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Abstract

We recast the Aiyagari-Bewley-Huggett model of income and wealth distribution in

continuous time. This workhorse model – as well as heterogeneous agent models more

generally – then boils down to a system of partial differential equations, a fact we take

advantage of to make two types of contributions. First, a number of new theoretical

results: (i) an analytic characterization of the consumption and saving behavior of the

poor, particularly their marginal propensities to consume; (ii) a closed-form solution

for the wealth distribution in a special case with two income types; (iii) a proof that

there is a unique stationary equilibrium if the intertemporal elasticity of substitution

is weakly greater than one; (iv) a characterization of “soft” borrowing constraints.

Second, we develop a simple, efficient and portable algorithm for numerically solving

for equilibria in a wide class of heterogeneous agent models, including – but not limited

to – the Aiyagari-Bewley-Huggett model.
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Introduction

One of the key developments in macroeconomics research over the last three decades has been

the incorporation of explicit heterogeneity into models of the macroeconomy. Fueled by the

increasing availability of high-quality micro data, the advent of more powerful computing

methods as well as rising inequality in many advanced economies, such heterogeneous agent

models have proliferated and are now ubiquitous. This is a welcome development for a

number of reasons. First, it opens up the door to bringing micro data to the table in order

to empirically discipline macro theories. Second, macroeconomists often want to analyze the

welfare implications of particular shocks or policies. This is impossible without asking “who

gains and who loses?”, that is, distributional considerations often cannot be ignored. Third,

models with heterogeneity often deliver strikingly different aggregate implications than do

representative agent models, for example with respect to monetary and fiscal policies.1

Despite the continuously increasing popularity of macroeconomic models with rich het-

erogeneity, the literature has suffered from a dearth of theoretical and analytical results.

Little is known about the properties of consumption and saving behavior in the presence of

borrowing constraints, those of the resulting wealth distribution, and equilibrium uniqueness

(or lack thereof). Instead, most studies rely on purely numerical analyses to characterize the

implications of such theories. But even such computational approaches are often difficult

and costly, particularly if the question at hand requires solving for the economy’s transition

dynamics or if the model features non-differentiabilities or non-convexities.

In this paper we make some progress on these issues by recasting the standard incomplete

market model of Aiyagari (1994), Bewley (1986) and Huggett (1993) in continuous time. Our

main contributions are twofold. First, we prove a number of new theoretical results about

this workhorse model.2 Second, we develop a simple, efficient and portable algorithm for

numerically solving both stationary equilibria and transition dynamics of a wide class of

heterogeneous agent models, including – but not limited to – the Aiyagari-Bewley-Huggett

model.

Both types of contributions make use of an important property: when recast in continuous

time, heterogeneous agent models boil down to systems of two coupled partial differential

equations. The first of these is a Hamilton-Jacobi-Bellman (HJB) equation for the optimal

choices of a single atomistic individual who takes the evolution of the distribution and hence

prices as given. And the second is a Kolmogorov Forward (KF) equation characterizing

1Deaton (2016) succinctly summarizes the second and third reasons: “While we often must focus on
aggregates for macroeconomic policy, it is impossible to think coherently about national well-being while ig-
noring inequality and poverty, neither of which is visible in aggregate data. Indeed, and except in exceptional
cases, macroeconomic aggregates themselves depend on distribution.”

2Of course and as is well-known, the unadorned Aiyagari-Bewley-Huggett model is not sufficiently rich to
be an empirically realistic theory of income and wealth distribution. Understanding its theoretical properties
is nevertheless important, simply because it forms the backbone of much of modern macroeconomics.
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the evolution of the distribution, given optimal choices of individuals.3 In the context of

the Aiyagari-Bewley-Huggett model, the HJB equation characterizes individuals’ optimal

consumption and saving behavior given a stochastic process for income; and the KF equation

characterizes the evolution of the joint distribution of income and wealth. The two equations

are coupled because optimal consumption and saving depend on the interest rate which is

determined in equilibrium and hence depends on the wealth distribution. We start with a

particularly parsimonious case: a Huggett (1993) economy in which idiosyncratic income

risk takes the form of exogenous endowment shocks that follow a two-state Poisson process

and in which individuals save in unproductive bonds that are in fixed supply. Later in the

paper, we extend many of our results to more general stochastic processes and to an Aiyagari

(1994) economy in which individuals save in productive capital and income takes the form

of labor income.

We prove four new theoretical results about the Aiyagari-Bewley-Huggett model. First,

we provide an analytic characterization of the consumption and saving behavior of the poor.

We show that, under natural assumptions,4 an individual’s saving policy function behaves

like −
√

2νa in the vicinity of the borrowing constraint where a is her wealth in deviations

from this constraint and ν is a constant that depends on parameters. Equivalently, her con-

sumption function behaves like her total income plus
√

2νa. This characterization implies

that: (i) individuals necessarily hit the borrowing constraint in finite time after a long enough

sequence of low income shocks, (ii) we have an intuitive characterization of the speed ν at

which an individual does so as well as her marginal propensity to consume (MPC) out of a

windfall income gain. This MPC is higher the lower is the interest rate relative to the rate of

time preference, the more willing to intertemporally substitute individuals are, or the higher

is the likelihood of getting a high income draw; it is non-monotone in the income received

in low-income states (e.g. unemployment benefits). Understanding the theoretical determi-

nants of MPCs is, of course, important for a large body of applied work.5 Second, we derive

an analytic solution for the wealth distribution for a special case with two income types. This

analytic solution provides a clean characterization of various properties of the wealth distri-

bution, particularly the behavior of its left and right tails. For example, a direct corollary

3Lasry and Lions (2007) have termed such systems “Mean Field Games” in analogy to the continuum
limit often taken in statistical mechanics and physics, e.g. when solving the Ising model. We build on their
earlier work. Also see Guéant, Lasry, and Lions (2011) and Cardialaguet (2013) and the references cited
therein. The “Kolmogorov Forward equation” is also often called “Fokker-Planck equation.” Because the
term “Kolmogorov Forward equation” seems to be somewhat more widely used in economics, we will use
this convention throughout the paper. But these are really two different names for the same equation.

4Namely that either the borrowing constraint is tighter than the natural borrowing constraint or the
coefficient of absolute risk aversion is bounded as consumption approaches zero (or both).

5The distribution of MPCs determines, for example, the efficacy of fiscal stimulus (e.g. Kaplan and
Violante, 2014; Hagedorn, Manovski, and Mitman, 2017), the transition mechanism of monetary policy (e.g.
Auclert, 2017; Kaplan, Moll, and Violante, 2016), the effect of a credit crunch or house price movements on
consumer spending (e.g. Guerrieri and Lorenzoni, 2017; Berger, Guerrieri, Lorenzoni, and Vavra, 2015) and
the extent to which inequality affects aggregate demand (e.g. Auclert and Rognlie, 2016, 2017).
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of individuals hitting the borrowing constraint in finite time is that the wealth distribution

features a Dirac point mass at this constraint. Third, we prove existence and uniqueness of a

stationary equilibrium for general utility functions and income processes under the intuitive

condition that the intertemporal elasticity of substitution (IES) −u′(c)/(u′′(c)c) is weakly

greater than one for all consumption levels c.6 Without a uniqueness result the economy

could, in principle, be subject to poverty traps and history dependence.7 Fourth, we con-

sider “soft borrowing constraints”, i.e. a wedge between borrowing and saving rates, and

characterize their implication for saving behavior and the wealth distribution. This form of

constraint can explain the empirical observation that wealth distributions typically have a

spike at zero net worth and mass both to the left and the right of zero.

In addition to these results, which are new also relative to the existing discrete-time

literature, we extend some useful existing discrete-time results and concepts to continuous

time. First, we adapt a number of results from Aiyagari (1994), e.g. that the wealth

distribution has a finite upper bound and that a stationary equilibrium exists. Second, we

characterize the saving behavior of the wealthy and show that, with constant relative risk

aversion (CRRA) utility, consumption and saving policy functions become linear for high

wealth (Benhabib, Bisin, and Zhu, 2015; Benhabib and Bisin, 2016). Third, we show how

to define in continuous time marginal propensities to consume and save over discrete time

intervals. This is not obvious and, at the same time, important for bringing the model to the

data. Finally, a methodological contribution of our paper is to show how to handle borrowing

constraints in continuous time: conveniently, the borrowing constraint never binds in the

interior of the state space and only shows up in a boundary condition.8 The consumption

first-order condition always holds with equality, thereby sidestepping any complications due

to “occasionally binding constraints.” Many of our proofs exploit this fact.

As already mentioned, our second main contribution is the development of a simple,

efficient and portable numerical algorithm for computing a wide class of heterogeneous agent

models. The algorithm is based on a finite difference method and applies to the computation

of both stationary and time-varying equilibria.9 We explain this algorithm in the context

of the Aiyagari-Bewley-Huggett model. But the algorithm is, in fact, considerably more

6In addition we assume for the uniqueness result that individuals cannot borrow. A key step in our proof
is an important result by Olivi (2017). Contemporaneous work by Light (2017) derives a uniqueness result
under more restrictive assumptions in a discrete-time setting: he proves uniqueness for an Aiyagari economy
with CRRA utility and Cobb-Douglas production (as well as no borrowing) under the assumption that the
constant IES is greater than one.

7For the same reasons, one of the first result that every graduate student learns is that the neoclassical
growth model – the representative-agent counterpart to the Aiyagari model – features a unique steady state.

8This is in contrast to discrete-time formulations where there is typically a critical level of wealth, strictly
bigger than the borrowing constraint, such that the constraint binds for all lower levels of wealth.

9Our numerical method is based on Achdou and Capuzzo-Dolcetta (2010) and Achdou (2013) but modified
to handle the particular features of heterogeneous agent models, in particular borrowing constraints. Candler
(1999) has previously used a finite difference method to solve HJB equations arising in economics and we
discuss the relation to his work in Section 3.7.
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general and applies to any heterogeneous agent model with a continuum of atomistic agents

(and without aggregate shocks). In Section 4 we demonstrate the algorithm’s generality by

applying it to other theories that feature non-convexities, a fat-tailed wealth distribution and

multiple assets. Codes for these applications (and many more) are available from http://

www.princeton.edu/∼moll/HACTproject.htm in Matlab as well as Python, Julia and C++.

The first step of the algorithm is to solve the HJB equation for a given time path of

prices. The second step is to solve the KF equation for the evolution of the joint distribution

of income and wealth. Conveniently, after having solved the HJB equation, one obtains the

time path of the distribution essentially “for free,” i.e. with very few lines of code. This is

because the KF equation is the “transpose problem” of the HJB equation.10 The third step

is to iterate and repeat the first two steps until an equilibrium fixed point for the time path

of prices is found. For the first step, we make use of the theory of “viscosity solutions” to

HJB equations (Crandall and Lions, 1983), and the corresponding theory for their numerical

solution using finite difference methods (Barles and Souganidis, 1991). While our paper can

be read without knowledge of the theory of viscosity solutions, Online Appendix C.1 provides

an “economist-friendly” introduction and lists a number of relatively accessible references.

Continuous time imparts a number of computational advantages relative to discrete time.

As explained in more detail in Section 3.1, these relate to the handling of borrowing con-

straints, the numerical solution of first-order conditions and the fact that continuous-time

problems with discretized state space are, by construction, very “sparse.” These computa-

tional advantages are reflected in the algorithm’s efficiency. Just to give a flavor, computing

the stationary equilibrium of Huggett’s economy with two income types and 1,000 grid points

in the wealth dimension using Matlab takes around a quarter second on a Macbook Pro lap-

top computer. At the same time, the algorithm is simple. Implementing it requires only

some basic knowledge of matrix algebra and access to a software package that can solve

sparse linear systems (e.g. Matlab). Finally, the algorithm is portable. For example, it

applies without change to problems that involve non-differentiabilities and non-convexities.

These are difficult to handle with standard discrete-time methods.11 In contrast, viscosity

solutions and finite difference methods are designed to handle non-differentiable and non-

convex problems. To illustrate this, we use the same algorithm to compute equilibria of an

economy in which the interplay of indivisible housing and mortgages with a down-payment

constraint cause a non-convexity which can result in individual poverty traps and multiple

stationary distributions, an idea going back to Galor and Zeira (1993) among others.

Besides hopefully being useful in their own right, our paper’s contributions also con-

stitute the foundation for a number of generalizations that go beyond the setup that we

10More precisely, the differential operator in the KF equation is the adjoint of the differential operator in
the HJB equation. The adjoint of an operator is the infinite-dimensional analogue of a matrix transpose.

11Because first-order conditions are no longer sufficient and standard envelope theorems do not apply.
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consider in the present paper. First, building on the finite difference method developed

here, Ahn, Kaplan, Moll, Winberry, and Wolf (2017) develop a computational method for

solving heterogeneous agent models with aggregate uncertainty in addition to idiosyncratic

risk (as in Den Haan, 1997; Krusell and Smith, 1998). Second, Kaplan, Moll, and Vi-

olante (2016) incorporate multiple assets and kinked adjustment costs. Third, Olivi (2017)

leverages our continuous-time formulation to obtain powerful comparative statics and suf-

ficient statistics in incomplete markets models – results we build on in our uniqueness

proof. Fourth, Parra-Alvarez, Posch, and Wang (2017) discuss how to identify and esti-

mate continuous-time Aiyagari-Bewley-Huggett models. Fifth, Nuño and Moll (2017) and

Nuño and Thomas (2017) devise a method for computing social optima in such environ-

ments. Sixth, Shaker Akhtekhane (2017) extends our computational approach to economies

with heterogeneous firms à la Hopenhayn (1992). Seventh, Ahn (2017) computes equilibria

in economies with a large number of individual state variables (four or more) by marrying

our finite difference method with a sparse grid approach (Bungartz and Griebel, 2004; Ger-

stner and Griebel, 2010). All of these generalizations build on the tools developed in the

present paper.

A large theoretical and quantitative literature studies environments in which heteroge-

neous households are subject to uninsurable idiosyncratic shocks. See Heathcote, Storeslet-

ten, and Violante (2009), Guvenen (2011), Quadrini and Rı́os-Rull (2015) and Krueger,

Mitman, and Perri (2015) for recent surveys, and the textbook treatment in Ljungqvist and

Sargent (2004). All of these are set in discrete time.

Much fewer papers have studied equilibrium models with heterogeneous households in

continuous time.12 All of these papers make “just the right assumptions” about the envi-

ronment being studied so that equilibria can be solved explicitly (or at least characterized

tightly).13 In contrast, our aim is to develop tools for solving and analyzing models that do

not permit closed-form solutions. Our methods apply as long as the model under consid-

eration can be boiled down to an HJB equation and a KF equation, a feature shared by a

wide class of heterogeneous agent models. These two approaches are clearly complimentary:

on the one hand, having explicit solutions is often extremely valuable for gaining intuition;

on the other hand, restricting attention to environments for which these can be found may

represent a sort of “analytic straitjacket” for some applications and the availability of more

12See for example Jovanovic (1979), Moscarini (2005), Alvarez and Shimer (2011), Moll (2014), Stokey
(2014), Vindigni, Scotti, and Tealdi (2014), Jones and Kim (2014), Jones (2015), Toda and Walsh (2015),
Benhabib, Bisin, and Zhu (2016), Cao and Luo (2017) and Kasa and Lei (2017). Luttmer (2007, 2011, 2015)
and Benhabib, Perla, and Tonetti (2017) analyze theories with heterogeneous producers. These papers, like
ours, all study economies with a continuum of heterogeneous agents giving rise to a system of coupled HJB
and KF equations. In contrast, other papers study environments with a finite number of heterogeneous
agents (typically equal to two). For example, see Scheinkman and Weiss (1986) and applications of their
framework by Conze, Lasry, and Scheinkman (1993) and Lippi, Ragni, and Trachter (2013).

