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Abstract:  
Although there is a large literature linking early childhood exposures to childhood and 
adult outcomes, the causal evidence on how these exposures affect outcomes in late 
adulthood and the elderly years is limited. Moreover, the extent to which genetic factors 
modify the long-run consequences of these early exposures is not well understood. We 
examined the effects of early life exposure to pneumonia – a leading cause of infant 
death in the early 20th century – on cognitive outcomes among elderly adults. 
Leveraging the introduction of sulfonamide antibiotics in 1937 – which led to dramatic 
reductions in pneumonia morbidity and mortality – along with state-level differences in 
baseline disease rate – we find that infant exposure led to faster cognitive decline in 
adulthood. These effects were largest for individuals with higher genetic endowments 
(as measured by polygenetic scores (PGS) for cognition), and null for those with lower 
endowments. One interpretation of our finding is that, as environments are improved, 
those with genetic advantages are more fully able to leverage these improvements, 
which may increase inequality in cognitive performance over time.  
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1. Introduction 
 

A large and robust literature in biology and economics has documented the long-

run effects of early childhood experiences – including exposure to disease - on adult 

health and socioeconomic outcomes (Almond, Currie, and Duque, Forthcoming). The 

bulk of this literature has focused on health and socioeconomic outcomes in early 

childhood through the prime adult years. Less attention has been paid to the impacts of 

these experiences on outcomes in late adulthood and the elderly years (Case and 

Paxson, 2009) – with the bulk of this literature reporting descriptive associations.1 In 

addition, while models of economic models of human capital formation posit that 

experiences and investments at different life stages may interact with each other in 

producing long-run health and well-being (Cunha and Heckman, 2007), the extent to 

which the impacts to early life investments vary by genetic endowments – both among 

the elderly and non-elderly - is not well understood. Providing insights into each of these 

areas is critical given the growing population of elderly worldwide, and emerging 

evidence of growing inequality in aging outcomes (Miller and Bairoliya 2017). 

This study addresses these gaps. We first examine the effects of early life 

exposure to pneumonia – a leading cause of infant death in the early 20th century – on 

cognitive outcomes among elderly adults surveyed in the 2006-2010 U.S. Health and 

Retirement Survey. We focus on cognitive outcomes given its importance in the well-

being of elderly, as well as emerging biomedical and epidemiological evidence of an 

association between early life experiences and age-related cognitive decline (Bale, 

2015; Walhovd, et al 2016). To achieve causal identification, we leverage the 

introduction of sulfonamide antibiotics in 1937 – which led to dramatic reductions in 

pneumonia morbidity and mortality (Jayachandran, Lleras-Muney, and Smith, 2010) – 

along with state-level differences in baseline disease rates (Bhalotra and 

Venkataramani, 2015).  

Focusing on cohorts born between 1920 and 1950, we find that exposure to 

pneumonia in the first year of life led to faster cognitive decline in late adulthood and the 

                                                
1 See Power, Kuh, and Morton (2013) for a review of the literature. Descriptive studies include Case and Paxson 
(2009) and Brandt, Deindl, and Hank (2012. Some notable quasi-experimental exceptions include Van der Berg, 
Lindeboom, Portrait (2006), McEniry and Palloni (2010), Brandt, Deindl, and Hank (2012), and Chang et al (2014).  
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post-retirement years.  In particular, a 1 standard deviation increase in pneumonia 

mortality was associated with a 0.16 standard deviation decrease in the cognitive 

scores. The bulk of effects were driven by men, and robust to the inclusion of a number 

of state-year controls for disease environment, educational investments, and 

socioeconomic status; state-specific time trends; and use of narrower cohort windows. 

Moreover, they are likely a lower bound given the potential for mortality selection 

(Dominique et al 2017). 

We then examine heterogeneity in impacts by using newly released genetic data 

in the HRS – specifically a polygenic score (PGS) strongly associated with cognitive 

performance (Rietveld et al 2014; Belsky and Israel, 2014; Davies et al, 2015; Ware et 

al, 2017) – to assess whether causal impacts vary with genetic predisposition. We find 

that effects were larger for individuals endowed with higher (above the median) PGS, 

while effect for individuals with low PGS were not significantly different from zero. The 

plausibility of these findings is demonstrated by null results for interactions using PGS 

for educational attainment, an attribute that is closely related to, but distinct from, 

cognition. 

 Our study makes several contributions to the literature. First, it provides rare 

causal evidence of the effects of early childhood health shocks on both adult cognition2 

and cognitive decline among elderly, specifically. The findings support Case and 

Paxson’s (2009) seminal descriptive work which linked regional disease burdens at the 

time of birth on cognition in the same HRS data. Collectively, the findings demonstrate 

the importance of early childhood factors as a driver of cognitive performance in the 

final years of life.   

 Second, our study provides some of the first evidence on causal gene-

environment interactions. Causal inference in this literature is challenged both by lack of 

exogenous variation (or selection into) exposure along with difficulties identifying 

appropriate candidate genes (which may reduce statistical power and challenges 

                                                
2 A number of studies link early life investments to short and medium-run cognitive outcomes, which are 
reviewed in Almond, Currie, and Duque (2017). Venkataramani (2012) is an exception in that it examines 
cognitive impacts of an early life health shock in adulthood. Another study that is important to highlight is, 
Adhvaryu et al (Forthcoming), who examine impacts of exposure to economic shocks early in life on a 
non-cognitive domain, adult mental health. 
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inference through multiple comparisons) (Fletcher and Conley, 2013). We address 

these issues by focusing on a well-known health policy shock to achieve exogenous 

variation in the broader disease environment and using newly available polygenic 

scores, which capture the contribution of many genes in explaining variation in the 

outcome of interest. Moreover, we conduct a highly challenging placebo check to rule 

out potential correlation between the cognitive PGS and other genetic and 

socioeconomic measures that may also modify the effects of early exposure to infant 

health shocks. 

