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Climate change is affecting human well-being and is costly to mitigate. Firms will be exposed 

to the costs of investing in new, clean and expensive technology and divesting old, cheap and 

dirty technology (e.g., Acemoglu et al., 2016; Haszeldine, 2009). Customers will demand new 

products and services with lower environmental impacts. And, suppliers will be required to 

reduce the environmental impacts of the supply chain. These changes represent a new source 

of risk, but also a new source of reward for firms. Financial markets play an important role as 

aggegrators and processors of information and by continuously producing information on 

firms’ exposures to climate risk. Carbon risk1, that contains any influence on a firm of the 

transition to a green, low carbon economy process, is the most important part of climate risk 

and the focus of our paper. 

There are numerous national and international initiatives2 and legislation3 addressing 

climate change. One of the most far-reaching initiatives is the 21st Conference of the Parties 

(COP21) in Paris 2015, which resulted in an agreement of 195 nations to limit global warming 

to below 2°C above pre-industrial levels (United Nations, 2015). The global commitment to 

achieving emission targets was reaffirmed with the Katowice Climate Change Package (United 

Nations, 2018). Such agreements underline the worldwide commitment to actively pursue the 

transition to a green, low carbon economy. Initiatives such as the EU Action Plan on Financing 

Sustainable Growth, assign a key role to the financial system in order to achieve the goals and 

make financial flows consistent with a low-carbon economy. Unfortunately, there is little 

comprehensive information on carbon risks in asset prices. Our paper fills this gap and 

represents the first comprehensive study of carbon risk and reward in equities.  

Numerous recent papers suggest that climate risk, of which carbon emissions are an 

important factor, are priced. Climate risk is costly to hedge and systematic (Engle et al., 2018) 

making understanding it central to the pricing of assets. Choi, Gao, and Jiang (2018) show that 

high carbon firms underperform low carbon firms during extreme heat events. Hong, Li, and 

                                                      
1 For instance: The EPA reports that CO2 makes up 81% of emitted Green House Gases that are responsible for 

trapping heat in the atmosphere (https://www.epa.gov/ghgemissions/overview-greenhouse-gases). 
2 For example: EU Action Plan on Financing Sustainable Growth, Sustainable Development Goals (SDGs), 

Greenhouse Gas (GHG) Protocol Corporate Accounting and Reporting Standards, Recommendations of the Task 

Force on Climate-related Financial Disclosures (TCFD). 
3 For example: Implementations of several cap and trade emission trading schemes, e.g. in the European Union, 

Canada, USA, or China, as well as national legislation, e.g. the French Energy Transition Law. 
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Xu (2019) demonstrate that food firms exposed to climate risks underperform in the long-run. 

Delis, de Greiff, and Ongena (2018) show that banks price climate policy risks in their loans 

and banks have started to develop broader policies on the financing of brown businesses (e.g., 

Rainforest Action Network et al., 2017). Ortega and Taspinar (2018), Murfin and Spiegel 

(2018) and Rehse et al. (2018) all report that climate risk is priced in the real estate market. 

Barnett, Brock, and Hansen (2018) demonstrate theoretically how climate uncertainty, 

including climate risk, can be priced in a dynamic stochastic equilibrium model. Krüger, 

Sautner, and Starks (2018) results suggest that climate concerns are an important factor in the 

investment decisions of large institutional investors. Divestment movements, like the Portfolio 

Decarbonization Coalition (PDC) promote the divestiture of high carbon firms making it more 

difficult and costlier for firms to acquire funding (e.g., Cheng et al., 2014).  

Measuring carbon risk comprehensively is a challenge because systematic and 

fundamental information on firms’ carbon exposure is non-existent and disclosure is neither 

universally mandatory nor standardized. We define carbon risk as the role carbon plays in a 

firms’ value chain, the public perception of a firms carbon emissions and the ability of a firm 

with respect to regulatory and technology changes.4 The main contribution of this paper is to 

develop a rigorous and straightforward capital-markets measure of firms’ carbon risk, carbon 

beta, which can be estimated absent any carbon risk information. We construct a carbon risk 

factor “brown minus green” (BMG) from over 1,600 globally listed firms with detailed carbon 

risk information compiled from four major ESG databases. We categorized firms as brown or 

green using yearly carbon risk scores (CRS). This CRS is a composite measure of three carbon 

risk indicators capturing the impact of the transition process on the value chain of firms (e.g., 

current emissions), but also on the public perception (response to perceived emissions), and on 

the adaptability of a firm (such as future carbon emissions and mitigation strategies). We test 

the BMG factor in common asset pricing models and show that it significantly increases their 

explanatory power. The factor will be made freely accessible so that financial market 

participants will be able to measure the carbon risk of their portfolio thereby closing the gap in 

                                                      
4 Our carbon risk scoring methodology was created in cooperation with data providers, climate consultancies, 

NGOs, asset managers and central banks in a series of workshops https://carima-project.de/en/experten-workshop/ 

and https://carima-project.de/en/2-experten-workshop/. 

https://carima-project.de/en/experten-workshop/
https://carima-project.de/en/2-experten-workshop/
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measuring carbon risk in asset prices. Importantly our appraoch does not rely on climate change 

being real or a hoax, it merely depends on how investors perceive the associated risks.  

As the transition from a high carbon economy to a low carbon economy is ongoing and 

climate models and policy responses are unclear, capital markets may not yet agree on new 

equilibrium prices. Daniel, Litterman, and Wagner (2018) present a model in which climate 

uncertainty is resolved over time leading to transition periods between equilibriums making 

traditional risk factor premium arguments difficult to interpret. Hence, we are not proposing a 

new priced risk factor. Instead, we document the time-series and cross-section of market-

perceived carbon risk in equity prices. We use the carbon risk factor to estimate annual carbon 

betas for more than 39,000 globally listed firms. We show that carbon betas increase over time 

and are high in South Africa, Brazil, and Canada and lower in European countries and Japan. 

As expected, tech firms have the lowest carbon beta, while basic material and energy firms 

have the highest carbon beta. 

We also show that investors can achieve similar Sharpe Ratios with similar exposures to 

traditional systematic risks, such as the Fama and French (1993) factors or to specific industries 

while eliminating high carbon beta firms from their portfolios. From an analyst’s perspective, 

we show that carbon beta is related to a firm’s characteristics. Independent of their industry, 

firms investing in innovation and clean technology, proxied by R&D expenditures, face lower 

carbon risk while firms with dirty or “stranded” assets, proxied by property, plant and 

equipment (PPE) assets, face higher carbon risk. Taking the perspective of the financial 

industry, we show that valuations of banks and other financial services firms are strongly 

related to the carbon risk of domestic firms they are likely to finance. 

An interesting question is what is driving carbon betas. We employ the methodology used 

in Campbell (1991) and Campbell and Vuolteenaho (2004) to decompose the market beta of 

carbon beta sorted portfolios into cash-flow news (fundamental) and discount-rate news (risk 

premium). We show that carbon beta is determined predominantly by the cash-flow component 

rather than the discount-rate component. This suggests that during our sample period carbon 

risk is driven by expectations about future cash-flows rather than an increase in the discount 

rate investors apply to these cash-flows.  
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The remainder of the paper is structured as follows: Section 1 shortly reviews the literature. 

Section 2 describes our methodology to quantify carbon risk via the carbon risk factor. Section 

3 presents the data. In Section 4, we describe and test our carbon risk factor on relevance using 

common asset pricing tests. Section 5 reports the carbon beta over time, across countries and 

industries and analyzes the drivers of carbon beta via risk decomposition. Section 6 provides 

practical implications of the carbon beta. Section 7 concludes. 

1 Related literature 

Literature concerned with climate finance takes on different perspectives. Strands of literature 

may be concerned with climate science, policy impacts, financial stability, investor 

perspectives, and return implications. 

Climate change will affect the entire economy and is a general source of uncertainty for 

society as a whole (Stern, 2008; Weitzman, 2014; IPCC, 2018). Despite extensive analyses on 

unprecedented climate events (e.g., Diffenbaugh et al., 2018) and on possible climate change 

scenarios (Rogelj et al., 2018), the transition path of the economy remains highly uncertain. A 

variety of models exist that assess the effects of global warming on the global economy, see 

for instance Stern (2007) and Nordhaus (2013). Most models translate economic activity into 

greenhouse gas emissions and transform these via various functions into an estimate of 

damages and mitigation costs (Nordhaus 1991a, 1991b, 1993; Rogelj et al., 2013). The models 

treat the atmosphere as an exhaustible resource with a fixed carbon holding capacity. In order 

to link science, economics, and policies of climate change, several integrated assessment 

models emerge; the most popular and Nobel Prize-winning model is the Dynamic Integrated 

model of Climate and the Economy (DICE; Nordhaus, 1993) and the Regional (RICE; 

Nordhaus and Yang, 1996) one, respectively. The social planner’s role in these models is to 

find an optimal climate policy that trades off current and future consumption in the face of 

climate change effects and uncertainty. 

Optimal policy generally reduces to providing tax incentives for clean technologies and 

taxing greenhouse gas (GHG) emissions efficiently (Goulder and Mathai, 2000; Acemoglu et 

al., 2016, Lemoine and Rudik, 2017). The effectiveness of market-based policies (Fowlie et 

al., 2016), demand-side solutions (Creutzig et al., 2018), or CO2 taxes (Mardones and Flores, 
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2018) is still undetermined. That these policy incursions will leave firm cash-flows unchanged 

is unlikely. The uncertainties surrounding the economics of climate change are central to the 

design of climate policies (Hsiang et al., 2017) and are a key component driving climate and 

carbon risk. 

Dietz et al. (2016) estimate a climate value at risk model for global financial assets with 

average climate risks of 1.8% (US$ 2.5 trillion) and a 99th percentile of 16.9% (US$ 24.2 

trillion). Campiglio et al. (2018) highlight the relationship between climate change and global 

financial stability.  

Institutional investors have been shown to increase their allocations towards sustainable 

portfolios after climate change induced natural disasters (Brandon and Krüger, 2018). Some 

investors are inclined to forgo financial performance to satisfy their social preferences (Riedl 

and Smeets, 2017) and active-ownership engagement and long-term investing can even lead to 

improved shareholder value (Dimson et al., 2015; Nguyen et al., 2017). Krüger (2015) 

demonstrates that equity prices fall when firms report negative corporate social responsibility 

news of which environmental news is an important subset. Flammer (2013) shows that stock 

prices increase for environmentally responsible firms and Heinkel et al. (2001) in turn 

demonstrate that polluting firms have lower stock prices and thus higher cost of capital due to 

ethical investing. 

Lastly, Oestreich and Tsiakas (2015) construct European country-specific “dirty-minus-

clean” portfolios based on the number of free emission allowances during the first two phases 

of the EU Emission Trading Scheme (ETS) which display positive returns during those time 

periods. De Haan et al. (2012) examine the relationship between corporate environmental 

performance (CEP) and stock returns and find a negative relationship between CEP and stock 

returns. Chava (2014) and El Ghoul et al. (2011) show that firms with higher carbon emissions 

also have higher costs of capital. Real estate prices have been shown to be directly and 

negatively related to climate change induced flooding and storms (Bernstein et al., 2018; Rehse 

et al., 2018). 

Our study is closely related to the last strand of literature and measures carbon risk with a 

capital markets-based approach. We show that carbon risk can be quantified by a traditional 
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asset pricing model and derive important implications for the use of the carbon beta as a risk 

measure. 

2 Carbon risk factor construction 

In this section, we describe in detail how we quantify carbon risk by our scoring concept via 

three distinct risk indicators: (i) value chain, (ii) public perception, and (iii) adaptability. By 

combining these three risk indicators, we calculate the carbon risk score (CRS) enabling us to 

distinguish firms into brown and green. Finally, we derive the carbon risk factor from these 

two types of firms using a long-short portfolio construction. 

2.1 Carbon risk scoring concept 

To create a long-short carbon risk factor portfolio from the returns of brown and green 

firms, we calculate the carbon risk of individual firms by calculating a carbon risk score (CRS). 

The score is based on the three main components of carbon risk: value chain, public perception, 

and adaptability. Value chain comprises production, processes, technology, and the supply 

chain and accounts for the current carbon emissions of a firm. Public perception covers how 

carbon emissions and a firm’s carbon policy are perceived by its stakeholders (customers, 

investors, creditors, and suppliers). Adaptability captures strategies and policies that prepare a 

firm for changes with respect to the price of carbon, new technologies, regulation, and future 

emissions reduction. 