13Similarly, there are also several discrete-time approaches for retaining tractability in environments with
heterogeneous households (e.g. Bénabou, 2002; Krebs, 2003; Heathcote, Storesletten, and Violante, 2014).
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general methods may prove useful in such contexts.

One other paper by Bayer and Wälde (2010) also studies a continuous-time version of

an Aiyagari-Bewley-Huggett model. The main differences between their paper and ours

are: (i) they analyze a partial equilibrium framework whereas we consider a general equi-

librium framework, and (ii) we develop a numerical algorithm for solving both stationary

and time-varying equilibria, thereby actually “operationalizing” the analysis of this class

of models.14,15 Also closely related, Rocheteau, Weill, and Wong (2015) propose an elegant

alternative general equilibrium model with incomplete markets in continuous time. Market

incompleteness in their framework stems from lumpy consumption expenditure shocks (e.g.

health events) rather than idiosyncratic income risk. As a result their model features only

one individual state variable and many results can be derived in closed form. The tradeoff

is that their theory is further from the standard Aiyagari-Bewley-Huggett model that forms

the backbone of much of modern macroeconomics.16

Section 1 lays out our continuous-time version of the workhorse macroeconomic model

of income and wealth distribution in the parsimonious form due to Huggett (1993). Section

2 contains our new theoretical results. Section 3 describes our computational algorithm for

both stationary and time-varying equilibria and discusses computational advantages relative

to existing discrete-time methods. Section 4 demonstrates the algorithm’s generality by

applying it to a number of other economies. Section 5 concludes.

1 The Workhorse Model of Income and Wealth Distri-

bution in Macroeconomics

To explain the logic of our approach in the simplest possible fashion, we present it in a

context that should be very familiar to many economists: a general equilibrium model with

incomplete markets and uninsured idiosyncratic labor income risk as in Aiyagari (1994),

Bewley (1986) and Huggett (1993). We first do this in the context of an economy in which

individuals save in unproductive bonds that are in fixed supply as in Huggett (1993). We

14Additionally, Bayer and Wälde study a version of the model with the “natural borrowing constraint”
implying that individuals never actually hit that constraint. Another difference is that they characterize
individuals’ saving behavior in terms of a differential equation for its consumption policy function. In
contrast, we do this in terms of the HJB equation for the value function, thereby allowing us to take
advantage of the theory of viscosity solutions. Of course the two approaches are related and their equation
for consumption can be derived from the envelope condition of the HJB equation.

15Also Lise (2013) studies heterogeneous households in continuous time but in partial equilibrium.
16Wang (2007) proposes an elegant continuous-time Aiyagari-Bewley-Huggett model that can be solved

analytically but at the cost of making two non-standard assumptions on preferences: that individuals have
CARA utility and that current discount rates are increasing in past consumption (in the absence of the
second assumption, CARA utility implies exploding wealth inequality and no stationary wealth distribution
exists).
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later consider different ways of closing the model.

1.1 Setup

Individuals There is a continuum of individuals that are heterogeneous in their wealth a

and income y. The state of the economy is the joint distribution of income and wealth. In-

dividuals have standard preferences over utility flows from future consumption ct discounted

at rate ρ ≥ 0:

E0

ˆ ∞
0

e−ρtu(ct)dt. (1)

The function u is strictly increasing and strictly concave. An individual has an income yt

which is simply an endowment of the economy’s final good. His wealth takes the form of

bonds and evolves according to

ȧt = yt + rtat − ct, (2)

where rt is the interest rate. Individuals also face a borrowing limit

at ≥ a, (3)

where −∞ < a < 0.17 Finally, an individual’s income evolves stochastically over time. In

particular, we assume that income follows a two-state Poisson process yt ∈ {y1, y2}, with

y2 > y1. The process jumps from state 1 to state 2 with intensity λ1 and vice versa with

intensity λ2. The two states can be interpreted as employment and unemployment so that

λ1 is the job-finding rate and λ2 the job destruction rate. The two-state Poisson process is

chosen for simplicity and Section 4 shows how the setup can be extended to more general

income processes.

Individuals maximize (1) subject to (2), (3) and the process for yt, taking as given the

evolution of the equilibrium interest rate rt for t ≥ 0. For future reference, we denote by

gj(a, t), j = 1, 2 the joint distribution of income yj and wealth a.18

Equilibrium The economy can be closed in a variety of ways. We here present the simplest

possible way of doing this following Huggett (1993). We assume that the only price in this

economy is the interest rate rt which is determined by the requirement that, in equilibrium,

17As discussed in detail in Aiyagari (1994), if the borrowing limit a is less tight than the so-called “natural
borrowing limit”, the constraint at ≥ a will never bind and the “natural borrowing limit” will be the effective
borrowing limit. In a stationary equilibrium with r > 0, the “natural borrowing limit” is at ≥ −y1/r where y1

is the lowest income. In an equilibrium with a time-varying interest rate rt the natural borrowing constraint
is at ≥ −y1

´∞
t

exp
(
−
´ s
t
rτdτ

)
ds. The natural borrowing constraint ensures that at never becomes so

negative that the individual cannot repay her debt even if she chooses zero consumption thereafter.
18This joint distribution satisfies

´∞
a
g1(a, t)da +

´∞
a
g2(a, t)da = 1, that is gj(a, t) is the unconditional

distribution of wealth for a given productivity type j = 1, 2.
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bonds must be in fixed supply:

ˆ ∞
a

ag1(a, t)da+

ˆ ∞
a

ag2(a, t)da = B, (4)

where 0 ≤ B <∞. B = 0 means that bonds are in zero net supply. Alternatively, B can be

positive. For instance, a government could issue debt and sell it to individuals or there could

be saving opportunities abroad.19 We later consider alternative ways of closing the economy.

For instance Section 4.2 assumes that wealth takes the form of productive capital hired by a

representative firm so that the interest rate equals the aggregate marginal product of capital

as in Aiyagari (1994).

Useful Utility Functions We have not imposed any assumptions on the utility function

u besides it being strictly increasing and strictly concave. But in later parts of the paper,

it will sometimes be instructive to specialize this utility function to either constant relative

risk aversion (CRRA) utility

u(c) =
c1−γ

1− γ
, γ > 0, (5)

or to exponential utility

u(c) = −1

θ
e−θc, θ > 0, (6)

and we state these here for future reference.

1.2 Stationary Equilibrium

Individuals’ consumption-saving decision and the evolution of the joint distribution of their

income and wealth can be summarized with two differential equations: a Hamilton-Jacobi-

Bellman (HJB) equation and a Kolmogorov Forward (or Fokker-Planck) equation. In a

19In the scenario with government debt we assume that this debt is financed with a lump-sum tax on all
individuals and income yt is net of this tax.
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stationary equilibrium these take the form:20

ρvj(a) = max
c

u(c) + v′j(a)(yj + ra− c) + λj(v−j(a)− vj(a)), (7)

0 =− d

da
[sj(a)gj(a)]− λjgj(a) + λ−jg−j(a), (8)

for j = 1, 2 and where, throughout this paper, we adopt the convention that −j = 2 when

j = 1 and vice versa. The derivations of the HJB equation (7) and the KF equation (8)

can be found in Appendix B. The function sj in (8) is the saving policy function, i.e. the

optimally chosen drift of wealth

sj(a) = yj + ra− cj(a), where cj(a) = (u′)−1(v′j(a)). (9)

The domain of the two ordinary differential equations (7) and (8) is (a,∞) where a is the

borrowing limit in (3).

The reader may wonder why the borrowing constraint (3) does not feature in the HJB

equation (7). The reason is that, in our continuous-time formulation, the borrowing con-

straint never binds in the interior of the state space, i.e. for a > a and as a result an

undistorted first-order condition u′(cj(a)) = v′j(a) holds everywhere.21 Intuitively, since

wealth a is a continuously moving state variable, if it is strictly above the borrowing con-

straint today, it will still be strictly above the constraint an infinitesimal time interval later.

Instead, the borrowing constraint gives rise to a state constraint boundary condition22

v′j(a) ≥ u′(yj + ra), j = 1, 2. (10)

To see why this is the appropriate boundary condition, note that the first-order condition

u′(cj(a)) = v′j(a) still holds at a = a. The boundary condition (10) therefore implies sj(a) =

yj + ra − cj(a) ≥ 0, i.e. it ensures that the borrowing constraint is never violated. Online

20A more compact way of writing this is to define the Hamiltonian H(p) = maxc u(c) − pc and to write
the saving policy function as sj(a) = yj + ra+H ′(v′j(a)). The HJB and KF equations (7) and (8) can then
be expressed as two non-linear partial differential equations in vj and gj only, that do not involve a max
operator:

ρvj(a) = H(v′j(a)) + v′j(a)(yj + ra) + λj(v−j(a)− vj(a)),

0 = − d

da
[(yj + ra+H ′(v′j(a)))gj(a)]− λjgj(a) + λ−jg−j(a).

21This is in contrast to discrete-time formulations where there is a set [a, a∗) with a∗ > a such that type
1’s borrowing constraint binds for all a ∈ [a, a∗) and hence the first-order condition is distorted.

22Note that this inequality has very little to do with the inequality in discrete-time first-order conditions
due to occasionally binding borrowing constraints – see e.g. equation (47) later in the paper. In fact, the two
inequalities go in opposite directions. Even though both inequalities result from the presence of borrowing
constraints, the logic behind them is completely different.
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Appendix C.1 derives the state constraint boundary condition (10) more rigorously and

makes the connection to a somewhat more general strategy for imposing state constraints

used in the mathematics literature, namely to look for a constrained viscosity solution of

(7).23 The remainder of our paper can be read without knowledge of the theory of viscosity

solutions. The KF equation (8) requires no boundary condition at a: the state constraint is

satisfied by virtue of sj being the optimal saving policy function from the HJB equation (7).

Finally, the stationary interest rate r must satisfy the analogue of the market clearing

condition (4)

S(r) :=

ˆ ∞
a

ag1(a)da+

ˆ ∞
a

ag2(a)da = B. (11)

The two ordinary differential equations (7) and (8) together with (9), (10), and the equi-

librium relationship (11) fully characterize the stationary equilibrium of our economy. This

system is an instance of what Lasry and Lions (2007) have called a “Mean Field Game,”

here in its stationary form. We next turn to its time-dependent analogue, and discuss more

of the properties of such systems.

1.3 Transition Dynamics

Many interesting questions require studying transition dynamics, that is the evolution of the

economy when the initial distribution of income and wealth does not equal the stationary

distribution. The time-dependent analogue of the stationary system (7) to (11) is24

ρvj(a, t) = max
c

u(c) + ∂avj(a, t)(yj + r(t)a− c) + λj(v−j(a, t)− vj(a, t)) + ∂tvj(a, t), (12)

∂tgj(a, t) =− ∂a[sj(a, t)gj(a, t)]− λjgj(a, t) + λ−jg−j(a, t), (13)

sj(a, t) = yj + r(t)a− cj(a, t), cj(a, t) = (u′)−1(∂avj(a, t)), (14)

for j = 1, 2, and together with the equilibrium condition (4). We here use the short-hand

notation ∂av = ∂v/∂a and so on, and as before sj denotes the optimal saving policy function.

The domain of the two partial differential equations (12) and (13) is (a,∞) × R+ (though

more on the time domain momentarily). The function vj again satisfies a state constraint

23See Soner (1986a,b) and Capuzzo-Dolcetta and Lions (1990).
24As in the stationary case, there is again a more compact way of writing this system as two non-linear

partial differential equations in vj and gj only, that do not involve a max operator:

ρvj(a, t) = H(∂avj(a, t)) + ∂avj(a, t)(yj + r(t)a) + λj(v−j(a, t)− vj(a, t)) + ∂tvj(a, t),

∂tgj(a, t) = −∂a[(yj + r(t)a+H ′(∂avj(a, t)))gj(a, t)]− λjgj(a, t) + λ−jg−j(a, t),

with the Hamiltonian H given by H(p) := maxc u(c)− pc.
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boundary condition similar to (10)

∂avj(a, t) ≥ u′(yj + r(t)a), j = 1, 2. (15)

The density gj satisfies the initial condition

gj(a, 0) = gj,0(a). (16)

The value function satisfies a terminal condition. In principle, the time domain is R+ but in

practice we work with (0, T ) for T “large” and impose

vj(a, T ) = vj,∞(a), (17)

where vj,∞ is the stationary value function, i.e. the solution to the stationary problem (7)

to (11).

The two partial differential equations (12) and (13) together with (14), the equilibrium

relationship (4) and the boundary conditions (15) to (17) fully characterize the evolution

of our economy. This “Mean Field Game” has two properties that are worth emphasizing.

First, the two equations (12) and (13) are coupled: on one hand, an individual’s consumption-

saving decision depends on the evolution of the interest rate which is in turn determined by

the evolution of the distribution; on the other hand, the evolution of the distribution depends

on individuals’ saving decisions. Second, the two equations run in opposite directions in

time: the Kolmogorov Forward equation runs forward (as indicated by its name) and looks

backwards – it answers the question “given the wealth distribution today, savings decisions

and the random evolution of income, what is the wealth distribution tomorrow?” In contrast,

the Hamilton-Jacobi-Bellman equation (12) runs backwards and looks forward – it answers

the question “given an individual’s valuation of income and wealth tomorrow, how much will

she save today and what is the corresponding value function today?”

1.4 Classical versus Weak Solutions of HJB and KF equations

A classical solution to a PDE or ODE is a solution that is differentiable as many times as

needed to satisfy the corresponding equation. In particular, classical solutions to the first-

order HJB and KF equations (12) and (13) would need to be once differentiable. Similarly,

classical solutions to second-order equations that arise for example if y follows a diffusion

process as in Section 4.1 would need to be twice differentiable. In general, we do not expect

to find such classical solutions to either HJB or KF equations. For instance, the value

function vj may have kinks and the distribution gj may feature Dirac point masses. Instead,

we generally look for certain weak solutions of these equations, that is solutions that may

not be continuously differentiable or even continuous but still satisfy these equations in some

11



sense. As we explain in more detail in Online Appendix C, the correct notion for a weak

solution of the HJB equation is a viscosity solution and that of the KF equation is a measure-

valued solution.25 See Evans (2010, Section 1.3) and Tao (2008) for illuminating discussions

on the role of weak solutions in the study of partial differential equations more generally.

That being said, most of our paper employs classical methods. And, with the preceding

paragraph in hand, the reader is well-equipped for those parts that do not.

2 Theoretical Results: Consumption, Saving and In-

equality

This Section presents theoretical results about our continuous-time version of the Aiyagari-

Bewley-Huggett model, including the four new results emphasized in the introduction. Sec-

tions 2.1 to 2.5 analyze the HJB and KF equations (7) and (8) in partial equilibrium, i.e.

taking as given a fixed interest rate r (assumed to be less than ρ which will be the equilib-

rium outcome). Section 2.6 then imposes market clearing (11) and considers the stationary

equilibrium, particularly its existence and uniqueness. Section 2.7 considers “soft” borrowing

constraints.

2.1 An Euler Equation

Our first few theoretical results concern the consumption and saving behavior of individuals.

Our characterization of individual behavior uses the following Lemma.