 Third, the results inform models of human capital development and skill 

formation. One interpretation of our finding is that, as environments are improved, those 

with genetic advantages are more fully able to leverage these improvements, which 

increases inequalities over time. The empirical literature on the technology of skill 

formation has thus far has been focused on complementarity or substitutability of 

investments made in early life and thereafter on long-run outcomes – finding mixed 

results.3 Our findings suggest that complementarity may exist between early life 

investments and genetic endowments.  This has important implications for life cycle 

inequality – skill gaps that open up early in life due to differential investments may in 

fact be exacerbated by genetic predisposition.   

 The remainder of this paper is as follows. Section 2 describes the data. Section 3 

discusses the empirical strategy and Section 4 presents the core findings and 

robustness checks. Section 5 concludes. 

 

2. Data 

We use data from the U.S. Health and Retirement Study (HRS), a nationally 

representative, longitudinal panel study of individuals over the age of 50 and their 

spouses. The HRS introduces a new cohort of participants every six years and 

interviews around 20,000 participants every two years. While the HRS has collected 

data on over 10,000 respondents beginning in 1992 (and refreshed in ongoing surveys), 

                                                
3 Recent work empirical examining complementarity and substitution across investments made at 
different life stages include Adhvaryu et al (2017), Duque, Rosales-Rueda, and Sanchez (2017), and 
Johnson and Jackson (2017). Almond, Currie, and Duque (2017) summarize this literature.  
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genetic data (from saliva samples) were first collected in 2006.4  Together with 

additional collections in 2008 and 2010, the genetic subsample of HRS now has over 

12,000 subjects (this number is soon expanding to over 20,000).   

The genetic data is comprised of over 2.5 million genetic locations for each 

respondent, of the over 3 billion locations in the human genome5.  The data reports, at 

each location, whether the respondent has an A, C, G, or T nucleotide.  The 2.5 million 

locations were chosen to focus on places in the genome that differ in humans, “common 

variants”, in at least 1% of the human populations and measure single nucleotide 

polymorphisms (SNP).6  The 2.5 million locations in the HRS are then used to create a 

polygenic score for general cognition7.  Following the literature (Ware et al. 2017), this 

score is created by weighing each nucleotide by the estimated beta coefficient linking 

each location with cognitive performance from a massive Genome Wide Association 

Study (GWAS) by Davies et al. (2015)8; the HRS respondents are removed so that the 

polygenic score is predicting out-of-sample.   

Our outcome of interest are cognitive scores collected beginning in 1996.  We 

use the RAND9 summary measures (cogtot). The selected cognitive functioning 

measures include immediate and delayed word recall, the serial 7s test, counting 

backwards, naming tasks (e.g., date-naming), and vocabulary questions. In addition to 

the individual cognitive functioning measures, the HRS also derived three cognition 

indices, which summarizes the immediate and delayed word recall tasks. The mental 

status index sums scores from. The total cognition score we use sums the total recall 

                                                
4 See Domingue et al. (2017) for discussion of mortality selection in the genetic sample. 
5 These 2.5 million locations are expanded in a round of imputation to be over 21 million locations.  
http://hrsonline.isr.umich.edu/index.php?p=xxgen1&_ga=1.238849673.862524756.1380327234 
6 Recall, humans are estimated to be over 99.5% genetically identical to one another.    
7 See information about the polygenic scores available here:  
http://hrsonline.isr.umich.edu/index.php?p=shoavail&iyear=ZA&_ga=2.124445322.1863708380.15197524
31-862524756.1380327234 
8 The PGSs for general cognition were created using results from a 2015 GWAS conducted across 31 
cohorts by the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. A 
total of 53,949 participants undertook multiple, diverse cognitive tests from which a general cognitive 
function phenotype was created within each cohort by principal component analysis. Thirteen genome-
wide significant SNPs in three separate regions previously associated with neuropsychiatric phenotypes 
were reported  
9 The RAND HRS Data file is an easy to use longitudinal data set based on the HRS data. It was 
developed at RAND with funding from the National Institute on Aging and the Social Security 
Administration: https://www.rand.org/labor/aging/dataprod/hrs-data.html 
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and mental status indices (which includes counting, naming, and vocabulary tasks). In 

addition to the genetic data and cognitive data, we control for basic demographic 

variables, including age-at-survey, sex, and race.   

Data for our key exposure – state-year pneumonia mortality rates – were 

obtained from Jayachandran, Lleras-Muney, and Smith (2010), who originally collected 

this data from U.S. vital statistics (Linder and Grove, 1947; Grove and Hetzel, 1968). 

We also obtained data for a number of state-year controls. From the above sources, we 

obtained data on mortality from other sulfa treatable conditions (maternal mortality, 

scarlet fever, meningitis) as well as other control diseases (tuberculosis, malaria, and 

diarrhea). Following Bhalotra and Venkataramani (2015), we used all-age pneumonia 

mortality given that it was predominantly driven by infant rates, but was less susceptible 

to inaccurate birth and death recording.10 We obtained data on state-level physicians 

and pharmacists per capita, hospitals per capita, urbanization rates, illiteracy rates, per 

capita income, number of schools, and educational spending per capita from a variety of 

sources.11 For all control variables, we calculate state means for the period 1930-1936 

(pre sulfa drugs).  

