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I. Introduction	

	

For	millennia,	markets	have	played	a	key	role	in	providing	individuals	and	businesses	with	the	

opportunity	to	gain	from	trade.	More	often	than	not,	markets	require	structure	and	a	variety	of	

intuitional	support	to	operate	efficiently.	For	example,	auctions	have	become	a	commonly	used	

mechanism	to	generate	gains	from	trade	when	price	discovery	is	essential.	Research	in	the	area	

now	commonly	referred	to	as	Market	Design,	going	back	to	Vickery	(1961),	demonstrated	that	

it	is	critical	to	design	auctions,	and	market	institutions	more	broadly,	in	order	to	achieve	

efficient	outcomes	(see,	e.g.,	Milgrom	(2017)	and	Roth	(2015)).		

	

Any	market	designer	needs	to	understand	some	fundamental	details	of	the	transactions	that	

are	expected	to	be	consummated	in	order	to	design	the	most	effective	and	efficient	market	

structure	to	support	these	transactions.	For	example,	the	National	Resident	Matching	Program,	

which	matches	doctors	to	hospital	residencies,	was	originally	designed	in	an	era	when	nearly	all	

doctors	were	men	and	wives	followed	them	to	their	residencies.	It	needed	to	be	redesigned	in	

the	1990s	to	accommodate	the	needs	of	couples,	when	men	and	women	doctors	could	no	

longer	be	assigned	jobs	in	different	cities.	Even	something	as	mundane	as	the	sale	of	a	farm	

when	a	farmer	dies	requires	knowledge	of	the	structure	and	decisions	about	whether	to	sell	the	

whole	farm	as	a	unit,	or	to	separate	the	house	for	sale	as	a	weekend	retreat	while	selling	the	

land	to	neighboring	farmers,	or	selling	the	forest	separately	to	a	wildlife	preservation	fund.		
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In	complex	environments,	it	can	be	difficult	to	understand	the	underlying	characteristics	of	

transactions,	and	it	is	challenging	to	learn	enough	about	them	in	order	to	design	the	best	

institutions	to	efficiently	generate	gains	from	trade.	For	example,	consider	the	recent	growth	of	

online	advertising	exchanges	that	match	advertisers	with	online	ads.	Many	ads	are	allocated	to	

advertisers	using	real-time	auctions.	But	how	should	publishers	design	these	auctions	in	order	

to	make	the	best	use	of	their	advertising	space,	and	how	can	they	maximize	the	returns	to	their	

activities?	Based	on	the	early	theoretical	auction	design	work	of	Myerson	(1981),	Ostrovsky	and	

Schwartz	(2017)	have	shown	that	a	little	bit	of	market	design	in	the	form	of	setting	better	

reserve	prices	can	have	a	dramatic	impact	on	the	profits	an	online	ad	platform	can	earn.			

	

But	how	can	market	designers	learn	the	characteristics	necessary	to	set	optimal,	or	at	least	

better,	reserve	prices?	Or,	more	generally,	how	can	market	designers	better	learn	the	

environment	of	their	markets?	In	response	to	these	challenges,	Artificial	Intelligence	(AI)	and	

Machine	Learning	are	emerging	as	important	tools	for	market	design.	Retailers	and	

marketplaces	such	as	eBay,	TaoBao,	Amazon,	Uber	and	many	others	are	mining	their	vast	

amounts	of	data	to	identify	patterns	that	help	them	create	better	experiences	for	their	

customers	and	increase	the	efficiency	of	their	markets.	By	having	better	prediction	tools,	these	

and	other	companies	can	predict	and	better	manage	sophisticated	and	dynamic	market	

environments.	The	improved	forecasting	that	AI	and	machine	learning	algorithms	provide	help	

marketplaces	and	retailers	better	anticipate	consumer	demand	and	producer	supply	as	well	as	

help	target	products	and	activities	to	finer	segmented	markets.			

	

Turning	back	to	markets	for	online	advertising,	two-sided	markets	such	as	Google,	which	match	

advertisers	with	consumers,	are	not	only	using	AI	to	set	reserve	prices	and	segment	consumers	

into	finer	categories	for	ad	targeting,	but	they	also	develop	AI-based	tools	to	help	advertisers	

bid	on	ads.	In	April	2017	Google	introduced	“Smart	Bidding,”	a	product	based	on	AI	and	

machine	learning	that	helps	advertisers	bid	automatically	on	ads	based	on	ad	conversions	so	

they	can	better	determine	their	optimal	bids.	Google	explained	that	the	algorithms	use	vast	
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amounts	of	data	and	continually	refine	models	of	users'	conversion	to	better	spend	an	

advertiser’s	dollars	to	where	they	bring	in	the	highest	conversion.		

