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Abstract

Do consumer and investor perceptions matter in asset pricing? I find that it is pos-

sible to forecast high-frequency stock returns and volatility jumps using consumer and

investor sentiment indicators. Using tweets that I scraped from Twitter, I perform tex-

tual analysis to construct daily sentiment indices. While other scholars have relied on

third-party companies like Stocktwits to complete these tasks, doing so reduces trans-

parency and limits the potential for customization. The sentiment indices I constructed

are numerical scores, not dichotomous variables, which allows me to control for sentiment

strength (e.g., good vs. great) and not just positive/negative overall feelings. Results

indicate that sentiment indices can not only be used to obtain out-of-sample forecasts of

daily returns, but can also forecast volatility jumps. Using a simple Markov-switching

framework, I find that, as overall sentiments shift from positive to negative (or vice

versa), volatility jumps occur.
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1 Introduction

Over the last several years, a growing number of news articles have claimed that in-

vestors use social media to help them guide their investment decisions (Huang, 2015;

Openshaw, 2013; Kollmeyer, 2016; Borzykowski, 2016). In general, investors are quick

to dismiss disinformation. As such, if more investors are turning to social media to

make investment decisions, it must be the case that social media contains some valu-

able information. This article, focusing on Twitter specifically, asks: do consumer and

investor perceptions matter in asset pricing? In his now seminal 1988 presidential ad-

dress, Roll (1988) showed argues news, as defined by the Dow-Jones News Retrieval

System, had little to no relationship with stock returns. Although news itself may

not impact stock returns directly, the way we feel, react, interpret, and/or perceive

new sources of information may in fact affect stock returns (Boudoukh et al., 2013).

For instance, Baker and Wurgler (2006) (and to some extent, Cen et al. (2013)) find

that sentiments affect a cross-section of asset prices. Other scholars have demonstrated

that individual opinions posted on Twitter can predict firm earnings and announce-

ments (Bartov et al., 2015) and that investor sentiments from stock-related message

boards can forecast Amazon stock returns (Das and Chen, 2007). This article presents

a somewhat different argument: my position is that tweets can actually alter investors’

information set and thus provide us with an out-of-sample forecast of a stock’s returns.

As such, this work expands the literature mapping linkages between the sentiment con-

sensus of consumers/investors and firm asset returns (Hribar and McInnis (2012); Da

et al. (2013)).

I obtain “perceptions” by converting tweets scraped from Twitter into quantifiable

signals about investor sentiments towards a product or company. Assume, for example,

that consumers are deciding whether to buy the most recent smartphone from some

company. If the smartphone has potential issues, such as bugs or annoying features,

others’ perceptions about the product should impact consumers’ decision to purchase

it. For example, when Apple decided to remove the headphone socket from its phones,
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consumers were outraged. Yet, as they began adopting the new smartphone, consumers

started to report that the change to the phone was not a deal breaker. Sales of Apple’s

new phone started more slowly than for previous releases, but they picked up and

were eventually in line with expectations (Dunn, 2017). Although this is merely one

example, it shows how social media can be a source of information when deciding

whether or not to adopt a new product or technology. In a more recent example,

Bloomberg (Vasquez, 2018) reported that a tweet by Kylie Jenner had caused a 6.1%

decline in the stock of Snapchat after she claimed to no longer be using the smartphone

application. The company’s stock plummeted from a close of $18.64 on the day before

Jenner’s tweet to a close of $16.32 a few days later (the day of the tweet, the stock closed

at $17.51). More than a month later, Snapchat stocks had still not recovered fully from

the Kylie Jenner tweet. Although this example is anecdotal, it suggests that Twitter

user sentiments (especially from “influential” users) may have a significant effect on

asset prices, irrespective of the fundamental valuation of the firm. This phenomenon

is precisely what this article explores.

Since Twitter is primarily driven by information that is not necessarily based on

fundamentals,1 asset pricing theory would suggest that consumer sentiments would

merely contribute to price noise, if they contribute at all (Roll, 1988).2 As this paper

will show, this should be reflected in our ability to forecast these short-term returns

fluctuations if we assume that these fluctuations are driven by short-term fears or

other human emotions.3 Currently, very little scholarly work attempts to model short-

term return fluctuations using high-frequency financial market data. Most research

argues that noise is something that cannot be estimated (Cochrane, 2009; Campbell

and Hentschel, 1992). I argue, in this paper, that short-term fluctuations in asset prices

can be modeled. Figure 1 shows our current ability (based on the three best/most used
1In fact, I would argue that the majority of tweets that are made by the general public (not investment
professionals) with respect to a specific company are based on spur of the moment feelings, not firm
fundamentals.

2What is meant by noise is a stock’s deviations from the fundamentally valued price.
3Note that throughout this paper, short-term fluctuations and noise are used interchangeably.
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models) to forecast asset prices or returns at various time horizons (Sanford, 2017):
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Figure 1: Adjusted R2 - Forecasting Models

The x-axis on figure 1 represents the forecast horizon and the y-axis represents the

adjustedR2 for the forecast using different models. The first bar in this figure represents

the forecast regression using the recently developed Recovery Theorem (Ross, 2015);

the second bar represents the multivariate Recovery Theorem (Sanford, 2017); and the

final bar uses a dividend-price ratio (Cochrane, 2008). Clearly, we do quite well at

forecasting asset prices at horizons ranging from one month to a few years. However,

very few models are successful at explaining short-term (say, one-day) variations in

asset prices or returns. This is where sentiments from social media come into play: they

can help explain these short-term variations. More specifically, I explore the proportion

of short-term noise that can be explained using sentiments from social media.4

My findings indicate that, contrary to the literature’s expectations, it is possible to

forecast high-frequency stock returns and volatility jumps using consumer and investor

sentiment indicators. Using tweets that I scraped from Twitter, I perform textual

analysis to construct daily sentiment indices. While other scholars have relied on third-

party companies like Stocktwits to complete these tasks, doing so reduces transparency
4For the purposes of this paper, short-term noise is is equivalent to short-term returns and therefore,
the two are used interchangeably – simply put, daily returns are often viewed as noise.
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and limits the potential for customization. The sentiment indices I constructed are

numerical scores, not dichotomous variables, which allows me to control for sentiment

strength (e.g., good vs. great) and not just positive/negative overall feelings. Results

show that sentiment indices can not only be used to obtain out-of-sample forecasts

of daily returns, but can also forecast volatility jumps. Using a Markov-switching

framework, I find that, as overall sentiments shift from positive to negative, volatility

jumps occur.