We review the financial impacts of related risk indicators in the carbon, corporate social 

responsibility, and ESG literature to provide further economic intuition for our concept. A 

firm’s value chain is highly affected by changes in the economic transition process. Production 

processes as well as applied technologies cannot be transformed instantly and without high 

conversion costs (İşlegen and Reichelstein, 2011; Lyubich et al., 2018). Regulatory 

interventions may provide support for required technological changes (Acemoglu et al., 2012) 

and prevent carbon leakage (Martin et al., 2014). Worldwide supply chains and their 

environmental impact are difficult to analyze, highly interrelated, and therefore extraordinarily 

vulnerable to climate related risk sources (Faruk et al., 2001; Xu et al., 2017). 
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A firm’s public perception can create value by establishing a comprehensive reporting 

system (Krüger, 2015). On the one hand, a firm’s performance may be affected by a crisis or 

negative events, in the form of reputational risks.5 On the other hand, firms are valued higher 

if they can showcase their status and further action in the transition process and are thus able 

to make use of positive media coverage (Cahan et al., 2015; Byun and Oh, 2018). 

Stakeholders and shareholders are concerned with a firm’s ability to adapt quickly to 

deviations in the transition process, which may prevent underperformance due to current risks 

in its own value chain or public perception (Lins et al., 2017). Investors already value 

environmental corporate policies as a necessary risk prevention measure (Fernando et al., 

2017). A firm’s adaptability is therefore a key indicator whether and to what extent it is affected 

by unexpected deviations from various carbon risk sources (Deng et al., 2013; Fatemi et al., 

2015). In this framework, adaptability functions as a mediator for the positioning in the value 

chain and public perception category. Figure 1 illustrates these components of carbon risk 

reflected in the carbon risk factor. 

[Insert Figure 1 here.] 

To compute the CRS we first calculate the medians of each of the 55 carbon risk proxy 

variables.6 We assign a value of 0 if the variable is below the median, and a value of 1 if it is 

above the median. Our logic of linking brown and green with high and low CRS is as follows. 

Facing the uncertainties surrounding the transition process, both brown and green firms are 

risky per se. However, if we are on the presumed path towards a green economy then brown 

firms are worse off than green firms and thus, have a higher carbon risk and vice versa. As a 

consequence, 0 represents low carbon risk whereas 1 indicates high carbon risk for each 

variable.7 In the next step, we assign all 55 variables to their appropriate carbon risk indicator. 

By averaging all values within each risk indicator category, we obtain three different subscores. 

                                                      
5 One recent example to be named here is the Volkswagen emissions scandal. 
6 A more detailed description on the dataset used can be found in chapter 3.1. For a full list of all variables and 

their codes see the Internet appendix Table IA.1. 
7 Each variable has been labelled in such a way that a high value represents high carbon risk and vice versa. Some 

variables have been standardized, for further information see Section 3. 
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By combining them, following Eq. (1), we finally arrive at a CRS of each firm i in each year 

t.8 

CRSi,t = (0.7 Value_Chain
i,t

 + 0.3 Public_Perception
i,t

) 

– (0.7 Value_Chain
i,t

 + 0.3 Public_Perception
i,t

)  
1 – Adaptability

i,t

3
 

(1) 

The value chain subscore has a weight of 70% in the CRS reflecting its relative importance.9 

The public perception subscore carries 30% weight in the CRS.10 In order to take into account 

the mediating role of adaptability, we subtract the sum of the two previous subscores up to a 

third of their value depending on the firm’s adaptability subscore. An adaptability subscore of 

0 implies that a firm is in an excellent position to deal with the transition process, however, a 

firm may still have current and perceived carbon risk reflected in the two other carbon risk 

indicators.11 As a result, the CRS ranges between 0 and 1, where 0 denotes low and 1 denotes 

high carbon risk in the logic stated above. While the selection of variables, the determination 

of risk indicators, and the aggregating weights of the subscores may seem arbitrary, the 

outcome is i) the result of a workshop with acknowledged sustainability and finance experts 

from international institutions, consultancies, universities, and NGOs we hosted for this 

purpose and ii) subject to data availability and the correlation structure. Moreover, the 

weighting scheme has been intensively tested for robustness and our results remain 

economically the same. 

2.2 Long-short factor construction 

For the construction of the carbon risk factor, we first determine the annual carbon risk score 

CRS for each firm. Subsequently, we follow the approach of Fama and French (1993) and 

                                                      
8 We calculate the CRS only if at least 10% of all variables are available for a firm during a month to guarantee 

that it is meaningful and suitable to assess a firm. 
9 We assume value chain to be the most important risk indicator, since production, process, and supply chain 

management constitute the core of a firm. Moreover, governmental climate change related regulations are focused 

predominantly on current emissions, which are part of this indicator. 
10 Our results remain robust by changing the weights to 90% and 10% or 75% and 25%. 
11 As a robustness check, we allow firms to reduce their combined value chain and public perception subscores 

up to a half by their ability to adapt to the transition process. We can state that all results remain qualitatively 

similar. 
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unconditionally allocate all firms each year into six portfolios based on their market equity 

(size) and CRS using the median and terciles as breakpoints, respectively. Similar to Fama and 

French’s (1993) value factor HML, we use the value-weighted average monthly returns of the 

four portfolios “small–high carbon risk” (SH), “big–high carbon risk” (BH), “small–low carbon 

risk” (SL), and “big–low carbon risk” (BL) to calculate our brown minus green carbon risk 

factor (BMG) following Eq. (2). Thus, BMGt is the return in month t of a zero-investment 

portfolio which is long in high carbon risk (brown) firms and short in low carbon risk (green) 

firms: 

BMGt = 0.5 (SHt + BHt) −  0.5 (SLt + BLt) (2) 

Figure 2 plots cumulative returns of the carbon risk factor BMG and the corresponding long 

and short positions for the sample period from January 2010 to December 2016. The figure 

shows a strong contrast in the performance of the portfolios over time. While the cumulative 

return of the carbon risk factor is slightly positive in the period from 2010 to the end of 2012, 

the effect reverses in the period from 2013 to the end of 2015, in which the cumulative return 

of the carbon risk factor drops from around +6% to around –30%, followed by an increase to 

around –20% in 2016. Hence, we conclude that firms with high carbon risk performed worse 

in the last years than firms facing lower carbon risk. 

[Insert Figure 2 here.] 

3 Data 

For the construction of the carbon risk factor, we use a distinct dataset covering 1,600 firms 

and 55 variables with carbon risk information. We apply this factor to a sample of more than 

39,000 global firms without any firm specific carbon risk information. 

3.1 Carbon risk score sample 

For the construction of the carbon risk factor, we use data from a unique dataset compiled from 

four major ESG databases; (i) the Carbon Disclosure Project (CDP) Climate Change 

questionnaire dataset, (ii) the MSCI ESG Stats12 and the IVA ratings, (iii) the Sustainalytics 

                                                      
12 Formerly KLD Stats. 
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(SUST) ESG Ratings data and carbon (GHG) emissions datasets, and (iv) the Thomson Reuters 

(TR) ESG dataset13 to form a carbon risk score (CRS) data sample. This sample is used to 

construct our CRS and thereafter the carbon risk factor. By integrating the respective variables 

into one consistent dataset, we create a unique dataset with firms that are part of at least one of 

the datasets. The overall combined sample consists of 41,752 firms. By merging four databases 

each with different approaches in collecting data we ensure that little self-reporting bias enters 

our sample. We are aware that some selection bias may exist, a possibility we explore in a later 

section. However, by making use of databases that also engage analysts in their data collection 

procedure we address this bias as best as possible. 

To quantify a firm’s carbon risk we select relevant variables from a total of 785 ESG 

variables available in the combined dataset. 363 variables thereof are potentially relevant for 

describing environmental issues leaving out social and governance aspects. In a next step, we 

identify variables relevant for describing carbon risk. This leaves a sample of 131 variables. 

After checking for data availability and informational redundancy, i.e. high correlations 

between variables, the final variable set is comprised of 55 carbon risk proxy variables.14 

We exclude all firms that are not identified as equity or which are not primary listed and 

delete all observations of zero returns at the end of a stock’s time series. We do not take into 

account firms operating in the financial sector.15 In the transition process, these firms behave 

quite differently from conventional ones. For example, the current practice of assigning carbon 

emissions does not apply to equity financing or loans leading financial institutions to appear to 

be less prone to carbon risk.16 We conduct an analysis of the carbon risk of the financial 

industry in Section 6.3 using carbon betas to provide further insights on their true carbon risk 

exposure. Furthermore, to ensure that the pricing of the stocks used to construct the common 

carbon risk factor is relatively information efficient, we set as a condition that firms must be 

part of all four datasets and provide detailed information for the majority of the carbon risk 

                                                      
13 Formerly ASSET4 ESG database. 
14 We checked for empirical exclusionary criteria and used the expertise of the participants of the workshop to 

derive our final variable set. 
15 Technically, we exclude all firms classified with a TRBC code equal to 55. 
16 There exists a separate strand of literature focusing on CSR particularly for the banking sector (e.g., Wu and 

Shen, 2013; Barigozzi and Tedeschi, 2015; Cornett et al., 2016). 
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proxy variables. This is a hard condition but gives us the possibility to overcome potential 

biases typical within one dataset. Overall, this leads to our final CRS data sample of 1,637 

globally listed firms. 

We obtain monthly returns as well as further financial information such as the monthly 

market value of equity and net sales from Thomson Reuters Datastream. The preparation of 

the financial data follows the recommendations of Ince and Porter (2006). Further, we get 

monthly risk factors from the Kenneth R. French Data Library.17 Table 1 reports summary 

statistics for financial and environmental variables of our CRS data sample. The average market 

capitalization of a firm is roughly US$ 21 billion while the median is roughly US$ 8.5 billion. 

Thus, the dataset includes many small and a few very large firms.18 The same applies for net 

sales. To avoid penalizing large firms concerning absolute carbon emissions, energy use, and 

expenditures, we standardize all continuous variables by a firm’s net sales.19 

[Insert Table 1 here.] 

Besides continuous variables, the sample contains a number of discrete and binary variables, 

or variables ranging within a predefined bandwidth, such as the dataset specific scores. For all 

discrete variables, we align the direction of the variable values with a higher value standing for 

a higher exposure to carbon risk. 

3.2 Full sample 

Apart from the CRS data sample, we use a full sample absent any fundamental carbon risk 

related information to show carbon risk via the carbon beta in a broad universe of stocks.20 

Therefore, we obtain data on the primary, major equity listings of all global firms as of May 

2018 from Morningstar Direct. We obtain a final selection of 39,537 listed firms. A geographic 

                                                      
17 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research. 
18 Compared to the NYSE breakpoint of French, our sample consists of four times larger firms regarding the 

median. 
19 Standardized variables fall in the following categories: CO2e emissions, energy use, environmental 

expenditures, and provisions, and are marked in Table 1. 
20 Note that the full dataset partially coincides with the CRS data sample. The level of coincidence, however, is 

low at 3.82%. Alternatively, we eliminate all stocks that are included in the CRS data sample from the full sample. 

The results remain basically the same. 
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and sectoral breakdown can be found in appendix A.1. covering both the CRS data sample and 

the full sample. 

4 Relevance of the carbon risk factor 

In this section, we provide first of all (i) descriptive statistics and correlations of common risk 

factors. In the next two subsections, we demonstrate that the unique characteristics of the 

carbon risk factor are able to explain (ii) CRS decile portfolios as well as (iii) single stock 

returns measured by an increase in the adjusted R². 

4.1 Carbon risk factor summary statistics 

To gain an economic understanding of the carbon risk factor, Table 2 shows summary statistics 

and correlations with traditional risk factors during our sample period. The average monthly 

return of the carbon risk factor is negative at −0.25%. The correlations between the carbon risk 

factor and the market factor, the Fama and French (1993) factors, and the Carhart (1997) 

momentum factor are relatively low. The correlations are low enough to assume that the carbon 

risk factor possesses unique return-influencing characteristics that enhance the explanatory 

power of common factor models of systematic variations in stock returns. 

[Insert Table 2 here.] 

