R2 0.16 0.59 0.21 0.17 0.12 0.39 0.12 0.15
Within R2 0.064 0.14 0.16 0.0071 0.12 0.11
N 2,978 2,976 2,978 2,978 30,664 30,663 30,664 30,664

This table shows panel regressions with ¢thebon betaas the dependent variable. Standard errors are clustered on firm lev
accounting variables are logarithmized. For Panel B, we exclude all firms with a market capitalization of less than 0S$*50%*ii
denote significance on the 10%, 5%, d8dlevel, respectively. Significance tests are based orstded ttests.
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Table 9
Carbonbeta in the financial industry

High CRC  Middle CRC  Low CRC

Panel A. Bank terciles

Averagecarbon beta 0.250 0.135 -0.337
a&emiddle CRC -0.116**
eelow CRC -0.587**=* -0.472%*=

Panel B. Financialservices terciles

Averagecarbon beta 0.267 0.121 -0.305
g&emiddle CRC -0.147**
elow CRC -0.572%* -0.425%**
High CRC Q3 Q2 Low CRC

Panel C. Bank quartiles

Averagecarbon beta 0.229 0.219 -0.014 -0.459
2Q3CRC -0.009

&Q2CRC -0.242%** -0.233***

elow CRC -0.688*** -0.679*** -0.446***

Panel D. Financialservices quartiles

Averagecarbon beta 0.269 0.188 -0.020 -0.418
2Q3CRC -0.081

&Q2CRC -0.289*** -0.208***

elow CRC -0.688*** -0.606*** -0.399***

This table shows thaveragecarbon betaf banks andifiancialservices firms depending on tiearbon
betaof their domiciles. Countries are divided in terciles in Panel A and B, and in quartiles in P.
and D respectively, based on their averagebon betaBanks andinancialservices firms are identifiec
using the Morningstar Global Equity Classification Structure (MGEES¥, *** denote significance
on the 10%, 5%, and 1% level of the differences, respectively. Significance tests are basesidedt
t-tests.
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Appendix A.1

For the risk decompositionewse the VAR methodologyf Campbell (1991andassume that
the data are generated thys first-order VAR model

Q @ wy o (5)
whered is anmby-1 state vector witld 0 "O as its first elementpandw are anm-by-1
vector andn-by-m matrix of constant parameters, and is ani.i.d. m-by-1 vector of shocks.

Provided that the process in Equatidhdenerates the data, t + 1 cdlslw and discountate

news are lineaiunctions of the t + 1 shock vector

0 n  Opxd (6)

0 P P_0o (7)
where (D is a vector with the first element equal to one and the others equal to zero and
” (JO'O ” w .36

In specifying the aggregate VAR, we follow Campbell and Vuolteenaho (2004)
choosingglobal proxies fothe four state variableg-irst, we use thdog return on thearbon
risk factor(60 U YDSecond, we add thierm yield spread (TYasa weighted average of country
specific interest ratdsy Thomson Reuters DatastredfT.Y is computed as the yield difference
betweerthetenyear andhetwo-yeartreasury constashaturity rate and denotéapercentage
points.We construct our third vaable the priceearnings ratio (PE), as the log of the price of
the Thomson Reuters Equity Global Index divided by the aggregate earnings of all firms in the
index. Fourth, the sail-stock value spread (VS) the difference between the log betuk
marketvalue of thesmall highbook-to-marketportfolio and the log bocko-market value of

the smalllow-bookto-marketportfolio.®

The unexpected return variance is decomposed into three components following
Campbell (1991):

GOBO'O 0 800 Wi Usgo GWUoy C6E Bs-Hoy (8)

%6 We set’ close to one as defined in @pbell and Vuolteenaho (2004).

37 We use the weighting schemetbé MSCI World index as of the end of our sample period.

38 The portfolios are constructesing all firms in théfThomson Reuters Equity Global Index following the

approach of Fama and Frend993).

As suggested in Chen and Zhao (2009), we used several state variable sets to determine the news components.
Our results remain stable.
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For the beta decomposition, we use the same approach, however, the first state variable equals

theexcessmarket returr(i ).

For the decomposition of the market beta into a-dl@shand a discountate beta we use

the computation method of Campbell axdolteenaho (2004):

. 6 € bphy (10
h Wil f O 1
6£0rh 0 (11)

wherel j is the return of a specific test asset.