While the HRS has over 100,000 person-year observations for cognitive 

outcomes, we make a number of restrictions to create our analysis sample.  First, we 

limit our analysis to respondents in the 2006, 2008, and 2010 waves because genetic 

information was first collected in 2006; this reduces the sample of person-years with 

cognitive measures to 37,000.  We next limit our sample to birth years 1920-1950 to 

narrow our focus on the introduction and expansion of sulfa drugs, following previous 

work; this reduces our sample to approximately 30,000.  Finally, we have some missing 

information in the historical data (pneumonia infant mortality rates between 1930-1936), 

which reduces the sample to approximately 25,000.  Table 1 displays summary 

                                                
10 In their analysis of the long-run effects of early exposure to pneumonia, Bhalotra and Venkataramani 
(2015) show that their findings are unchanged – though somewhat noisier – when using infant pneumonia 
rates rather than all-age rates. 
11 See Appendix of Bhalotra and Venkataramani (2015) for details. These include: the Bureau of 
Economic Analysis (http://www.bea.gov/regional/spi/), the database maintained by Adriana Lleras-Muney 
(http://www.econ.ucla.edu/alleras/research/data.html), and a 5% sample of the 1930 U.S. Census 
(https://usa.ipums.org/usa/). 
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statistics for this analysis sample. The average age of the sample (at the time of the 

cognitive measurement) is 74 years old.  We also note that some individuals did not 

provide DNA, so that our genetic sample is over 17,000.  We show below (Table 2) that 

our pneumonia measures are not associated with whether an individual provides DNA.  

 

3. Methods 
 To assess the causal effect of birth year exposure to pneumonia on old age 

cognition, we estimate versions of the following instrumental variable model: 

 
	𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛	(,*,+,, = 𝑎/ + 𝑎1(𝑃𝑛𝑒𝑢𝑚𝑅𝑎𝑡𝑒(,*,,) + 𝒂𝑿(,*,+,,+	𝑑+ + 𝑠(,* + 𝑔, + 𝑒(,*,,      (1) 

𝑃𝑛𝑒𝑢𝑚𝑅𝑎𝑡𝑒	(,*,+,, = 𝑏/ + 𝑏1(𝑃𝑜𝑠𝑡+)>𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑃𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎(,*A + 𝒃𝑿(,*,+,, + 	𝑑+ + 𝑠(,* + 𝑔, + 𝑢(,*,,   (2) 

 

where i indexes the individual, j the state, c the birth cohort, and t the survey wave. 

Cognition represents the total cognition score described above; PneumRate represents 

all-age pneumonia mortality in the birth state and birth year; Post is an indicator = 1 if 

the individual was born after the arrival of sulfa drugs (1937 onwards), and 

BaselinePneumonia is the pre-sulfa average mortality rate (between 1930-1936) for the 

birth state. The terms 𝑑,, 𝑠(,*, 𝑔+ represent birth cohort, birth state, and survey wave 

fixed effects.  

 Equation (1) and (2) leverage the sharp drop and convergence in pneumonia 

mortality rates with the arrival of sulfa drugs in 1937 to identify the causal effects of 

early exposure to pneumonia on cognition. That is, it assumes that states with higher 

burden of disease from pneumonia gained more from the arrival of sulfa drugs than 

states with lower burdens. This assumption is supported empirically. The sharp drop in 

pneumonia mortality nationwide starting in 1937 was demonstrated by Jayachandran, 

Lleras-Muney, and Miller (2010), and owes to the rapid uptake and diffusion of these 

agents.12 The convergence across states by initial pneumonia mortality is illustrated by 

Bhalotra and Venkataramani (2015).   

                                                
12 This was in part enabled by the fact that sulfa drugs did not require prescriptions to obtain in the first 
few years of their existence. Hence, individuals could obtain these drugs from local pharmacists. There 
were also a number of different manufacturers of these agents. In 1939, because of highly publicized 
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Put differently, this empirical setup essentially leverages a “continuous” 

difference-in-differences strategy used widely in other work.13 The exogenous variation 

we exploit is at the birth state (pre-existing disease burden) and cohort (birth relative to 

availability of sulfa drugs) level. The IV model allows us to address potential 

measurement error in pneumonia mortality. However, we also estimate reduced form 

(OLS), where the right-hand side of equation (2) is substituted into equation (1). Birth 

state and cohort fixed effects adjust for state-level time-invariant factors and secular 

trends in outcomes, respectively.  For all models, we compute heteroscedasticity robust 

standard errors correcting for clustering at the state level.  