	

Another	important	application	of	AI’s	strength	in	improving	forecasting	to	help	markets	operate	

more	efficiently	is	in	electricity	markets.	To	operate	efficiently,	electricity	market	makers	such	

as	California’s	Independent	System	Operator	must	engage	in	demand	and	supply	forecasting.	

An	inaccurate	forecast	in	the	power	grid	can	dramatically	affect	market	outcomes	causing	high	

variance	in	prices,	or	worse,	blackouts.	By	better	predicting	demand	and	supply,	market	makers	

can	better	allocate	power	generation	to	the	most	efficient	power	sources	and	maintain	a	more	

stable	market.		

	

As	the	examples	above	demonstrate,	the	applications	of	AI	algorithms	to	market	design	are	

already	widespread	and	diverse.	Given	the	infancy	of	the	technology,	it	is	a	safe	bet	that	AI	will	

play	a	growing	role	in	the	design	and	implementation	of	markets	over	a	wide	range	of	

applications.	In	what	follows,	we	describe	several	less	obvious	ways	in	which	AI	has	played	a	

key	role	in	the	operation	of	markets.		

	

	

II. Machine	Learning	and	the	Incentive	Auction	

	

In	the	first	part	of	the	20th	century,	the	most	important	infrastructure	projects	for	the	

United	States	related	to	transportation	and	energy	infrastructure.	By	the	early	21st	century,	

however,	it	was	not	just	people	and	goods	that	needed	to	be	transported	in	high	volumes,	but	

also	information.	The	emergence	of	mobile	devices,	WiFi	networks,	video	on	demand,	the	

Internet	of	Things,	services	supplied	through	the	cloud,	and	much	more	has	already	created	the	

need	for	major	investments	in	the	communication	network,	and	with	5G	technologies	just	

around	the	corner,	more	is	coming.		

Wireless	communications,	however,	depend	on	infrastructure	and	other	resources.	The	

wireless	communication	rate	depends	on	the	channel	capacity,	which	in	turn	depends	jointly	on	
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the	communication	technology	used	and	the	amount	of	radio	spectrum	bandwidth	devoted	to	

it.	To	encourage	growth	in	bandwidth	and	the	rapid	develop	of	new	uses,	the	Obama	White	

House	in	2010	issued	its	National	Broadband	Plan.	That	plan	set	a	goal	of	freeing	a	huge	

amount	of	bandwidth	from	older,	less	productive	uses	to	be	used	instead	as	part	of	the	modern	

data	highway	system.		

In	2016-17,	the	US	Federal	Communications	Commission	(FCC)	designed	and	ran	an	auction	

market	to	do	part	of	that	job.	The	radio	spectrum	licenses	that	it	sold	in	that	auction	raised	

about	$20	billion	in	gross	revenue.	As	part	of	the	process	of	making	room	for	those	new	

licenses,	the	FCC	purchased	TV	broadcast	rights	for	about	$10	billion,	and	incurred	nearly	$3	

billion	in	costs	to	move	other	broadcasters	to	new	TV	channels.	Some	84MHz	of	spectrum	was	

made	available	in	total,	including	70MHz	for	wireless	broadband	and	14MHz	for	unlicensed	

uses.	This	section	describes	the	processes	that	were	used,	and	the	role	of	AI	and	machine	

learning	to	improve	the	underlying	algorithms	that	supported	this	market.		

Reallocating	spectrum	from	one	use	to	another	is,	in	general,	neither	easy	nor	

straightforward,	in	either	the	planning	or	the	implementation	(Leyton-Brown,	Milgrom	and	

Segal	(2017)).	Planning	such	a	change	can	involve	surprisingly	hard	computational	challenges,	

and	the	implementation	requires	high	levels	of	coordination.	In	particular,	the	reallocation	of	a	

portion	of	the	spectrum	band	that	had	been	used	for	UHF	broadcast	television	required	

deciding	how	many	channels	to	clear,	which	stations	would	cease	broadcasting	(to	make	room	

for	the	new	uses),	what	TV	channels	would	be	assigned	to	the	remaining	stations	that	

continued	to	broadcast,	how	to	time	the	changes	to	avoid	interference	during	the	transition	

and	to	assure	that	the	TV	tower	teams,	which	would	replace	the	old	broadcast	equipment,	had	

sufficient	capacity,	and	so	on.	Several	of	the	computations	involved	are,	in	principle,	NP-hard,	

making	this	a	particularly	complex	market	design	problem.	One	of	the	most	critical	algorithms	

used	for	this	process	–	the	“feasibility	checker”	–	was	developed	with	the	aid	of	machine	

learning	methods.		