The decomposition for the 40 test assets basazhdion betand size is shown in Table

A.1l. and graphically in Figure 6.
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Table A.1
Beta decomposition of test assets

CAPM Beta f f
Small Big Small Big Small Big
Low 1.273 1.441 1.078 1.161 0.154 0.210
(0.002) (0.002) (0.003) (0.002) (0.002) (0.002)
2 0.996 1.161 0.814 0.903 0.150 0.192
(0.002) (0.001) (0.002) (0.002) (0.002) (0.001)
3 0.924 1.078 0.751 0.805 0.140 0.216
(0.002) (0.001) (0.002) (0.002) (0.001) (0.001)
4 0.876 1.041 0.686 0.752 0.163 0.231
(0.001) (0.001) (0.002) (0.001) (0.001) (0.001)
5 0.934 0.946 0.757 0.661 0.156 0.238
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
6 0.863 0.890 0.696 0.588 0.146 0.253
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
7 0.805 0.924 0.644 0.638 0.144 0.236
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
8 0.840 0.844 0.682 0.608 0.146 0.193
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
9 0.841 0.867 0.651 0.607 0.181 0.219
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
10 0.802 0.939 0.634 0.702 0.152 0.208
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
11 0.771 0.894 0.616 0.652 0.152 0.212
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
12 0.827 0.863 0.624 0.554 0.178 0.252
(0.001) (0.002) (0.001) (0.001) (0.001) (0.002)
13 0.817 0.949 0.649 0.640 0.155 0.263
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001)
14 0.925 0.953 0.690 0.649 0.200 0.249
(0.002) (0.002) (0.002) (0.001) (0.002) (0.001)
15 0.933 0.898 0.713 0.592 0.193 0.247
(0.002) (0.002) (0.002) (0.002) (0.002) (0.001)
16 1.002 0.990 0.755 0.677 0.234 0.278
(0.002) (0.005) (0.002) (0.004) (0.002) (0.002)
17 1.072 1.098 0.807 0.789 0.252 0.249
(0.003) (0.002) (0.002) (0.002) (0.002) (0.002)
18 1.096 1.028 0.795 0.734 0.267 0.223
(0.003) (0.003) (0.002) (0.002) (0.002) (0.002)
19 1.082 1.098 0.773 0.834 0.285 0.201
(0.003) (0.002) (0.003) (0.003) (0.002) (0.002)
High 1.348 1.238 1.091 0.971 0.209 0.204
(0.003) (0.003) (0.004) (0.004) (0.003) (0.003)

This table shows the calculated cdistw (f ) and discountate beta { ) for the sample period ¢
January 2010 to December 2016 for the 40 test assets budrioon betand size. Standard errors are
parentheses and calculated by a bootstrap method conditional on the estimated news series u.
simulatons.
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Figure A.1
Beta decomposition of 40 test assets
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This figure showshe BMG beta decomposition of the 40 test assets built out of the full samples. Firr
sorted into 20 portfolios based on their individcatbon betdportfolio group) and then split into small ahidy
subsamples with the median of the size as breakpoint. Thefloashnd discountate betas are obtained |
following the methodology of Campbell and Vuolteenaho (2004).
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Appendix A.2

Table A.2
Geographic and sectoral breakdown of gldbais

Panel A.CRSdata sample

a. Geographic b. Sectoral
Country # % Sector TRBC # %
United States 418 25.53 Industrials 52 368 22.48
Japan 227 13.87 Cyclical Consumer Goods & Services 53 277 16.92
United Kingdom 193 11.79 Basic Materials 51 239 14.60
Canada 97 5.93 Technology 57 191 11.67
Australia 75 4.58 Non-Cyclical Consumer Goods & Servict 54 167 10.20
France 66 4.03 Energy 50 118 7.21
South Africa 59 3.60 Utilities 59 104 6.35
Germany 53 3.24 Healthcare 56 109 6.66
Taiwan 48 2.93 Telecommunications Services 58 64 3.91
South Korea 36 2.20
Other Europe 237 14.48
Other Asia 78 4.76
Other Americas 37 2.26
Other Australasia 13 0.79
Total 1,637 100.00 Total 1,637 100.00
Panel B. Full sample