Lemma 1 The consumption and saving policy functions cj(a) and sj(a) for j = 1, 2 corre-

sponding to the HJB equation (7) satisfy

(ρ− r)u′(cj(a)) = u′′(cj(a))c′j(a)sj(a) + λj(u
′(c−j(a))− u′(cj(a))),

sj(a) = yj + ra− cj(a).
(18)

Proof: Differentiate the HJB equation (7) with respect to a (envelope condition) and use

that v′j(a) = u′(cj(a)) and hence v′′j (a) = u′′(cj(a))c′j(a).�

The differential equation (18) is an Euler equation. The right-hand side is simply the

expected change of individual marginal utility of consumption Et[du′(cj(at))]/dt.26 Therefore

25The standard notion of a measure-valued solution is only defined on the interior of the state space
and therefore cannot be used to deal with a Dirac point mass at the boundary, a feature that arises in
our application. We show in Appendix C.2 how to extend the standard notion to take into account this
possibility.

26This uses the extension of Ito’s formula to Poisson processes: Et[du′(cj(at))] = [u′′(cj(at))c
′
j(at)sj(at) +

λj(u
′(c−j(at))− u′(cj(at)))]dt.

12



(18) can be written in the more standard form

Et[du′(cj(at))]
u′(cj(at))

= (ρ− r)dt.

2.2 Consumption and Saving Behavior of the Poor

Our first main result is obtained by analyzing the Euler equation (18) close to the borrowing

constraint. The interesting case is when the behavior at the constraint differs qualitatively

from that of rich individuals. Whether this is the case depends crucially on two factors:

the tightness of the borrowing constraint a, and the properties of the utility function at low

levels of consumption. To focus on the interesting case, we make the following assumption.

Assumption 1 The coefficient of absolute risk aversion R(c) := −u′′(c)/u′(c) when wealth

a approaches the borrowing limit a is finite, that is

R := − lim
a→a

u′′(y1 + ra)

u′(y1 + ra)
<∞.

For any utility function, a sufficient condition for Assumption 1 is that the borrowing con-

straint is tighter than the “natural borrowing constraint” a > −y1/r. For example, with

CRRA utility (5) we have R = γ/(y1 + ra) which is finite whenever a > −y1/r. However,

Assumption 1 is considerably weaker than this. In particular, it is also satisfied if the bor-

rowing constraint equals the natural borrowing constraint a = −y1/r and the coefficient

of absolute risk aversion −u′′(c)/u′(c) is bounded as consumption goes to zero. This is for

example the case with exponential utility (6) in which case R = θ < ∞ regardless of the

tightness of the borrowing constraint. The only case in which Assumption 1 is not satisfied

is if both (i) the borrowing constraint equals the natural borrowing constraint and (ii) risk

aversion becomes unbounded as consumption goes to zero. For completeness, this case is

covered in Proposition 1’ in the Appendix.

In what follows as well as elsewhere in the paper, we use the following asymptotic no-

tation: for any two functions f and g, “f(a) ∼ g(a) as a → a” is short-hand notation for

lima→a f(a)/g(a) = 1, i.e. f “behaves like” g for a close to a.

Proposition 1 (MPCs and Saving at Borrowing Constraint) Assume that r < ρ, y1 <

y2 and that Assumption 1 holds. Then the solution to the HJB equation (7) and the corre-

sponding policy functions have the following properties:

1. s1(a) = 0 but s1(a) < 0 all a > a. That is, only individuals exactly at the borrowing

constraint are constrained, whereas those with wealth a > a are unconstrained and

decumulate assets.
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2. as a → a, the saving and consumption policy function of the low income type and the

corresponding instantaneous marginal propensity to consume satisfy

s1(a) ∼ −
√

2ν1

√
a− a, (19)

c1(a) ∼ y1 + ra+
√

2ν1

√
a− a,

c′1(a) ∼ r +

√
ν1

2(a− a)
, (20)

ν1 : =
(ρ− r)u′(c1) + λ1(u′(c1)− u′(c2))

−u′′(c1)

≈ (ρ− r)IES(c1)c1 + λ1(c2 − c1),

(21)

where cj = cj(a), j = 1, 2 is consumption of the two types at the borrowing constraint

and IES(c) := −u′(c)/(u′′(c)c) is the intertemporal elasticity of substitution (IES).27

This implies that the derivatives of c1 and s1 are unbounded at the borrowing constraint,

c′1(a)→∞ and s′1(a)→ −∞ as a→ a.

The proof of the Proposition, like that of all others, is in the Appendix. The proof of the first

part follows straight from the state constraint boundary condition (10). The second part

of the proof follows from characterizing the limiting behavior of the squared saving policy

function (s1(a))2 as wealth a approaches the borrowing constraint a – hence the square root.

The consumption and saving behavior in the Proposition is illustrated in Figure 1. Im-

Wealth, a

C
on

su
m
p
ti
on

,
c j
(a
)

a

c1(a)
c2(a)

(a) Consumption Policy Function

Wealth, a

S
av

in
g,

s
j
(a
)

a

s1(a)
s2(a)

(b) Saving Policy Function

Figure 1: Consumption and Saving Behavior with r < ρ

portantly, the derivatives of type 1’s consumption and saving policy functions become un-

27Type 1’s consumption at the borrowing constraint is given by c1 = y1 + ra and type 2’s consumption
c2 > c1 is a more complicated object determined by the HJB equation (7) for j = 2.
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bounded at the borrowing constraint. This unbounded derivative has an important implica-

tion, namely that individuals hit the borrowing constraint in finite time.

Corollary 1 (Hit Constraint in Finite Time) Assume that r < ρ, y1 < y2 and that As-

sumption 1 holds. Then the wealth of an individual with initial wealth a0 and successive low

income draws y1 converges to the borrowing constraint in finite time at speed governed by ν1:

a(t)− a ∼ ν1

2
(T − t)2 , T :=

√
2(a0 − a)

ν1

, 0 ≤ t ≤ T, (22)

where T is the “hitting time.”

The result that the borrowing constraint is reached in finite time bears some similarity to

optimal stopping time problems (see e.g. Stokey, 2009). Just like in stopping time problems,

continuous time avoids a type of integer problem arising in discrete time: the borrowing

constraint would be reached after a non-integer time period, but discrete time forces this to

occur after an integer number of periods.

Proposition 1 features an intuitive formula (21) for the speed at which individuals hit the

borrowing constraint, ν1. In Section 2.4 we show that ν1 is also the key quantity determining

the marginal propensity to consume (MPC) out of a windfall income gain. We therefore

postpone the discussion of formula (21) until that Section.

Intuition for Proposition 1 and Corollary 1: Two Useful Special Cases. To un-

derstand the intuition for the square root in Proposition 1, the implied saving behavior in

Corollary 1 and the role of Assumption 1 it is useful to consider two special cases for which

analytic solutions are available. Both abstract from income uncertainty which is not essential

to the main point.28

In the first special case, an individual has exponential utility (6), receives a deterministic

income stream y > 0, faces a strict no borrowing constraint a ≥ 0 and starts with some

initial wealth a0 > 0. The corresponding Euler equation and budget constraint are

ċ =
1

θ
(r − ρ), (23)

ȧ = y + ra− c. (24)

Conjecture that at some time T > 0, individuals hit the borrowing constraint, i.e. a(T ) = 0

28We are indebted to Xavier Gabaix for coming up with the first special case. Also see Holm (2017) who
provides an elegant analytical characterization of consumption behavior with deterministic income and a
borrowing constraint when utility is in the HARA class.
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and hence c(T ) = y. From the Euler equation (23) consumption for t ≤ T is

c(t) = y + ν(T − t), ν :=
ρ− r
θ

> 0 (25)

Substituting into the budget constraint (24), we have ȧ(t) = ra(t)− ν(T − t). Consider first

the case r = 0 which contains all the intuition. In this case, we have ȧ(t) = −ν(T − t) with

solution

a(t) =
ν

2
(T − t)2 (26)

for t ≤ T and where the constant of integration is zero because a(T ) = 0. Since a(0) = a0,

the hitting time is given by T =
√

2a0/ν. Note that (26) is the same expression as (22) in

Corollary 1. Figure 2 plots the time paths of consumption, saving and wealth for this special

case. Panels (a) and (b) show that consumption c(t) decreases linearly toward c(T ) = y

and savings ȧ(t) increase linearly toward ȧ(T ) = 0. Panel (c) plots the resulting wealth
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Figure 2: First special case in which borrowing constraint binds in finite time
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Figure 3: Second special case in which borrowing constraint never binds

dynamics and shows the quadratic shape of equation (26).
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To understand the square root in the saving and consumption policy functions in Propo-

sition 1, consider an individual at t = 0 with some initial wealth a0. From (25) and (26),

we have c(0) = y + νT and ȧ(0) = −νT with T =
√

2a0/ν. Writing consumption and

saving in terms of the state variable a rather than calendar time, we have c(a) = y +
√

2νa

and s(a) = −
√

2νa which are the square-root expressions from Proposition 1. This simple

derivation also explains why the consumption policy function is concave in wealth a (Fig-

ure 1). As the individual approaches the borrowing constraint, both her consumption and

wealth decline. If both consumption and wealth declined at the same speed, then consump-

tion would be a linear function of wealth. But this is not the case: instead, wealth declines

more rapidly than consumption – quadratically rather than linearly – see Figures 2(a) and

(c). Therefore, consumption is a strictly concave function of wealth. Given this logic, it is

then also clear that the consumption policy function must be more concave the higher is the

speed at which individuals hit the borrowing constraint ν.

In the case r 6= 0, (26) generalizes to a(t) = ν
r2

(
r(T − t)− 1 + e−r(T−t)

)
which converges

to (26) as r → 0; individuals still hit the borrowing constraint in finite time and, in fact,

a(t) ∼ ν
2
(T − t)2 as t → T .29 Also all other properties of consumption and saving behavior

are unchanged for t close to T or, equivalently, for wealth close to the borrowing constraint.

In contrast, consider a second special which is identical except that y = 0 and that the

individual has CRRA utility (5). In this case, the Euler equation and budget constraint

change from (23) and (24) to

ċ

c
=

1

γ
(r − ρ), ȧ = ra− c.

It is easy to show that savings and consumption are ȧ(t) = −ηa(t), c(t) = (r + η) a(t) where

η := ρ−r
γ

. Therefore wealth is

a(t) = a0e
−ηt, t ≥ 0. (27)

The situation is depicted in Figure 3. As wealth decumulates towards the borrowing con-

straint, the rate of decumulation slows down more and more and individuals never actually

hit the borrowing constraint in finite time. This is an immediate consequence of a linear

saving policy function s(a) = −ηa. Turning this logic around, the consumption policy func-

tion is linear in wealth because both consumption and wealth decline toward the borrowing

constraint at the same speed – see Figures 3 (a) and (c) – rather than wealth declining faster

than consumption as in the exponential case.

Our first special case with exponential utility also illustrates the role of Assumption 1

29To see that the expression converges to (26) as r → 0 use l’Hôpital’s rule twice: limr→0 a(t; r) =
limr→0

ν
r2

(
r(T − t)− 1 + e−r(T−t)

)
= limr→0

ν
2r

(
1− e−r(T−t)

)
(T − t) = ν

2 (T − t)2. Similarly, we have

limt→T
a(t)

(T−t)2 = limt→T
ν

r2(T−t)2
(
r(T − t)− 1 + e−r(T−t)

)
= ν

2 where the last equality again uses l’Hôpital’s

rule twice; equivalently a(t) ∼ ν
2 (T − t)2 as t→ T .
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and how it differs from the assumption that the borrowing constraint is tighter than the

natural borrowing constraint. To this end, assume that y = 0 so that a ≥ −y/r = 0 is

also the natural borrowing constraint. Nevertheless, if utility is exponential, this does not

change the individual’s saving behavior and she still hits the borrowing constraint in finite

time. This is because with exponential utility Assumption 1 is satisfied regardless of the

borrowing constraint’s tightness.

2.3 Consumption and Saving Behavior of the Wealthy

Proposition 1 characterizes the consumption and saving behavior close to the borrowing

constraint. The following Proposition 2 characterizes consumption and saving behavior for

large wealth levels. This will be useful below, when we characterize the upper tail of the

wealth distribution.

Proposition 2 (Consumption and Saving Behavior of the Wealthy) Assume that r <

ρ, y1 < y2 and that relative risk aversion −cu′′(c)/u′(c) is bounded above for all c.

1. Then there exists amax < ∞ such that sj(a) < 0 for all a ≥ amax, j = 1, 2, and

s2(a) ∼ ζ2(amax−a) as a→ amax for some constant ζ2. The wealth of an individual with

initial wealth a0 and successive high income draws y2 converges to amax asymptotically

(i.e. not in finite time): a(t)− amax ∼ e−ζ2t(a0 − amax).

2. In the special case of CRRA utility (5) individual policy functions are asymptotically

linear in a. As a→∞, they satisfy

sj(a) ∼ r − ρ
γ

a, cj(a) ∼ ρ− (1− γ)r

γ
a. (28)

The first part of the Proposition is the analogue of Proposition 4 in Aiyagari (1993). The

condition that −cu′′(c)/u′(c) is bounded above for all c for example rules out exponential

utility (6) in which case γ(c) = θc.

The second part of the Proposition extends to continuous time a result by Benhabib,

Bisin, and Zhu (2015) who have shown that, with CRRA utility, consumption and saving

policy functions are asymptotically linear for large wealth. The proof makes use of a simple

homogeneity property: it shows that, for all ξ > 0, the value function v expressed as a

function of wealth a and income y satisfies v(ξa, y) = ξ1−γv(a, y/ξ). That is, doubling

wealth a, besides scaling everything by a factor 21−γ, effectively halves income y. Therefore,

as wealth becomes large, it is as if the individual had no labor income. And it is well-known

that the consumption-saving problem with CRRA and without labor income has an analytic

solution with linear policy functions given by (28).
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Another way of appreciating the asymptotic linearity is again with a simple special case

without income risk. Assume that individuals have CRRA utility, (5) a deterministic stream

of labor income y > 0, and the borrowing constraint equals the natural borrowing constraint

a = −y/r. Consumption and saving policy functions then have a closed-form solution given

by

s(a) =
r − ρ
γ

(
a+

y

r

)
, c(a) =

ρ− (1− γ)r

γ

(
a+

y

r

)
. (29)

As a→∞, y/r becomes irrelevant relative to a and the policy functions indeed satisfy (28).

The asymptotic linearity of consumption and saving policy functions with CRRA utility

has played a key role in the literature. For instance, Krusell and Smith (1998) argue that this

linearity explains their finding that the business cycle properties of their baseline heteroge-

neous agent model are virtually indistinguishable from its representative agent counterpart

(see Figure 2 and surrounding discussion in their paper). Future studies may want to gauge

the robustness of this result by relaxing the assumption of CRRA utility.

2.4 Marginal Propensities to Consume and Save

We now characterize further the consumption and saving policy functions and in particular

the corresponding marginal propensities to consume and save, defined as the changes in con-

sumption and saving in response to a windfall increase in available funds a. Propositions 1

and 2 characterize the slope of the consumption function c′j(a) or, equivalently, the instan-

taneous MPC which captures the consumption gain (per time unit) after such a windfall

over an infinitesimally small time interval. This is an interesting object but it does not

correspond to what is measured in the data, namely the fraction of income consumed out of

a windfall income gain over a discrete time interval. We here show how to characterize this

more empirically relevant object.