4.2 CRS-decile portfolio analysis 

To test if the carbon risk factor is able to enhance the explanatory power of common factor 

models, we construct annually rebalanced CRS-decile portfolios from the firms in the CRS data 

sample such that decile 1 contains the firms with the lowest CRS and decile 10 contains the 

firms with the highest CRS. We run time-series regressions of the deciles’ equal-weighted21 

monthly excess returns on the Carhart model (Eq. 3) and on a five factor Carhart + BMG model 

(Eq. 4). 

erp,t = αp + βp1 erM,t + βp2 SMBt + βp3 HMLt + βp4 WMLt + εp,t (3) 

                                                      
21 Value-weighted decile portfolios show the same patterns, therefore our results remain robust. 
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erp,t = αp + βp1 erM,t + βp2 SMBt + βp3 HMLt + βp4 WMLt + βp5 BMGt + εp,t (4) 

erp,t is the monthly return of portfolio p in month t in excess of the risk-free rate, erM,t is the 

monthly excess return on the global market portfolio at time t, SMBt and HMLt are the monthly 

returns on the global size and value factors (Fama and French, 1993), WMLt is the global 

momentum factor (Carhart, 1997), and εp,t is a zero-mean error term. 

In order to test whether BMG is able to increase the explanation of the variation of excess 

stock returns we apply the F-test on nested models (Kutner et al., 2005).22 The results of the 

global CRS-decile analysis are shown in Table 3 with our five factor model on the left and 

differences to the Carhart model on the right. The market betas are significant and close to 1 

for all deciles. 

[Insert Table 3 here.] 

A comparison of the adjusted R2s and the results of the F-test confirm that the new carbon risk 

factor significantly enhances the explanatory power of the standard Carhart model, especially 

for the high carbon risk portfolios. In the case of CRS-decile 10, the adj. R2 increases by more 

than 12 percentage points. Regarding the carbon betas, the table shows the expected pattern, 

i.e. the loading increases strictly monotonically from the low CRS-decile, which displays a 

significantly negative loading of −0.328, to the high CRS-decile with a significantly positive 

loading of 1.019, being on the same level as the market factor loading. Thus, our new carbon 

risk factor delivers the expected results and significantly enhances the explanatory power of 

standard common factor models. For additional details on the CRS-deciles, all differences in 

the alpha and the coefficients compared to the Carhart model are shown. 

4.3 Carbon risk in single stocks 

To test the relevance of the carbon risk factor we compare the results of a variety of factor 

models using the full sample.23 Table 4 shows the results. For example, in row (4) of Panel A 

                                                      
22 Two models are “nested” if one of them is a subset of the other. 
23 For our regressions we use only firms with a time-series of at least 12 months to obtain robust results. Also, we 

conduct this analysis for the CRS data sample only, which can be found in the Internet appendix (Table IA.2). 

Results remain basically the same. 
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we test if adding the carbon risk factor to the three factor Fama and French (1993) model 

enhances the regression’s adjusted R2 according to the F-Test (H0: βp5 = 0). The four factor 

Fama and French + BMG model yields an on average 0.71 percentage points higher adjusted 

R2 than the standard three factor model. In contrast, the Carhart model yields an increase of 

solely 0.10 percentage points compared to the three factor model (row 3), illustrating the 

importance of the carbon risk factor. 

[Insert Table 4 here.] 

To assess the economic importance, we present comparisons across various model 

specifications with and without the carbon risk factor. For example, the three factor model has 

an on average 1.02 percentage points higher adjusted R2 than the CAPM model, whereas a 

CAPM + BMG model has an on average 0.84 percentage points higher adjusted R2. Adding the 

Pástor and Stambaugh (2003) traded liquidity factor24 to the Carhart model enhances the 

adjusted R2 on average by 0.01 percentage points whereas adding the carbon risk factor instead 

yields an average 0.69 percentage points increase in R2. 

On single stock level, adding the carbon risk factor to the factor models significantly 

enhances the explanatory power in about 11% to 12% of all stocks in the various factor models 

according to the F-tests. For a more detailed assessment of the impact of the carbon risk factor 

on the stock returns of single firms, Panel B of Table 4 reports the number of significant factor 

betas from our global five factor model. Based on two-sided t-tests, 4,493 firms (11.91%) show 

a significant carbon beta on a 5% significance level. This is comparable to the number of 

significant SMB betas (4,420) and higher than the number of significant HML (2,590) and WML 

betas (2,381). The average carbon beta is positive with 0.19. Overall, compared to traditional 

factor benchmarks, our carbon risk factor performs well highlighting its relative importance.25 

                                                      
24 Obtained from Pástor’s webpage: http://faculty.chicagobooth.edu/lubos.pastor/research/. We use the US traded 

illiquidity factor for the global sample knowing that there is a significant number of US firms in the respective 

sample. (Pastor and Stambaugh, 2003) 
25 We have carried out numerous further investigations, including a factor spanning test, a comparison of the 

carbon risk factor with further prominent factors as well as latest asset pricing tests for different single and 

combined test assets. Additionally, we apply a democratic orthogonalization to make our factor perfectly 

uncorrelated to the Carhart model. We provide descriptive statistics, a decile table and a comparison of common 

factor models with our orthogonalized risk factors. All results remain robust and the carbon risk factor is essential 

in asset pricing. For all those analyses see Tables IA.3 – IA.9. 
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5 Carbon beta as a risk measure 

In this section, we highlight descriptive properties and inferences about the BMG factor and 

carbon betas. 

5.1 Development over time, country and industry exposures 

We estimate firms’ yearly carbon betas from their daily return data using our five factor 

model.26 We demonstrate that the carbon beta varies over time, countries, and industries and 

thereby identify countries as well as industries that are positively and negatively exposed to 

carbon risk. 

Figure 3 displays average carbon betas of firms covered in our two samples over time. The 

results show that firms in the full sample have on average a higher carbon beta than firms 

covered by the CRS sample. Whether or not this is driven by strategic non-disclosure or by 

other characteristics of reporting versus non-reporting firms is an open question. Generally, 

firms disclosing their emissions and environmental agenda might have an incentive to report 

their actions in a more positive light. Carbon betas in both samples increase in magnitude over 

time. For the CRS sample the average carbon beta increases from −0.17 at the beginning of the 

sample period to −0.03 in 2016. In the full sample, the carbon beta increases from −0.08 in 

2010 to 0.08 in 2016. This positive trend potentially mirrors the increased awareness of the 

capital market, the importance of carbon risk, and the increase in the price of carbon.27 

[Insert Figure 3 here.] 

For the country breakdown using the full sample, we aggregate the carbon beta of a country as 

the average of all firms operating in the respective country. As illustrated in Figure 4, carbon 

betas are high in most countries except in Europe and Japan. This is consistent with the intuition 

that the European Union is following an ambitious climate policy, e.g. with its 2030 climate 

and energy framework and the EU Action Plan. The countries with the most negative exposure 

to carbon risk are European countries like Italy (−0.663), Spain (−0.591), and Portugal 

(−0.505). The country with the highest average carbon beta is South Africa (0.433), consistent 

                                                      
26 We use the daily carbon risk factor to estimate more stable yearly carbon betas. 
27 We can state this due to the fact that the carbon risk factor volatility remains stable over time. 
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with the fact that the country delays climate action on a political level (Climate Action Tracker, 

2018). South Africa is closely followed by Brazil (0.410) and Canada (0.401). The result of 

this analysis is not obviously correlated with GDP. 

[Insert Figure 4 here.] 

On industry level, the carbon betas are as expected and illustrated in Figure 5. We find low and 

negative carbon betas in financial services and technology firms, and positive carbon betas in 

industries with extraordinarily high carbon emissions and which are proclaimed to be sensitive 

to climate change and mitigation policies, i.e. the basic materials and energy sector.28 

[Insert Figure 5 here.] 

Overall, the breakdown of the carbon betas over time, countries, and industries is consistent 

with our expectation on how carbon risk is likely to be priced. We show that carbon betas of 

individual firms have increased in our sample period. Moreover, energy and basic materials 

firms are more positively exposed to carbon risk, i.e. exhibit a higher carbon beta than the 

technology sector. Furthermore, the boxplots demonstrate that within industries, it is possible 

to cover a large bandwidth of carbon betas, e.g., in the Basic Materials sector we find negative 

as well as positive carbon betas.  

5.2 Risk decomposition of carbon beta 

In this section, we analyze the economic mechanisms driving the BMG factor and the market 

factor broken down into carbon beta portfolios. We follow the beta decomposition approach of 

Campbell (1991) and Campbell and Vuolteenaho (2004). The analysis is geared towards 

understanding whether or changes in expectations about firm cash-flows or changes in discount 

rates is driving the BMG factor and the correlation of firms returns with market returns.  

The methodology is based on a simple discounted cash flow model, where changes of firm 

values result from changing expectations regarding cash flows and discount rates. Cash flow 

changes have permanent wealth effects and may therefore be interpreted as fundamental re-

                                                      
28 Both country and industry breakdown of betas show basically the same results for the CRS data sample which 

can be found in Figures IA.1 and IA.2 of the Internet appendix. 
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evaluations towards a new equilibrium. Discount rate changes have temporary wealth effects 

on the aggregate stock market driven by investor sentiment.  

We use the VAR methodology introduced by Campbell (1991) to decompose the BMG 

factor and assume that the data are generated by a first-order VAR model.29 For the variance 

decomposition, we modify Campbell’s (1991) approach using the BMG time series as the first 

state variable. We use global versions of the Shiller PE-ratio, the term-spread, and the small 

stock value spread as additional state variables as per Campbell and Vuolteenaho (2004). In 

Table 5, we report the absolute and normalized results of the variance decomposition of BMG 

as well as correlations between the components. 11.86% of the total BMG variance can be 

attributed to discount rate news whereas the remaining 88.14% are driven by cash-flow news. 

This suggests that the carbon risk factor is mainly determined by expectations about future 

cash-flows and not about changes in the discount rate that investors apply to these cash-floes. 

This is consistent with the transition from a brown towards a green economy that is highly 

senstive to changes in technologies (investments) and customers preferences for goods and 

services (revenues).30 

[Insert Table 5 here.] 

In a second test, we follow Campbell and Vuolteenaho (2004) more closely and decompose 

market betas of carbon beta sorted portfolios into a cash-flow and a discount-rate beta.31 In 

their original paper, the authors apply this approach to Fama and French’s 25 size/book-to-

market sorted portfolios to explain the value anomaly in stock returns. To adopt their 

methodology, we construct 40 carbon beta and size sorted test asset portfolios by sorting the 

over 39,000 stocks of the full sample into 20 5%-quantiles based on their individual carbon 

beta and splitting each portfolio by the stocks’ median market capitalization. 

[Insert Figure 6 here.] 

                                                      
29 For further details on the model specification see Appendix A.1. 
30 Campbell, Polk, and Vuolteenaho (2010) explain that movements in stock prices are either driven by the 

characteristics of cash flows (fundamentals view) or by investor sentiment (sentiment view). 
31 For this analysis, we stick to the model specification of Campbell and Vuolteenaho (2004) using the excess 

market return as first state variable. Details are given in Appendix A.1. Results for the decomposition using the 

carbon risk factor as first state variable can be found in Figure A.1. 
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As shown in Figure 6, the cash-flow beta is higher than the discount-rate beta for all portfolios. 

This confirms that, during our sample period, returns are driven by fundamental re-evaluations 

of investor expectations about cash-flow news rather than about discount rates. Furthermore, 

the discount-rate beta is virtually the same for all 40 portfolios whereas the cash-flow betas 

show a U-shaped pattern. This suggests that the extreme portfolios, i.e. green and brown firms, 

have higher cash-flow betas and are thus more exposed to fundamental re-evaluations of firm 

values.32  

Motivated by this finding, we evaluate the prices of cash-flow and discount-rate beta risk. 

Following Campbell and Vuolteenaho (2004), rational investors should demand higher 

compensation for fundamental and therefore permanent cash-flow shocks than for transitory 

discount-rate shocks. In Table 6, we provide evidence in favor of this argument by applying 

the asset pricing models described in Campbell and Vuolteenaho (2004) to our 40 carbon 

beta/size sorted test asset portfolios. The price for cash-flow beta risk in the cross-section is 

almost ten times higher than for discount-rate beta risk (15.9% vs. 1.6% p.a. in the unrestricted 

factor model). When constraining the price for the discount-rate beta to the market variance 

(two-beta ICAPM) the results remain economically the same. Since carbon sensitive portfolios 

are predominantly prone to cash-flow news, we conclude that conservative investors demand 

a higher return for holding those portfolios due to their risk aversion for fundamental cash-flow 

risks. 