The rest of the paper proceeds as follows: section 2 defines and derives the model

of short-term stock returns; section 3 introduces a Markov-switching framework for

modeling volatility jumps; section 4 provides on overview of the data used in this

paper; section 5 presents the empirical results; and section 6 concludes the paper.

2 Stock return modeling

This article tests whether stock returns can be attributed, at least in part, to a behav-

ioral component. In the era of social media, other people’s perceptions of a company

and/or of its products have become important decision drivers for investors. The model

presented in this section is one that is akin to the early factor models of Fama and

French (1993, 2012) and are therefore quite simple from an econometric standpoint.

Stock returns To test whether sentiments can explain short-term asset returns, I

employ a simple out-of-sample linear model, as follows:

rt = α + βωt−1 + vt (1)

where rt is the current period’s return and ωt−1 is the previous period’s sentiment. Note

that in regression 3, the sentiment variable, ω, appears as a single number. In reality,

if we had a sentiment score distribution that ranged from −3 to +3, the sentiment

variable would reflect the tweet count for each score in that range. Hence, the regression
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equation would look more like this:

rt = α + β1ω(−3)t−1 + β2ω(−2)t−1 + β3ω(−1)t−1 + β4

ω(+1)t−1 + β7ω(+2)t−1 + β6ω(+3)t−1 + vt

(2)

where ω(−1), for example, represents the number of times words associated with a

sentiment score of −1 appeared in the sample. Similarly, one would expect that, as

the amount of information being fed into the market at any given time to increase, so

would the volatility of asset prices. This will be formally tested, again using a simple

out-of-sample volatility regression as follows:

∆σt = α + βωt−1 + vt (3)

where ∆σt is the change in a stock’s volatility at time t and ωt−1 is the previous period’s

sentiment.

3 Volatility jumps

In section 2, I presented a model by which stock returns can be explained using Twitter

sentiments. In addition, I suggest that a Markov-switching model will allow us to

explain volatility jumps in asset returns (Hamilton, 1989). By definition, as the amount

of short-term fluctuations increases in the market, so does volatility. As such, if a

sentiment distribution helps to explain changes in a stock’s return fluctuations, it

should also explain changes in the stock’s volatility. More interesting, however, is

whether changes in sentiments can help explain drastic changes in volatility states. I

test this proposition by assuming that volatility has two possible states (in the empirical

section, I will also test a Markov-Switching model with three possible states): a low

state and a high state. As the noise increases, so should volatility. Ultimately, this will

show up in the volatility as volatility jumps. As the general sentiment about a given

company or product changes from “positive” to “negative” (or vice versa), we would
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expect volatility jumps to occur. I assume a Markov-switching model with two possible

volatility states described by the following set of equations:

σt =

 α0 + βzt−1 + εt, st = 0

α0 + α1 + βzt−1 + εt, st = 1
(4)

where σ is the volatility of stock returns, z is the skewness of the sentiment distribution

from previous period t − 1, and εt and β are i.i.d. random variables with mean zero

and variance equal to σ2
ε . This model introduces a system where volatility is a linear

model with two different intercepts: α0 and α0 + α1. In other words, the “jump” in

this system is based on the introduction of an additional intercept in the process (α1).

As a simple example, let us assume that coefficient β is equal to one, that we have a

skewness value equal to 0.2, and that, in initial state s0, α0 is equal to zero. In other

words, we have a system where the volatility is constant and equal to 0.2. In this

switching model, when the state switches from state zero to state one, if we assume

that the additional intercept term is equal to 0.1, we would now have a new volatility

level equal to 0.3. This is the idea behind this Markov-switching model. I will assume

that the transitions are governed by a first-order Markov process defined as follows:

Prob(st = 1|st−1 = 1) = p1,1

Prob(st = 0|st−1 = 1) = p0,1

Prob(st = 1|st−1 = 0) = p1,0

Prob(st = 0|st−1 = 0) = p0,0

(5)

which can be represented in matrix form as:

P =

p0,0 p0,1

p1,0 p1,1
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which represent the probabilities of switching between the two states of the model. For

example, assuming that we were in state s0 in the previous period, the probability of

transitioning to state s1 is equal to p0,1. The question then is whether we can forecast

accurately when the model will switch between states and, perhaps more interestingly,

what is the probability of switching between states. As mentioned above, the switch

will depend in large part on the skewness of the sentiment distribution derived in this

paper. In other words, we should be able to re-write the probabilities as functions of

sentiment skewness:
Prob(st = 1|st−1 = 1, zt−1) = p1,1

Prob(st = 0|st−1 = 1, zt−1) = p0,1

Prob(st = 1|st−1 = 0, zt−1) = p1,0

Prob(st = 0|st−1 = 0, zt−1) = p0,0

(6)

These probabilities are precisely what we estimate in section 5.3. This simple example

can easily be generalized to an N-State Markov-Switching model. For example, section

5.3.2 will extend the simple two-state model presented here to a three-state model.

4 Data

4.1 Sample selection

The sample used in this paper is from June 2009 (when I started scraping Twitter) to

December 2009. The analysis stops on the last day of 2009 because it became impossible

to scrape the entire population of tweets from Twitter (more below in section 4.2).