Definition 1 The Marginal Propensity to Consume over a period τ is given by

MPCj,τ (a) = C ′j,τ (a), where (30)

Cj,τ (a) = E
[ˆ τ

0

cj(at)dt
∣∣∣a0 = a, y0 = yj

]
. (31)

Similarly, the Marginal Propensity to Save over a period τ is given by

MPSj,τ (a) = S ′j,τ (a), where (32)

Sj,τ (a) = E
[
aτ

∣∣∣a0 = a, y0 = yj

]
. (33)

To get a feel for the behavior of these objects and to see how they differ from their

instantaneous counterparts c′j(a) and s′j(a), it is instructive to consider a time interval τ
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that is sufficiently small so that individuals in the low income state do not switch income

state. In this case, expected saving over a period τ for the low income type, S1,τ (a) defined

in (33), is simply given by aτ starting from a0 = a. But from Corollary 1 we know that

aτ − a ∼ ν1
2

((T − τ)+)
2

with T =
√

2(a0 − a)/ν1, i.e.

S1,τ (a) ∼ ν1

2

√2(a− a)

ν1

− τ

+2

+ a. (34)

Differentiating this expression and using the budget constraint, we get the following result.

Corollary 2 Assume τ is sufficiently small that individuals with current income draw y1 do

not receive the high-income draw y2,30 that r < ρ, and that Assumption 1 holds. Then

MPC1,τ (a) ∼ min

{
τ

√
ν1

2(a− a)
, 1

}
+ τr = min{τc′1(a), 1 + τr}, as a→ a, (35)

where c′1(a) is the instantaneous MPC characterized in Proposition 1. Similarly MPS1,τ (a) ∼
1 + τr−MPC1,τ (a). Alternatively, (35) holds with equality in the special case in Section 2.2

with exponential utility, deterministic income and a = r = 0.

This result yields a number of useful observations. First, in contrast to the instantaneous

MPC c′1(a) which becomes unbounded as a → a, the MPC over a time period τ in (35) is

bounded between zero and 1 + τr. Second, for a > a and τ small enough, the marginal

propensity to consume (35) is strictly decreasing in wealth a; that is, consumption over a

period τ , C1,τ (a), is strictly concave in wealth a. Third, the key quantity determining the

size of the MPC is ν1, the speed at which individuals hit the borrowing constraint. The

intuition for the last two properties is the same as that discussed in Section 2.2: because

wealth declines toward the borrowing constraint faster than consumption, the mapping from

wealth to consumption is concave; and the faster wealth declines, the more concave this

mapping.

In contrast, consider the second special case of Section 2.2 in which individuals never hit

the borrowing constraint in finite time. From the expression for wealth dynamics (27) we

have that savings over a period τ are given by Sτ (a) = ae−ητ where η =: (ρ − r)/γ. That

is, both consumption and saving over a period τ are linear in wealth a and therefore, the

marginal propensities to save and consume are independent of wealth:31

MPSτ (a) = e−ητ ≈ 1− ητ, MPCτ (a) = 1− e−ητ + τr ≈ τ(η + r), η :=
ρ− r
γ

.

30Alternatively we can take λ1 → 0 so that the low income state is close to being absorbing.
31Similar expressions can be obtained in the special case from Section 2.3 in which saving and consumption

policy functions are linear throughout the wealth distribution and given by (29).
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Summarizing, when people hit the borrowing constraint in finite time, MPCs depend on

wealth and, in particular, are higher for poorer people.

When individuals experience new income draws within the time interval τ , it is no longer

possible to characterize the MPC and MPS as tightly as in Corollary 2 because we lack a

characterization of c2(a) in the vicinity of the borrowing constraint. However, the following

Lemma shows how to easily compute the MPC numerically. The key idea is that Cj,τ (a)

defined in (31) is a conditional expectation that can be easily computed using the Feynman-

Kac formula which establishes a link between conditional expectations of stochastic processes

and solutions to partial differential equations. Given knowledge of Cj,τ (a), we can then

immediately compute MPCj,τ (a) = C ′j,τ (a).

Lemma 2 (Computation of MPCs using Feynman-Kac formula) The conditional ex-

pectation Cj,τ (a) defined in (31) and therefore the MPC defined in (30) can be computed as

Cj,τ (a) = Γj(a, 0) where Γj(a, t) satisfies the system of two PDEs

0 = cj(a) + ∂aΓj(a, t)sj(a) + λj(Γ−j(a, t)− Γj(a, t)) + ∂tΓj(a, t), j = 1, 2

on (a,∞)× (0, τ), with terminal condition Γj(a, τ) = 0 for all a.

Proof: This follows from a direct application of the Feynman-Kac formula for computing

conditional expectations as solutions to partial differential equations.�

Figure 4(a) plots the MPC computed according to this numerical strategy for the two

income types and assuming that individuals have CRRA utility (5). For comparison, Figure

4(b) plots the “instantaneous MPC”, i.e. the slope of the consumption function. As expected,
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the former is a smoother version of the latter and, in contrast to the latter, does not exceed
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1 + τr. As wealth a → ∞ the borrowing constraint becomes irrelevant and the slope of

the consumption function converges to η + r with η = (ρ − r)/γ and therefore the MPC

to τ(η + r). Finally, the strategy for computing MPCs using the Feynman-Kac formula in

Lemma 2 is extremely general. For instance, Kaplan, Moll, and Violante (2016) apply it in

a considerably more complicated setting with two assets and kinked adjustment costs.

As an aside, in some applications a slightly altered version of the MPCs in Definition

1 may be easier to map to the data. Empirical studies do not typically observe marginal

propensities to consume out of an infinitesimal increase in resources. Instead, they observe

the increase in consumption in response to a discrete increase in resources, say by $500. To

this end, define MPCx
j,τ (a) := (Cj,τ (a + x) − Cj,τ (a))/x. This is the MPC out of x dollars

over a period τ , i.e. a discrete counterpart to the MPC in (30). Kaplan, Moll, and Violante

(2016) compute such discrete MPCs and compare them to various empirical studies such as

Broda and Parker (2014), Misra and Surico (2014), Blundell, Pistaferri, and Saporta-Eksten

(2016), and Fagereng, Holm, and Natvik (2016).

Using the Analytic Expression for ν1 to Better Understand MPCs. As part of

Proposition 1 we obtained an analytic expression (21) for ν1, the speed of hitting the bor-

rowing constraint. As just discussed, ν1 is also the key quantity governing the size of MPCs.

The formula (21) is therefore also useful to examine how MPCs depend on various model

parameters. In particular, it can be used to shed some light on various numerical results that

may seem counterintuitive at first. For instance, consider the dependence of the low-income

type’s MPC1,τ (a) on the low income realization y1. This low income realization may, for

example, represent the size of unemployment benefits. Figure 5(a) graphs this relationship
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Figure 5: Dependence of MPCs on Parameters
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for y1 ranging between 0 and y2 = 0.2 separately for various percentiles of the wealth dis-

tribution and assuming that individuals have CRRA utility (5). Perhaps surprisingly, the

MPC is a hump-shaped function of the low income realization y1. But formula (21) easily

resolves the apparent mystery. With CRRA utility (5) so that the IES is constant

ν1 ≈ (ρ− r)c1

γ
+ λ1(c2 − c1),

where c1 = y1 + ra. An increase in y1 has two offsetting effects. The intuitive part is that as

y1 increases, individuals are better insured against idiosyncratic income risk and therefore

have a low MPC (as in models without risk and borrowing constraints). In the formula,

as y1 increases toward y2, λ1(c2 − c1) converges to zero and this results in a lower ν1. But

there is an offsetting effect captured by the term (ρ − r)c1/γ: if consumption conditional

on hitting the constraint c1 is high, individuals do not mind hitting the constraint as much.

Hence they converge to it faster or, equivalently, have a higher MPC.

Figure 5(b) instead graphs the dependence of the low income type’s MPC on the realiza-

tion of the high income y2. The MPC is increasing in y2 and the intuition can again be seen

from our formula for ν1 which shows that the MPC is higher the larger is the consumption

gain from getting a high income draw λ1(c2 − c1). Other comparative statics are as follows:

individuals have higher MPCs, the lower is the interest rate r relative to the rate of rate of

time preference ρ, and the higher is the likelihood λ1 of getting a high income draw (so that

getting stuck at the constraint is less likely). Similarly, MPCs tend to be higher the higher

is the IES and the tighter is the borrowing constraint, i.e. the closer to zero is a.

2.5 The Stationary Wealth Distribution

We now present the paper’s second main theoretical result: an analytic solution to the

Kolmogorov Forward equation characterizing the stationary distribution with two income

types (8) for any given individual saving policy functions. This analytic solution yields a

number of insights about properties of the stationary wealth distribution, particularly at the

borrowing constraint and in the right tail.

The derivation of this analytic solution is constructive and straightforward and we there-

fore present it in the main text. Summing the KF equation (8) for the two income types,

we have d
da

[s1(a)g1(a) + s2(a)g2(a)] = 0 for all a, which implies that s1(a)g1(a) + s2(a)g2(a)

equals a constant. Because any stationary distribution must be bounded, we must then have

s1(a)g1(a) + s2(a)g2(a) = 0 for all a. Substituting into (8) and rearranging, we have

g′j(a) = −
(
s′j(a)

sj(a)
+

λj
sj(a)

+
λ−j
s−j(a)

)
gj(a), j = 1, 2. (36)
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Figure 6: Saving Behavior and Stationary Wealth Distribution with r < ρ

Importantly, (36) are two independent ODEs for g1 and g2 rather than the coupled system

of two ODEs (8) we started out with. Together with two boundary conditions they can be

solved separately. To obtain these boundary conditions, we simply impose that the densities

integrate to the mass of agents with the respective income types:

ˆ ∞
a

dG1(a) =
λ2

λ1 + λ2

,

ˆ ∞
a

dG2(a) =
λ1

λ1 + λ2

, (37)

where G1, G2 are the CDFs corresponding to g1, g2. We here allow for the possibility of Dirac

point masses in the distributions which will be relevant momentarily. Using the fact that

the two ODEs (36) can be solved analytically and our characterization of the optimal saving

policy functions from Section 2.2 we obtain our second main theoretical result.

Proposition 3 (Stationary Wealth Distribution with Two Income Types) Assume

that r < ρ, y1 < y2, that relative risk aversion −cu′′(c)/u′(c) is bounded above for all c, and

that Assumption 1 holds. Then there exists a unique stationary distribution given by

gj(a) =
κj
sj(a)

exp

(
−
ˆ a

a

(
λ1

s1(x)
+

λ2

s2(x)

)
dx

)
, j = 1, 2 (38)

for some constants of integration κ1 < 0 and κ2 > 0 which satisfy κ1+κ2 = 0 and are uniquely

pinned down by (37). The stationary wealth distribution has the following properties:

1. (Close to the borrowing constraint) The stationary distribution of low income types

g1(a) has a Dirac point mass m1 at the borrowing constraint a. More precisely, the
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corresponding cumulative distribution function satisfies

G1(a) ∼ m1 exp
(
λ1

√
2(a− a)/ν1

)
as a ↓ a, with (39)

m1 =
λ2

λ1 + λ2

m̃1,
1

m̃1

= λ2

ˆ amax

a

{
1

s2(a)
exp

(
−
ˆ a

a

(
λ1

s1(x)
+

λ2

s2(x)

)
dx

)}
da.

The stationary density of high income types at the borrowing constraint is bounded,

g2(a) <∞.

2. (In the right tail) The stationary wealth distribution is bounded above at some amax <∞
defined in Proposition 2. The wealth distribution g(a) := g1(a) + g2(a) satisfies

g(a) ∼ ξ(amax − a)λ2/ζ2−1 as a→ amax (40)

where ζ2 = |s′2(amax)| and ξ is a constant. Therefore g(amax) = 0 for large λ2 (so that

λ2 > ζ2). In contrast, g2(a)→∞ as a→ amax for small λ2. In neither case is there a

Dirac mass.

3. (Smoothness) In contrast to the analogous discrete-time economy, the density of wealth

is smooth everywhere except exactly at the borrowing constraint, i.e. for all a > a.

4. (Shape of the wealth distribution) The exact shape of g1 and g2 is ambiguous. How-

ever, both g1 and g2 are ratios of well-understood functions, in particular gj(a) =

κjf(a)/sj(a), j = 1, 2 where f(a) := exp
(
−
´ a
a

(
λ1
s1(x)

+ λ2
s2(x)

)
dx
)

and κ1 < 0, κ2 > 0.

The function f is strictly log-concave and single-peaked with f ′(a)/f(a)→∞ as a ↓ a
and f ′(a)/f(a)→ −∞ as a ↑ amax.

5. (Joint distribution of labor income and wealth) For any given wealth level a, the fraction

of individuals that have the high income y2, Pr(y2|a) := g2(a)
g1(a)+g2(a)

satisfies Pr(y2|a) =
1

1−s2(a)/s1(a)
and similarly Pr(y1|a) = 1− Pr(y2|a) = 1

1−s1(a)/s2(a)
.

The Dirac property in part 1 of the Proposition follows immediately from Proposition 1 and

that individuals hit the borrowing constraint in finite time. If Assumption 1 is satisfied,

then (i) g1 in (38) explodes as a → a and (ii) there is a Dirac mass at a, G1(a) = m1 > 0.

This is illustrated in panel (b) of Figure 6. In particular, note the spike in the density

g1(a) at a = a. In contrast, if Assumption 1 is violated, then there is no Dirac mass. The

derivation of (39) is simple and instructive so we state it here. First, (8) implies that G1

satisfies 0 = −s1(a)G′1(a)− λ1G1(a) + λ2G2(a). As a ↓ a, G2(a)→ 0 and hence G1 satisfies

G′1(a)/G1(a) ∼ −λ1/s1(a) with solution

G1(a) ∼ m1 exp

(
−
ˆ a

a

λ1

s1(x)
dx

)
,
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for a constant of integration m1 > 0. From Proposition 1, s1(a) ∼ −
√

2ν1

√
a− a. Substi-

tuting in and integrating yields (39). At the end of this subsection, we discuss in more detail

the role of Assumption 1 by making use of our two simple special cases from Section 2.2.

Part 2 of the Proposition states that the stationary wealth distribution in our economy

is bounded above. Like discrete-time versions of Aiyagari-Bewley-Huggett economies with

idiosyncratic labor income risk only, our model therefore has difficulties explaining the high

observed wealth concentration in developed economies like the United States (e.g. that the

top one percent of the population own roughly thirty-five percent of total wealth). In par-

ticular, the wealth distribution in the data appears to feature a fat Pareto tail. Motivated

by this observation, we show in Section 4.4 how to extend the model to feature a station-

ary distribution with a Pareto tail by introducing a second, risky asset. This caveat aside,

Proposition 3 provides a complete characterization of the wealth distribution’s tail in the

vicinity of its upper bound. From (40) top wealth inequality is high (g declines towards zero

at amax only slowly) if individuals face a high likelihood of dropping out of the high income

state (λ2 is high) and if high-income types accumulate wealth only slowly (ζ2 is low). Intu-

itively, wealth accumulation requires both time and luck (consecutive high income draws).

And under the circumstances just mentioned, only a few individuals obtain sufficiently long

enough high income spells to accumulate large riches. Hence, wealth inequality is high.

Part 3, which can also be seen in Figure 1, highlights an important difference between our

continuous-time formulation and the traditional discrete-time one: except for the Dirac mass

exactly at the borrowing constraint a, the wealth distribution is smooth for all a > a. This is

true even though income follows a process with discrete states (a two-state Poisson process).