[Insert Table 6 here.] 

6 Practical applications of carbon beta 

In this section we provide further insights into the relationship between balance sheet data that 

proxy for investment in clean technologies and stranded assets and the carbon beta of a firm. 

We also show that investors are not worse off in terms of their Sharpe Ratios (SRs) when 

investing in low carbon risk portfolios holding other factor loadings and industry allocations 

constant. Finally, we make the case that financial services firms, and banks in particular, are 

                                                      
32 In Figure IA.3, we find that the extreme portfolios display higher systematic risk per se, which is primarily 

driven by cash-flow risk as shown in Figure 6. 
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more involved in financing high carbon risk firms in high carbon risk countries than in low 

carbon risk countries, and thus more exposed to carbon risk. 

6.1 Carbon beta from an investor’s perspective 

Investors weigh between risk and return in their portfolios. To show that it is possible to 

construct a portfolio with similar risk-adjusted returns and similar exposure to traditional risk 

factors but lower carbon risk, we first estimate the beta loadings of our five factor model for 

all stocks in the full sample. Then, we construct 5×5×5 conditionally sorted portfolios based 

on market beta quintiles, followed by SMB beta quintiles and subsequently by HML beta 

quintiles. The resulting 125 portfolios consist of firms with similar characteristics regarding 

the factors of the five factor model but potentially cover a broad range with respect to carbon 

beta. In the following, we keep only the firms with below average carbon betas (best-in-class) 

with respect to all carbon betas within the portfolio or only the firms with above average carbon 

betas (worst-in-class). For all three cases – all firms, best-in-class, and worst-in-class – we 

calculate equal-weighted portfolio returns as well as risk-adjusted performance measures over 

time. 

The results are presented in Panel A of Table 7. The average portfolio has an annual SR 

of 0.44, while the low carbon risk portfolio generates a SR of 0.8. This represents an eight 

percentage points significantly higher SR for the low carbon risk portfolio than for the high 

carbon risk portfolio. The low carbon risk portfolio also exhibits lower volatility of −0.04. More 

importantly, the carbon beta difference between the low carbon risk and the high carbon risk 

portfolios is −0.91, which means that an investor’s portfolios changed from being highly 

positively correlated with carbon risk to being negatively correlated. Even though investors 

change their exposure to carbon risk, their exposure to the market, SMB, and HML remains 

roughly the same. 

[Insert Table 7 here.] 

In Panel B, we conduct a similar analysis using industry portfolios to demonstrate that it is 

possible to construct industry portfolios of low (best-in-class) carbon beta firms within a sector 

without having significant lower returns but significantly lower volatility than that of high 
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carbon beta firms (worst-in-class). Panel B presents the results for equal-weighted portfolio 

returns and risk-adjusted performance measures. An investor can construct a portfolio with a 

significantly lower carbon beta of −1.03 and without changing the sector allocation of his or 

her portfolio, but with the same SR and a significantly lower volatility of −0.04.33 Overall, the 

results suggest that investors can change their carbon exposure without sacrificing exposure to 

traditional risk factors or industry preferences. 

6.2 Carbon beta from an analyst’s perspective 

To determine influencing factors of firms’ carbon betas, we conduct panel regressions. For the 

CRS data sample, we explain the annual carbon beta using the three carbon risk subscores value 

chain, public perception, and adaptability used to compute the CRS. Further, we use specific 

firm fundamentals as well as country, industry, and time fixed effects.34 The results presented 

in Panel A of Table 8 show that all subscores are positively and significantly correlated with 

carbon betas. This suggests for instance that firms with higher value chain subscores also have 

higher carbon betas. The same interpretation holds for public perception and adaptability. 

Moreover, higher R&D expenditures lead to lower carbon betas. This reinforces the assumption 

that more innovative firms exhibit lower carbon betas. On the other hand, the Property, Plant, 

and Equipment (PPE) variable suggests that firms with high PPE asset values, which might 

represent legacy production equipment as well as stranded assets,35 have higher carbon betas. 

[Insert Table 8 here.] 

Panel B shows the results for the full sample without the carbon risk score indicators, as this 

data is not available for all firms. The results hold across both samples in that we find that R&D 

reduces the carbon beta, and PPE increases it. These panel regressions show that the carbon 

beta is partially explained by firm characteristics related to a firm’s exposure to carbon risk. 

Thus, analysts can consider carbon beta as a measure to redefine their forecasts for firms and 

take into account carbon risks for their valuation strategy. 

                                                      
33 The results remain robust for value-weighted portfolios. 
34 The analysis with solely the carbon risk indicators can be found in the appendix (Table A.3). 
35 For a definition of stranded assets have a look at Carbon Tracker Initiative (2013). 
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6.3 Carbon betas in the financial industry 

Firms operating in the financial services sector do not generally emit carbon in their daily 

operations and thus are not directly exposed to carbon risk. However, they can be highly 

involved in the financing of local firms with high carbon risk making a bank’s loan portfolio 

correlated with carbon risk. To study this relationship, we conduct an analysis of the carbon 

beta of banks and other financial services firms in our full sample, conditional on the carbon 

beta of the country in which they are domiciled. By dividing countries according to the average 

carbon beta of all their firms into two groups, we identify high and low carbon risk countries 

(CRC). In Table 9 Panel A, results of a CRC division by terciles is shown. 

[Insert Table 9 here.] 

A bank in a low CRC has on average a carbon beta of −0.337. In comparison with a high CRC, 

it has a significantly lower carbon beta of −0.587. A bank in a middle CRC has a lower carbon 

beta than in a high CRC, but a higher carbon beta than a low CRC (significant negative 

difference between low and middle CRC betas). In Panel C, we use quartiles to highlight the 

fact that the results are not conditional on data sub-setting. These results remain robust if we 

use financial services firms in general including banks (see Panel B and D). Through their 

financing decisions, even the financial industry is strongly affected by carbon risk. 

7 Conclusion 

The global economy is transitioning from a high carbon past to a low carbon future. Some firms 

are well positioned to deal with the risk associated with the transition process, whereas others 

are not. The risk in this transition process is present at the firm, industry, and country level.  

We introduce a new measure for this kind of risk, the carbon risk, which we name carbon 

beta. The carbon risk factor BMG, necessary to measure the carbon beta, will be made freely 

available for everybody to use. The information contained in the carbon beta can be used by, 

e.g., analysts, investors, and regulators. Analysts can use the carbon betas to integrate readily 

available information and sharpen their forecasts. Investors can assess the carbon risk in their 

portfolio and make portfolio allocation decisions to change their exposure to carbon risk. We 

show that this is possible without hurting performance. The carbon betas can also be used by 
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portfolio managers to show investors the steps they can take with respect to climate change. 

Investors, pension funds, and insurance firms can use this information to hedge carbon risk in 

their portfolios and their operations. Finally, regulators and national governments can use the 

carbon beta to assess the carbon risk in the economy as a whole. This information will allow 

for more directed policy and for an external assessment of the carbon risk of an individual firm.  

The decomposition of carbon betas into cash-flow and discount-rate components reveals 

that brown and green firms, respectively, have higher cash-flow betas and are thus more 

exposed to fundamental re-evaluations of firm values than to discount-rate changes. 

Furthermore, the price for cash-flow betas is higher than for discount-rate betas, since investors 

demand a higher premium for fundamental risks. 

Carbon risk and the transition process may impact cash flows by increasing current 

expenses, investments, and discount rates via changes in public perception. Assessing changes 

in carbon risk (betas) around regulatory and policy changes is a fruitful avenue of future 

research. For instance, simple carbon beta event studies can be used to assess the impact of the 

introduction of carbon pricing, taxation, cap-and-trade, R&D credit, or similar policies for the 

whole economy, within an industry and for individual firms. A broadening of carbon and 

environmental disclosure to make disclosure mandatory and make disclosure comparable 

across jurisdictions is important. 

The quantification of carbon risk is thus a step towards a low carbon future by aligning the 

incentives of investors, firms, regulators, and everyone that is impacted by climate change.  
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Figures and Tables 

 

Figure 1 

Carbon risk scoring concept 
 

 
 

This figure shows our carbon risk score (CRS) concept. It reflects the change in the climate change transition 

process, which can be expressed in three risk sources, namely a change in international and national agreements, 

an alteration of the interests of stakeholders, and a transformation of the financing conditions. The risk sources 

have an impact on the value chain as well as on the public perception of a firm, but it is mediated by the ability 

to adapt to the transition process. The exposure to carbon risk can be measured in the volatility of a transition-

linked change in financing costs, cash flows, or profits. 
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Figure 2 

Cumulative returns of the BMG factor and the long and short positions 
 

 

 
 

This figure shows cumulative returns of the BMG factor and the weighted underlying long (SH+BH) and 

short positions (SL+BL) for the sample period from January 2010 to December 2016. 
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Table 1           

Descriptive statistics of variables           
           

Variable N Mean SD Median  Variable N Mean SD Median 
           

Panel A. Thomson Reuters Financials     Panel C. Sustainalytics     

Returns (%) 76,700 0.74 9.01 0.69  Carbon Intensity 59,492 45.07 39.03 50.00 

Market equity (US$ mio.) 76,700 20,959 38,749 8,557  Renewable Energy Use 59,492 85.08 34.78 100.00 

Net sales (US$ mio.) 76,405 18,528 35,278 7,643  Supplier Environmental Programmes 29,321 64.37 34.59 70.00 

R&D (US$ mio.) 51,153 82 512 5  Sustainable Products & Services 33,978 73.55 30.90 75.00 

PPE (US$ mio.) 120,554 1,068 5,782 95  Scope of GHG Reporting 58,948 28.85 37.87 0.00 

Leverage ratio 120,274 0.22 0.23 0.18  Environmental Policy 72,552 39.84 33.38 50.00 

Book-to-market ratio 121,508 0.80 3.56 0.59  Green Procurement Policy 72,552 55.99 33.16 60.00 

Cash (US$ mio.) 104,558 288 2,481 29  Renewable Energy Programmes 59,428 78.94 27.49 75.00 

Return on Assets 121,481 0.04 7.07 0.03  Environmental Management System 72,552 25.52 30.78 20.00 

Net sales full sample (US$ mio.) 121,532 2,351 10,998 294  Air Emissions Programmes 26,915 67.59 33.23 75.00 

Panel B. Thomson Reuters ESG      Overall ESG Score 72,552 34.22 8.66 34.38 

Energy Use Total (std.) 51,480 119,343 6,682,551 630.74  Panel D. CDP     

CO2 Equivalents Emission Total (std.) 63,959 7,672 465,116 59.69  Greenhouse Gas Emissions (std.) 61,760 47,611 1,541,905 61.29 

Clean Technology 72,991 0.76 0.43 1.00  Regulatory Opportunities Sources 70,670 2.64 2.37 2.00 

Emission Reduction Prod. Process 72,806 0.49 0.50 0.00  Climate related Opport. Sources 70,670 1.18 1.04 1.00 

Sustainable Supply Chain 72,806 0.23 0.42 0.00  Regulatory Risks Sources 70,670 1.85 1.87 1.00 

Renewable Energy Use 72,806 0.32 0.47 0.00  Climate related Risks Sources 70,670 1.22 1.25 1.00 

Climate Change Risks/Opportunities 72,806 0.23 0.42 0.00  Regulatory Opportunities 62,675 0.08 0.27 0.00 

Energy Efficiency Policy 72,806 0.11 0.31 0.00  Climate related Opportunities 62,648 0.14 0.34 0.00 

Emission Reduction Target/Objective 52,780 0.03 0.16 0.00  Regulatory Risks 62,792 0.94 0.24 1.00 

Energy Efficiency Target/Objective  36,525 0.05 0.22 0.00  Climate related Risks 62,720 0.81 0.39 1.00 

Environmental Investments Initiatives 75,350 0.33 0.47 0.00  Emission Reduction Target 6,871 0.72 1.18 0.00 

Environmental Exp. Investments 75,350 0.51 0.50 1.00  Disclosure Score 55,676 22.31 18.80 19.00 