Why Apple? During the sample period, people tweeted about Apple approximately

600,000 times. By comparison, according to the website gigatweet.com, as of 17 March

2018, companies like United Airlines, Microsoft, Google, and Samsung have a similar

number of tweets today to Apple back in 2009. Hence, it could be argued that, we

could use Apple as a proxy for the Twitter exposure that the average company receives

today. Furthermore, at the time, Apple was releasing what was then a relatively
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new product: the iPhone. People were still susceptible to others’ impressions of the

product. Because barriers to switch between technology products are high (because of

the current Apple architecture – e.g. Apple Airplay ensures that only Apple products

can be used together), one could argue that, at least today, overall impressions of

products is diminished. Analyzing a company in the early stages of product adoption

is helpful to test the premise posited in this paper.

I obtained return data for Apple stocks from the Wharton Research Data Services

(WRDS) database for June–December 2009. Price data were collected from the Center

for Research in Security Prices (CRSP) dataset.

4.2 Twitter data

Using Twitter data, I determine the sentiment “value” of tweets by associating certain

words with a score. One of the most significant advantages of Twitter is the length of

statements. Because of the 140-character limit, users must make precise statements.

This means that, in general, we do not need to worry about things like double negatives.

For example, we would not expect someone on Twitter to write: “I did not not want to

go to the store.” The limited length removes a lot of subjectivity based on grammar. It

allows me to use the tweets at face value instead of wondering about ulterior meanings.

I scraped Twitter data directly from twitter.com. According to the World Wide

Web Foundation (2018), tweets grew from about 2.5 million per day in 2009 to about

35 million per day in 2010. Twitter limits the number of live tweets that can be

scraped from its servers. The tweeting levels reached in 2010 made scraping the entire

population of tweets impossible beyond the last day of 2009. Why is this important?

By 2010, the scraping limits imposed by Twitter meant that one’s scraped database

might miss influential tweets that had a significant impact on the stock market. In

other words, if I was scraping tweets about Snapchat in early 2018, because of Twitter’s

scraping restrictions, it is not guaranteed that my algorithm would have captured the

Kylie Jenner tweet that single-handedly affected Snapchat’s stock price. As such, I have
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limited this analysis to the time period in which no tweets were missing (i.e. we could

capture the entire tweet population): from June 2009 to December 2009. During this

period, there were 600,000 tweets about Apple. Each tweet in the database contains

the date and time of the tweet, its location, and the text of the tweet. To test the

hypothesis that stock prices are affected by investor/consumer sentiments in the short-

term, I subset tweets by day.

To produce the sentiment indices, I use two word dictionaries (see section 4.3). I

match words from each tweet to their score in the two dictionaries and aggregate scores

for each day. For example, if, on day X, 125 words with a score of +3 are used in tweets

about Apple, then the +3 bin for that specific day will have a count of 125. The scores

associated with each tweet represents the word with the maximum score in that tweet.

In other words, online a single word in each tweet is used to determine that tweets

sentiment score – this means that if a tweet has the words “good” and “great,” since

“great” has the highest score, that word will be used for that entire tweets sentiment

score.

The sentiment indices are used to forecast daily fluctuations in asset prices. I aggre-

gate all sentiment scores for a given day and compare them to the next-day stock price

for the asset. Sentiment scores obtained on days where trading does not occur (such

as weekends and holidays) are aggregated until trading occurs. For example, weekend

tweets about Apple are summed together as a single measure (Friday to Sunday) that

is used as the sentiment for the next trading day, Monday. As another example, if trad-

ing did not occur on a Tuesday because of a holiday, the tweets would be aggregated

with the Monday tweets as the sentiments predicting stock price for Wednesday.

To isolate sentiments about specific companies, some tweets had to be dropped

from the sample. For example, if one is constructing a sentiment index for Apple,

someone’s tweet about the great time they had at the apple orchard on a particular

day cannot be included. As such, it is essential to filter the tweets to make sure that

only tweets related to the company or its products remain in the sample. To accomplish

this, I adopted a two-step triage system. The first step involves listing possible word
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combinations that should not be part of the final tweet sample. In our example, that

would mean removing any tweet with the word orchard preceded or followed by the

word apple. The second step involves examining each flagged tweet to ensure that it

was not related to the company or its products. The second step was only possible

because the subset of tweets that were rejected by the sorting algorithm was quite

small (a few thousand tweets). In a larger sample, this entire process would need to

be automated.

A final verification involved creating a subsample of one week and reading all tweets

to verify their relevance to Apple, the company. The weekly subsample was selected

randomly. All tweets in the subsample were indeed about Apple, which led me to

conclude that the subsetting was working properly. To ensure that over-deletion did

not occur, the deleted tweets were read individually. A minimal number (less than

0.1%) of tweets were brought back into the sample after being deleted.

4.3 Dictionaries

To associate words with scores, I use two separate word sentiment dictionaries (Loughran

and McDonald, 2011; Nielsen, 2011). The two dictionaries 1) provide a robustness check

on each other, and 2) attribute scores differently to words. Each dictionary is described

in turn below.

Loughran andMcDonald (2011) word dictionary The first dictionary (Loughran

and McDonald, 2011) is a dictionary of mostly business words. For example, in the

world of finance, we often say that we are “going long” when buying a stock. In normal

parlance, going long does not mean much (at least not in terms of defining a sentiment).

Yet, if a tweet states that investors should go long on Apple, it reflects a positive senti-

ment toward Apple products. The Loughran and McDonald (2011) dictionary defines

words as either positive or negative (binary scores). For example, it would give a score

of +1 to the word good and a score of −1 to the word bad. Similarly, the dictionary
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gives a score of +1 to the word excellent and a score of −1 to the word horrible.

The dictionary combines words from the EDGAR 10-X fillings with base words

from the English dictionary. Only those words that appear at least 100 times in the

10-X filings and that can be identified as actual words are added to the dictionary.