a. Geographic b. Sectoral
Country # % Sector MGECS # %
United States 5,106 12.91 Consumer Cyclical 102 6,343 16.04
China 4,104 10.38 Technology 311 6,276  15.87
Japan 3,800 9.61 Industrials 310 6,234  15.77
India 3,569 9.03 Basic Materials 101 5,637 14.26
Canada 2,998 7.58 Financial Services 103 4,208 10.64
South Korea 1,957 4.95 Healthcare 206 2,854 7.22
Taiwan 1,860 4.70 Consumer Defensive 205 2,624 6.64
Australia 1,775 4.49 Real Estate 104 2,367 5.99
United Kingdom 1,711 4.33 Energy 309 1,560 3.95
Malaysia 951 241 Utilities 207 873 2.21
Other Europe 5,830 14.74 Communication Services 308 561 1.42
Other Asia 4,197 10.6
Other Americas 774 1.96
Other Africa 691 1.74
Other Australasia 156 0.39
Other(no_country 58 015
code available)
Total 39,537 100.00 Total 39,537 100.00

This table shows the geographic)(and sectoral breakdown . tin absolute numbers and percentages forGR&
sample(Panel A) and th&ull sample(Panel B)for the sample period from Janu&®10 to December 2018he CRS
data samplesectoral breakdown is based tre Thomson Reuters Busines$a€sification(TRBC). Thefull sample
sectoral breakdown is based on the super sectors bfah@engstar Global Equity Classification StructyMGECS).
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Table A.3
Panel rgressions

1) 2) 3) 4)
Value Chain 0.88™ 0.47*+* 0.53" 0.86™
Public Perception 0.50™ 0.043 0.56™ 0.55™
Adaptability 1.76™ 0.92%** 1.30™ 1.74"
Country fixed effects no yes no no
Industry fixed effects no no yes no
Time fixed effects no no no yes
R2 0.16 0.52 0.23 0.18
Within R2 0.054 0.100 0.17
N 6,681 6,680 6,681 6,681

This table shows panel regressions withadadon betas dependent variable i
theCRSdata sample. Standard errors are clustered on firm fe¥&l.*** denote
significance on the 10%, 5%, and 1&tel, respectively. Significance tests ¢
based on tweided ttests.
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Table IA.1
Descriptions of environmental variablesthefour ESG database

Variablename Code Variable name Code

PanelA. Thomson Reuters Panel C. CDP

Energy Use Total ENRRDPO033 Greenhouse Gas Emissions Ccs.

CO; Equivalents Emission Total ENERDPO023 Regulatory Opportunities Source CC6.1a.

Clean Technology ENPIDP066 Climaterelated OppSources CCeé.1c.

Emission Reduction Profrocess ENEROO5V Regulatory Risks Sources CCh.1a.

Sustainable Supply Chain ENRRDPO058 Climate related Risks Sources  CC5.1c.

Renewable Energy Use ENRRDPO046 Regulatory Opportunities CCe6.1.

ClimateChange Risks/Opportunities ENERDP089 Climate related Opportunities CC6.1.

Energy Efficiency Policy ENRRDP0122 Regulatory Risks CCh.1.

Emission Reduction Target/Objective ENERDP0161 Climate related Risks CC5.1.

Energy Efficiency Target/Objective = ENRRDP0192 Emission Reduction Target CC3.1.

Environmental Investments Initiatives ENERDP095 Disclosure Score Disclosure Score
Environmental Expenditurdavestm. ENERO24V Performance Band Performance Band
Environmental Expenditures ENERDPO091

Environmental Partnerships ENERDPO70

Environmental Provisions ENERDP092

Policy Emissions ENERDPO0051

Environmental R&D Expenditures ENPIDP023

Emission Reduction Score ENER

Resource Reduction Score ENRR

Environmental Score ENVSCORE

Innovation Score TRESGENPIS

Emissions Score TRESGENERS

PanelB. Sustainalytics Panel D. MSCI ESG

Carbon Intensity E.1.9 Opportunities in Clean Tech ENV-str-A

Renewable Energy Use E.1.11 Energy Efficiency ENV-str-O

Supplier EnvironmentdProgrammes E.2.1.1 Opportunities Renewable Energy ENV-str-M

Sustainable Products & Services E.3.11 Carbon Emissions ENV-str-D

Scope of GHG Reporting E.1.6 Regulatory Compliance ENV-conB
Environmental Policy E.1.1 Climate Change Controversies ENV-conF