The main threat to inference in our setup are birth state-birth year time varying 

unobserved factors. We address this in several ways. First, we include in the above 

models a rich set of baseline state attributes (interacted with post). These include 

measures of state socioeconomic status (per capita income, illiteracy, urbanization), 

which may both have affected the outcome and be correlated with the diffusion of sulfa 

drugs Jayachandran, Lleras-Muney, and Miller (2010); mortality from other sulfa and 

non-sulfa treatable disease (groups), including maternal mortality, meningitis, scarlet 

fever, malaria, tuberculosis, and diarrhea, to capture secular trends in the public health 

environment; availability of physicians, pharmacists, and hospitals per capita, to capture 

access to sulfa providers and medical care; and per capita spending on education. We 

show that the inclusion of these controls eliminates any pre-existing trends (as 

estimated in placebo specifications) in the outcome by baseline pneumonia mortality 

(Figure 1A).14  Second, we test the sensitivity of our findings to the inclusion of state-

specific linear time trends, which capture any differential pre-existing trends in the 

                                                
deaths from some formulations, sulfa drugs became more tightly regulated. See Jayachandran, Lleras-
Muney, and Miller (2008) for more details.  
13 This strategy was developed by Card (1992) in the labor economics literature and has since been used 
in a growing body of empirical work examining the consequences of large scale health interventions (e.g., 
Acemoglu and Johnson 2007, Bleakley 2007 and 2010, Cutler et al. 2010).  
14 Specifically, we estimate reduced form models using data for the 1925-1935 birth cohorts, all 
individuals who were over the age of 1 at the time of the policy. These individuals were less likely to 
benefit from sulfa drugs given the lower burden of disease from pneumonia among children above age 1. 
We estimate separate models assigning as exposed each birth year between 1931-1935 (placebo 
exposures). Without inclusion of the contextual controls, we find positive and significant estimates in 
several of the placebo tests. However, both the substantive and statistical significance of these estimates 
decline markedly with the inclusion of contextual controls.  



 9 

outcome of interest that may covary with baseline pneumonia mortality. Third, we 

additionally assess the robustness of our models to narrower sample windows, to rule 

out the influence of other processes during the study era. 

To estimate gene environment interactions, we first stratify HRS respondents by 

at the median of their cognitive PGS. We then estimate our core specifications for each 

of these samples – the high and low genetic endowment groups, respectively. Note that 

this is equivalent to estimating versions of equations (1) and (2) that fully interact all 

terms with the PGS – which we do, as well.  

A key threat to inference here is that the PGS may be correlated with other 

genetic environmental factors that may influence the cognitive impacts of early 

exposure to pneumonia. For example, individuals with high PGS may be more likely to 

live in households where the parents are similarly endowed. These households may be 

better off with regard to other genetic endowment and socioeconomic status – and, 

consequently, estimates of heterogeneity in the impact of early life shocks by cognitive 

endowments may be picking up heterogeneity along other dimensions. To address this 

possibility, we conduct a placebo check where we assess heterogeneity with respect to 

a PGS score for another (related) outcome, education. This is a challenging check, as 

education is likely correlated with cognition. The absence of similar heterogeneity along 

this margin would speak to the specificity of the main interaction of interest. 

A more general threat to inference is mortality selection – specifically, early 

exposure to pneumonia could lead to changes in cohort composition through any effect 

on life-cycle mortality risk. This would affect both the estimates on cognition as well 

estimates of interactions with genetic endowments. For the former, the bias is likely 

downwards; for the latter, the direction of bias is less clear.  

 

4. Results 

 We begin our analysis be further exploring the composition of (i.e., selection into) 

our sample.  We first test whether birth year pneumonia rates are associated with 

whether the respondent contributed DNA (saliva) for the PGS in 2006, 2008, or 2010.  

Although naïve results in Column 1 suggests such an association, the use of our 

strategy to focus on the introduction of sulfa drugs interacted with pre-drug levels of 
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pneumonia suggest no association (Column 2).  Instrumenting birth year exposure with 

the sulfa drug X baseline interaction also suggests no detectable link with the provision 

of DNA data (Column 3 and first stage in Column 4).  Similarly, we find no evidence of 

selection into the sample the IV models on key observable characteristics, including 

race, gender, and whether or not the respondent grew up in a poor household (Table 

2A). 

 Panel 2 of Table 2 asks whether birth year exposures are linked with the genetic 

composition of our sample as measured by the cognitive polygenic score.  Similar to our 

analysis of the provision on DNA, we find no statistically significant results.  We interpret 

these results to suggest that, even if the environmental exposure has shaped the 

composition of the cohort through mortality selection, this culling is not related to the 

genetic predisposition of cognitive performance.   

 Panel 3 of Table 2 attempts to further examine the possibility of culling along 

another dimension.  We examine whether adult height is associated with birth year 

pneumonia rates.  Again, we find no statistically significant links, which suggests we can 

be less concerned about mortality selection processes before 2006. 

 Table 3 presents findings of associations between birth year exposure to 

pneumonia infant mortality rates and adult outcomes.  Column 1 presents a baseline 

analysis with birth year fixed effects and shows that people born in places with higher 

pneumonia rates have lower old age cognition.  Column 2 shows that the inclusion of 

state-of-birth fixed effects reduces the association by about 80%.  Column 3 estimates 

the reduced form effects of the introduction of sulfa drugs interacted with baseline 

pneumonia rates and shows that people born in states that previously (before sulfa) had 

high pneumonia rates have higher adult cognition scores.  A 1 per 1000 higher rate at 

baseline (about 5 SD increase) increases the cognitive index by 0.2 SD.  Column 4 

presents results from the instrumental variable approach.  We find that lowering the 

birth year pneumonia rate by 1 per 1000 increases cognition by nearly 2 points (about 

40% of SD).15  The first stage F-statistic is strong (nearly 56).   