The dictionary is updated almost every year to incorporate words that are in vogue at

that moment in the business world. Words are divided into seven categories: negative,

positive, uncertain, litigious, constraining, superfluous, and interesting. In this article,

I use only words that fall into the negative or positive categories because these are

the words that are clearly associated with sentiments. The rest of the dictionary is

somewhat arbitrary. In total, the dictionary contains over 85, 000 words. Once we

subset the word list to only include words that are positive or negative, we are left

with a dictionary of about 2, 700 words. As an example, the dictionary identifies boom

as a positive word and bankrupt as a negative word. Interested readers should visit

the website to obtain more information on the dictionary compilations and the various

dictionaries available.5

Nielsen (2011) word dictionary Instead of proposing a positive-negative dichotomy,

the second dictionary (Nielsen, 2011) distinguishes the relative strength of words.

Scores range from negative three to positive three. Using this dictionary, I am able

to demonstrate that forecast results are wildly different when we account for the fact

that excellent is stronger than good. For example, I conducted a textual analysis to

match the words for every Apple-related tweet on 3 August 2009 (see figure 2). A

score is recorded for each tweet containing a word in the Nielsen (2011) dictionary.

This information can be aggregated into a distribution such as the one shown in fig-

ure 2. The sentiment distribution allows us to: 1) control for the relative strengths

of certain words, and 2) determine if certain characteristics of the distribution have a

stronger impact on prices than others. More specifically, certain groupings of words or

moments of the distribution may have different impacts on asset prices.
5https://www3.nd.edu/~mcdonald/Word_Lists.html
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Figure 2: Apple Sentiment Distribution - August 3rd 2009

Figure 2 gives an example of what the sentiment index of Apple looks like on August

3rd 2009. On this day, the distribution seems to be quite normal, although one could

argue that the distribution does appear to have a slight negative skew (longer tail on

the negative side of the distribution).

One shortcoming of the Nielsen (2011) dictionary is that Twitter users may con-

sciously choose to use words with fewer characters. In the example above, excellent

was stronger than good. However, excellent has five more characters than good. Even

if a user truly wanted to use the word excellent, they may decide to use the word good

to ensure that they can say everything they want to say within the 140-character limit

imposed by Twitter. Furthermore, the Nielsen (2011) dictionary was not constructed to

associate sentiment scores to business terminology. For example, it does not recognize

long and short as words that have any sentimental value. This is why using both the

Loughran and McDonald (2011) dictionary (which codes sentiments for finance words)

and the Nielsen (2011) dictionary (which codes a range of sentiments) is so important.

One shortcoming of both dictionaries is that they cannot identify “abbreviations/

shortcuts.” For example, while great would receive a positive sentiment score, gr8 is

not scored. Although it is difficult to know what abbreviations are in vogue at any

point in time, it would be worthwhile to consider these devices in future research.
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5 Results

5.1 Descriptive statistics

The sample period for this article is from June to December 2009, which corresponds to

138 trading days. In this section, I describe Apple data for the sample period (prices,

returns, etc.) and provide summary statistics for the sentiment indices.

Table 1 shows the number of observations (138 days), minimum, first quartile,

median, mean, third quartile, maximum, and number of missing observations for each

variable. The descriptive statistics are not surprising or out of the ordinary. For

example, the average return during the period of interest for Apple was about 0.32%

per day while the maximum daily return was about 6.8%.

Variable n Min q1 x̃ x̄ q3 Max #NA

Prices 138 19.14 23.26 26 25.20385 27.96 30.44714 0

Log Prices 138 2.95178 3.147 3.258 3.2183 3.331 3.415992 0

Return 138 -0.04410595 -0.00714 0.002689 0.003194133 0.01367 0.06787332 0

SD of Return 138 0.01279945 0.01478 0.01609 0.0166411 0.01865 0.02632063 0

Table 1: Descriptive Statistics DVs

Table 2 provides summary statistics for the sentiment analysis based on the Nielsen

dictionary. The first six rows represent the six categories of sentiments, from “very

very negative” (VV Negative or −3) to “very very positive” (VV Positive or +3).

Interestingly, on average, 14.45 words are considered VV Negative daily compared to

2.20 VV Positive words. As with most review websites, there seem to be more people

complaining about Apple than praising it (or perhaps people generally use stronger

language when denouncing companies/products). Thus, we can see a a much larger

number of observations at the VV Negative category when compared to the VV Positive

category, on average. This, however, only seems to be the case at the extreme ends of

the distribution. In the middle, there are a larger number of positive sentiment scores

counts (toward the V Positive and Positive categories).
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Variable n Min q1 x̃ x̄ q3 Max #NA

VV Negative 138 0 8 15 14.44928 20 38 0

V Negative 138 26 212 350.5 402.9638 592 1288 0

Negative 138 54 409.8 750 850.1522 1260 2262 0

Positive 138 75 689.8 1307 1472.725 2162 4236 0

V Positive 138 56 528.5 969 1110.812 1673 3478 0

VV Positive 138 0 1 2 2.195652 3 11 0

Total 138 211 1827 3400 3853.297 5766 11292 0
Positive
Negative 138 1.335907 1.945 2.059 2.085759 2.185 3.235915 0

Mean 138 35.16667 304.5 566.8 642.2162 961.1 1882 0

SD 138 28.67296 264.8 494 552.8232 823.9 1610.637 0

Kurt 138 -2.954419 -1.928 -1.67 -1.435617 -1.287 1.621007 0

Skew 138 -0.06308114 0.1219 0.1691 0.2309631 0.286 0.9515991 0

Table 2: Descriptive Statistics IVs (Nielsen dictionary)

In table 2, the seventh row (under the six possible sentiment strengths) is the total

count for the sentiment distribution: the number of times words were associated with

any sentiment category for each day. The variable ranges from 211 to 11, 292, which

indicates that the extent to which people discussed Apple on Twitter varied widely

depending on the day. The variables mean, SD, kurt, and skew represent the mean,

standard deviation, kurtosis, and skewness of the daily distribution of the sentiment

index. The skewness variable will be used later as a summary measure of the overall

sentiment about Apple in the economy. When the skew shifts toward the left, it means

that the overall sentiment regarding Apple has become more negative, and vice versa.