Green Procurement Policy E.2.1 Industry-adjusted Overall Score Industryadjusted Score
Renewable Energy Programmes E.1.8 Carbon Emissions Score Carbon Emissions Score
Environmental Management System E.1.2 Climate Change Theme Score  Climate Change Thentfecore
Air Emissions Programmes E.1.3.3 Environmental Pillar Score Environmental Pillar Score
Overall ESG Score Total ESG Score

This table providewariable names anctodes of the 55 environmental variabfesm the Thomson Reuter&SG (TR) Carbon
Disclosure Project (CDP), MSCI ESG KLD (MSCI) and Sustainalytics ESG (Sd&fEsetased to construct the stock speci
carbon risk sco(CRS.
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TablelA.2
Comparison of commofactormodelsi CRSdatasample

Panel A. Significance tests foexplanatory power of various models

Avg. @& F-test at sign. level 5%
(%) (%)
(1) CAPMT 3FFF 2.15 17.23
(2) CAPM- 2FBMG 2.80 22.13
(3) 3FFF- Carhart 0.21 8.61
(4) 3FFF- 4FBMG 2.55 21.07
(5) 4F Carhart- 5F PS 0.36 5.37
(6) 4F Carhart- 5FBMG 2.62 21.67

Panel B. Significance tests for risk factor betas for thefs Carhart + BMG model

T-test of significance of coefficients

10% level 5% level 1% level
Avg. coeff.
# % # % # %
erv 1.086 1,122 74.35 1,030 68.26 864 57.26
SMB 0.122 314 20.81 211 13.98 81 5.37
HML -0.095 218 14.45 128 8.48 48 3.18
WML -0.124 245 16.24 145 9.61 43 2.85
BMG 0.227 448 29.69 345 22.86 190 12.59

This table provides a comparison of common factor models. Pameed or t s t ladi. Rabetween
differentfactor models run on single stocks from @RSdatasample in the sample period from Janu200to
December2016 Significance statistics are based on-eitked Ftess for nested models @4 ,s4D). Panel B
shows average coefficients as well as the aibsdl#) and relative (%) numbef statistically sijnificant beta
coefficients from5F Carhart + BMG modelregressions run on single stocks from @RSdatasamplein the
sampleperiod Statistical significance is based on tgided ttests.The factorsery, SMB HML, andWML are
provided by Kenneth French, tRéstor- Stambaugh (PS) liquidity factor is providedbyy b o g . P8 s t
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Table IA.3
Factorspanningtests

Dependent (1) (2) 3) (4) (5)
variable BMG erv SMB HML WML
efy 0.0095 -0.005 0.044 -0.074
(0.18) (-0.13) (1.04) (-1.15)
SMB 0.30** -0.044 -0.12 0.012
(2.07) (-0.13) (-0.96) (0.07)
HML 0.25* 0.31 -0.098 -0.53%*
(1.88) (1.04) (-0.96) (-3.30)
WML -0.11 -0.22 0.004 -0.23***
(-1.25) (-1.15) (0.07) (-3.30)
BMG 0.044 0.17** 0.17* -0.17
(0.18) (2.07) (1.88) (-1.25)
Intercept (%) -0.21 0.90** 0.10 0.14 0.58**
(-0.97) (1.99) (0.62) (0.80) (2.22)
adj. R2 (%) 9.47 0.63 0.76 18.07 15.96

This table shows the results uging four factors in regressions to explain average returns on the fifth fiarct
the sample period from Janu&§10to DecembeR016 The factorserny, SMB HML, andWML are provided by
Kenneth French, **, *** denote significance onthe 10%, 5%, andl% level respectivelyThe intercept anc
the adj. R2 are given in percenydlues are shown in brackets and based orstded ttests.
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Table IA.4
Comparing further prominent factors

Panel A. Correlations

RMW CMA I/A ROE QMJ BAB
BMG -0.07 -0.16 0.10 -0.32 -0.28 -0.33

Panel B. Factor spanning tests

Dependent (1) (2) 3) (4)
variable BMG BMG BMG BMG
e 0.049 0.010 -0.060 -0.026
(0.83) (0.16) (-0.73) (-0.50)
SMB 0.381** -0.013 0.186 0.320**
(2.35) (-0.12) (1.03) (2.26)
HML 0.463%** 0.203 0.253*
(2.77) (1.43) (1.95)
WML -0.097 -0.008
(-1.08) (-0.09)
RMW 0.350
(1.40)
CMA -0.233
(-0.95)
I/A 0.078
(0.47)
ROE -0.363**
(-2.53)
QMJ -0.205
(-1.09)
BAB -0.469*
(-2.63)
Intercept (%) -0.345 -0.382 -0.051 0.213
(-1.55) (-1.64) (-0.20) (0.81)
adj. R2 (%) 9.41 5.49 9.68 15.75