In contrast, the wealth distribution in discrete-time versions of Aiyagari-Bewley-Huggett

models with discrete-state income processes, tends to feature “spikes” on the interior of the

state space. See for example Figure 17.7.1 in Ljungqvist and Sargent (2004).32

Part 4 characterizes the wealth distribution for intermediate wealth levels. It shows

that the shapes of g1 and g2 in Figure 6 are not simply due to a particular numerical

example. Instead both density functions are simple ratios of well-understood functions

gj(a) = κjf(a)/sj(a) where f is defined in the Proposition and hump-shaped. For instance

consider g1 as a increases: as in Figure 6, g1 tends to be first decreasing, then increasing again

and finally decreasing. Similarly, consider g2 as a increases: it tends to be first increasing

and then decreasing (hump-shaped), again as in the Figure.

32To see why this must happen in discrete time, consider a discrete-time Huggett economy with two income
states. All individuals with wealth a = a who get the high income draw choose the same wealth level a′ > a.
So if there is a Dirac mass at a, there must also be a Dirac mass at a′. But all individuals with wealth a′

who get the high income draw, also choose the same wealth level a′′. So there must also be a Dirac mass
at a′′ > a′. And so on. Through this mechanism the Dirac mass at the borrowing constraint “spreads
into the rest of the state space.” In continuous time this does not happen because individuals leave the
borrowing constraint in a smooth fashion (here according to a Poisson process, i.e. a process with a random
and continuously distributed arrival time).
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Part 5 characterizes the joint distribution of income and wealth. The fraction of high

income types conditional on wealth Pr(y2|a) depends only on the saving rates s1 and s2 but,

perhaps surprisingly and in contrast to the fraction of high income types in the population

Pr(y2) = λ1
λ1+λ2

, it does not depend directly on the intensities λ1 and λ2.

Our Two Special Cases Again. We now briefly return to part 1 of Proposition 3 and

illustrate in more detail when and, if so, why the wealth distribution features a Dirac mass at

the borrowing constraint. To this end, consider again the two special cases without income

risk from Section 2.2. In the first special case with exponential utility s(a) = −
√

2νa. in

the second special case with CRRA utility s(a) = −ηa. To obtain a stationary wealth

distribution in the absence of income risk, assume that individuals die at rate λ. When an

individual dies, she is replaced by a newborn with starting wealth amax.33 Because r < ρ so

that everyone decumulates wealth, amax is also the upper bound of the wealth distribution

(hence the notation).

It turns out to be convenient to work with the cumulative distribution function G(a)

which satisfies34

0 = −s(a)G′(a)− λG(a), 0 < a < amax (41)

with boundary condition G(amax) = 1. This equation can be solved easily: integrating

G′(a)/G(a) = −λ/s(a) with G(amax) = 1 we have

G(a) = exp

(ˆ amax

a

λ

s(x)
dx

)
. (42)

In the first special case with s(a) = −
√

2νa, the CDF in (42) becomes

G(a) = exp
(
λ
√

2a/ν − λ
√

2amax/ν
)
. (43)

Note in particular that m := G(0) = exp
(
−λ
√

2amax/ν
)
> 0, i.e. there is a Dirac mass

at the borrowing constraint a = 0. In contrast, in the second special case s(a) = −ηa, (42)

becomes

G(a) =

(
a

amax

)λ/η
. (44)

Therefore G(0) = 0 i.e. there are no individuals at the borrowing constraint. As can be

seen clearly in their derivations, the difference between (43) and (44) is solely due to the

saving behavior (linearity versus unbounded derivative at a = 0) which determines whether

33Alternatively, we could assume that newborns draw their starting wealth from some distribution Ψ with
support [0, amax]. In this case, (41) below is identical but with an additional term +λΨ(a).

34The KF equation is 0 = −(s(a)g(a))′−λg(a) for 0 < a < amax. Integrating and using G(a) =
´ a

0
g(x)dx

yields (41). Working with the CDF is only more convenient in this special case. In the case with two income
types above, it is instead more convenient to work with the densities.
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individuals hit the borrowing constraint in finite time (see Section 2.2).

The special case with exponential utility and no income risk also yields some instructive

comparative statics that carry over to numerical solutions of the more general case. Death

risk at rate λ results in a higher effective discount rate ρ+ λ and hence the natural formula

for the parameter governing the speed at which individuals hit the constraint is ν = (ρ −
r + λ)/θ. Using this, the number of individuals at the borrowing constraint is m = G(0) =

exp
(
−λ
√

2θamax

ρ−r+λ

)
. This quantity is decreasing in the coefficient of absolute risk aversion θ,

increasing in the gap ρ − r and decreasing in the Poisson rate λ.35 Numerical experiments

in the model with a two-state Poisson process for income show that the same comparative

static holds with respect to λ1, the Poisson rate of leaving the low income state.

2.6 Stationary Equilibrium: Existence and Uniqueness

We construct stationary equilibria along the same lines as in Aiyagari (1994). That is, we fix

an interest rate r < ρ, solve the individual optimization problem (7), find the corresponding

stationary distribution from (8), and then find the interest rate r that satisfies the market

clearing condition (11), i.e. S(r) = B. While we continue to focus on the case of two

income types for the sake of continuity, all results in this section generalize to any stationary

Markovian process for income y, e.g. continuous diffusion or jump-diffusion processes.

Figure 7 illustrates the typical effect of an increase in r on the solutions to the HJB

equation (7) and the KF equation (8). An increase in r from rL to rH > rL leads to an

increase in individual saving at most wealth levels and the stationary distribution shifts to

the right. Aggregate saving S(r) as a function of the interest rate r typically looks like in

Figure 8, i.e. it is increasing. A stationary equilibrium is then an interest rate r such that

S(r) = B. But we have so far not proven that S(r) is increasing or that it intersects B

and hence there may, in principle, be no or multiple equilibria. Existence of a stationary

equilibrium can be proved with a graphical argument due to Aiyagari (1994) that is also the

foundation for a number of existence results in the literature (e.g. Acikgoz, 2016).

Proposition 4 (Existence of Stationary Equilibrium) Assume that relative risk aver-

sion −cu′′(c)/u′(c) is bounded above for all c and that Assumption 1 holds. Then there exists

a stationary equilibrium in our continuous-time version of Huggett’s economy.

The logic behind the proof is simple. One can show that the function S(r) defined in (11)

is continuous. To guarantee that there is at least one r such that S(r) = B, it then suffices

35An increase in λ has two offsetting effects: on one hand, individuals approach the borrowing constraint
faster (ν), thereby increasing m; on the other hand, individuals are more likely to die before they reach the
constraint, thereby decreasing m. Differentiation of the expression for m shows that the latter effect always
dominates.
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Figure 7: Effect of an Increase in r on Saving Behavior and Stationary Distribution

to show that

lim
r↑ρ

S(r) =∞, lim
r↓−∞

S(r) = a.

We next turn to our third main theoretical result, namely a proof of uniqueness of a

stationary equilibrium.

Proposition 5 (Uniqueness of Stationary Equilibrium) Assume that the intertempo-

ral elasticity of substitution is weakly greater than one for all consumption levels

IES(c) := − u′(c)

u′′(c)c
≥ 1 for all c ≥ 0, (45)

and that the borrowing constraint takes the form of a strict no-borrowing limit a ≥ 0. Then:

1. Individual consumption cj(a; r) is strictly decreasing in r for all a > 0 and j = 1, 2.

2. Individual saving sj(a; r) is strictly increasing in r for all a > 0 and j = 1, 2.

3. An increase in the interest rate leads to a rightward shift in the stationary distribution

in the sense of first-order stochastic dominance: Gj(a; r), j = 1, 2 is strictly decreasing

in r for all a in its support.

4. Aggregate saving S(r) is strictly increasing and hence our continuous-time version of

Huggett’s economy has at most one stationary equilibrium.

We briefly sketch key steps in the proof. Part 1 makes use of an important result by

Olivi (2017) who analyzes the continuous-time income fluctuation problem put forth in the
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current paper and shows that the consumption response to a change in the interest rate can

be decomposed into substitution and income effects as:

∂cj(a)

∂r
=

1

u′′(c0)
E0

ˆ τ

0

e−
´ t
0 ξsdsu′(ct)dt︸ ︷︷ ︸

substitution effect<0

+
1

u′′(c0)
E0

ˆ τ

0

e−
´ t
0 ξsdsu′′(ct)(∂act)atdt︸ ︷︷ ︸

income effect>0

with ξt := ρ− r + ∂act > 0 and where τ := inf{t ≥ 0|at = 0} is the stopping time at which

wealth reaches the borrowing constraint. Here the expectations are over sample paths of

(at, yt) starting from (a0, y0) = (a, yj) and ∂act is short-hand notation for the instantaneous

MPC ∂act = c′j(at). Olivi (2017) further simplifies these substitution and income effects

and expresses them in terms of potentially observable sufficient statistics like the MPC. We

instead pursue a different avenue: we show that a sufficient condition for the substitution

effect dominating the income effect and hence ∂cj(a)/∂r < 0 for all a > 0 is that the IES is

weakly greater than one.

Part 2 uses the budget constraint sj(a) = yj + ra− cj(a). If consumption is decreasing in

r then this immediately implies that saving is increasing in r for a ≥ 0. Because there is a

positive mechanical effect of r on saving through interest income ra, the assumption that the

IES is greater than one is likely overly strong and saving may also be increasing in r if the

IES is less than one. Consistent with this idea, consider the simple deterministic example

with CRRA utility in (29): whether consumption is increasing in r depends on the IES 1/γ;

but saving s(a) is increasing in a independently of 1/γ.36 Future work should try to prove

uniqueness under weaker assumptions than the IES being greater than one. Either way,

36Differentiating s(a) in (29) yields ∂s(a)
∂r = 1

γ

(
a+ y

r
ρ
r

)
which is positive for all a ≥ −y/r as long as r < ρ.
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IES(c) ≥ 1 is an intuitive assumption and it includes the commonly used case of logarithmic

utility IES(c) = 1.

Part 3, first-order stochastic dominance, uses a method for characterizing the dependence

of solutions to partial differential equations on parameters, i.e. doing “comparative statics,”

without solving them. Since this method may be useful in other applications, we explain it

briefly in the context of the simple example without income uncertainty (41). The key idea

is to derive an equation for f(a) := ∂G(a)
∂r

and to prove that f(a) < 0 for all a ∈ (0, amax).

Differentiating (41) with respect to r we have 0 = −∂s(a)
∂r

g(a) − s(a)f ′(a) − λf(a) with

f(amax) = 0. Next and to obtain a contradiction, suppose that f(a) ≥ 0 for some a. Since

f(amax) = 0 and if f(0) = 0,37 f has to attain a maximum at some interior a∗ at which

f(a∗) ≥ 0 and f ′(a∗) = 0. Therefore λf(a∗) = −∂s(a∗)
∂r

g(a∗) < 0 but this contradicts the

assumption that f(a∗) ≥ 0 and hence proves the result. Again, the method is considerably

more general.

Finally, first-order stochastic dominance of the wealth distribution immediately implies

that aggregate asset supply is increasing in the interest rate and hence uniqueness of the

stationary equilibrium (Part 4).38

2.7 Soft Borrowing Constraints and Non-Participation

Empirical wealth distributions typically have the following properties: there are individuals

with both positive and negative net worth but there is a spike at close to zero net worth.

This empirical observation does not square well with the Aiyagari-Bewley-Huggett model

we have considered thus far. If we set the borrowing constraint to a = 0, we get the spike

at zero but there are no individuals with negative net worth; if we set a < 0, we get a spike

at a strictly negative wealth level. Both are counterfactual. A simple way of generating the

empirical observation just mentioned is to model a “soft” borrowing constraint as opposed

to the “hard” constraint (3), that is, a wedge between borrowing and saving rates. This

form of constraint is used in a number of recent papers including Alonso (2016) and Kaplan,

Moll, and Violante (2016). In this section, we provide the first theoretical characterization

of such soft borrowing constraints.

Consider the Huggett model from Section 1 with one modification: there is a wedge

between borrowing and lending rates. That is, we replace the budget constraint (2) by

ȧt = yt + r(at)at − ct, r(a) =

r+, a ≥ 0

r−, a < 0
, r− > r+.

37Since G(0) > 0, it is typically not true that f(0) = ∂G(0)
∂r = 0 but this assumption can be easily relaxed.

38Acikgoz (2016) provides a numerical example of multiple steady states in an Aiyagari-Bewley-Huggett
model with an IES of 1/6.5, i.e. considerably below one, as well as a somewhat special income process.
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We show below that, in order to obtain a stationary wealth distribution with a spike at zero

and positive mass on both sides of zero, it is necessary to introduce more than two income

types. In particular, the simplest extension of the model that yields the desired result is to

have three income types i.e. yt ∈ {y0, y1, y2} with y0 < y1 < y2.

The next Proposition characterizes the saving behavior with a soft borrowing constraint.

To avoid the somewhat cluttered notation resulting from considering three income types, it

only considers the deterministic case yt = y for all t. This case has all the intuition and the

extension to stochastic income is straightforward.

Proposition 6 (Saving Behavior with Soft Borrowing Constraint) Assume that r+ <

ρ < r−, that yt = y for all t and that y > 0 (so that −u′′(y)/u′(y) < ∞, the analogue of

Assumption 1). Then the solution to the HJB equation (7) and the corresponding saving

policy function (9) have the following properties:

1. s(0) = 0 but s(a) < 0 all a > 0 and s(a) > 0 all a < 0.

2. close to a = 0, the saving and consumption policy functions satisfy

s(a) ∼ −
√

2ν+a, c′(a) ∼ r+ +
1

2

√
2ν+

a
, ν+ :=

(ρ− r+)u′(y)

−u′′(y)
> 0 as a ↓ 0,

s(a) ∼
√

2ν−a, c′(a) ∼ r− +
1

2

√
2ν−
a
, ν− :=

(ρ− r−)u′(y)

−u′′(y)
< 0 as a ↑ 0.

This implies that the derivatives of s and c are unbounded at zero, with s′(a) → −∞
and c′(a)→∞ both as a ↑ 0 and a ↓ 0.

3. Individuals with a > 0 decumulate wealth and hit a = 0 in finite time. Individuals with

a < 0 instead accumulate wealth and also hit a = 0 in finite time.

The main takeaway from the Proposition is that a soft borrowing constraint results in an

interesting symmetry in the saving policy function around zero net worth. To understand

this property consider the blue solid line labelled s1(a) in Figure 9(a) (we will return to the

other two lines below). The behavior for a > 0 with a soft borrowing constraint is identical

to that with a hard borrowing constraint but at a = 0: as a ↓ 0 it behaves like −
√
a. See for

example Figure 1(b). The main takeaway from the Proposition is that the behavior of the

saving policy function for a < 0 is simply a mirror image around the forty-five degree line

of the behavior for a > 0: as a ↑ 0 it behaves like
√
−a.39 A simple extension of Corollary

1 then implies that individuals with a > 0 decumulate wealth and hit a = 0 in finite time;

individuals with a < 0 instead accumulate wealth and also hit a = 0 in finite time.