This is important because it allows us to capture the nuances of word selection when

characterizing a company or product on Twitter.

Table 3 presents the same variables as table 2. However, the sentiment categories

are presented as proportions of the total number of tweets with flagged sentiment scores

on any given day. I use this as a robustness check to ensure that regression results are

not simply a function of the level variables.
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Variable n Min q1 x̃ x̄ q3 Max #NA

VV Negative 138 0 0.002716 0.003677 0.003844734 0.00492 0.009205426 0

V Negative 138 0.07124682 0.0962 0.1052 0.1038737 0.111 0.1470924 0

Negative 138 0.159601 0.2066 0.2168 0.21826 0.229 0.3269877 0

Positive 138 0.2829947 0.3735 0.3818 0.3906763 0.4006 0.5137157 0

V Positive 138 0.2066116 0.2681 0.2839 0.2827466 0.2971 0.3362885 0

VV Positive 138 0 0.0001577 0.0004389 0.0005986797 0.0009185 0.002991027 0

Mean 138 0.1666667 0.1667 0.1667 0.1666667 0.1667 0.1666667 0

SD 138 0.1358272 0.141 0.1433 0.1451027 0.1467 0.178436 0

Kurtosis 138 -2.954419 -1.928 -1.67 -1.435617 -1.287 1.621007 0

Skewness 138 -0.06308114 0.1219 0.1691 0.2309631 0.286 0.9515991 0

Table 3: Descriptive Statistics Ratio IVs

Finally, table 4 provides summary statistics for the sentiment analysis based on the

Loughran and McDonald dictionary. This dictionary focuses on words that are regu-

larly used in business. As such, it is used frequently in the textual analysis literature

in business (Kuhnen and Niessen, 2012; Garcia, 2013; Loughran and McDonald, 2014;

Li et al., 2014). Here, we are including words that may not have been captured by

the other (Nielsen) sentiment dictionary, which provides a kind of robustness check.

However, I cannot conduct as many in-depth tests as with the Nielsen index because

this dictionary does not assess the strength of terms. The first four rows of table

4 present the sentiment measures. The first two are the positive and negative tweet

words matching the dictionary, and the second two are proportions of the total number

of sentiment words on any given day. The ratio-of-positive-to-negative variable is the

number of words that were flagged as positive (numerator) compared to the number of

words that were flagged as negative (denominator). Finally, the weighted ratio variable

is the ratio of positive to negative multiplied by the total number of tweets expressing

a sentiment. This variable captures both the skew from positive to negative (a ratio

that is less than one implies more negative tweets that day), and the “importance” of a

given day. For example, a day with a thousand tweets might be more important than

a day with only ten. The next section discusses the characteristics observed from time

series graphs.
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Variable n Min q1 x̃ x̄ q3 Max #NA

Positive Terms 138 19 194 425 474.3188 718.2 1181 0

Negative Terms 138 16 153 352 384.8333 552.5 1331 0

Proportion Good to Total 138 0.1985294 0.4249 0.4475 0.4510679 0.4776 0.7018425 0

Proportion Bad to Total 138 0.2981575 0.5224 0.5525 0.5489321 0.5751 0.8014706 0

Ratio Bad to Good 138 0.424821 1.123 1.237 1.279647 1.361 4.037037 0

Total 138 35 359.5 781 859.1522 1271 2292 0

Weighted Ratio 138 37.6129 452.4 939.1 1082.909 1675 3023.036 0

Table 4: Descriptive Statistics IVs (Loughran and McDonald dictionary)

5.2 Time-series characteristics

This section plots the time-series figures for the dependent variables used in the out-

of-sample forecast regressions. All data are for Apple stock from June to December

2009. In each group of figures below, the left is the time series plot and the right is

the autocorrelation plot. The autocorrelation plot verifies that the series is covariance

stationary, which is important in a forecast regression. The first two sets of figures

(figures 3–6) are used in the forecast regressions while the last set of figures (figures

7–8) is used for the Markov-switching volatility jump forecasting tests.

Figures 3 and 4 are the daily returns plot and autocorrelation function (ACF) plot

for Apple stock, respectively. Visual inspection of the figures suggests the series is

at least approximately covariance stationary and ergodic. In a forecasting exercise,

a process should be covariance stationary and ergodic because this ensures that our

indicators are explaining variations in the returns, and not only explaining the trend

of the returns, for example (Hamilton, 1994).
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Figure 3: Apple Returns
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Figure 4: ACF Plot of Returns

Figures 5 and 6 illustrate that the change in daily volatility also appears to be

approximately covariance stationary and ergodic. Other than a few spikes in the change

in volatility, both the mean and variance are fairly constant. There are no significant

autoregressive lags.
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Figure 5: Change in Volatility
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Figure 6: ACF Plot of Change in Volatility

Unlike the previous figures, the volatility time series seen in figures 7 and 8, as

expected, does not seem to be covariance stationary and ergodic. The purpose of the
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volatility analysis is to model the jumps in figure 7 using the skewness of the sentiment

distribution. As such, we do not want to transform the series because these jumps are

exactly what this article attempts to model. They are the long vertical lines that go

up or down significantly. They represent a significant change in volatility from one day

to the next. They also appeared in figure 5 as the spikes in the time series figure. The

objective below will be to determine if change in skewness of the index can forecast

these volatility jumps (for a more in-depth discussion of volatility jumps, see Eraker

et al. (2003); Eraker (2004); Kou (2002)).
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Figure 7: Volatility
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Figure 8: ACF Plot of Volatility

There are theoretical reasons to believe that sentiments indices would impact both

returns and volatility jumps. Several articles (including French et al., 1987; Turner

et al., 1989; Campbell and Hentschel, 1992; Bekaert and Wu, 2000) have documented

“volatility feedback” effects, where periods of low returns are contemporaneously asso-

ciated with higher volatility. Hence, we should expect that certain indicators, such as

sentiments, would be able to forecast both volatility jumps and an asset’s returns. The

following section presents empirical results.
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5.3 Markov-switching results