Environmental Expenditures (std.) 29,999 0.01 0.04 0.00  Performance Band 58,595 4.30 2.12 3.00 

Environmental Partnerships  75,350 0.76 0.43 1.00  Panel E. MSCI ESG     

Environmental Provisions (std.) 17,677 0.04 0.16 0.01  Opportunities in Clean Tech 21,758 0.66 0.47 1.00 

Policy Emissions 75,350 0.89 0.32 1.00  Energy Efficiency 7,039 0.57 0.50 1.00 

Environmental R&D Exp. (std.) 8,881 0.09 0.01 0.09  Opportunities Renewable Energy 2,280 0.57 0.49 1.00 

Emission Reduction Score 72,806 16.18 19.76 7.64  Carbon Emissions 51,357 0.48 0.50 0.00 

Resource Reduction Score 72,806 16.11 19.59 7.93  Regulatory Compliance 13,137 0.10 0.30 0.00 

Environmental Score 72,806 16.14 19.66 7.41  Climate Change Controversies 58,358 0.03 0.18 0.00 

Innovation Score 75,330 38.21 26.05 33.86  Industry-adjusted Overall Score 75,171 4.25 2.30 4.20 

Emissions Score 75,330 26.26 20.74 21.52  Carbon Emissions Score 63,802 2.87 2.46 2.67 

      Climate Change Theme Score 46,298 2.83 2.67 2.30 

      Environmental Pillar Score 75,146 4.32 2.03 4.40 

      Panel F. Morningstar     

      Returns (%) 2,686,759 1.13 17.08 0.00 
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This table reports the descriptive statistics for all variables of the CRS data sample as well as for the full sample for the period from January 2010 to December 2016. Variables 

with (std.) are standardized by net sales. A country and sector breakdown can be found in appendix A.1. A list of all variable codes can be found in internet appendix IA.1. 
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Table 2 

Risk factor descriptive statistics and correlations 
 

Factor 

Mean excess 

return (%) SD (%) T-stat. 

Correlations 

BMG erM SMB HML WML 
 

BMG -0.25 1.95 -1.17 1.00     

erM 0.76 4.02 1.74 0.09 1.00    

SMB 0.06 1.39 0.37 0.20 -0.02 1.00   

HML 0.00 1.68 -0.02 0.27 0.19 -0.06 1.00  

WML 0.57 2.53 2.06 -0.24 -0.20 0.00 -0.41 1.00 
 

 

This table displays descriptive statistics and correlations of the monthly risk factors of the 

4F Carhart model and the BMG factor for the sample period from January 2010 to December 2016. The factors 

erM, SMB, HML, WML, and the risk-free rate are provided by Kenneth French. 
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Table 3 

 CRS-decile portfolio performance 
 

  
Median 

CRS 

 5F Carhart + BMG model  ∆ Carhart 4F model   

      Alpha erM SMB HML WML BMG 
Adj. R2 

(%) 
 ∆ Alpha ∆ erM ∆ SMB ∆ HML ∆ WML 

 ∆ Adj. R² 

(%) 
                   

Low CRS  0.24  -0.001 1.143*** 0.142* -0.062 -0.159*** -0.328*** 95.32  -0.001a -0.003a,*** -0.099a -0.083a,* 0.036a,**  1.60*** 
    (-0.44) (39.59) (1.71) (-0.81) (-3.20) (-5.28)          

2  0.32  0.001 1.012*** 0.105 0.018 -0.078* -0.288*** 95.61  -0.001a -0.003a,*** -0.087a -0.073a 0.032a  1.58*** 
    (0.93) (41.12) (1.48) (0.28) (-1.84) (-5.42)          

3  0.37  0.002** 1.028*** 0.169** -0.055 -0.116** -0.143** 94.59  -0.001a,** -0.002a,*** -0.043a -0.037a 0.016a,**  0.32** 
    (2.10) (36.86) (2.10) (-0.76) (-2.40) (-2.38)          

4  0.42  0.001 1.046*** 0.171** -0.023 -0.077 -0.096 94.06  0.000a -0.001a,*** -0.029a,* -0.025a 0.011a  0.09 
    (0.45) (35.14) (1.99) (-0.30) (-1.49) (-1.50)          

5  0.45  0.000 1.011*** 0.142 0.006 -0.101* -0.015 93.55  0.000a 0.000a,*** -0.005a -0.003a 0.002*  -0.08 
    (-0.32) (33.35) (1.62) (0.08) (-1.92) (-0.24)          

6  0.49  0.001 0.945*** 0.200** 0.060 -0.094* 0.127** 93.99  0.000a 0.001a,*** 0.038a,*** 0.032a -0.015a,**  0.26** 
    (0.67) (34.03) (2.49) (0.82) (-1.97) (2.11)          

7  0.53  0.001 0.991*** 0.212** -0.007 -0.074 0.415*** 94.06  0.001a 0.004a,*** 0.126a,*** 0.105a -0.046a,*  3.12*** 
    (0.57) (33.55) (2.49) (-0.09) (-1.45) (6.52)          

8  0.58  0.000 1.084*** 0.226** 0.022 -0.195*** 0.448*** 94.45  0.001a 0.005a,*** 0.136a,*** 0.114a -0.050a,***  2.93*** 
    (0.04) (34.06) (2.46) (0.26) (-3.54) (6.54)          

9  0.64  -0.003** 1.078*** 0.085 -0.035 -0.072 0.688*** 93.06  0.002a,** 0.007a,*** 0.209a,** 0.175a -0.077a,*  6.88*** 
    (-2.34) (30.07) (0.83) (-0.37) (-1.16) (8.90)          

High CRS  0.73  -0.001 1.092*** 0.214* -0.008 -0.165** 1.019*** 91.52  0.002a 0.010a,*** 0.309a,*** 0.258a -0.114a,**  12.47*** 
    (-0.76) (25.00) (1.70) (-0.07) (-2.18) (10.82)          

  

 

This table shows monthly median carbon risk scores (CRS), alpha performance and beta coefficients of the 5F Carhart + BMG model for annually rebalanced, equal-weighted decile portfolios based 

on the CRS of the stocks in the CRS data sample for the sample period from January 2010 to December 2016. On the right panel, the table displays ∆ alphas and coefficients between the 5F Carhart 

+ BMG model and the 4F Carhart model. *, **, *** denote significance on the 10%, 5%, and 1% level, respectively. For alphas and beta coefficients, significance statistics are based on two-sided 

t-tests. c, b, and a denote significance on the 10%, 5%, and 1% level, respectively, for ∆ values. Tests on the differences of coefficients are based on two-sided t-tests of bootstrapped ∆ values. 

Significance symbols in the last column are based on the one-sided F-test for nested models (H0: βp5=0). 
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Table 4         
Comparison of common factor models       
         

     

Panel A. Significance tests for explanatory power of various models         
         

  

Avg. ∆ adj. R²  

(%) 

F-test at sign. level 5%  

(%) 

 

   
   

(1) CAPM - 3F FF 1.02 11.49 

(2) CAPM - 2F CAPM + BMG 0.84 12.05 
   

(3) 3F FF - 4F Carhart 0.10 5.98 

(4) 3F FF - 4F FF + BMG 0.71 11.55 
   

(5) 4F Carhart - 5F PS 0.01 5.01 

(6) 4F Carhart - 5F Carhart + BMG 0.69 11.55 
 

Panel B. Significance tests for risk factor betas for the 5F Carhart + BMG model 
 

   T-test of significance of coefficients 

  
Avg. coeff. 

10% level   5% level   1% level 

  # %   # %   # % 
          

erM 0.935 24,627 65.30   21,587 57.24   15,957 42.31 

SMB 0.674 7,113 18.86   4,420 11.72   1,475 3.91 

HML -0.011 4,652 12.34   2,590 6.87   685 1.82 

WML -0.023 4,312 11.43   2,381 6.31   586 1.55 

BMG 0.190 6,824 18.09   4,493 11.91   1,892 5.02 
          

          

This table provides a comparison of common factor models. Panel A reports the average ∆ adj. R² between 

different factor models run on single stocks from the full sample in the sample period from January 2010 to 

December 2016. Significance statistics are based on one-sided F-tests for nested models (H0: βp5=0). Panel B 

shows average coefficients as well as the absolute (#) and relative (%) number of statistically significant beta 

coefficients from 5F Carhart + BMG model regressions run on single stocks from the full sample in the sample 

period. Statistical significance is based on two-sided t-tests. The factors erM, SMB, HML, and WML are provided 

by Kenneth French, the Pástor - Stambaugh (PS) liquidity factor is provided by Ľuboš Pástor. 
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Figure 3 

Carbon beta in time 
 

 

 
 

 

This figure shows the average annual carbon beta of the CRS data sample and the full sample for the period 

from January 2010 to December 2016. All firm carbon betas are estimated based on daily return data. 
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Figure 4 

Carbon beta landscape 
 

 

 

 
 

This figure shows the carbon beta of the full sample across the world. We include all countries with at least 30 firms in our full sample to correct for outliers. A 

greenish color indicates a low average carbon beta of the country, whereas a deep red color states that, on average, the countries’ firms have high carbon betas. 
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Figure 5 

Carbon beta industry breakdown 
 

 
 

This figure shows a boxplot of the carbon beta of the full sample across sectors. The sectoral breakdown is based on the super sectors of the Morningstar Global Equity 

Classification Structure (MGECS). The sectors are sorted in ascending order by their carbon beta. 
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Table 5     

Variance decomposition 
#     

 variance components  

 Var(NCF) Var(NDR) –2 Cov(NCF, NDR) Corr(NCF, NDR) 
     

Absolute (%) 0.0394 0.0045 -0.0057 21.44 

 (0.00) (0.00) (0.00) (0.01) 
     

Normalized (%) 103.13 11.86 -14.99 21.44  

(0.17) (0.02) (0.04) (0.01) 
     

 
    

This table shows the results of the variance decomposition of the carbon risk factor for the sample period from 

January 2010 to December 2016. We report both the absolute and normalized values of variances and 

covariance of the cash-flow news and discount-rate news for the carbon risk factor. The standard errors in 

parentheses are calculated using a jackknife method. 
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Figure 6 

Beta decomposition of 40 test assets 
 

 

 
 

 

This figure shows the beta decomposition of the 40 test assets built out of the full samples. Firms are sorted into 

20 portfolios based on their individual carbon beta (portfolio group) and then split into small and big subsamples 

with the median of the size as breakpoint. The cash-flow and discount-rate betas are obtained by following the 

methodology of Campbell and Vuolteenaho (2004). 
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Table 6      

Asset pricing tests      
      

  unrestricted factor model   two-beta ICAPM 

 unrestricted α=0  unrestricted α=0 
  

 

  

 

Rzb less Rrf (g0) 0.003 0  0.003 0 

% pa 3.837 0  3.763 0 

std. error (0.004)   (0.003)  
      

      

�̂�𝐶𝐹  premium (g1) 0.013 0.016  0.013 0.017 

% pa 15.934 18.687  15.941 20.881 

std. error (0.004) (0.002)  (0.003) (0.001) 
      

      

�̂�𝐷𝑅 premium (g2) 0.001 0.008  0.002 0.002 

% pa 1.571 10.054  1.907 1.907 

std. error (0.012) (0.008)  (0.000) (0.000) 
      

      

R² 0.275 0.261  0.275 0.248 
      

      

This table shows premia estimated in the sample period from January 2010 to December 2016. The 

asset pricing models are an unrestricted two-beta model and a two-beta ICAPM with the discount-rate 

beta price constrained to equal the market variance. The second column per model shows a model with 

the zero-beta rate equal to the risk-free rate (α=0). Estimates are from a cross-sectional regression using 

value-weighted portfolio returns of 40 test assets based on carbon beta and size. Standard errors are 

from the respective cross-sectional regression.  
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Table 7        
Matching exposures 
        

        

 SR Excess return SD Carbon beta MKTRF beta SMB beta HML beta 
        

        

Panel A. 125 Portfolios 

        

All firms 0.44 0.18 0.41 -0.02 0.65 0.88 0.21 
        

High carbon beta 0.40 0.18 0.44 0.47 0.65 0.87 0.20 
        

Low carbon beta 0.48 0.19 0.39 -0.44 0.65 0.89 0.22 
        

Low-High carbon beta 0.08*** 0.01 -0.04*** -0.91*** 0.00 0.02 0.03 
 

Panel B. 11 Industry Portfolios 
        

All firms 0.41 0.17 0.41 0.01    
        

Worst-in-class 0.40 0.17 0.43 0.52    
        

Best-in-class 0.43 0.17 0.39 -0.50    
        

Best-worst 0.04 0.00 -0.04*** -1.03***    
        

        