This table shows the results of using different factors in regressions to explain average féherBME factor
for the sample period from January 2010 to December 2016. The fagip®&MB HML, RMW, andCMA are
provided by Kenneth French, thi& andROEfactors are provided by Lu Zhang and (#J andBAB factors
are provided by AQR Capital Management.**, *** denote significance on the 10%, 5%, and 1% le\
respectively. The intercept and the adj. R2 are given in peteegities are shown in brackets and are base
two-sided ttests.
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Table 1A.5
Maximum Sharpeatio approach

Rank SR Reotum SD (%) Optimal weights

(%) eru SMB HML WML BMG*
1 0.32 0.35 1.06 0.17 0.14 0.17 0.34 0.18
2 0.32 0.41 1.28 0.21 0.18 0.42 0.19
3 0.31 0.44 1.37 0.24 0.16 0.40 0.20
4 0.31 0.51 1.64 0.29 0.49 0.21
5 0.31 0.43 1.37 0.24 0.11 0.16 0.49
é é é é é é é é é
22 0.17 0.68 4.01 1.00 0.00
23 0.13 0.14 1.03 0.33 0.12 0.55
24 0.13 0.16 1.22 0.38 0.62
25 0.12 0.19 1.61 0.15 0.85
26 0.03 0.05 1.39 1.00 0.00

This table shows the maximum ex post Sharpe ratios (SRs) by combining the four risk factors and the
BMG* factor for the sample period from Janua2910to December 208. The factor weightings in each ro
achieve the maximum SR. We report only tilve best and worst cases according to the maximunt B&factors
eny, SMB HML, andWML are provided by Kenneth French.
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TablelA.6
Asset pricing tests

Factormodel Me an Gs,lt?astis-,l;E:St p-value ell\(/ljje.agz Me a n SR SR?
Panel A. 5x5Size/Value Portfolios
CAPM 0.0004 1.447 0.124 0.892 0.001 0.804 0.646
CAPM + BMG 0.0006 1.359 0.169 0.896 0.001 0.794 0.630
3F 0.0000 1.701 0.050 0.964 0.001 0.888 0.789
4F + BMG 0.0001 1.612 0.071 0.964 0.001 0.882 0.778
4F 0.0001 1.438 0.131 0.964 0.001 0.854 0.729
5F + BMG 0.0001 1.382 0.159 0.965 0.001 0.850 0.722
5F 0.0001 1.242 0.249 0.965 0.001 0.831 0.691
6F + BMG 0.0001 1.120 0.355 0.966 0.001 0.809 0.655
6F 0.0001 1.178 0.302 0.966 0.001 0.825 0.680
7F + BMG 0.0001 1.082 0.394 0.966 0.001 0.807 0.652
Panel B. 5x5 Size/Momentum Portfolios
CAPM 0.0009 5.185 0.000 0.874 0.003 1.522 2.315
CAPM + BMG 0.0012 4,984 0.000 0.880 0.003 1.520 2.310
3F 0.0006 4,995 0.000 0.931 0.003 1.522 2.317
4F + BMG 0.0007 4.774 0.000 0.931 0.003 1.518 2.306
4F 0.0007 4.491 0.000 0.967 0.002 1.509 2.276
5F + BMG 0.0008 4.351 0.000 0.967 0.002 1.507 2.272
5F 0.0006 3.930 0.000 0.935 0.002 1.479 2.188
6F + BMG 0.0006 3.719 0.000 0.936 0.002 1.475 2.174
6F 0.0006 3.832 0.000 0.967 0.002 1.488 2.213
7F + BMG 0.0007 3.662 0.000 0.967 0.002 1.485 2.206
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TablelA.6cont 6d.