39Interestingly, for a < 0 the consumption function is convex, that is, the instantaneous MPC c′(a) is
increasing in wealth a. See the Proposition which, ignoring constants, shows that c′(a) ∼

√
1/(−a) as a ↑ 0.
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Figure 9: Saving Behavior and Wealth Distribution with Soft Borrowing Constraint

Of course with only one income type, the stationary wealth distribution will only be a

Dirac point mass at a = 0. With two income types, it will be a Dirac mass at a = 0 combined

with some mass either to the left (a < 0) or to the right (a > 0) but not both. Therefore to

speak to the empirical observation of a spike at zero combined with mass both to the left and

the right of zero it is necessary to introduce (at least) another income type. Figure 9(a) plots

the saving policy functions in such a version with three income types y0 < y1 < y2. Figure

9(b) plots the resulting wealth densities g0, g1 and g2. The unconditional wealth distribution

is the sum of these three densities. As expected, it has a spike at zero and mass both to the

left and the right.

3 Computation

We now describe our algorithm for numerically computing equilibria of continuous-time het-

erogeneous agent models. We use a finite difference method based on work by Achdou and

Capuzzo-Dolcetta (2010) and Achdou (2013) which is simple, efficient and easily extended

to other environments. We explain our method in the context of the baseline heterogeneous

agent model of Section 1. But the algorithm is, in fact, considerably more general and

applies to any heterogeneous agent model with a continuum of atomistic agents (and with-

out aggregate shocks). It is particularly well-suited for computing transition dynamics and

solving problems with non-convexities, a fact we illustrate in Section 4 by computing equi-

libria of such economies. Codes for these applications (and many more) are available from

http://www.princeton.edu/∼moll/HACTproject.htm in Matlab as well as Python, Julia and

C++.
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3.1 Computational Advantages relative to Discrete Time

Before explaining our algorithm, we provide a brief overview of some of its computational

advantages relative to traditional discrete-time methods. We here list four computational

advantages that we consider crucial and that contribute notably to the efficiency gains over

traditional methods. The first of these advantages is special to the solution of problems with

borrowing constraints. The second to fourth advantages concern the solution of heteroge-

neous agent models more broadly (e.g. models with heterogeneous firms).

To appreciate the first two advantages, contrast the first-order condition of the continuous-

time income fluctuation problem (7) with that in the analogous discrete-time problem. For

concreteness also assume CRRA utility (5) so that the two conditions are

c−γ = v′j(a), j = 1, 2 in continuous time and (46)

c−γ ≥ β
2∑

k=1

πjkv
′
k(a
′), a′ = yj + (1 + r)a− c, j = 1, 2 (47)

in discrete time, where 0 < β < 1 is a discount factor and πjk = Pr(y′ = yk|y = yj) are

the entries of the Markov transition matrix for the analogous discrete-time income process.

The first advantage of our continuous-time approach is that, as explained in Section 1.2, the

borrowing constraint (3) only shows up in the boundary condition (10) and therefore the

first-order condition (46) holds with equality everywhere in the interior of the state space.

In contrast, the discrete-time first-order condition (47) holds with complementary slackness

and therefore is an inequality. This is because the borrowing constraint may bind one time

period ahead. Continuous time allows us to completely sidestep any technical difficulties

arising due to such occasionally binding constraints.

Second and related, the first-order condition in (46) is “static” in the sense that it only

involves contemporaneous variables. Given (a guess for) the value function vj(a) it can

be solved by hand: cj(a) = (v′j(a))−1/γ, j = 1, 2. In contrast, the discrete-time condition

(47) defines the optimal choice only implicitly. Typical solution methods therefore employ

costly root-finding operations. Our continuous-time approach again sidesteps this difficulty.40

Intuitively, discrete time distinguishes between “today” and “tomorrow” but in continuous

time, “tomorrow” is “today.”41

The third advantage of continuous time is a form of “sparsity.” To solve the HJB and

KF equations (7) and (8), we discretize these so that their solution boils down to solving

40In this regard, it shares some similarities with the “endogenous grid method” of Carroll (2006). The
difference is that in continuous time this also works with “exogenous grids.”

41Related, (46) also does not involve an expectation operator as in (47) that makes it necessary to calculate
a summation over future income states or a costly numerical integral (in the context of more general income
processes). Instead the HJB equation (7) captures the evolution of the stochastic process for yt with an
additive terms λj(v−j(a)− vj(a)) that does not affect the first-order condition.
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systems of linear equations. The resulting matrices are typically extremely sparse, namely

“tridiagonal” or at least “block-tridiagonal.” This sparsity generates considerable efficiency

gains because there are well-developed routines for solving sparse linear systems, either

implemented as part of commercial software packages like Matlab or open-source libraries

like SuiteSparse. The reason that tridiagonal matrices arise is that a discretized continuous-

time process either stays at the current grid point, takes one step to the left or one step to

the right. But it never jumps.42

Fourth, in all heterogeneous agent models, there is a tight link between solving the HJB

and KF equations. One can typically “kill two birds with one stone” in the sense that,

having computed the solution to the HJB equation one gets the solution to the KF equation

“for free”: the matrix in the discretized version of the latter is the transpose of the matrix

in that of the former. The underlying mathematical reason is that the KF equation is the

“transpose problem” of the HJB equation or, more precisely, that the differential operator

in the KF equation is the adjoint of the operator in the HJB equation.43

3.2 Bird’s Eye View of Algorithm for Stationary Equilibria

Our aim is to calculate stationary equilibria – functions v1, v2 and g1, g2 and a scalar r

satisfying (7), (8) and (11) – given a specified function u, and values for the parameters

ρ, λ1, λ2 and a. Transition dynamics are the subject of Section 3.5. Before we describe the

algorithm in detail, we provide a bird’s eye view of the algorithm’s general structure. We

focus on two distinct challenges. First, the HJB and KF equations describing a stationary

equilibrium are coupled and one therefore has to iterate on them somehow. Second, solving

these differential equations requires approximating the value function and distribution.

Iterating on the Equilibrium System From a bird’s eye perspective our algorithm for

solving the stationary equilibrium shares many similarities with algorithms typically used

to solve discrete-time heterogeneous agent models. In the context of our Huggett economy,

we use a bisection algorithm on the stationary interest rate. We begin an iteration with an

initial guess r0. Then for ` = 0, 1, 2, ... we follow

1. Given r`, solve the HJB equation (7) using a finite difference method. Calculate the

saving policy function s`j(a).

42Except of course if the process is a Poisson process, i.e. if jumps are “built in.” That being said, the
sparsity property survives as long as there is at least one continuously moving state variable (like wealth),
i.e. not all individual state variables follow discrete-state Poisson processes.

43In principle, one can use an analogous approach in discrete time: form the endogenous Markov transition
matrix between states and use it both to iterate backward over value functions (or Euler equations) and to
iterate forward over distributions. This method does not appear to be very popular and researchers typically
use Monte-Carlo simulation to solve for the distribution. A possible reason is that transition matrices are
not (or less) sparse resulting in a less dramatic efficiency gain.
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2. Given s`j(a), solve the KF equation (8) for g`j(a) using a finite difference method.

3. Given g`j(a), compute the net supply of bonds S(r`) =
´∞
a
a(g`1(a) + g`2(a))da and

update the interest rate: if S(r`) > B, decrease it to r`+1 < r` and vice versa.

When r`+1 is close enough to r`, we call (r`, v`1, v
`
2, g

`
1, g

`
2) a stationary equilibrium. As

already noted, this algorithm is extremely close to typical algorithms used to solve a discrete-

time Huggett economy. The difference of our continuous-time approach – and the resulting

efficiency gains – instead lie in the solutions of the dynamic programming equation and the

equation describing the distribution.

Discretization of the Equilibrium System In order to solve the differential equations

(7) and (8), the value function and distribution need to be approximated in some fashion.

We explain our approach – a finite difference method – in more detail in the next two

subsections. But a brief sketch is as follows. In a nutshell, the key idea is that this finite

difference method transforms our system of differential equations into a system of sparse

matrix equations. With this goal in mind, we approximate both v1, v2 and g1, g2 at I discrete

points in the space dimension, ai, i = 1, ..., I. Denote the value function and distribution

along this discrete grid using the vectors v = (v1(a1), ..., v1(aI), v2(a1), ..., v2(aI))
T and g =

(g1(a1), ..., g1(aI), g2(a1), ..., g2(aI))
T; both v and g are of dimension 2I×1, the total number

of grid points in the individual state space. The end product of our discretization method

will then be the following system of matrix equations:

ρv = u(v) + A(v; r)v, (48)

0 = A(v; r)Tg, (49)

B = S(g; r). (50)

The first equation is the discretized HJB equation (7), the second equation is the discretized

KF equation (8) and the third equation is the discretized market clearing condition (11).

The 2I × 2I matrix A(v; r) will have the interpretation of a transition matrix that captures

the evolution of the idiosyncratic state variables in the discretized state space. It will turn

out to be extremely sparse. A(v; r)T in the second equation denotes the transpose of that

same matrix, i.e. the discretized KF equation is the “transpose problem” of the discretized

HJB equation. As already noted, (48) to (50) is simply a system of sparse matrix equations

that can be easily solved on a computer by following (the analogues of) Steps 1 to 3 described

in the previous paragraph.
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3.3 Step 1: Solving the HJB Equation

For step 1, we solve the HJB equation (7) using a finite difference method. We now explain

this approach. The Online Appendix contains a more detailed explanation.

Theory for Numerical Solution of HJB Equations (Barles-Souganidis) Before

we explain our approach we should note that there is a well-developed theory concerning

the numerical solution of HJB equations using finite difference schemes in the same way as

there is a well-developed theory concerning the numerical solution of discrete-time Bellman

equations. The key result is due to Barles and Souganidis (1991) who have proven that,

under certain conditions, the solution to a finite difference scheme converges to the (unique

viscosity) solution of the HJB equation.44 The interested reader should consult Barles and

Souganidis’ original (and relatively accessible) paper or the introduction by Tourin (2013). In

short, for their result to hold, the finite difference scheme needs to satisfy three conditions: (i)

“monotonicity”, (ii) “stability” and (iii) “consistency.” These are spelled out in the Online

Appendix. Here it suffices to note that (ii) and (iii) are typically easy to satisfy and, in

practice, the main difficulty for the numerical solution of HJB equations is to design a finite

difference scheme that satisfies (iii), the monotonicity condition.

Finite Difference Method We here explain the finite difference method for solving the

stationary HJB equation for a special case we have already examined earlier in the paper,

namely the one with no income uncertainty y1 = y2 = y. The generalization to income risk

is straightforward. The HJB equation in this special case is

ρv(a) = max
c

u(c) + v′(a)(y + ra− c). (51)

As already mentioned, the finite difference method approximates the function v at I discrete

points in the space dimension, ai, i = 1, ..., I. We use equispaced grids, denote by ∆a the

distance between grid points, and use the short-hand notation vi := v(ai). The derivative

v′i = v′(ai) is approximated with either a forward or a backward difference approximation

v′(ai) ≈
vi+1 − vi

∆a
=: v′i,F or v′(ai) ≈

vi − vi−1

∆a
=: v′i,B.

The finite difference approximation to (51) is then

ρvi = u(ci) + v′isi, si := y + rai − ci, ci = (u′)−1(v′i), i = 1, ..., I (52)

44See Appendix C.1 for an “economist-friendly” introduction to the theory of viscosity solutions.
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where v′i is either the forward or backward difference approximation. Which of the two

approximations is used and where in the state space is extremely important. The reason

is that this choice determines whether Barles and Souganidis’ monotonicity condition is

satisfied.

Upwinding As just mentioned, it is important whether and when a forward or a backward

difference approximation is used. The ideal solution to this problem is to use a so-called

“upwind scheme.” The rough idea is to use a forward difference approximation whenever the

drift of the state variable (here, saving si = y + rai − ci) is positive and to use a backward

difference whenever it is negative. This is intuitive: if saving is positive, what matters is

how the value function changes when wealth increases by a small amount; and vice versa

when saving is negative. The right thing to do is therefore to approximate the derivative in

the direction of the movement of the state. To this end use the notation s+
i = max{si, 0},

i.e. s+
i is “the positive part of si” and analogously s−i = min{si, 0}. The upwind version of

(52) is then

ρvi = u(ci) +
vi+1 − vi

∆a
s+
i +

vi − vi−1

∆a
s−i , i = 1, ..., I, (53)

where also the finite difference approximation v′i used to compute ci = (u′)−1(v′i) depends on

the sign of si in the same way. This simplified exposition ignores two important and related

issues. First, that the HJB equation (51) is highly non-linear due to the presence of the max

operator, and therefore so is its finite difference approximation (53). It therefore has to be

solved using an iterative scheme and one faces a choice between using so-called “explicit”

and “implicit” schemes. Related, from the first-order condition ci = (u′)−1(v′i), saving si

and consumption ci themselves depend on whether the forward or backward approximation

is used so (53) has a circular element to it. The solution to both these issues is described in

detail in the Online Appendix.

The upwind finite difference scheme for the HJB equation (53) can be conveniently written

in matrix notation. Denoting by v = (v1, ..., vI)
T the vector collecting the value function at

different grid points, we have the matrix equation (48). The matrix A(v; r) has a special

structure: first, it is sparse; more precisely, it is tridiagonal: all entries are zero except

for those on the main diagonal, the first diagonal below this, and the first diagonal above

the main diagonal. Second, all diagonal entries are negative and given by
s−i
∆a
− s+i

∆a
≤ 0

and all off-diagonal entries are positive and given by − s−i
∆a
≥ 0 and

s+i
∆a
≥ 0. Third, all

rows of A(v; r) sum to zero. All these properties are extremely intuitive. In effect, the

finite difference method approximates the law of motion for the continuous state variable

a with a discrete-state Poisson process on the grid ai, i = 1, ..., I and the matrix A(v; r)

summarizes the corresponding Poisson intensities. The properties noted above are precisely

the properties that a Poisson transition matrix needs to satisfy. For these reasons we will

sometimes refer to A(v; r) as “Poisson transition matrix” or “intensity matrix.” All this will
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be useful in Section 3.4 below when we solve the KF equation (8).

Boundary Conditions and Handling the Borrowing Constraint Besides guaran-

teeing that the Barles-Souganidis monotonicity condition holds, an upwind scheme like (53)

has an additional great advantage: the handling of boundary conditions. First, consider the

upper end of the state space aI . If this upper end is large enough, saving will be negative

sI < 0 so that s+
I = 0.45 It can then be seen from (53) that the forward difference is never

used at the upper end of the state space. As a result no boundary condition needs to be

imposed. Next, consider the lower end of the state space and in particular the question how

to impose the state constraint boundary condition (10) which holds with equality only when

the constraint binds. To impose this, we can exploit the special structure of the upwind

scheme: set the boundary condition

v′1,B = u′(y + ra1)

but only for the backward difference approximation and not for the forward difference ap-

proximation v′1,F which is instead computed as (v2 − v1)/∆a. Then let the upwind scheme

itself select whether this boundary condition is used. From (53) we can see that the bound-

ary condition is only imposed if it would be the case that s1 < 0; but it is not used if s1 > 0.

This ensures that the borrowing constraint is never violated.

3.4 Step 2: Solving the Kolmogorov Forward Equation

For step 2, consider the stationary Kolmogorov Forward equation (8). We again discretize

the equation using a finite difference scheme. In contrast to the HJB equation which is

non-linear in v, the KF equation is linear in g. Its discretized counterpart can therefore

be solved in one iteration. There are a number of potentially admissible finite difference

schemes, but one of these is particularly convenient and deeply rooted in mathematical

theory: the discretization (49) which involves the transpose of A(v, r), the transition matrix

of the discretized stochastic process in (a, yj)-space.