But	why	reallocate	and	reassign	TV	stations	at	all?	Broadcast	television	changed	enormously	

in	the	late	20th	century.	In	the	early	days	of	television,	all	viewing	was	of	over-the-air	broadcasts	

using	an	analogue	technology.	Over	the	decades	that	followed,	cable	and	satellite	services	
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expanded	so	much	that,	by	2010,	more	than	90%	of	the	US	population	was	reached	by	these	

alternative	services.	Standard	definition	TV	signals	were	replaced	by	high-definition	and	

eventually	4K	signals.	Digital	television	and	tuners	reduced	the	importance	of	channel	

assignments,	so	that	the	channel	used	by	consumers/viewers	did	not	need	to	match	the	

channel	used	by	the	broadcaster.	Digital	encoding	made	more	efficient	use	of	the	band	and	it	

became	possible	to	use	multiplexing,	so	that	was	once	a	single	standard	definition	broadcast	

channel	could	carry	multiple	high-definition	broadcasts.	Marginal	spectrum	had	fallen	in	value	

compared	to	the	alternative	uses.	

Still,	the	reallocation	from	television	broadcasting	would	be	daunting	and	beyond	what	an	

ordinary	market	mechanism	could	likely	achieve.	The	signal	from	each	of	thousands	of	TV	

broadcast	towers	across	the	United	States	can	interfere	with	potential	uses	for	about	200	miles	

in	every	direction,	so	all	of	the	broadcasts	in	any	frequency	needed	to	be	cleared	to	make	the	

frequencies	available	for	new	uses.	Not	only	would	it	be	necessary	to	coordinate	among	

different	areas	of	the	United	States,	but	coordination	with	Canada	and	Mexico	would	improve	

the	allocation,	too:	most	of	the	population	of	Canada	lives,	and	most	of	its	TV	stations	operate,	

within	200	miles	of	the	US	border.	Because	a	frequency	is	not	usable	until	virtually	all	of	the	

relevant	broadcasters	have	ceased	operation,	efficiency	would	demand	that	these	changes	

would	need	to	be	coordinated	in	time,	too:	they	should	be	roughly	simultaneous.	In	addition,	

there	needed	to	be	coordination	across	frequencies.	The	reason	is	that	we	need	to	know	in	

advance	which	channels	will	be	cleared	before	the	frequencies	can	be	efficiently	divided	

between	uplink	uses	and	downlink	uses.			

Among	the	many	issues	to	be	resolved,	one	would	be	how	to	determine	which	stations	

would	continue	to	broadcast	after	the	transition.	If	the	goal	were	efficiency,	then	the	problem	

can	be	formulated	as	maximizing	the	total	value	of	the	TV	stations	that	continue	to	broadcast	

after	the	auction.	Let	𝑁	be	the	set	of	all	currently	broadcasting	TV	stations	and	let	𝑆 ⊆ 𝑁	be	a	

subset	of	those	TV	stations.	Let	𝒞	be	the	set	of	available	channels	to	which	to	assign	stations	

after	the	auction,	and	let	∅	denote	the	null	assignment	for	a	station	that	does	not	continue	to	

broadcast.	A	channel	assignment	is	a	mapping	𝐴:𝑁 → 𝒞 ∪ {∅}.	The	constraints	on	the	channel	

assignments	are	mostly	ones	of	that	rule	out	interference	between	pairs	of	TV	station,	taking	
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the	form:	𝐴 𝑛- = 𝑐- ⇒ 𝐴 𝑛1 ≠ 𝑐1	(for	some	 𝑐-, 𝑐1 ∈ 𝒞1).	Each	such	constraint	is	described	

by	a	four-tuple:	 𝑛-, 𝑐-, 𝑛1, 𝑐1 .	There	were	more	than	a	million	such	constraints	in	the	FCC’s	

problem.	A	channel	assignment	is	feasible	if	it	satisfies	all	the	interference	constraints;	let	𝒜	

denote	the	feasible	set	of	assignments.	A	set	of	stations	𝑆6	can	be	feasibly	assigned	to	continue	

broadcasting,	which	we	denote	by	𝑆6 ∈ ℱ(𝒞),	if	there	exists	some	feasible	channel	assignment	

𝐴 ∈ 𝒜	such	that	∅ ∉ 𝐴(𝑆6).		