                                                
15 Appendix Table 3A shows that this result is similar if we add state-specific time trends as controls 
(Column 2), if we shorten the birth year window to include only 1930-1943 (Column 4), and if we limit the 
analysis to only those with genetic data (Column 6).   
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 Prior work on the long-run effects of early exposure to sulfa drugs (Bhalotra and 

Venkataramani, 2015) examines heterogeneity by gender and income. Table 4 explores 

possible heterogeneity in this result.  Results in Columns 1-4 suggest the impacts are 

larger for men. While we are unable to statistically distinguish the results for white vs. 

black respondents, the larger point estimates for black respondents is consistent with 

findings from prior work. 

Table 5 stratifies our main results by genetic endowment in order to examine the 

possibility of gene-environment interaction between birth year exposure to pneumonia 

and polygenic scores predicting cognition.  Comparing Columns 1 and 4, we see the 

reduced form effects of baseline (pre-sulfa) pneumonia for those born post-sulfa 

availability for individuals with “high” (above the median) polygenic scores versus those 

with low scores.  Interestingly we find impacts only for those with advantageous 

genotypes.  Similarly, comparison the IV estimates in Column 2 versus Column 5, we 

see effects for those with high polygenic scores but no effects for those with low scores. 

An interpretation of these findings is that, as environmental conditions improve, those 

individuals with genetic advantages appear more able to take advantage in terms of old 

age cognitive outcomes.16 17 

 

5. Discussion and Conclusion 
Population aging worldwide – and particularly in high-income countries – has 

prompted new interest in factors influencing well-being and function in old age. While 

the role of early life factors in driving outcomes in old age has been posited and shown 

in descriptive work, causal evidence remains thin. Moreover, sources of growing 

inequality in well-being among older adults are not well understood, either. 

Our results are among the first evidence of their kind in causally linking early life 

environments to an important determinant of welfare in old age – cognition. In addition, 

to demonstrating the long-reach of early childhood access to health technology, we also 

                                                
16 In unreported results, we find that the results are stronger if we control for maternal and paternal 
educational levels. 
17 Appendix Table 4A shows two additional robustness checks.  Columns 1 and 2 show evidence that the 
results are specific to the cognitive PGS in that we find no reduced form differences if we instead split the 
sample by the education PGS.  Columns 3 and 4 show that our results are robust to limiting the window 
of birth years to 1930-1943. 
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show that resulting improvements in the disease environment may actually increase 

inequality. Specifically, we find that individuals with better genetic endowments for life-

time cognition were more sensitive to disease environments in infancy – and that 

secular improvements in the disease environments would have been more favorable for 

this group in the long-run. These novel results on gene-environment interactions also 

inform the literature on human capital production, specifically around complementarity 

between endowments and early life health investments.  
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Table 1 

Summary Statistics 
Health and Retirement Study, Birth Years 1920-1950 

Survey Years 2006, 2008, 2010 
Variable Obs Mean Std Dev Min Max 
Cognition 25,540 21.78 5.08 0 35 
Female 25,540 0.58 0.49 0 1 
Age at Survey 25,540 74.12 6.36 56 90 
Black 25,540 0.13 0.34 0 1 
White 25,540 0.85 0.36 0 1 
State-Level Birth Year Pneumonia Infant Mortality Rate 
(1000s) 23,977 1.00 0.35 0.2 2.5 
Baseline (1930-1936) Pneumonia IMR 25,540 1.07 0.19 0.8 1.5 
Post Sulfa Indicator (Birth Year >1936) 25,540 0.40 0.49 0 1 
Birth Year 25,540 1933.90 6.49 1920 1950 
Birth State  25,540 30.48 14.06 4 56 
Baseline Rate X Post Sulfa 25,540 0.43 0.54 0 1.5 
Polygenic Score for Cognition 17,334 0.01 1.00 -3.8 3.7 
Polygenic Score for Education 17,334 0.02 1.00 -3.7 3.4 
Contextual Variables (Baseline (1930-1936), State Level):      
Complete Variable 25,540 0.42 0.41 0 1.0 
Maternal Mortality Rate 25,540 2.67 2.69 0 8.2 
Diarrhea Rate 25,540 3.29 3.65 0 15.5 
Malaria Rate 25,540 49.83 90.72 0 423.1 
Tuberculosis Rate 25,540 0.26 0.27 0 0.9 
Scarlet Fever Rate 25,540 0.00 0.00 0 0.0 
Meningitis Rate 25,540 0.00 0.00 0 0.0 
Physicians Per 1,000 25,540 0.52 0.54 0 1.7 
Pharmacists per capita 25,540 0.33 0.33 0 1.0 
Hospitals per capita 25,540 0.02 0.02 0 0.1 
Per Capita Income 25,540 192.67 205.22 0 681.6 
Urbanization Rate 25,540 0.25 0.27 0 0.9 
Illiteracy Rate 25,540 0.02 0.03 0 0.1 
Number of Schools per capita 25,540 0.95 1.12 0 6.9 
Missing Contextual Information 25,540 0.20 0.40 0 1 
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Table 2 
Birth Year Pneumonia Exposure and Sample Composition 

Associations with Genetic Information Availability, Genetic Scores and Adult Height 

Outcome 
Has DNA 

Info 
Has DNA 

Info 
Has DNA 

Info 
Has DNA 

Info 
Fixed Effects BY, S BY, S BY, S BY, S 
Specification OLS RF IV First Stage 
Birth Year Pneumonia Rate X 1000 -0.085**  -0.036   
  (0.034)  (0.133)   
Pre Pneumonia Rate X Post Sulfa interaction  0.020  -0.543*** 
   (0.073)  (0.073) 
Age at Survey 0.009*** 0.009*** 0.009*** 0.000 
  (0.001) (0.001) (0.001) (0.000) 
Black -0.030 -0.029 -0.029 -0.004 
  (0.026) (0.026) (0.025) (0.004) 
Observations 23,977 23,977 23,977 23,977 
R-squared 0.058 0.058 0.013 0.880 
Number of birth_state   47 47 
F     55.96   