The deep underlying reason for this choice of discretization is that the KF equation

actually is the “transpose” problem of the HJB equation. More precisely, the differential

operator in the KF equation (8) is the adjoint of the operator in the HJB equation (7),

the “infinitesimal generator.”46 Our transpose discretization of the KF equation (49) is not

45In fact, in the special case without uncertainty analyzed in the present section and under the assumption
r < ρ, saving is negative everywhere in the state space. The condition that aI needs to be large enough
really only matters for the case with uncertainty. That the case without uncertainty is special also applies
to the subsequent discussion: without uncertainty the state constraint (10) always holds with equality.

46The “infinitesimal generator” is the continuous-time analogue of a discrete-time transition matrix, and
the adjoint of an operator is the infinite-dimensional analogue of a matrix transpose. In our context, the
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only well-founded in mathematics; it is also extremely convenient: having solved the HJB

equation, the solution of the Kolmogorov Forward equation is essentially “for free.”

The same numerical method – building the matrix A and then working with its transpose

– can also be used when solving problems that involve only the KF equation, e.g. because

the optimal decision rules can be solved for analytically. This approach is, for example,

pursued in Jones and Kim (2014) and Gabaix, Lasry, Lions, and Moll (2016).47

Finally, some readers may be concerned that the presence of a Dirac point mass in the

stationary wealth distribution g1 may cause problems for our finite difference method. We

show in Appendix D.2 that this is not the case. First, we show theoretically that the only

implication of the Dirac mass is that some care is required when interpreting the output of

the numerical algorithm, in particular the first element of the vector g (corresponding to

the density of income type y1 at the point a = a). Second, we use the analytic solution for

the wealth distribution in Proposition 3 as a test case for our numerical algorithm and show

that it performs extremely well in practice unless the wealth grid is very coarse.

3.5 Computing Transition Dynamics

The algorithm we use to calculate time-varying equilibria – functions v1, v2, g1, g2 and r

satisfying (4), (12) and (13) given an initial condition (16) and a terminal condition (17) –

is the natural generalization of that used to compute stationary equilibria. We again use a

bisection method, this time on the entire function r(t). We begin an iteration with an initial

guess r0(t), t ∈ (0, T ). Then for ` = 0, 1, 2, ... we follow

1. Given r`(t) and the terminal condition (17), solve the HJB equation (12), marching

backward in time. Calculate the saving policy function s`j(a, t).

2. Given s`j(a, t) and the initial condition (16), solve the KF equation, marching forward

in time, for g`j(a, t).

3. Given g`j(a, t), compute the net supply of bonds S`(t) =
´∞
a
a(g`1(a, t) + g`1(a, t))da and

update the interest rate as r`+1(t) = r`(t)− ξ dS
`(t)
dt

where ξ > 0.

infinitesimal generator captures the evolution of the process in (a, yj)-space. This operator – let us denote
it by A – is defined as follows: for any vector of functions [f1(a), f2(a)]T

A
[
f1(a)
f2(a)

]
=

[
f ′1(a)s1(a) + λ1(f2(a)− f1(a))
f ′2(a)s2(a) + λ2(f1(a)− f2(a))

]
.

Next, one can show that the operator in the KF equation (8) is the adjoint of this operator: denoting by A∗

the adjoint of A, (8) is 0 = A∗
[
g1(a)
g2(a)

]
. Equation (49) is the discretized version of this problem.

47Festa, Gomes, and Velho (2017) develop the idea of exploiting the adjoint property of the KF equation
more systematically, also in the context of alternative numerical schemes (e.g. a semi-Lagrangean scheme).
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When r`+1(t) is close enough to r`(t) for all t, we call (r`, v`1, v
`
2, g

`
1, g

`
2) an equilibrium.

The finite difference method used for computing the time-dependent HJB and KF equa-

tions for a given time path r`(t) is similar to those used to compute their stationary coun-

terparts. In addition to discretizing wealth a, we now also discretize time t on a grid

tn, n = 1, ..., N , for instance with equal-sized time steps of length ∆t. Denoting by vn and

gn the stacked, discretized value function and distribution at time tn, the time-dependent

version of the discretized equilibrium system (48) to (50) becomes

ρvn = u(vn+1) + A(vn+1; rn)vn +
vn+1 − vn

∆t
,

gn+1 − gn

∆t
= A(vn; rn)Tgn+1,

B = S(gn; rn),

for time steps n = 1, ..., N , with terminal condition vN = v where v is the steady state

solution to (48) and with initial condition g1 = g0. All this is explained in more detail in

the Online Appendix.

3.6 The Method’s Performance: Some Illustrative Results

All of Figures 1, 6 and 8 for the Huggett economy in Section 1 earlier in the paper were

computed using a Matlab implementation of the algorithm just laid out. Even though we

work with a fine wealth grid with I = 1000 grid points, solving for a stationary equilibrium

takes about 0.25 seconds on a MacBook Pro laptop computer. Next, consider the corre-

sponding transition dynamics. With I = 1000 wealth grid points, N = 400 time steps and

the same hardware, computing (12) and (13) for a fixed time path r(t) takes about 2 seconds.

Iterating on r(t) until an equilibrium transition is found takes about 4 minutes (even though

market clearing conditions like (4) that implicitly define prices are notoriously difficult to

impose during transitions).48

48In contrast, computing transitions for the Aiyagari model in Section 4.2, where prices are explicit
functions of the aggregate capital stock as in (61), takes only 1 minute and 40 seconds. The code
for the stationary equilibrium and transition dynamics of the Huggett model are available at http:
//www.princeton.edu/∼moll/HACTproject/huggett equilibrium iterate.m and http://www.princeton.edu/
∼moll/HACTproject/huggett transition.m. The code for the Aiyagari model is at http://www.princeton.
edu/∼moll/HACTproject/aiyagari poisson MITshock.m.
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3.7 Relation to Candler (1999) and Alternatives to Finite Differ-

ence Method

Candler (1999) has previously used a finite difference method to solve HJB equations arising

in economics (with the neoclassical growth model as his prime example) and also discusses

upwinding. Our numerical method adds to his in three dimensions. First and most obviously,

we consider coupled HJB and KF equations rather than just the HJB equation in isolation:

the system (7), (8) and (11) rather than just (7). We show that there is a tight mapping

between the KF equation and the HJB equation and that this mapping can be conveniently

exploited in finite difference schemes (the adjoint/transpose property discussed in Section

3.4). Candler, in contrast, does not discuss Kolmogorov Forward equations. Second, even

when considered in isolation, our HJB equation differs from Candler’s and this is reflected

in the solution method. In particular, we show how to handle borrowing constraints by

mathematically casting them as state constraints (a step that requires using the notion of

viscosity solution) and designing an upwind method that respects these constraints. Borrow-

ing constraints are, of course, a ubiquitous feature of heterogeneous agent models. Third,

we show that our solution method has well-developed theoretical underpinnings by making

the connection to the Barles and Souganidis (1991) convergence theory.

Besides the finite difference method, there are many alternative methods for solving

partial differential equations in general and HJB and KF equations in particular. Exam-

ples include finite-element, finite-volume, semi-Lagrangean, and Markov-chain approxima-

tion methods as well as approximation via orthogonal (e.g. Chebyshev) polynomials.49 In

principle, these other methods can also be used to solve heterogeneous agent models of the

type discussed here; in particular by following the same Steps 1 to 3 laid out in Section 3.2

but simply exchanging the solution method used within Steps 1 and 2.

There is no sense in which the finite difference method laid out here dominates these

other methods. In fact, some of these other methods may even be more accurate for coarse

discretizations of the value function and distribution. We nevertheless prefer it over other

methods for two reasons. First, the finite difference method is transparent and easy to

implement. In case the algorithm spits out junk, it is usually easy to track down the prob-

lem. Second, and as explained in Section 3.4, the finite difference method delivers a useful

symmetry in the solution methods for the HJB and KF equations (that the matrix in the

latter is the transpose of that in the former). Other methods typically do not have this

property. Finally, because the finite difference method is fast, choosing fine grids is usually

49Some of these methods have also been used in economics. For example, Golosov and Lucas (2007) and
Barczyk and Kredler (2014) use the Markov Chain approximation method of Kushner and Dupuis (2013).
Because some of our paper’s readers have wondered about this in the past, we should emphasize that a finite
difference method is different from the Kushner-Dupuis method: their approach essentially transforms the
continuous-time problem into a discrete-time problem and then solves it using value function iteration.
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not costly and hence it is not a concern that other methods may be more accurate with

coarse discretizations.

4 Generalizations and Other Applications

Sections 4.1 and 4.2 discuss generalizations of the baseline Huggett model we have analyzed

thus far. Sections 4.3 to 4.6 present a number of other theories, mostly to showcase the

portability of our computational algorithm.

4.1 More General Income Processes

Our baseline model assumed that income yt takes one of two values, high and low. We now

extend many of our results to an environment with a continuum of productivity types.50 In

particular, the computational algorithm laid out in Section 3 carries over without change.

This is true even though the system of equations describing an equilibrium will be a system

of PDEs rather than a system of ODEs.

As in Section 1.1, there is a continuum of individuals that are heterogeneous in their

wealth a and income y. The state of the economy is the joint distribution of income and

wealth g(a, y, t). The simplest way of introducing a continuum of income types is to work

with a continuous diffusion process. Individual income evolves stochastically over time on a

bounded interval [y, ȳ] with ȳ > y ≥ 0, according to the stationary diffusion process51

dyt = µ(yt)dt+ σ(yt)dWt. (54)

This is simply the continuous-time analogue of a Markov process (without jumps). Wt is a

Wiener process or standard Brownian motion and the functions µ and σ are called the drift

and the diffusion of the process. We normalize the process such that its stationary mean

equals one. An individual’s problem is now to maximize (1) subject to (2), (3) and (54),

taking as given the evolution of the interest rate rt for t ≥ 0.52

Similarly to Section 1, a stationary equilibrium can be written as a system of partial

differential equations. The problem of individuals and the joint distribution of income and

50Among the theoretical results, we extend Propositions 1, 2, 4 and 5. That is, all Propositions from
Section 2 with the exception of Propositions 3 (the analytic solution for the stationary distribution with two
income types) and 6 (soft borrowing constraint with deterministic income).

51The process (54) either stays in the interval [y, ȳ] by itself or is reflected at y and ȳ. From a theoretical
perspective there is no need for restricting the process to a bounded interval, and unbounded processes can
be easily analyzed. Instead the motivation for this assumption is purely practical: we ultimately solve the
problem numerically and any computations necessarily require income to lie in a bounded interval.

52The corresponding “natural borrowing constraint” is now at ≥ −y
´∞
t

exp
(
−
´ s
t
rτdτ

)
ds. As before,

the borrowing constraint a only binds if it is tighter than this “natural” borrowing limit.
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wealth satisfy stationary HJB and KF equations:

ρv(a, y) = max
c

u(c) + ∂av(a, y)(y + ra− c) + ∂yv(a, y)µ(y) +
1

2
∂yyv(a, y)σ2(y), (55)

0 =− ∂a(s(a, y)g(a, y))− ∂y(µ(y)g(a, y)) +
1

2
∂yy(σ

2(y)g(a, y)). (56)

on (a,∞)× (y, ȳ). The function s is the saving policy function

s(a, y) = y + ra− c(a, y), where c(a, y) = (u′)−1(∂av(a, y)). (57)

The function v again satisfies a state constraint boundary condition at a = a which is now

∂av(a, y) ≥ u′(y + ra), all y. (58)

Because the diffusion is reflected at y and ȳ, the value function also satisfies the boundary

conditions

∂yv(a, y) = 0, ∂yv(a, ȳ) = 0, all a. (59)

A stationary equilibrium is a scalar r and functions v and g satisfying the PDEs (55) and

(56) with s given by (57), boundary conditions (58), (59), with an equilibrium condition

analogous to (11), namely
´ ȳ
y

´∞
a
ag(a, y)dady = B. Transition dynamics again satisfy a

system of time-dependent PDEs analogous to that in Section 1.

Importantly, the computational algorithm laid out in Section 3 carries over without

change: from a computational perspective it is immaterial whether we solve a system of

ODEs like (7) and (8) or a system of PDEs like (55) and (56). This would not be true if we

had relied on an pre-built ODE solver (say one that is part of Matlab) to solve the ODEs

(7) and (8).

Other income processes are possible as well. For instance, Kaplan, Moll, and Violante

(2016) consider a “jump-drift process” with transitory and permanent components. As in

(54) there is a continuum of types for each component; but rather than moving continuously

over time as in (54), each component is subject to Poisson jumps. Income could also follow

a jump-diffusion process.

Figure 10 plots the stationary saving policy function and wealth distribution when income

follows a diffusion. Both inherit all important properties of the saving policy function and

wealth distribution from the baseline model with two income types from Sections 1 and 2.

This is not just a numerical result. Instead Propositions 7 and 8 in Appendix E.1 generalize

Propositions 1 and 2 from the case with a two-state Poisson process to other processes

including the diffusion process (54). It shows, for example, that – as can be seen in panel (a)

of the Figure – the saving policy function has an unbounded derivative at a = a for income y

below some threshold, and that therefore individuals with persistent low income realizations
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Figure 10: Stationary Equilibrium of Huggett Model with Diffusion Process

hit the borrowing constraint in finite time. This results in the spike in the wealth distribution

at a = a in panel (b).53 Finally, Proposition 7 also shows that formula (21) governing the

MPC generalizes to

ν(y) = (ρ− r)IES(c(y))c(y) +

(
µ(y)− σ2(y)

2
P(c(y))

)
c′(y) +

σ2(y)

2
c′′(y),

where c(y) := c(a, y) and P(c) := −u′′′(c)/u′′(c) is absolute prudence.

4.2 An Alternative Way of Closing the Model: Aiyagari (1994)

Section 1 assumed that wealth takes the form of bonds that are in fixed supply. It is, of

course, possible to make other assumptions. In particular, we can assume as in Aiyagari

(1994) that wealth takes the form of productive capital that is used by a representative firm

which also hires labor. Each individual’s income is the product of an economy-wide wage wt

and her idiosyncratic labor productivity zt and her wealth follows (2) with yt = wtzt. The

total amount of capital supplied in the economy equals the total amount of wealth. In a

stationary equilibrium it is given by

K =

ˆ z̄

z

ˆ ∞
a

ag(a, z)dadz := S(r, w). (60)

53Given that the figure plots the density g(a, y), some readers may wonder why the spike representing the
Dirac mass at a = a is finite. The answer is that the figure plots the output of our numerical scheme, gi,j
over grids ai, i = 0, ..., I and yj , j = 1, ..., J . As explained in Appendix D.2 the correct interpretation is that
gi,j ≈ g(ai, yj) for all grid points in the interior i > 0. But at the boundary g0,j∆a ≈ m(yj) where m(y) is the
Dirac mass. In the figure for example, g0,j equals about 0.35 at its highest point. The correct interpretation
is: since the computation uses ∆a = 0.3, the corresponding Dirac mass is g0,j∆a = 0.35× 0.3 = 0.105.
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Capital depreciates at rate δ. There is a representative firm with a constant returns to scale

production function Y = F (K,L). Since factor markets are competitive, the wage and the

interest rate are given by

r = ∂KF (K, 1)− δ, w = ∂LF (K, 1), (61)

where we use that the mean of the stationary distribution of productivities z equals one.