Most	of	the	interference	constraints	took	a	special	form.	Those	constraints	assert	that	no	

two	stations	which	are	geographic	neighbors	can	be	assigned	to	the	same	channel.	Let	us	call	

such	stations	“linked”	and	denote	the	relationship	by	 𝑛-, 𝑛1 ∈ 𝐿.	For	such	a	pair	of	stations,	

the	constraint	can	be	written	as:		𝐴 𝑛- = 𝐴 𝑛1 ⇒ 𝐴(𝑛-) = ∅.	These	are	the	co-channel	

interference	constraints.	One	can	think	of	(𝑁, 𝐿)	as	defining	a	graph	with	nodes	𝑁	and	arcs	𝐿.	If	

the	co-channel	constraints	were	the	only	ones,	then	determining	whether	𝑆6 ∈ ℱ	would	

amount	to	deciding	whether	there	exists	a	way	to	assign	channels	in	𝒞	to	the	stations	in	𝑁	so	

that	no	two	linked	nodes	are	on	the	same	channel.		

Figure	1	below	shows	the	graph	of	the	co-channel	interference	constraints	for	the	United	

States	and	Canada.	The	constraint	graph	is	most	dense	in	the	eastern	half	of	the	United	States	

and	along	the	Pacific	Coast.		
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Figure	1:	Co-channel	interference	Graph	for	Spectrum	Reallocation	

	

In	the	special	case	of	co-channel	constraints,	the	problem	of	checking	the	feasibility	of	a	set	

of	stations	is	a	standard	graph-coloring	problem.	The	problem	is	to	decide	whether	it	is	possible	

to	assign	a	color	(channel)	to	each	node	(station)	in	the	graph	so	that	no	two	linked	nodes	are	

given	the	same	color.	Graph-coloring	is	in	the	class	of	NP-complete	problems,	for	which	there	is	

no	known	algorithm	that	is	guaranteed	to	be	fast,	and	for	which	it	is	commonly	hypothesized1	

that	worst-case	solution	time	grows	exponentially	in	the	problem	size.	Since	the	general	station	

assignment	problem	includes	the	graph	coloring	problem,	it,	too,	is	NP-complete,	and	can	

become	intractable	at	scales	such	as	that	of	the	FCC’s	problem.		

The	problem	that	the	FCC	would	ideally	like	to	solve	using	an	auction	is	to	maximize	the	

value	of	the	stations	that	remain	on-air	to	broadcast,	given	the	reduced	set	of	channels	𝒞.	If	the	

value	of	station	𝑗	is	𝑣?,	the	problem	can	be	formulated	as	follows:	

																																																								
1	The	standard	computer	science	hypothesis	that	𝑃 ≠ 𝑁𝑃	implies	that	no	fast	algorithm	exists	for	NP-complete	
problems.	
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max
D∈ℱ(𝒞)

𝑣?
?∈D

	

This	problem	is	very	hard.	Indeed,	as	we	have	just	argued,	even	checking	the	condition	𝑆 ∈

ℱ(𝒞)	is	NP-complete,	and	solving	exactly	the	related	optimization	is	even	harder	in	practice.	

Computational	experiments	suggest	that,	with	weeks	of	computation,	approximate	

optimization	is	possible,	but	with	an	optimization	shortfall	that	can	be	a	few	percent.		

For	a	TV	station	owner,	it	would	be	daunting	to	formulate	a	bid	in	an	auction	in	which	

even	the	auctioneer,	with	all	the	bids	in	hand,	would	find	it	challenging	to	determine	the	

winners.	Faced	with	such	a	problem,	some	station	owners	might	choose	not	to	participate.	That	

concern	led	the	FCC	staff	to	prefer	a	strategy-proof	design,	in	which	the	optimal	bid	for	the	

owner	of	a	single	station	is	relatively	simple,	at	least	in	concept:	compute	your	station’s	value	

and	bid	that	amount.	As	is	well	known,	there	is	a	unique	strategy-proof	auction	that	optimizes	

the	allocation	and	pays	zero	to	the	losers:	the	Vickrey	auction.	According	to	the	Vickrey	rules,	if	

the	auctioneer	purchases	the	broadcast	rights	from	station	𝑗,	it	must	pay	the	owner	this	price:			

𝑝F = max
D∈ℱ(𝒞)

𝑣?
?∈D

− max
D∈ℱ(𝒞)
F∉D

𝑣?
?∈D

.	