Outcome 
Cognitive 

PGS 
Cognitive 

PGS 
Cognitive 

PGS 
Cognitive 

PGS 
Fixed Effects BY, S BY, S BY, S BY, S 
Birth Year Pneumonia Rate X 1000 -0.005  -0.149   
  (0.131)  (0.277)   
Pre Pneumonia Rate X Post Sulfa interaction  0.078  -0.524*** 
   (0.149)  (0.078) 
Age at Survey -0.001 -0.001 -0.001 0.000 
  (0.002) (0.002) (0.002) (0.000) 
Black 0.148*** 0.148*** 0.148*** -0.004 
  (0.051) (0.051) (0.050) (0.005) 
Observations 16,311 16,311 16,311 16,311 
R-squared 0.024 0.024 0.010 0.873 
F     45.63   
Outcome Height Height Height Height 
Fixed Effects BY, S BY, S BY, S BY, S 
Birth Year Pneumonia Rate X 1000 0.011  0.005   
  (0.019)  (0.053)   
Pre Pneumonia Rate X Post Sulfa interaction  -0.003  -0.542*** 
   (0.029)  (0.072) 
Age at Survey 0.000 0.000 0.000 0.000 
  (0.000) (0.000) (0.000) (0.000) 
Black 0.003 0.003 0.003 -0.004 
  (0.013) (0.013) (0.012) (0.004) 
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Observations 23,967 23,967 23,967 23,967 
R-squared 0.555 0.555 0.551 0.880 
F     56.10   

Notes:  BY: Birth Year Fixed Effects, S: State of Birth Fixed Effects, RF: Reduced Form 
Specification.  Additional Controls:  Constant, Female Indicator,  
Robust standard errors clustered at the state-of-birth in parentheses.  *** p<0.01, ** 
p<0.05, * p<0.1  
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Table 3 
Association between Birth Year Pneumonia IMR and Old Age Cognition 

Outcome Cognition Cognition Cognition Cognition Cognition 
Fixed Effects B B, S FE B, S FE B, S FE B, S FE 
Specification OLS OLS RF IV First Stage 
            
Birth Year Pneumonia Rate X 1000 -1.546*** -0.217  -1.889**   
  (0.322) (0.307)  (0.800)   
Pre Pneumonia Rate X Post Sulfa interaction   1.025**  -0.543*** 
    (0.471)  (0.073) 
Female 0.777*** 0.790*** 0.789*** 0.789*** 0.000 
  (0.090) (0.089) (0.089) (0.088) (0.002) 
Age at Survey -0.286*** -0.287*** -0.287*** -0.287*** 0.000 
  (0.021) (0.021) (0.021) (0.021) (0.000) 
Black -3.583*** -3.124*** -3.124*** -3.131*** -0.004 
  (0.243) (0.248) (0.247) (0.246) (0.004) 
Birth Year Post Sulfa (1937+)   -6.414*** -7.484* -0.365 
    (1.699) (3.894) (0.277) 
Constant 41.183*** 37.924*** 43.605***  1.237*** 
  (3.404) (2.054) (1.486)  (0.034) 
        
Observations 23,977 23,977 23,977 23,977 23,977 
R-squared 0.148 0.164 0.164 0.125 0.880 
Number of birth_state    47 47 
F       55.96   

Notes:  B: Birth Year Fixed Effects, S: State of Birth Fixed Effects, RF: Reduced Form 
Specification.  Additional Controls:  Contextual variables  
Robust standard errors clustered at the state-of-birth in parentheses.  *** p<0.01, ** 
p<0.05, * p<0.1 
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Table 4 
Association between Birth Year Pneumonia IMR and Old Age Cognition 

Heterogeneity by Sex and Race 
Outcome Cognition Cognition Cognition Cognition Cognition Cognition Cognition Cognition 
Sample Male Male Female Female White White Black Black 
Fixed Effects B, S FE B, S FE B, S FE B, S FE B, S FE B, S FE B, S FE B, S FE 
Specification RF IV RF IV RF IV RF IV 
                  
Birth Year Pneumonia Rate X 1000  -2.868***  -0.994  -0.557  -4.688 
   (1.096)  (1.129)  (1.016)  (4.213) 
Pre Pneumonia Rate X Post Sulfa 
interaction 1.475**  0.563  0.299  2.906   
  (0.611)  (0.663)  (0.573)  (2.596)   
Female     0.837*** 0.837*** 0.692** 0.673*** 
      (0.092) (0.091) (0.263) (0.258) 
Age at Survey -0.300*** -0.299*** -0.278*** -0.278*** -0.301*** -0.301*** -0.206*** -0.204*** 
  (0.027) (0.027) (0.023) (0.023) (0.022) (0.022) (0.047) (0.046) 
Black -2.892*** -2.896*** -3.261*** -3.266***      
  (0.324) (0.316) (0.239) (0.238)      

Birth Year Post Sulfa (1937+) -0.318 6.180 
-

10.503*** 
-

16.539*** -6.766*** -7.903* 2.179 2.368 
  (2.348) (4.915) (2.192) (4.773) (2.160) (4.439) (11.409) (28.055) 
Constant 44.380***  43.846***  44.681***  34.259***   
  (1.910)  (1.652)  (1.574)  (3.513)   
           