In this section, I test whether a Markov-Switching model will allow us to explain

volatility jumps (or large, instantaneous volatility changes) in asset returns. Let us

begin with an ordinary least squares (OLS) regression as follows:

σt = α + βskewt−1 + ε (7)

where σt is the daily volatility of Apple stock, α is the regression intercept, β is the

regression coefficient, skewt−1 is the previous period’s skewness value (obtained from

the daily skewness of the sentiment index), and ε is the error. This ordinary linear

regression is used because the relationship between the skewness of the sentiments

index (the independent variable) and the volatility is a linear one. Once we have

determined this relationship, we can then assume two or three states and the Markov-

Switching model should allow us to obtain 1) a different set of parameters for each

state and 2) a better fit overall (Goldfeld and Quandt, 1973; Hamilton, 1989; Kim,

1994).

5.3.1 Two State Model

We start the Markov-Switching method by first presenting results for when we are

simply assuming two possible states. As previously mentioned, we first assume a linear

relationship between the dependent and the independent variables. For this setting,

the regression produces the following results:
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Model 1
(Intercept) 0.01574∗∗∗

(0.00031)
skewt−1 0.00375∗∗∗

(0.00106)
R2 0.0390
Num. obs. 138
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1

Table 5: Apple tweets June–December 2009 (≈600,000 tweets)

Now, we can adopt a two-state Markov-switching specification to get the following

state-dependent regressions results:

Regime 1 Regime 2
(Intercept) 0.0181∗∗∗ 0.0147∗∗∗

(0.0002) (0.0002)
skewt−1 0.0046∗∗∗ 0.0016∗

(0.0007) (0.0007)
R2 0.4435 0.0539
Num. obs. 138 138
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1

Table 6: Apple tweets June–December 2009 (≈600,000 tweets)

Based on the results in table 6, it is clear that the best fit occurs when we are in regime

one. The skew variable does not seem to do a very good job at specifying the regime

2 based model. This is the first clue that perhaps a three state model should be used.

This will be tested in the next subsection.
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Figure 9: Apple Volatility

Figure 9 shows the fit of the model where we include the one-period lagged skewness of

the sentiment distribution. We see that the model captures the two different volatility

levels quite well (a high volatility state and a low volatility state). The grayed-out area

corresponds to the low-volatility regime. This is the first volatility state in the model.

22



0 20 40 60 80 100 120 140

Regime 2

(Dependent_Variable) vs. Smooth Probabilities

0 20 40 60 80 100 120 140

(D
ep

en
de

nt
_V

ar
ia

bl
e)

0.
01

4
0.

01
6

0.
01

8
0.

02
0

0.
02

2
0.

02
4

0.
02

6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 10: Apple Volatility

The second volatility state is high volatility, which can be seen in figure 10. If we

define the high-volatility state as H and the low-volatility state as L, we can rewrite

the transition probability matrix as follows:

P =

pL,L pL,H

pH,L pH,H


where, for example, pL,L represents the probability that the volatility will transition

from a current low-volatility state to a future low-volatility state. In other words, pL,L
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is the probability that the volatility will remain the same at some point in the future.
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Figure 11: Smoothed and Filtered Probabilities

Figure 11 shows the smoothed and filtered probabilities for regime one and two based

on the Markov-switching specification. The resulting transition probability matrix is:

P =

pL,L pL,H

pH,L pH,H

 =

0.9598 0.0241

0.0402 0.9759


which illustrates that the initial states are highly persistent. Intuitively, these transition

probabilities indicate that there is a very small probability of switching from one state

to another in any given period. The three-state Markov-switching model presented in

the next section will provide us with more interesting transition dynamics.
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5.3.2 Three State Model

Next, we introduce the Markov-Switching method by assuming three possible states.

As previously mentioned, we first assume a linear relationship between the dependent

and the independent variables. For this setting, the regression produces the following

results:

Model 1
(Intercept) 0.01551∗∗∗

(0.000335)
skewt−1 0.00236∗

(0.00114)
skewt−2 0.00233∗

(0.00116)
R2 0.0934
Num. obs. 138
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1

Table 7: Apple tweets June–December 2009 (≈600,000 tweets)

Clearly, the results in table 7 leave much to be desired. The natural question is whether

or not we can improve these results by assuming a regime-switching framework. This

implies, as previously mentioned, that we will be looking at the various coefficients

for the relationship between the independent and dependent variables by assuming

that there can be three different regression coefficients. Adopting a Markov-switching

specification we get the following results:
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Regime 1 Regime 2 Regime 3
(Intercept) 0.0180∗∗∗ 0.0150∗∗∗ 0.0134∗∗∗

(0.003) (0.0003) (0.0003)
skewt−1 0.0027∗∗∗ 0.0018∗ 0.0012∗

(0.0008) (0.0007) (0.0006)
skewt−2 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗

(0.0004) (0.0004) (0.0004)
R2 0.3185 0.3747 0.4375
Num. obs. 138 138 138
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1

Table 8: Apple tweets June–December 2009 (≈600,000 tweets)

where based on the results in table 8, we can think of the different states as a high

volatility state, a current volatility state, and a low volatility state. The goal is to

determine the coefficient that corresponds to the relationship whenever the volatility

switches to one of these states. Clearly, the results here suggest that a three state

model does a much better job at explaining the variation and/or the “switches” in

volatility for Apple stock.