Factor Model Me an GRS. T.GSt p-value Mean Me a n SR SR?
statistic adj. R2

Panel C. 5x5 Size/Operating Profitability Portfolios

CAPM 0.0011 2.400 0.003 0.909 0.002 1.035 1.072
CAPM + BMG 0.0013 2.310 0.005 0.911 0.002 1.035 1.071
3F 0.0008 3.235 0.000 0.962 0.002 1.225 1.501
4F + BMG 0.0008 3.192 0.000 0.963 0.002 1.241 1.541
4F 0.0007 2.813 0.001 0.962 0.002 1.194 1.426
5F + BMG 0.0007 2.831 0.001 0.963 0.002 1.216 1.478
5F 0.0006 2.297 0.005 0.968 0.001 1.131 1.279
6F + BMG 0.0005 2.206 0.008 0.969 0.001 1.136 1.290
6F 0.0006 2.177 0.009 0.968 0.001 1.121 1.257
7F + BMG 0.0005 2.123 0.011 0.968 0.001 1.131 1.279

Panel D. 5x5Size/Investment Portfolios

CAPM 0.0008 2.050 0.013 0.909 0.002 0.957 0.916
CAPM + BMG 0.0010 1.940 0.020 0.912 0.002 0.948 0.899
3F 0.0005 2.286 0.005 0.966 0.002 1.030 1.061
4F + BMG 0.0005 2.159 0.009 0.966 0.001 1.021 1.043
4F 0.0004 1.956 0.020 0.966 0.001 0.996 0.991
5F + BMG 0.0004 1.886 0.026 0.966 0.001 0.992 0.985
5F 0.0003 1.580 0.080 0.971 0.001 0.938 0.880
6F + BMG 0.0003 1.449 0.128 0.971 0.001 0.920 0.847
6F 0.0003 1.519 0.101 0.971 0.001 0.937 0.877
7F + BMG 0.0003 1.423 0.141 0.971 0.001 0.926 0.857

This table shows the results of various asset pricing tests on four different global test assets. We include
portfolios formed on Siz®lalue, Size/Momentum, Size/Operating Profitabilignd Size/Investment from th
Kenneth French Data Library. Comparing various models with and witho@Mi&factor, better fitted model:
according to the GRS test are printed in bdlie sample period ranges from January 2010 to DecemberDiL.t
factorsery, SMB HML, WML, RMWandCMA are provided by Kenneth French.
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TablelA.7
Descriptive statisticsorthogonalized risk factors

Mean excess Correlations
Factor return (%) SD (%) T-stat. BMG e Wi SMB HML WML
BMG& -0.23 1.95 -1.10 0.9808
e wY 0.84 4.02 1.92 0.9957
S M8 0.08 1.39 0.55 0.9914
HMY 0.09 1.68 0.48 0.9537
WM Y 0.64 2.53 231 0.9758

This table displays descriptive statistics of the monthly democratically orthogonalized risk factors4bf
Carhartmodeland theBMG factor for the sample period from January 2010 to December 2016. Correlatic
reported between the orthogonalized risk factors andtiginal risk factors. Theoriginal factorsery, SMB
HML, andWML are provided by Kennethrench.
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Table 1A.8
CRSdecile portfolio performanck orthogonalized risk factors

Panel A.5F Carhart + BMG model Panel B. Decomposition of Ron deciles level
DecomposedR? Systematic Id'\?;%gﬁ::aeuc
(%) R? (%)

(1-R?) (%)