Observations 10,229 10,229 13,748 13,748 20,339 20,339 3,131 3,130 
R-squared 0.153 0.108 0.175 0.134 0.117 0.105 0.144 0.086 
Number of birth_state  47  47  47  31 
F   50.55   58.49   46.74   71.88 

Notes:  B: Birth Year Fixed Effects, S: State of Birth Fixed Effects, RF: Reduced Form 
Specification.  Additional Controls:  Contextual Variables  
Robust standard errors clustered at the state-of-birth in parentheses.  *** p<0.01, ** 
p<0.05, * p<0.1 
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Table 5 
Genetic Heterogeneity of the Impacts of Birth Year Pneumonia IMR on Old Age 

Cognition 
Outcome Cognition Cognition Cognition Cognition Cognition Cognition 

Sample 
High 
PGS 

High 
PGS 

High 
PGS 

Low  
PGS 

Low  
PGS 

Low  
PGS 

Fixed Effects B, S FE B, S FE B, S FE B, S FE B, S FE B, S FE 

Specification RF IV 
First 

Stage RF IV  
First  

Stage 
              
Birth Year Pneumonia Rate X 1000  -4.231***   0.378   
   (1.452)   (1.677)   
Pre Pneumonia Rate X Post Sulfa interaction 2.293***  -0.542*** -0.188  -0.496*** 
  (0.795)  (0.086) (0.835)  (0.072) 
female 0.992*** 1.005*** 0.003 0.903*** 0.903*** -0.000 
  (0.129) (0.130) (0.003) (0.191) (0.188) (0.004) 
Age at Survey -0.330*** -0.330*** 0.000 -0.333*** -0.333*** 0.000 
  (0.024) (0.024) (0.000) (0.026) (0.025) (0.000) 
black -3.264*** -3.264*** -0.000 -4.058*** -4.055*** -0.008 
  (0.269) (0.278) (0.008) (0.321) (0.318) (0.007) 
Birth Year Post Sulfa (1937+) -5.369 -6.075 -0.349 -5.966 -10.625 -0.434 
  (3.303) (7.434) (0.315) (4.568) (9.992) (0.288) 
Constant 46.802***  1.225*** 47.164***  1.240*** 
  (1.678)  (0.041) (1.770)  (0.038) 
         
Observations 8,271 8,271 8,271 8,040 8,040 8,040 
R-squared 0.197 0.137 0.871 0.197 0.155 0.878 
Number of birth_state  47 47  47 47 
F   39.70     47.94   

Notes:  B: Birth Year Fixed Effects, S: State of Birth Fixed Effects, RF: Reduced Form 
Specification.  Low PGS:  Respondents with Cognitive Polygenic Scores<0.  High PGS: 
Respondents with Cognitive Polygenic Scores>0.  Additional Controls:  Contextual 
Variables  
Robust standard errors clustered at the state-of-birth in parentheses.  *** p<0.01, ** 
p<0.05, * p<0.1 
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Appendix 
 

Figure 1A 
Placebo Specifications and Pre-Trends 

 
 
Notes:  B: Birth Year Fixed Effects, S: State of Birth Fixed Effects, Controls: Contextual 
Variables. Estimates are from RF models for the 1925-1935 birth cohorts. Each point 
estimate is for a regression assigning Post to be a placebo treatment year (denoted on 
the x-axis). 95% CI computed based on standard errors clustered at the state-of-birth in 
parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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      Table 1A 
Summary Statistics for Genetic Subsample 

Variable Obs Mean Std Dev Min Max 
Cognition 17,334 22.10 4.87 0 35 
Female 17,334 0.57 0.49 0 1 
Age at Survey 17,334 74.27 6.26 56 90 
Black 17,334 0.13 0.33 0 1 
White 17,334 0.87 0.34 0 1 
State-Level Birth Year Pneumonia Infant Mortality Rate 
(1000s) 16,311 1.00 0.34 0.2 2.5 
Baseline (1930-1936) Pneumonia IMR 17,334 1.06 0.18 0.8 1.5 
Post Sulfa Indicator (Birth Year >1936) 17,334 0.39 0.49 0 1 
Birth Year 17,334 1933.78 6.33 1920 1950 
Birth State  17,334 30.59 13.94 4 56 
Baseline Rate X Post Sulfa 17,334 0.42 0.53 0 1.5 
Polygenic Score for Cognition 17,334 0.01 1.00 -3.8 3.7 
Polygenic Score for Education 17,334 0.02 1.00 -3.7 3.4 
Complete Variable 17,334 0.41 0.41 0 1.0 
Maternal Mortality Rate 17,334 2.62 2.69 0 8.2 
Diarrhea Rate 17,334 3.19 3.58 0 15.5 
Malaria Rate 17,334 47.63 88.33 0 423.1 
Tuberculosis Rate 17,334 0.26 0.27 0 0.9 
Scarlet Fever Rate 17,334 0.00 0.00 0 0.0 
Meningitis Rate 17,334 0.00 0.00 0 0.0 
Physicians Per 1,000 17,334 0.51 0.54 0 1.7 
Pharmacists per capita 17,334 0.32 0.33 0 1.0 
Hospitals per capita 17,334 0.02 0.02 0 0.1 
Per Capita Income 17,334 187.91 202.89 0 681.6 
Urbanization Rate 17,334 0.25 0.26 0 0.9 
Illiteracy Rate 17,334 0.02 0.03 0 0.1 
Number of Schools per capita 17,334 0.96 1.16 0 6.9 
Missing Contextual Information 17,334 0.19 0.39 0 1 
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Table 2A 
Selection into the HRS Sample on Observables 