Figures 12 to 14 graphs the volatility of Apple’s stock compared to the smoothed

probabilities. Intuitively, the greyed area represents the different volatility states de-

fined by the three-state Markov-Switching model.
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Figure 12: Apple Volatility

We can think of regime one from figure 12 as the high volatility state.
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Figure 13: Apple Volatility

We can think of regime one from figure 13 as the high volatility state.
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Figure 14: Apple Volatility

We can think of regime one from figure 14 as the high volatility state. If we define

the high-volatility state as H, the medium (or constant) volatility state as M, and the

low-volatility state as L, we can rewrite the transition probability matrix as follows:

P =


pL,L pL,M pL,H

pM,L pM,M pM,H

pH,L pH,M pH,H


where, for example, pL,L represents, as before, the probability that the volatility will
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transition from a current low-volatility state to a future low-volatility state. In other

words, pL,L is the probability that the volatility will remain the same at some point in

the future.
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Figure 15: Smoothed and Filtered Probabilities

Figure 15 shows the smoothed and filtered probabilities for regimes one, two, and three.

Again, the model does seem to perform significantly better at explaining the various

levels of volatility when compared to the two-state Markov-switching model.
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P =


pL,L pL,M pL,H

pM,L pM,M pM,H

pH,L pH,M pH,H

 =


0.9594 0.02123 0.0281

0.0211 0.8806 0.1057

0.0195 0.0981 0.8662


Much like the two-state Markov-switching model, the model does indicate that the

states are still highly persistent. However, for example, the transition probability

pM,M indicates that there is a much larger chance of transitioning to another state

when compared to any of the other states in the two-state model presented earlier.

5.4 Forecast

In this section, I present the results for the out-of-sample (OOS) regressions for return

and volatility of Apple stock. To be clear, OOS forecasts mean that at time zero, a user

of the model would obtain a forecast for time t and then these results are compared to

the realized return for the same period. All OOS regressions conducted in this section

are, unless otherwise noted, for a one-day period.

5.4.1 Results – Nielsen word dictionary

The first set of results are for the OOS regressions using the Nielsen (2011) word

dictionary. The regression specification (table 9) is the following:

rt = α +
6∑
i=1

βt−1,izt−1,i + εt (8)

where rt is the return at time t, α is the regression intercept, βt−1,i is the regression

coefficient on the independent variable with a one-day lag, zt−1,i is the previous day’s

sentiment for the various sentiment scores i, and εt is the regression error term.
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Model 1 Model 2 Model 3
(Intercept) −0.0540 −0.0516∗∗ −0.1576∗∗∗

(0.0403) (0.0191) (0.0409)
Proportion VV Negative 1.6742† 0.2430

(0.8926) (0.8891)
Proportion V Negative 0.1427 0.2304∗

(0.1160) (0.1134)
Proportion Negative 0.1544∗ 0.1699∗∗

(0.0612) (0.0615)
Proportion Positive 0.1167∗ 0.1579∗∗

(0.0583) (0.0505)
Proportion V Positive 0.0286 0.1316∗

(0.0754) (0.0646)
Proportion VV Positive 6.1016∗

(2.3933)
R2 0.0815 0.0761 0.1225
Num. obs. 138 138 138
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1

Table 9: Apple Out-of-Sample Return Regressions

In table 9, the variables are calculated as the number of observations in a given

sentiment category divided by the total number of observations on that day. For

example, if there were 1,000 sentiment words on any given day and 100 were in the

V Negative category, the V Negative variable would get an observation of 0.1 on that

specific day. The OOS forecast for this model specification is quite good with an R2 of

about 0.123. Since the variables in the models presented are proportion variables, this

means that one of the variables must be omitted from the model. Thus, the coefficients

are in relation to that reference variable. Model 3 in table 9 has the reference variable

as VV Positive. This level of OOS forecasting at the daily interval compares to the

forecasting power of models for medium- (say monthly) and long-term (say yearly)

OOS forecasts (Cochrane, 2009). Note that all coefficients in table 9 are positive. This

is because these coefficients are with respect to the reference category variable.
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The regression specification for table 10 is the following:

∆σt = α +
6∑
i=1

βt−1,izt−1,i + εt (9)

where ∆σt is the change in volatility at time t, α is the regression intercept, βt−1,i

is the regression coefficient on the independent variable with a one-day lag, zt−1,i is

the previous day’s sentiment for the various sentiment scores, i, and finally εt is the

regression error term.

Model 1 Model 2 Model 3
(Intercept) −0.0003† −0.0001 −0.0001

(0.0002) (0.0002) (0.0002)
VV Negative 0.1838 0.9056

(1.7266) (1.7128)
V Negative −0.2706∗ 0.0543

(0.1332) (0.1750)
Negative 0.1530∗ 0.1946∗∗

(0.0598) (0.0707)
Positive −0.1814∗∗ −0.2582∗∗∗

(0.0539) (0.0682)
V Positive 0.2289∗∗∗ 0.1503∗

(0.0660) (0.0705)
VV Positive 10.2847∗ 10.1482∗

(4.5090) (4.5306)
R2 0.0589 0.1057 0.1599
Num. obs. 137 137 137
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1

Table 10: Apple Out-of-Sample Change in Volatility Regressions (scaled IV variables)

In table 10, the key indicators are the raw sentiment word counts. It is important

to note that these independent variables are different than those from table 9 in that

they are levels instead of being proportions. This is because the volatility is, in effect,

a measure of noise. Noise will be introduced based on the number of tweets we observe

on Twitter. This is why the level of the independent variable is used here instead of the

proportions. Here, the coefficients for the independent variables have been scaled by a
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magnitude of 100, 000 to see the full effect of the sentiments on changes in volatility.

So the coefficients are going to correspond to a 100, 000 change in the independent

variables. In other words, one hundred thousand Negative tweets would be expected to

have a 0.1530 effect on the daily change in the standard deviation of returns. As was the

case before, the OOS forecast for changes in volatility for Apple is quite good with an R2

of about 0.16 in the model 3 specification. The coefficients increase significantly along

with the “level” of the variable. In other words, as the words become more positive,

the effect on the change of the volatility also increases, as we would expect. Sentiment

indices do not impact changes in volatility in a clear direction. One would expect that

extreme sentiments should lead to larger swings in volatility, which is exactly what is

observed in the results. But whether a slightly positive or slightly negative sentiment

should have a positive or negative effect on the change in the volatility is not so clear.