This table shows the yearly average of the Sharpe ratio (SR), excess returns, and volatility as well as the carbon beta, and the MKTRF, 

SMB, and HML beta of 125 portfolios in Panel A. The portfolios are conditionally constructed on the MKTRF, SMB, and HML beta of all 

stocks in the full sample and aggregated equal-weighted. The high (low) carbon beta portfolios include only stocks of the original portfolio 

with a carbon beta above (below) its portfolio mean. For Panel B, a stock is categorized as worst-in-class (best-in-class) if its carbon beta 

is above (below) their respective industry’s carbon beta mean. The industry classification is based on the super sectors of the Morningstar 

Global Equity Classification Structure (MGECS).*, **, *** denote significance on the 10%, 5%, and 1% level of the differences, 

respectively. Significance tests are based on two-sided t-tests. 
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Table 8          

Panel regressions          
          

   

Panel A. CRS data sample  Panel B. Full sample 
          

 (1) (2) (3) (4)  (5) (6) (7) (8) 
          

Value Chain 0.49*** 0.19*** 0.32*** 0.54***      

          
          

Public Perception 0.58*** 0.23*** 0.52*** 0.60***      

          
          

Adaptability 0.74*** 0.23** 0.64*** 0.69***      

          
          

R & D -0.035** -0.026*** -0.060*** -0.034**  -0.020*** -0.020*** -0.021*** -0.021*** 

          
          

PPE 0.066** 0.080*** 0.058 0.066**  0.036*** 0.0084** 0.035*** 0.036*** 

          
          

Leverage Ratio 0.040** -0.029** 0.060*** 0.040**  0.015*** -0.0075*** 0.015*** 0.015*** 

          
          

Book-to-market Ratio -0.20*** 0.013 -0.22*** -0.19***  -0.16*** -0.0037 -0.16*** -0.15*** 

          
          

Cash 0.011 0.013 -0.0039 0.013  -0.040*** -0.0069*** -0.040*** -0.038*** 

          
          

RoA 0.094*** -0.030** 0.073*** 0.10***  -0.0033 -0.011*** -0.0043 -0.00019 

          
          

Net Sales -0.0053 -0.056*** 0.033 -0.0043  -0.022*** 0.0030 -0.020*** -0.021*** 
          

          

Country fixed effects no yes no no  no yes no no 

Industry fixed effects no no yes no  no no yes no 

Time fixed effects no no no yes  no no no yes 
          

          

R² 0.16 0.59 0.21 0.17  0.12 0.39 0.12 0.15 

Within R²  0.064 0.14 0.16   0.0071 0.12 0.11 
          
          

N 2,978 2,976 2,978 2,978  30,664 30,663 30,664 30,664 
          

          

This table shows panel regressions with the carbon beta as the dependent variable. Standard errors are clustered on firm level. All 

accounting variables are logarithmized. For Panel B, we exclude all firms with a market capitalization of less than US$ 50 mio. *, **, *** 

denote significance on the 10%, 5%, and 1% level, respectively. Significance tests are based on two-sided t-tests. 
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Table 9     
Carbon beta in the financial industry 
     

     

 High CRC Middle CRC Low CRC  
     

     

Panel A. Bank terciles     
     

Average carbon beta 0.250 0.135 -0.337  
     

∆ middle CRC -0.116**    
     

∆ low CRC -0.587*** -0.472***   
     

Panel B. Financial services terciles     
     

Average carbon beta 0.267 0.121 -0.305  
     

∆ middle CRC -0.147***    
     

∆ low CRC -0.572*** -0.425***   
     

     

 High CRC Q3 Q2 Low CRC 
     

     

Panel C. Bank quartiles     
     

Average carbon beta 0.229 0.219 -0.014 -0.459 
     

∆ Q3 CRC -0.009    
     

∆ Q2 CRC -0.242*** -0.233***   
     

∆ low CRC -0.688*** -0.679*** -0.446***  
     

Panel D. Financial services quartiles 
     

Average carbon beta 0.269 0.188 -0.020 -0.418 
     

∆ Q3 CRC -0.081    
     

∆ Q2 CRC -0.289*** -0.208***   
     

∆ low CRC -0.688*** -0.606*** -0.399***  
     

     

This table shows the average carbon beta of banks and financial services firms depending on the carbon 

beta of their domiciles. Countries are divided in terciles in Panel A and B, and in quartiles in Panel C 

and D, respectively, based on their average carbon beta. Banks and financial services firms are identified 

using the Morningstar Global Equity Classification Structure (MGECS). *, **, *** denote significance 

on the 10%, 5%, and 1% level of the differences, respectively. Significance tests are based on two-sided 

t-tests. 
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Appendix 
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Appendix A.1 

For the risk decomposition we use the VAR methodology of Campbell (1991) and assume that 

the data are generated by this first-order VAR model: 

𝑧𝑡+1 = 𝑎 + 𝛤𝑧𝑡 + 𝑢𝑡+1 (5) 

where 𝑧𝑡+1 is an m-by-1 state vector with 𝐵𝑀𝐺𝑡+1as its first element, 𝑎 and 𝛤 are an m-by-1 

vector and m-by-m matrix of constant parameters, and 𝑢𝑡+1 is an i.i.d. m-by-1 vector of shocks. 

Provided that the process in Equation (5) generates the data, t + 1 cash-flow and discount-rate 

news are linear functions of the t + 1 shock vector: 

𝑁𝐷𝑅,𝑡+1 = 𝑒1′𝜆𝑢𝑡+1 (6) 

𝑁𝐶𝐹,𝑡+1 = (𝑒1′ + 𝑒1′𝜆)𝑢𝑡+1 (7) 

where 𝑒1 is a vector with the first element equal to one and the others equal to zero and 𝜆 =

𝜌𝛤(𝐼 − 𝜌𝛤)−1.36 

In specifying the aggregate VAR, we follow Campbell and Vuolteenaho (2004) by 

choosing global proxies for the four state variables. First, we use the log return on the carbon 

risk factor (𝐵𝑀𝐺). Second, we add the term yield spread (TY) as a weighted average of country 

specific interest rates by Thomson Reuters Datastream.37 TY is computed as the yield difference 

between the ten-year and the two-year treasury constant-maturity rate and denoted in percentage 

points. We construct our third variable, the price-earnings ratio (PE), as the log of the price of 

the Thomson Reuters Equity Global Index divided by the aggregate earnings of all firms in the 

index. Fourth, the small-stock value spread (VS) is the difference between the log book-to-

market value of the small high-book-to-market portfolio and the log book-to-market value of 

the small low-book-to-market portfolio.38 

The unexpected return variance is decomposed into three components following  

Campbell (1991): 

𝑉𝑎𝑟(𝐵𝑀𝐺𝑡 − 𝐸𝑡−1𝐵𝑀𝐺𝑡) = 𝑉𝑎𝑟(𝑁𝐶𝐹) + 𝑉𝑎𝑟(𝑁𝐷𝑅) − 2𝐶𝑜𝑣(𝑁𝐶𝐹, 𝑁𝐷𝑅) 

 

(8) 

                                                      
36 We set 𝜌 close to one as defined in Campbell and Vuolteenaho (2004). 
37 We use the weighting scheme of the MSCI World index as of the end of our sample period. 
38 The portfolios are constructed using all firms in the Thomson Reuters Equity Global Index following the 

approach of Fama and French (1993). 

As suggested in Chen and Zhao (2009), we used several state variable sets to determine the news components. 

Our results remain stable. 
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1 =
𝑉𝑎𝑟(𝑁𝐶𝐹)

𝑉𝑎𝑟(𝐵𝑀𝐺𝑡 − 𝐸𝑡−1𝐵𝑀𝐺𝑡)
+

𝑉𝑎𝑟(𝑁𝐷𝑅)

𝑉𝑎𝑟(𝐵𝑀𝐺𝑡 − 𝐸𝑡−1𝐵𝑀𝐺𝑡)
− 2

𝐶𝑜𝑣(𝑁𝐶𝐹 , 𝑁𝐷𝑅)

𝑉𝑎𝑟(𝐵𝑀𝐺𝑡 − 𝐸𝑡−1𝐵𝑀𝐺𝑡)
 (9) 

 

For the beta decomposition, we use the same approach, however, the first state variable equals 

the excess market return (𝑟𝑀). 

For the decomposition of the market beta into a cash-flow and a discount-rate beta we use 

the computation method of Campbell and Vuolteenaho (2004):  

𝛽𝑖,𝐶𝐹 =
𝐶𝑜𝑣(𝑟𝑖,𝑡, 𝑁𝐶𝐹)

𝑉𝑎𝑟(𝑟𝑀,𝑡 − 𝐸𝑡−1𝑟𝑀,𝑡)
 

(10) 

𝛽𝑖,𝐷𝑅 =
𝐶𝑜𝑣(𝑟𝑖,𝑡, −𝑁𝐷𝑅)

𝑉𝑎𝑟(𝑟𝑀,𝑡 − 𝐸𝑡−1𝑟𝑀,𝑡)
 

(11) 

where 𝑟𝑖,𝑡 is the return of a specific test asset. 

The decomposition for the 40 test assets based on carbon beta and size is shown in Table 

A.1. and graphically in Figure 6. 
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Table A.1          

Beta decomposition of test assets 
1 
  

  
 

     

  
  

 
     

  CAPM Beta  𝛽𝐶𝐹   𝛽𝐷𝑅 

  Small Big  Small Big  Small Big 
    

    
 

  
 

  

Low  1.273 1.441  1.078 1.161  0.154 0.210 
  (0.002) (0.002)  (0.003) (0.002)  (0.002) (0.002) 

2  0.996 1.161  0.814 0.903  0.150 0.192 
  (0.002) (0.001)  (0.002) (0.002)  (0.002) (0.001) 

3  0.924 1.078  0.751 0.805  0.140 0.216 
  (0.002) (0.001)  (0.002) (0.002)  (0.001) (0.001) 

4  0.876 1.041  0.686 0.752  0.163 0.231 
  (0.001) (0.001)  (0.002) (0.001)  (0.001) (0.001) 

5  0.934 0.946  0.757 0.661  0.156 0.238 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

6  0.863 0.890  0.696 0.588  0.146 0.253 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

7  0.805 0.924  0.644 0.638  0.144 0.236 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

8  0.840 0.844  0.682 0.608  0.146 0.193 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

9  0.841 0.867  0.651 0.607  0.181 0.219 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

10  0.802 0.939  0.634 0.702  0.152 0.208 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

11  0.771 0.894  0.616 0.652  0.152 0.212 
  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

12  0.827 0.863  0.624 0.554  0.178 0.252 
  (0.001) (0.002)  (0.001) (0.001)  (0.001) (0.002) 

13  0.817 0.949  0.649 0.640  0.155 0.263 
  (0.001) (0.002)  (0.001) (0.001)  (0.001) (0.001) 

14  0.925 0.953  0.690 0.649  0.200 0.249 
  (0.002) (0.002)  (0.002) (0.001)  (0.002) (0.001) 

15  0.933 0.898  0.713 0.592  0.193 0.247 
  (0.002) (0.002)  (0.002) (0.002)  (0.002) (0.001) 

16  1.002 0.990  0.755 0.677  0.234 0.278 
  (0.002) (0.005)  (0.002) (0.004)  (0.002) (0.002) 

17  1.072 1.098  0.807 0.789  0.252 0.249 
  (0.003) (0.002)  (0.002) (0.002)  (0.002) (0.002) 

18  1.096 1.028  0.795 0.734  0.267 0.223 
  (0.003) (0.003)  (0.002) (0.002)  (0.002) (0.002) 

19  1.082 1.098  0.773 0.834  0.285 0.201 
  (0.003) (0.002)  (0.003) (0.003)  (0.002) (0.002) 

High  1.348 1.238  1.091 0.971  0.209 0.204 

  (0.003) (0.003)  (0.004) (0.004)  (0.003) (0.003) 
  

  
 

  
 

  

  
  

 
  

 
  

This table shows the calculated cash-flow (𝛽𝐶𝐹) and discount-rate beta (𝛽𝐷𝑅) for the sample period of 