 
Notes:  All models include birth state, birth year, and survey year FE. Birth Year 
Pneumonia Rate instrumented by baseline pneumonia mortality X post. Additional 
Controls:  Contextual Variables. Robust standard errors clustered at the state-of-birth in 
parentheses.  *** p<0.01, ** p<0.05, * p<0.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1) (2) (3) (4)
P(Sample in 2010) P(White) P(Female) P(Poor Child)

Birth Year Pneumonia Rate X 1000 -0.036 0.082 -0.110 -0.147
(0.133) (0.099) (0.118) (0.122)

Observations 23,977 23,977 23,977 23,977
R-squared 0.013 0.245 0.011 0.033
F 55.96 55.76 55.76 55.76
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Table 3A 
Robustness of Associations between Birth Year Pneumonia IMR and Old Age Cognition 

Adding State-Specific Time Trends and Sample Selection Considerations 
Outcome Cognition Cognition Cognition Cognition Cognition Cognition Cognition 

Fixed Effects 
B, S, 

Trends 
B, S, 

Trends 
B, S, 

Trends B, S FE B, S FE B, S FE B, S FE 

Sample Full Full Full 
Short 

Window 
Short 

Window Genetic Genetic 
Specification RF IV First Stage IV First Stage IV First Stage 
                
Birth Year Pneumonia Rate X 1000  -1.544*  -1.508  -2.024*   
   (0.926)  (1.102)  (1.033)   
Pre Pneumonia Rate X Post Sulfa 
interaction 0.828  -0.536***  -0.449***  -0.524*** 
  (0.532)  (0.071)  (0.062)  (0.078) 
Female 0.787*** 0.787*** 0.000 0.924*** -0.002 0.934*** 0.002 
  (0.091) (0.090) (0.002) (0.093) (0.002) (0.101) (0.003) 
Age at Survey -0.287*** -0.287*** 0.000 -0.260*** -0.000 -0.331*** 0.000 
  (0.021) (0.021) (0.000) (0.022) (0.000) (0.020) (0.000) 
Black -3.160*** -3.165*** -0.003 -3.187*** -0.000 -3.674*** -0.004 
  (0.242) (0.241) (0.004) (0.270) (0.003) (0.268) (0.005) 
Birth Year Post Sulfa (1937+)  -6.927*** -0.293 -5.857 0.032 -7.054 -0.380 
   (1.718) (0.274) (3.892) (0.524) (5.157) (0.292) 
Constant   1.332***  1.261***  1.235*** 
    (0.037)  (0.031)  (0.036) 
          
Observations 23,977 23,977 23,977 17,607 17,607 16,311 16,311 
R-squared 0.167 0.129 0.881 0.079 0.836 0.143 0.873 
Number of birth_state  47 47 47 47 47 47 
F   57.72   52.45   45.63   

Notes:  B: Birth Year Fixed Effects, S: State of Birth Fixed Effects, RF: Reduced Form 
Specification. Short Window:  Birth Years between 1930-1943. Additional Controls:  
Contextual Variables  
Robust standard errors clustered at the state-of-birth in parentheses.  *** p<0.01, ** 
p<0.05, * p<0.1 
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Table 4A 
Robustness of Genetic Heterogeneity Associations 

Outcome Cognition Cognition Cognition Cognition 

Sample 
High Education 

PGS 
Low Education 

PGS High PGS Low PGS 
    Short Window Short Window 
Fixed Effects B, S FE B, S FE B, S FE B, S FE 
Specification RF RF RF RF 
          
Pre Pneumonia Rate X Post Sulfa interaction 1.206 0.463 2.677*** -0.598 
  (0.853) (0.728) (0.909) (1.208) 
Female 1.030*** 0.906*** 1.032*** 1.111*** 
  (0.151) (0.179) (0.157) (0.209) 
Age at Survey -0.340*** -0.322*** -0.291*** -0.295*** 
  (0.020) (0.033) (0.030) (0.028) 
Black -3.525*** -3.884*** -3.402*** -4.064*** 
  (0.300) (0.320) (0.307) (0.335) 
Birth Year Post Sulfa (1937+) -7.274*** -3.668 1.966 -8.339 
  (2.569) (4.357) (9.846) (9.215) 
Constant 47.931*** 45.894*** 43.903*** 44.258*** 
  (1.451) (2.316) (2.124) (1.919) 
       
Observations 8,367 7,944 5,975 6,064 
R-squared 0.196 0.202 0.185 0.183 
Number of birth_state      
F         

Notes:  B: Birth Year Fixed Effects, S: State of Birth Fixed Effects, RF: Reduced Form 
Specification.  Low PGS:  Respondents with Cognitive Polygenic Scores<0.  High PGS: 
Respondents with Cognitive Polygenic Scores>0.  Low Education PGS:  Respondents 
with Education Polygenic Scores<0.  High Education PGS: Respondents with Education 
Polygenic Scores>0.  Short Window:  Birth Years between 1930-1943. Additional 
Controls:  Contextual Variables  
Robust standard errors clustered at the state-of-birth in parentheses.  *** p<0.01, ** 
p<0.05, * p<0.1 

 
 
 