Adj. R? 2Ad |

Al p’h  ew? sMB HMFK wmlY BME e SMB HME wMmlY BMGE

(%0) (%0)
LowCRS -0.001 1.138* 0.086 0.072 -0.247** -0.241**  95.32 1.60*** 92.76 0.06 0.06 1.73 0.99 95.60 4.40
2 0.001 1.007*** 0.053 0.119* -0.169** -0.212***  95.61 1.58%* 93.59 0.03 0.23 1.04 0.98 95.88 412
3 0.002** 1.025***  0.137* 0.076  -0.209**  -0.067 94.59 0.32** 93.00 0.20 0.09 1.54 0.10 94.92 5.08
4 0.001 1.043*** 0.143* 0.106 -0.183**  -0.022 94.06 0.09 92.89 0.21 0.17 1.13 0.01 94.41 5.59
5 0.000 1.013*** 0.123 0.147* -0.215**  0.060 93.55 -0.08 91.73 0.16 0.34 1.63 0.08 93.94 6.06
6 0.001  0.953** 0.197** 0.206*** -0.223*** 0.206*** 93.99 0.26** 90.19 0.46 0.74 1.96 1.00 94.35 5.65
7 0.001 1.000** 0.247** 0.180** -0.225*** 0.482*** 94.06 3.12%* 86.78 0.64 0.49 1.74 4.76 94.42 5.58
8 0.000 1.104** 0.262*** 0.252** -0.362*** 0.539*** 94.45 2.93%+* 85.04 0.58 0.77 3.61 4.79 94.79 5.21
9 -0.003**  1.093*** 0.155 0.204** -0.256*** 0.740*** 93.06 6.88*** 82.11 0.20 0.50 1.78 8.89 93.48 6.52
HighCRS -0.001 1.122%* (0.322** (0.292%* -0.383** 1.091*** 91.52 12.47%x 71.27 0.71 0.85 3.29 1592 92.03 7.97

Panel A showshe alpha performanand beta coefficients for annually rebalanced emugadihted decilgportfolios based on the carbon risk scdE®§ of the stocks in th€RSdata sampléor the
sample periodThe risk factors are orthogonalized democratically. *, **, *** denote significance on the 10%, 5%, and 1Yetpastively. Fothealphas and beta coefficients, significance statis
are based on twsided ttests. Significance symbofsr the diffeences in adj. Rare based on the owséled Ftest for nested models ¢H ps#0). Panel B shows the decompose# of each
democratically orthogonalized risk factor for the gloB&Sdeciles. The systematic variance is the sum of all decomf®Besihereas the idiosyncratic variance equal.IThe original factors
erv, SMB HML, andWML are provided by Kenneth French.
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Table 1A.9
Comparison of common factor modelgrthogonalized risk factors

Panel A. Decomposition of R2 with orthogonalized factors on single stock level

Avg. decomposedR? (%) Avg. Avg. idiosyncratic
e w? SME HME  WMY BME systematic R(%) variance (1R?) (%)
12.31 2.30 1.73 1.87 2.42 20.63 79.37

Panel B. Significance tests for orthogonalized risk factor betas for theF Carhart + BMG model

T-test of significance of coefficients

Avg. 10% level 5% level 1% level
coeff. # % # % # %

e WY 0.922 25,370 67.27 22,428 59.47 16,819 44.60
SME 0.686 7,236 19.19 4,504 11.94 1,537 4.08
HME 0.086 4,876 12.93 2,754 7.30 786 2.08
wMLlY  -0.168 5,656 15.00 3,434 9.11 984 2.61
BME& 0.287 7,424 19.69 4,924 13.06 2,192 5.81

This table provides a comparison of common regression models with orthogonalized risk factors. Panel

the average decompos®d values of orthogonalized factors. Regressions are run basedsnGhehart + BMG

modelwith single stocks from thieill sample. Furthermore, the average systematimg the average idiosyncra
variance obtained from the systematic variance are displayed. Panel B shows average coefficients as )
absolute (#) and relative (%) nbers of statistically significant beta coefficients from the democrati
orthogonalizedF Carhart + BMGmodelregressions run on single stocks fromftiiesamplen the sample perio

from January 2010 to December 2016. Statistical significarizasisd on twesided ttests.
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Figure 1A.1
Carbonbeta landscape

fow Carbon Beta  High Carbon Beta

This figure showshecarbon betaf the CRSdatasample across the world.greenistcolor indicates a low averagarbon betaf the countrywhereas a deep red color sta
that onaveraget he count r i e cdrborfikiee ms have high
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Figure 1A.2
Carbonbetaindustrybreakdown

Consumer Cyclicals I

Industrials I

Healthcare I

Consumer Non-Cyclicals

Telecommunications Services [

— | . |

Utilities |

— | S |

Energy I

-3 -2 -1 0 1 2 3 4
Carbon Beta

This figure showghe carbon betaf the CRSdatasample acrossectors The sectoral breakdown is based onThemson Reuters Business Classification (TRBQ)e
sectorsare sorted in ascending ordsrtheir carbon beta
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Figure 1A.3
CAPM beta of 40 test assets
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This figure showghe market beta of the 40 teatsets built out of the full samples. Firms are sorted into 20 portfolios based o
individual carbon beta (portfolio group) and then split into small and medium subsamples with the median of the sizeoérst.break
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