The effects for variables outside of the VV categories are almost zero, perhaps as it

should be.

The regression specification for table 11 is the following:

∆σt = α +
4∑
i=1

βt−1,izt−1,i + εt (10)

where ∆σt is the change in volatility at time t, α is the regression intercept, βt−1,i is

the regression coefficient on the independent variable with a one-day lag, zt−1,i is the

previous day’s sentiment for the various sentiment scores, i, and εt is the regression

error term.
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Model 1 Model 2 Model 3
(Intercept) −0.0003† −0.0001 −0.0001

(0.0002) (0.0002) (0.0002)
VV and V Negative −0.2571∗ 0.0199

(0.1219) (0.1711)
Negative 0.1525∗ 0.2031∗∗

(0.0596) (0.0710)
Positive −0.1431∗∗ −0.2126∗∗

(0.0519) (0.0656)
VV and V Positive 0.1977∗∗ 0.1250†

(0.0655) (0.0694)
R2 0.0584 0.0720 0.1282
Num. obs. 137 137 137
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1

Table 11: Apple Out-of-Sample Change in Volatility Regressions (scaled IV variables)

In table 11, we collapse the most extreme sentiment categories (VV and V) into a single

category as a robustness check because the observations in the VV and V categories

are limited. As was the case before, the sentiment levels still explain a significant share

of changes in the volatility of Apple’s returns. The OOS R2 for model 3 is about 0.13.

5.4.2 Results – Loughran and McDonald word dictionary

The second set of results is for the OOS regressions using the Loughran and McDonald

(2011) word dictionary. The regression specification for table 13 is the following:

rt = α +
k∑
i=1

βi

(
Good

Total

)
t−i

+ εt (11)

where rt is the return at time t, α is the regression intercept, βi is the regression

coefficient on the independent variable at lag k, the ratio
(
Good
Total

)
t−i is the previous

period’s count of good sentiment words to bad sentiment words, and finally εt is the

regression error term.
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Model 1 Model 2
(Intercept) −0.0053 −0.0026

(0.0110) (0.0158)(
Good
Total

)
t−1 −0.0194 0.0198

(0.0241) (0.0243)(
Good
Total

)
t−2 −0.0062

(0.0244)
R2 0.0390 0.0424
Num. obs. 133 132
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1

Table 12: Apple Out-of-Sample Return Regressions (scaled independent variable)

One important thing to note about table 13 is that the coefficients are for sentiment

scores for every 1, 000 tweets. The coefficients in this regression specification are con-

sistent when we add an additional lag into the model specification (model 2). These

results show that the OOS forecasts are clearly dependent on the dictionary specifica-

tion. Here, clearly, the sentiments obtained using the Loughran and McDonald (2011)

word dictionary are unable to capture the returns of Apple during the period used

in this paper. In the appendix, I propose to use a weighted measure of good to bad

sentiments.6

6 Conclusion

In this paper, I performed a textual analysis of tweets to obtain sentiment indices that

explained stock returns and volatility jumps for Apple. There are two key contribu-

tions of this paper: first, I find that by using sentiment indices rather than sentiments

obtained from dichotomous variables, I am able to forecast daily fluctuations in stock

retruns. Second, I find that by adopting a very simple Markov-switching model, it

is possible to use the skewness of the sentiment index distribution to better predict

volatility jumps. In other words, when overall sentiment towards a company or its
6This ratio of good to bad is shown because it allows us to reflect the skewness of the sentiment about
Apple in the market.
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products shift, we can expect a volatility jump to occur. Hence, I would argue that

consumer and investor perceptions (or sentiments) does indeed matter in asset pric-

ing and that firms should consider investing in making sure that their social media

presence is viewed in a relatively positive light. Firms would also greatly benefit from

carefully considering what consumers and investors are saying about them on social

media because these can, as shown in this paper, serve as proxies for their future stock

returns.

One important implication of this piece concerns open access of social media data.

Without a doubt, such data should be used carefully to preserve the privacy of social

media users. However, as I have shown in this paper, it could allow us to further our

understanding of the linkages between economic systems and the systems’ participants.

The literature has long argued that stock market noise and volatility jumps could not

be explained using traditional datasets. And yet, here we are. Social media informa-

tion could potentially help us explain phenomenon that have yet to be understood in

economics more generally, and in financial markets more specifically. But, as of today,

if we were to attempt to collect the population of tweets over any significant amount of

time, it would cost millions of dollars and take researchers several years because of the

artificial barriers imposed by social media companies (limits on requests, for example).

Although social media platforms own these data, there should be realistic pathways

through which researchers can access data without having to incur unrealistically pro-

hibitive time and cost constraints.
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A Appendix – Additional Results

This appendix presents another set of results for the OOS regressions using the Loughran

and McDonald (2011) word dictionary. The regression specification for table 13 is the

following:

rt = α +
k∑
i=1

βi

(
Bad

Good

)
t−i
· totalt−1 + εt (12)

where rt is the return at time t, α is the regression intercept, βi is the regression

coefficient on the independent variable at lag k, the ratio
(
Bad
Good

)
t−i is the previous

period’s count of good sentiment words to bad sentiment words, totalt−1 is the total

number of tweets in the previous period, and finally εt is the regression error term.

The ratio of good to bad is used here because it allows us to reflect the skewness of

the sentiment about Apple in the market.

Model 1 Model 2
(Intercept) 8.529∗∗ 9.174∗∗

(2.612) (2.982)(
Bad
Good

)
t−1 · totalt−1 −0.00463∗ −0.00461∗

(0.00199) (0.00224)(
Bad
Good

)
t−2 · totalt−2 −0.00051

(0.00222)
R2 0.0390 0.0424
Num. obs. 133 132
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1

Table 13: Apple Out-of-Sample Return Regressions (scaled independent variable)

One important thing to note about table 13 is that the coefficients are for sentiment

scores for every 1, 000 tweets. The coefficients in this regression specification are con-

sistent when we add an additional lag into the model specification (model 2).
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