January 2010 to December 2016 for the 40 test assets built on carbon beta and size. Standard errors are in 

parentheses and calculated by a bootstrap method conditional on the estimated news series using 2,500 

simulations. 
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Figure A.1 

Beta decomposition of 40 test assets 
 

 
 

This figure shows the BMG beta decomposition of the 40 test assets built out of the full samples. Firms are 

sorted into 20 portfolios based on their individual carbon beta (portfolio group) and then split into small and big 

subsamples with the median of the size as breakpoint. The cash-flow and discount-rate betas are obtained by 

following the methodology of Campbell and Vuolteenaho (2004). 
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Appendix A.2 

Table A.2 

Geographic and sectoral breakdown of global firms 
 

 

Panel A. CRS data sample 

a. Geographic   b. Sectoral 

Country # %   Sector TRBC # % 
 

United States 418 25.53  Industrials 52 368 22.48 

Japan 227 13.87  Cyclical Consumer Goods & Services 53 277 16.92 

United Kingdom 193 11.79  Basic Materials 51 239 14.60 

Canada 97 5.93  Technology 57 191 11.67 

Australia 75 4.58  Non-Cyclical Consumer Goods & Services 54 167 10.20 

France 66 4.03  Energy 50 118 7.21 

South Africa 59 3.60  Utilities 59 104 6.35 

Germany 53 3.24  Healthcare 56 109 6.66 

Taiwan 48 2.93  Telecommunications Services 58 64 3.91 

South Korea 36 2.20      

Other Europe 237 14.48      

Other Asia 78 4.76      

Other Americas 37 2.26      

Other Australasia 13 0.79      
 

Total 1,637 100.00   Total  1,637 100.00 
 

Panel B. Full sample 

a. Geographic   b. Sectoral 

Country # %   Sector MGECS # % 
 

United States 5,106 12.91   Consumer Cyclical 102 6,343 16.04 

China 4,104 10.38   Technology 311 6,276 15.87 

Japan 3,800 9.61   Industrials 310 6,234 15.77 

India 3,569 9.03   Basic Materials 101 5,637 14.26 

Canada 2,998 7.58   Financial Services 103 4,208 10.64 

South Korea 1,957 4.95   Healthcare 206 2,854 7.22 

Taiwan 1,860 4.70   Consumer Defensive 205 2,624 6.64 

Australia 1,775 4.49   Real Estate 104 2,367 5.99 

United Kingdom 1,711 4.33   Energy 309 1,560 3.95 

Malaysia 951 2.41   Utilities 207 873 2.21 

Other Europe 5,830 14.74   Communication Services 308 561 1.42 

Other Asia 4,197 10.6       

Other Americas 774 1.96       

Other Africa 691 1.74       

Other Australasia 156 0.39        

Other (no country 

code available) 
58 0.15      

 

Total 39,537 100.00   Total  39,537 100.00 
 

 

This table shows the geographic (a.) and sectoral breakdown (b.) in absolute numbers and percentages for the CRS 

sample (Panel A) and the full sample (Panel B) for the sample period from January 2010 to December 2016. The CRS 

data sample sectoral breakdown is based on the Thomson Reuters Business Classification (TRBC). The full sample 

sectoral breakdown is based on the super sectors of the Morningstar Global Equity Classification Structure (MGECS). 
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Table A.3     

Panel regressions     
     

 (1) (2) (3) (4) 
     

Value Chain 0.88*** 0.47*** 0.53*** 0.86*** 

     
     

Public Perception 0.50*** 0.043 0.56*** 0.55*** 

     
     

Adaptability 1.76*** 0.92*** 1.30*** 1.74*** 

     
     

Country fixed effects no yes no no 

Industry fixed effects no no yes no 

Time fixed effects no no no yes 
     

     

R² 0.16 0.52 0.23 0.18 

Within R²  0.054 0.100 0.17 
     

     

N 6,681 6,680 6,681 6,681 
     

     

This table shows panel regressions with the carbon beta as dependent variable in 

the CRS data sample. Standard errors are clustered on firm level. *, **, *** denote 

significance on the 10%, 5%, and 1% level, respectively. Significance tests are 

based on two-sided t-tests. 
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Table IA.1 

Descriptions of environmental variables of the four ESG databases 
 

Variable name Code Variable name Code 
 

Panel A. Thomson Reuters Panel C. CDP 
   

Energy Use Total ENRRDP033 Greenhouse Gas Emissions CC8. 

CO2 Equivalents Emission Total  ENERDP023 Regulatory Opportunities Sources CC6.1a. 

Clean Technology ENPIDP066 Climate related Opp. Sources CC6.1c. 

Emission Reduction Prod. Process ENERO05V Regulatory Risks Sources CC5.1a. 

Sustainable Supply Chain ENRRDP058 Climate related Risks Sources CC5.1c. 

Renewable Energy Use ENRRDP046 Regulatory Opportunities CC6.1. 

Climate Change Risks/Opportunities ENERDP089 Climate related Opportunities CC6.1. 

Energy Efficiency Policy ENRRDP0122 Regulatory Risks CC5.1. 

Emission Reduction Target/Objective ENERDP0161 Climate related Risks CC5.1. 

Energy Efficiency Target/Objective  ENRRDP0192 Emission Reduction Target CC3.1. 

Environmental Investments Initiatives ENERDP095 Disclosure Score Disclosure Score 

Environmental Expenditures Investm. ENERO24V Performance Band Performance Band 

Environmental Expenditures ENERDP091   

Environmental Partnerships  ENERDP070   

Environmental Provisions ENERDP092   

Policy Emissions ENERDP0051   

Environmental R&D Expenditures ENPIDP023   

Emission Reduction Score ENER   

Resource Reduction Score ENRR   

Environmental Score ENVSCORE   

Innovation Score TRESGENPIS   

Emissions Score TRESGENERS   
  

Panel B. Sustainalytics Panel D. MSCI ESG 
  

Carbon Intensity E.1.9 Opportunities in Clean Tech ENV-str-A 

Renewable Energy Use E.1.11 Energy Efficiency ENV-str-O 

Supplier Environmental Programmes E.2.1.1 Opportunities Renewable Energy ENV-str-M 

Sustainable Products & Services E.3.1.1 Carbon Emissions ENV-str-D 

Scope of GHG Reporting E.1.6 Regulatory Compliance ENV-con-B 

Environmental Policy E.1.1 Climate Change Controversies ENV-con-F 

Green Procurement Policy E.2.1 Industry-adjusted Overall Score Industry-adjusted Score 

Renewable Energy Programmes E.1.8 Carbon Emissions Score Carbon Emissions Score 

Environmental Management System E.1.2 Climate Change Theme Score Climate Change Theme Score 

Air Emissions Programmes E.1.3.3 Environmental Pillar Score Environmental Pillar Score 

Overall ESG Score Total ESG Score   
 

This table provides variable names and codes of the 55 environmental variables from the Thomson Reuters ESG (TR), Carbon 

Disclosure Project (CDP), MSCI ESG KLD (MSCI) and Sustainalytics ESG (SUST) datasets used to construct the stock specific 

carbon risk scores (CRS). 
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Table IA.2         
Comparison of common factor models – CRS data sample 
         
     

Panel A. Significance tests for explanatory power of various models         
         

  

Avg. ∆ adj. R²  

(%) 

F-test at sign. level 5%  

(%) 

 

   

   

(1) CAPM – 3F FF 2.15 17.23 

(2) CAPM - 2F BMG 2.80 22.13 
   

(3) 3F FF - Carhart 0.21 8.61 

(4) 3F FF - 4F BMG 2.55 21.07 
   

(5) 4F Carhart - 5F PS 0.36 5.37 

(6) 4F Carhart - 5F BMG 2.62 21.67 
 

Panel B. Significance tests for risk factor betas for the 5F Carhart + BMG model 
 

   T-test of significance of coefficients 

  
Avg. coeff. 

10% level   5% level   1% level 

  # %   # %   # % 
          

erM 1.086 1,122 74.35   1,030 68.26   864 57.26 

SMB 0.122 314 20.81   211 13.98   81 5.37 

HML -0.095 218 14.45   128 8.48   48 3.18 

WML -0.124 245 16.24   145 9.61   43 2.85 

BMG 0.227 448 29.69   345 22.86   190 12.59 
          

          

This table provides a comparison of common factor models. Panel A reports the average ∆ adj. R² between 

different factor models run on single stocks from the CRS data sample in the sample period from January 2010 to 

December 2016. Significance statistics are based on one-sided F-tests for nested models (H0: βp5=0). Panel B 

shows average coefficients as well as the absolute (#) and relative (%) number of statistically significant beta 

coefficients from 5F Carhart + BMG model regressions run on single stocks from the CRS data sample in the 

sample period. Statistical significance is based on two-sided t-tests. The factors erM, SMB, HML, and WML are 

provided by Kenneth French, the Pástor - Stambaugh (PS) liquidity factor is provided by Ľuboš Pástor. 
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Table IA.3 

Factor spanning tests 
 

 Dependent 

variable 

(1) 

BMG 

(2) 

erM 

(3) 

SMB 

(4) 

HML 

(5) 

WML 

  

erM 0.0095  -0.005 0.044 -0.074 
 (0.18)  (-0.13) (1.04) (-1.15) 

SMB 0.30** -0.044  -0.12 0.012 

 (2.07) (-0.13)  (-0.96) (0.07) 

HML 0.25* 0.31 -0.098  -0.53*** 

 (1.88) (1.04) (-0.96)  (-3.30) 

WML -0.11 -0.22 0.004 -0.23***  

 (-1.25) (-1.15) (0.07) (-3.30)  

BMG  0.044 0.17** 0.17* -0.17 

  (0.18) (2.07) (1.88) (-1.25) 

Intercept (%) -0.21 0.90** 0.10 0.14 0.58** 

 (-0.97) (1.99) (0.62) (0.80) (2.22) 

adj. R² (%) 9.47 0.63 0.76 18.07 15.96 
 

 

This table shows the results of using four factors in regressions to explain average returns on the fifth factor for 

the sample period from January 2010 to December 2016. The factors erM, SMB, HML, and WML are provided by 

Kenneth French. *, **, *** denote significance on the 10%, 5%, and 1% level, respectively. The intercept and 

the adj. R² are given in percent, t-values are shown in brackets and based on two-sided t-tests. 
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Table IA.4 

Comparing further prominent factors 
 

 

Panel A. Correlations 
 

 RMW CMA I/A ROE QMJ BAB 

BMG -0.07 -0.16 0.10 -0.32 -0.28 -0.33 
 

Panel B. Factor spanning tests 
 

 Dependent 

variable 

(1) 

BMG 

(2) 

BMG 

(3) 

BMG 

(4) 

BMG 
 

erM  0.049 0.010 -0.060 -0.026  
 (0.83) (0.16) (-0.73) (-0.50)  

SMB 0.381** -0.013 0.186 0.320**  

 (2.35) (-0.12) (1.03) (2.26)  

HML 0.463***  0.203 0.253*  

 (2.77)  (1.43) (1.95)  

WML   -0.097 -0.008  

   (-1.08) (-0.09)  

RMW 0.350     

 (1.40)     

CMA -0.233     

 (-0.95)     

I/A  0.078    

  (0.47)    

ROE  -0.363**    

  (-2.53)    

QMJ   -0.205   

   (-1.09)   

BAB    -0.469*  

    (-2.63)  

Intercept (%) -0.345 -0.382 -0.051 0.213  

 (-1.55) (-1.64) (-0.20) (0.81)  

adj. R² (%) 9.41 5.49 9.68 15.75  
 

 

This table shows the results of using different factors in regressions to explain average returns of the BMG factor 

for the sample period from January 2010 to December 2016. The factors erM, SMB, HML, RMW, and CMA are 

provided by Kenneth French, the I/A and ROE factors are provided by Lu Zhang and the QMJ and BAB factors 

are provided by AQR Capital Management. *, **, *** denote significance on the 10%, 5%, and 1% level 

respectively. The intercept and the adj. R² are given in percent, t-values are shown in brackets and are based on 

two-sided t-tests. 
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Table IA.5 

Maximum Sharpe ratio approach 
  

Rank SR 
Return  

(%) 
SD (%) 