Because the income fluctuation problem at the heart of the Aiyagari model is the same

as that in the Huggett model all of Propositions 1 to 3 apply without change. So does

Proposition 4. Proposition 5 applies by exploiting a homogeneity property noted by Auclert

and Rognlie (2016), namely that individual policy functions and therefore aggregate saving

is homothetic in the wage rate, S(r, w) = wS(r, 1) for all w > 0.54 The computational

algorithm is again unchanged except that, in Step 3, it imposes (60) and (61) rather than

(11).

4.3 Non-Convexities: Indivisible Housing, Mortgages, Poverty Traps

An important class of economic theories involves non-convexities as in Skiba (1978). Another

important class features prices in financial constraints as in Kiyotaki and Moore (1997).

We here provide a parsimonious example of a theory that features both model elements:

individuals can take out a mortgage to buy houses subject to a down-payment constraint

– hence the price in the constraint – and housing is indivisible – hence the non-convexity.

The purpose of this subsection is not to propose a quantitatively realistic model of housing;

rather it is to showcase what kind of models can be solved with our computational algorithm.

In particular, viscosity solutions and finite difference methods are designed to handle non-

differentiable and non-convex problems like the one analyzed here.

Setup Individuals have preferences over consumption ct and housing services ht:

E0

ˆ ∞
0

e−ρtu(ct, ht)dt.

They can borrow and save in a riskless bond bt and buy housing at price p. The key restriction

is that there are no houses below some threshold size hmin > 0. That is, an individual can

54Uniqueness requires one additional technical assumption about the production function F . To see this
note that the homotheticity property implies that (60) becomes S(r, 1) = k(r) where k(r) := K(r)/w(r) is
normalized capital demand. Since S(r, 1) slopes upward by Proposition 5, the equilibrium is unique if k(r)
slopes downward. Auclert and Rognlie show that this is indeed the case if α < ε where α is the capital share
and ε is the elasticity of substitution corresponding to F (both of which may depend on K/L).
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either not own a house ht = 0 or one that is larger than hmin; compactly:

ht ∈ {0, [hmin,∞)}.

An individual’s budget constraint is

ḃt + pḣt = yt + rbt − ct.

As before yt ∈ {y1, y2} follows a two-state Poisson process. When buying a house, the

individual can take out a mortgage and borrow up to a fraction θ ∈ [0, 1] of the value of the

house:

−bt ≤ θpht.

Equivalently the down-payment needs to be at least a fraction 1 − θ of the house’s value.

The interest rate r and house price p are determined in equilibrium. Housing is in fixed

supply normalized to unity and bonds are in zero net supply.

Stationary Equilibrium It is convenient to work with net worth at := bt + pht which

follows ȧt = yt + r(at − pht) − ct. Similarly, the borrowing constraint becomes pht ≤ φat

where φ := 1
1−θ . Denote by H(a) the set of admissible housing choices. We have

H(a) = {h : ph ≤ φa} ∩ {0, [hmin,∞)}.

A stationary equilibrium is fully characterized by the following system of equations

ρvj(a) = max
c,h∈H(a)

u(c, h) + v′j(a)(yj + r(a− ph)− c) + λj(v−j(a)− vj(a)), (62)

0 =− d

da
[sj(a)gj(a)]− λjgj(a) + λ−jg−j(a),

1 =

ˆ ∞
0

(h1(a)g1(a) + h2(a)g2(a))da,

0 =

ˆ ∞
0

(b1(a)g1(a) + b2(a)g2(a))da,

where cj(a), hj(a), sj(a) = yj + r(a− phj(a))− cj(a) and bj(a) = a− phj(a) are the optimal

consumption, housing, saving and bond holding policy functions.

In what follows we solve this equilibrium system under the additional assumption that

utility is quasi-linear u(c, h) = ũ(c+ f(h)). This assumption is convenient because the opti-

mal housing choice separates from the consumption-saving problem and allows for a simple

connection to theories in the development literature with non-convex production technolo-

gies. That being said, the model can easily be solved numerically for general preferences
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u(c, h). Assuming quasi-linear utility and defining x = c+ f(h), (62) becomes

ρvj(a) = max
x

ũ(x) + v′j(a)(yj + f̃(a) + ra− x) + λj(v−j(a)− vj(a)),

f̃(a) = max
h∈H(a)

{f(h)− rph}.

The function f̃ is the pecuniary equivalent of the utility benefit of housing (net of the

opportunity cost of holding housing rather than interest-bearing bonds). Figures 11(a) and

(b) plot the solution to the optimal housing choice problem as a function of wealth a: panel

(a) plots the housing policy function h(a) (the maximand of the second equation) and panel

(b) plots the benefit from housing f̃(a) (the corresponding maximum). The vertical line in

the two graphs is at a∗ := phmin/φ which is the down-payment necessary to buy the smallest

available house hmin. An individual with wealth at below this threshold simply cannot buy

a house at time t, as reflected by the fact that both the housing policy function and the

benefit from housing are zero, h(a) = 0 and f̃(a) = 0 for a ≤ a∗. As her wealth increases

above a∗, the individual is first up against the constraint ph(a) = φa so that the size of

her house increases linearly with wealth; when her wealth is large enough, she chooses the

unconstrained house size given by the solution to the unconstrained first-order condition

f ′(h) = rp.

Importantly the function f̃ in panel (b) is convex-concave as a function of wealth a.

Note the similarity to theories of economic growth with convex-concave production func-

tions (Skiba, 1978) and to theories of entrepreneurship with financial constraints and non-

convexities in production, either due to fixed costs in production or to an occupational choice

(see e.g. Buera, 2009; Buera, Kaboski, and Shin, 2011; Buera and Shin, 2013; Buera, Ka-

boski, and Shin, 2015). In fact, our computational method again carries over to the solution

of such theories.

Figure 11(c) plots the resulting saving policy function. The black, dashed horizontal line

is at zero, i.e. savings are positive above that line and negative below. Optimal saving has the

typical feature of problems with non-convexities: for each income type, there is a threshold

wealth level (the “Skiba point”) below which individuals decumulate assets and above which

they accumulate assets. In panel (c) this point is where the saving policy functions intersect

zero while sloping upward. As usual, the “Skiba point” is strictly below the point of the non-

convexity a∗ (the dashed vertical line). Figure 11(d) plots the corresponding value functions:

importantly, they feature convex kinks both at the “Skiba point” and at the non-convexity

a∗. Since derivatives of vj do not exist at these kink points, it becomes necessary to explicitly

invoke the theory of viscosity solutions. However, the Barles-Souganidis theory still applies

in the presence of kinks and therefore our computational algorithm can be applied without

change.

Since the theory features classic poverty trap dynamics, there can be multiple stationary
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Figure 11: Model with Indivisible Housing: Policy and Value Functions and Multiple Sta-
tionary Distributions
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wealth distributions. Figures 11 (e) and (f) confirm this possibility: they plot two possible

stationary wealth distributions. In fact there is a continuum of stationary wealth distribu-

tions. In results not shown here due to space constraints, we have also computed the model’s

transition dynamics. Not surprisingly given the discussion thus far, the economy features

history dependence in the sense that initial conditions determine where the economy ends

up in the long run. As already noted, the point of this subsection is not to argue quantita-

tively that the presence of indivisible housing and down-payment constraints creates history

dependence. Rather it is to showcase the possibilities of our computational algorithm.

4.4 Fat Tails

As shown in Proposition 3, the stationary wealth distribution in the Huggett economy with a

bounded income process is bounded above. More generally, any income process with a thin-

tailed stationary distribution results in a thin-tailed wealth distribution.55 This property

of the model is, of course, problematic vis-à-vis wealth distributions observed in the data

which are typically heavily skewed and feature fat upper tails. In Online Appendix E.2 we

show how to extend the Huggett model of Section 1 to feature a fat-tailed stationary wealth

distribution. We do this by introducing a risky asset in addition to the riskless bond. The

insight that the introduction of “investment risk” into a Bewley model generates a Pareto

tail for the wealth distribution is due to Benhabib, Bisin, and Zhu (2015) and our argument

mimics several of their steps. Also see Jones (2015) and De Nardi and Fella (2017).

4.5 Multiple Assets with Adjustment Costs

The models discussed in Sections 4.3 and 4.4 featured two assets: bonds and housing in

the former; bonds and a risky asset in the latter. But in both cases portfolio adjustment

between the two assets was costless and we could therefore collapse the two assets into

one state variable, net worth. Costless portfolio adjustment may be a bad assumption

in many applications. For instance, buying a house may entail both fixed and variable

transaction costs. The same is true for illiquid assets more generally. For example, an

individual withdrawing funds from her retirement account typically incurs a penalty. Kaplan,

Moll, and Violante (2016) show how to extend the computational algorithm developed here

to handle multiple assets with kinked (but convex) adjustment costs and argue that the

two-asset structure is important for understanding the monetary transmission mechanism.

55As discussed by Benhabib and Bisin (2016) the only exception to this is if income itself has a stationary
distribution with a fat (Pareto) tail. However, this assumption would generate the counterfactual prediction
that the tail of the wealth distribution is equally fat as that of the income distribution. In the data, instead,
the wealth distribution has a considerably fatter tail than the income distribution.
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4.6 Stopping Time Problems

In models with multiple assets like the one discussed above, one may want to allow for non-

convex adjustment costs, e.g. fixed costs. In work in progress we show how our algorithm also

generalizes to solve such problems. Non-convex adjustment costs result in the individual’s

problem becoming a stopping time problem rather than a standard dynamic optimization

problem (Stokey, 2009). The value function then no longer solves an HJB equation; instead

it solves a so-called “HJB Variational Inequality” (Øksendal, 1995; Tourin, 2013).56 Nev-

ertheless, the algorithm developed here can be generalized in a relatively straightforward

manner to solve these type of stopping time problems.57 The computational method for

solving stopping time problems also promises to be useful in other applications, e.g. prob-

lems involving default by individuals (see e.g. Livshits, MacGee, and Tertilt, 2007) or by

sovereign states (see e.g. Aguiar, Amador, Farhi, and Gopinath, 2013, for a continuous-time

formulation).

5 Conclusion

This paper makes two types of contributions. First, we prove a number of new theoreti-

cal results about the Aiyagari-Bewley-Huggett model, the workhorse theory of income and

wealth distribution in macroeconomics: (i) an analytic characterization of the consumption

and saving behavior of the poor, particularly their marginal propensities to consume; (ii) a

closed-form solution for the wealth distribution in a special case with two income types; (iii)

a proof that there is a unique stationary equilibrium if the intertemporal elasticity of sub-

stitution is weakly greater than one; (iv) a characterization of “soft” borrowing constraints.

Second, we develop a simple, efficient and portable algorithm for numerically solving both

stationary equilibria and transition dynamics of a wide class of heterogeneous agent models,

including – but not limited to – this model. Both types of contributions were made possible

by recasting the Aiyagari-Bewley-Huggett model in continuous time, thereby transforming

the model into a system of partial differential equations.

56Economists typically tackle these types of problems by splitting the state space into an inaction region
and an adjustment region, postulate that the value function satisfies an HJB equation in the adjustment
region and a “smooth pasting” condition on the boundary. This approach is restrictive: in one dimension,
the boundary of the inaction region is just a threshold; but as soon as there is more than one state variable, it
becomes exceedingly hard to find the boundaries of the adjustment region. The approach is even somewhat
misleading: using the HJB Variational Inequality formulation the smooth pasting condition is a result
rather than an exogenously imposed axiom (Øksendal, 1995). Solving stopping time problems in multiple
dimensions then poses no conceptual problem over solving one-dimensional ones.

57See the applications labelled “Stopping Time Problem” here http://www.princeton.edu/∼moll/
HACTproject.htm, particularly a simple problem of exercising an option borrowed from Stokey (2009)
http://www.princeton.edu/∼moll/HACTproject/option simple.pdf and a model with two assets and non-
convex adjustment costs http://www.princeton.edu/∼moll/HACTproject/liquid illiquid numerical.pdf.
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It is our hope that the methods developed in this paper, particularly the numerical

algorithm, will also prove useful in other applications. One potential application is to spatial

theories of trade and development as in Rossi-Hansberg (2005) and Allen and Arkolakis

(2014). These theories typically feature a continuum of producers and households distributed

over a continuum of locations. In dynamic versions, space would simply be an additional

variable in the HJB and KF equations. A challenge would be how to solve for equilibrium

prices which are typically functions of space rather than a small number of (potentially time-

varying) scalars. Related, a second avenue for future research is to explore richer interactions

between individuals. In the class of theories we have considered here, individuals interact

only through prices. But for many questions of interest, richer interactions may be important:

for instance there may be more “local” interactions in the form of knowledge spillovers or

diffusion (see e.g. Perla and Tonetti, 2014; Lucas and Moll, 2014; Burger, Lorz, and Wolfram,

2016; Benhabib, Perla, and Tonetti, 2017). In principle, the apparatus put forward in this

paper – the Mean Field Game system of coupled HJB and KF equations – is general enough

to encompass richer models such as these.
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Quadrini, V., and J.-V. Ŕıos-Rull (2015): “Inequality in Macroeconomics,” Handbook of In-
come Distribution, 2, 1229 – 1302, Handbook of Income Distribution.

Rocheteau, G., P.-O. Weill, and T.-N. Wong (2015): “Working through the Distribution:
Money in the Short and Long Run,” NBER Working Papers 21779, National Bureau of Economic
Research, Inc.

Rossi-Hansberg, E. (2005): “A Spatial Theory of Trade,” American Economic Review, 95(5),
1464–1491.

Scheinkman, J. A., and L. Weiss (1986): “Borrowing Constraints and Aggregate Economic
Activity,” Econometrica, 54(1), 23–45.

Shaker Akhtekhane, S. (2017): “Firm Entry and Exit in Continuous Time,” Working paper,
Ohio State University.

Skiba, A. K. (1978): “Optimal Growth with a Convex-Concave Production Function,” Econo-
metrica, 46(3), 527–39.

Soner, H. M. (1986a): “Optimal Control with State-Space Constraint I,” SIAM Journal on
Control and Optimization, 24(3), 552–561.

(1986b): “Optimal Control with State-Space Constraint II,” SIAM J. Control Optim.,
24(6), 1110–1122.

Stokey, N. (2014): “The Race Between Technology and Human Capital,” Working paper, Uni-
versity of Chicago.

Stokey, N. L. (2009): The Economics of Inaction. Princeton University Press, Princeton, NJ.

Tao, T. (2008): “Generalized Solutions,” in The Princeton Companion to Mathematics, ed. by
T. Gowers, J. Barrow-Green, and I. Leader. Princeton University Press, http://www.math.ucla.
edu/∼tao/preprints/generalized solutions.pdf.

Toda, A. A., and K. Walsh (2015): “The Double Power Law in Consumption and Implications
for Testing Euler Equations,” Journal of Political Economy, 123(5), 1177–1200.

Tourin, A. (2013): “An Introduction to Finite Difference Methods for PDEs in Finance,” in
Optimal Stochastic Target problems, and Backward SDE, ed. by N. Touzi, Fields Institute
Monographs. Springer, available online at http://papers.ssrn.com/sol3/papers.cfm?abstract id=
2396142.

Vindigni, A., S. Scotti, and C. Tealdi (2014): “Uncertainty and the Politics of Employment
Protection,” Journal of Labor Economics.

Wang, N. (2007): “An Equilibrium Model of Wealth Distribution,” Journal of Monetary Eco-
nomics, 54(7), 1882–1904.

56

http://www.math.ucla.edu/~tao/preprints/generalized_solutions.pdf
http://www.math.ucla.edu/~tao/preprints/generalized_solutions.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2396142
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2396142