Optimal weights 

erM SMB HML WML BMG* 
 

1 0.32 0.35 1.06 0.17 0.14 0.17 0.34 0.18 

2 0.32 0.41 1.28 0.21   0.18 0.42 0.19 

3 0.31 0.44 1.37 0.24 0.16   0.40 0.20 

4 0.31 0.51 1.64 0.29     0.49 0.21 

5 0.31 0.43 1.37 0.24 0.11 0.16 0.49   

… … … … … … … … … 

22 0.17 0.68 4.01 1.00   0.00     

23 0.13 0.14 1.03   0.33 0.12   0.55 

24 0.13 0.16 1.22   0.38     0.62 

25 0.12 0.19 1.61     0.15   0.85 

26 0.03 0.05 1.39   1.00 0.00     
 

 

This table shows the maximum ex post Sharpe ratios (SRs) by combining the four risk factors and the reverse 

BMG* factor for the sample period from January 2010 to December 2016. The factor weightings in each row 

achieve the maximum SR. We report only the five best and worst cases according to the maximum SR. The factors 

erM, SMB, HML, and WML are provided by Kenneth French. 
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Table IA.6 

Asset pricing tests 
  

Factor model Mean α 
GRS Test 

statistic 
p-value 

Mean 

adj. R² 
Mean |α| SR SR² 

  

Panel A. 5x5 Size/Value Portfolios 
  

CAPM 0.0004 1.447 0.124 0.892 0.001 0.804 0.646 

CAPM + BMG 0.0006 1.359 0.169 0.896 0.001 0.794 0.630 

3F 0.0000 1.701 0.050 0.964 0.001 0.888 0.789 

4F + BMG 0.0001 1.612 0.071 0.964 0.001 0.882 0.778 

4F 0.0001 1.438 0.131 0.964 0.001 0.854 0.729 

5F + BMG 0.0001 1.382 0.159 0.965 0.001 0.850 0.722 

5F 0.0001 1.242 0.249 0.965 0.001 0.831 0.691 

6F + BMG 0.0001 1.120 0.355 0.966 0.001 0.809 0.655 

6F 0.0001 1.178 0.302 0.966 0.001 0.825 0.680 

7F + BMG 0.0001 1.082 0.394 0.966 0.001 0.807 0.652 
  

Panel B. 5x5 Size/Momentum Portfolios 
  

CAPM 0.0009 5.185 0.000 0.874 0.003 1.522 2.315 

CAPM + BMG 0.0012 4.984 0.000 0.880 0.003 1.520 2.310 

3F 0.0006 4.995 0.000 0.931 0.003 1.522 2.317 

4F + BMG 0.0007 4.774 0.000 0.931 0.003 1.518 2.306 

4F 0.0007 4.491 0.000 0.967 0.002 1.509 2.276 

5F + BMG 0.0008 4.351 0.000 0.967 0.002 1.507 2.272 

5F 0.0006 3.930 0.000 0.935 0.002 1.479 2.188 

6F + BMG 0.0006 3.719 0.000 0.936 0.002 1.475 2.174 

6F 0.0006 3.832 0.000 0.967 0.002 1.488 2.213 

7F + BMG 0.0007 3.662 0.000 0.967 0.002 1.485 2.206 
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Table IA.6 cont’d. 
  

Factor Model Mean α 
GRS Test 

statistic 
p-value 

Mean 

adj. R² 
Mean |α| SR SR² 

 
       

Panel C. 5x5 Size/Operating Profitability Portfolios 
 

CAPM 0.0011 2.400 0.003 0.909 0.002 1.035 1.072 

CAPM + BMG 0.0013 2.310 0.005 0.911 0.002 1.035 1.071 

3F 0.0008 3.235 0.000 0.962 0.002 1.225 1.501 

4F + BMG 0.0008 3.192 0.000 0.963 0.002 1.241 1.541 

4F 0.0007 2.813 0.001 0.962 0.002 1.194 1.426 

5F + BMG 0.0007 2.831 0.001 0.963 0.002 1.216 1.478 

5F 0.0006 2.297 0.005 0.968 0.001 1.131 1.279 

6F + BMG 0.0005 2.206 0.008 0.969 0.001 1.136 1.290 

6F 0.0006 2.177 0.009 0.968 0.001 1.121 1.257 

7F + BMG 0.0005 2.123 0.011 0.968 0.001 1.131 1.279 
  

Panel D. 5x5 Size/Investment Portfolios 
  

CAPM 0.0008 2.050 0.013 0.909 0.002 0.957 0.916 

CAPM + BMG 0.0010 1.940 0.020 0.912 0.002 0.948 0.899 

3F 0.0005 2.286 0.005 0.966 0.002 1.030 1.061 

4F + BMG 0.0005 2.159 0.009 0.966 0.001 1.021 1.043 

4F 0.0004 1.956 0.020 0.966 0.001 0.996 0.991 

5F + BMG 0.0004 1.886 0.026 0.966 0.001 0.992 0.985 

5F 0.0003 1.580 0.080 0.971 0.001 0.938 0.880 

6F + BMG 0.0003 1.449 0.128 0.971 0.001 0.920 0.847 

6F 0.0003 1.519 0.101 0.971 0.001 0.937 0.877 

7F + BMG 0.0003 1.423 0.141 0.971 0.001 0.926 0.857 
  

 

This table shows the results of various asset pricing tests on four different global test assets. We include 25 global 

portfolios formed on Size/Value, Size/Momentum, Size/Operating Profitability, and Size/Investment from the 

Kenneth French Data Library. Comparing various models with and without the BMG factor, better fitted models 

according to the GRS test are printed in bold. The sample period ranges from January 2010 to December 2016. The 

factors erM, SMB, HML, WML, RMW, and CMA are provided by Kenneth French. 
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Table IA.7 

Descriptive statistics - orthogonalized risk factors 
 

Factor 

Mean excess 

return (%) SD (%) T-stat. 

Correlations 

BMG erM SMB HML WML 
 

BMG⊥ -0.23 1.95 -1.10 0.9808     

erM
⊥

 0.84 4.02 1.92  0.9957    

SMB⊥ 0.08 1.39 0.55   0.9914   

HML⊥ 0.09 1.68 0.48    0.9537  

WML⊥ 0.64 2.53 2.31     0.9758 
 

 

This table displays descriptive statistics of the monthly democratically orthogonalized risk factors of the 4F 

Carhart model and the BMG factor for the sample period from January 2010 to December 2016. Correlations are 

reported between the orthogonalized risk factors and the original risk factors. The original factors erM, SMB, 

HML, and WML are provided by Kenneth French. 
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Table IA.8 

CRS-decile portfolio performance – orthogonalized risk factors 
 
 

Panel A. 5F Carhart + BMG model  Panel B. Decomposition of R2 on deciles level 
 

 

 Decomposed-R2 

(%) 

Systematic 

R2 (%) 

Idiosyncratic 

variance  

(1-R2) (%) 

  Alpha
⊥
 erM

⊥ SMB⊥ HML⊥ WML⊥ BMG⊥ 
Adj. R2 

(%) 
  

∆Adj. R² 

(%) 
 erM

⊥ SMB⊥ HML⊥ WML⊥ BMG⊥   

                                   

Low CRS -0.001 1.138*** 0.086 0.072 -0.247*** -0.241*** 95.32   1.60*** 
 92.76 0.06 0.06 1.73 0.99 95.60 4.40 

                             

2 0.001 1.007*** 0.053 0.119** -0.169*** -0.212*** 95.61   1.58***  93.59 0.03 0.23 1.04 0.98 95.88 4.12 

                             

3 0.002** 1.025*** 0.137* 0.076 -0.209*** -0.067 94.59   0.32** 
 93.00 0.20 0.09 1.54 0.10 94.92 5.08 

             
               

4 0.001 1.043*** 0.143* 0.106 -0.183*** -0.022 94.06   0.09 
 92.89 0.21 0.17 1.13 0.01 94.41 5.59 

                             

5 0.000 1.013*** 0.123 0.147** -0.215*** 0.060 93.55   -0.08  91.73 0.16 0.34 1.63 0.08 93.94 6.06 

                             

6 0.001 0.953*** 0.197** 0.206*** -0.223*** 0.206*** 93.99   0.26** 
 90.19 0.46 0.74 1.96 1.00 94.35 5.65 

              
               

7 0.001 1.000*** 0.247*** 0.180** -0.225*** 0.482*** 94.06   3.12*** 
 86.78 0.64 0.49 1.74 4.76 94.42 5.58 

                            

8 0.000 1.104*** 0.262*** 0.252*** -0.362*** 0.539*** 94.45   2.93***  85.04 0.58 0.77 3.61 4.79 94.79 5.21 

                            

9 -0.003** 1.093*** 0.155 0.204** -0.256*** 0.740*** 93.06   6.88*** 
 82.11 0.20 0.50 1.78 8.89 93.48 6.52 

             
               

High CRS -0.001 1.122*** 0.322** 0.292*** -0.383*** 1.091*** 91.52   12.47*** 
 71.27 0.71 0.85 3.29 15.92 92.03 7.97 

              
       

                                    

                  

Panel A shows the alpha performance and beta coefficients for annually rebalanced equal-weighted decile-portfolios based on the carbon risk score (CRS) of the stocks in the CRS data sample for the 

sample period. The risk factors are orthogonalized democratically. *, **, *** denote significance on the 10%, 5%, and 1% level, respectively. For the alphas and beta coefficients, significance statistics 

are based on two-sided t-tests. Significance symbols for the differences in adj. R2 are based on the one-sided F-test for nested models (H0: βp5=0). Panel B shows the decomposed-R² of each 

democratically orthogonalized risk factor for the global CRS-deciles. The systematic variance is the sum of all decomposed-R², whereas the idiosyncratic variance equals 1-R². The original factors 

erM, SMB, HML, and WML are provided by Kenneth French. 
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Table IA.9 

Comparison of common factor models - orthogonalized risk factors  
  
 

Panel A. Decomposition of R² with orthogonalized factors on single stock level  

 

Avg. decomposed-R2 (%) Avg.  

systematic R2 (%) 

Avg. idiosyncratic 

variance (1-R2) (%) erM
⊥ SMB⊥ HML⊥ WML⊥ BMG⊥ 

  

12.31 2.30 1.73 1.87 2.42 20.63 79.37 
 

Panel B. Significance tests for orthogonalized risk factor betas for the 5F Carhart + BMG model 
 

  T-test of significance of coefficients 
 

Avg. 

coeff. 

10% level  5% level  1% level 
 # %  # %  # % 

 

erM
⊥ 0.922 25,370 67.27   22,428 59.47   16,819 44.60 

SMB⊥ 0.686 7,236 19.19   4,504 11.94   1,537 4.08 

HML⊥ 0.086 4,876 12.93   2,754 7.30   786 2.08 

WML⊥ -0.168 5,656 15.00   3,434 9.11   984 2.61 

BMG⊥ 0.287 7,424 19.69   4,924 13.06   2,192 5.81 
 

 

This table provides a comparison of common regression models with orthogonalized risk factors. Panel A shows 

the average decomposed-R² values of orthogonalized factors. Regressions are run based on the 5F Carhart + BMG 

model with single stocks from the full sample. Furthermore, the average systematic R2 and the average idiosyncratic 

variance obtained from the systematic variance are displayed. Panel B shows average coefficients as well as the 

absolute (#) and relative (%) numbers of statistically significant beta coefficients from the democratically 

orthogonalized 5F Carhart + BMG model regressions run on single stocks from the full sample in the sample period 

from January 2010 to December 2016. Statistical significance is based on two-sided t-tests. 
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Figure IA.1 

Carbon beta landscape 
 

 

 

 
 

This figure shows the carbon beta of the CRS data sample across the world. A greenish color indicates a low average carbon beta of the country, whereas a deep red color states 

that, on average, the countries’ firms have high carbon betas. 
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Figure IA.2 

Carbon beta industry breakdown 
 

 
 

This figure shows the carbon beta of the CRS data sample across sectors. The sectoral breakdown is based on the Thomson Reuters Business Classification (TRBC). The 

sectors are sorted in ascending order by their carbon beta. 
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Figure IA.3 

CAPM beta of 40 test assets 
 

 

 
 

 

This figure shows the market beta of the 40 test assets built out of the full samples. Firms are sorted into 20 portfolios based on their 

individual carbon beta (portfolio group) and then split into small and medium subsamples with the median of the size as breakpoint. 
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