For	a	winning	station	𝑖,	the	Vickrey	price	𝑝F 	will	be	larger	than	the	station	value.	With	

roughly	2000	stations	to	include	in	the	optimization,	a	1%	error	in	either	of	the	two	

maximizations	would	result	in	a	pricing	error	for	𝑝F 	equal	to	about	2000%	of	the	value	of	an	

average	station.	Such	huge	potential	pricing	errors	would	likely	raise	hackles	among	some	of	

the	potential	bidders.		

One	way	to	put	the	problem	of	the	Vickrey	auction	into	sharp	relief	is	to	imagine	the	letter	

that	the	FCC	might	write	to	broadcasters	to	encourage	their	participation:		
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Such	a	letter	would	leave	many	stations	owners	uncomfortable	and	unsure	about	whether	to	

participate.	The	FCC	decided	to	adopt	a	different	design.		

What	we	describe	here	is	a	simplified	version	of	the	design,	in	which	the	broadcasters’	only	

choices	are	whether	to	sell	their	rights	or	to	reject	the	FCC’s	offer	and	continue	to	broadcast.	

Each	individual	broadcaster	was	comforted	by	the	assurance	that	it	could	bid	this	way,	even	if	it	

had	additional	options,	too.	2		

In	the	simplified	auction,	each	bidder	𝑖	was	quoted	a	price	𝑝F(𝑡)	at	each	round	𝑡	of	the	

auction	that	decreased	from	round-to-round.	In	each	round,	the	bidder	could	“exit,”	rejecting	

the	current	price	and	keeping	its	broadcast	rights,	or	it	could	accept	the	current	price.	After	a	

round	𝑡	of	bidding,	stations	were	processed	one	at	a	time.	When	station	𝑖	was	processed,	the	

auction	software	would	use	its	feasibility	checker	to	attempt	to	determine	whether	it	could	

feasibly	assign	station	𝑖	to	continue	broadcasting,	given	the	other	stations	that	had	already	

exited	and	to	which	a	channel	must	be	assigned.	This	is	the	generalized	graph-coloring	problem,	

mentioned	above.	If	the	software	timed	out,	or	if	it	determined	that	it	is	impossible	to	assign	

the	station,	then	the	station	would	become	a	winner	and	be	paid	𝑝F(𝑡 − 1).	Otherwise,	its	price	

would	be	reduced	to	𝑝F(𝑡)	and	it	would	exit	or	continue,	according	to	the	bidder’s	instructions.	

																																																								
2	In	the	actual	auction,	some	broadcasters	also	had	the	option	to	switch	from	a	UHF	TV	channel	to	a	channel	in	the	
high	VHF	band,	or	one	in	the	low	VHF	band	(the	so-called	HVHF	and	LVHF	options).		

Dear	Mr.	Broadcaster:	

We	have	heard	your	concerns	about	the	complexity	of	the	spectrum	
reallocation	process.	You	may	even	be	unsure	about	whether	to	participate	
or	how	much	to	bid.	To	make	things	as	easy	as	possible	for	you,	we	have	
adopted	a	Nobel-prize	winning	auction	procedure	called	the	“Vickrey	
auction.”	

In	this	auction,	all	you	need	to	do	is	to	tell	us	what	your	broadcast	rights	are	
worth	to	you.	We’ll	figure	out	whether	you	are	a	winner	and,	if	so,	how	
much	to	pay	to	buy	your	rights.	The	rules	will	ensure	that	it	is	in	your	
interest	to	report	truthfully.	That	is	the	magic	of	the	Vickrey	auction!	

The	computations	that	we	do	will	be	very	hard	ones,	and	we	cannot	
guarantee	that	they	will	be	exactly	correct….		
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It	would	be	obvious	to	a	station	owner	that,	regardless	of	the	pricing	formula	and	of	how	the	

software	performed,	its	optimal	choice	when	its	value	is	𝑣F 	is	to	exit	if	𝑝F 𝑡 < 𝑣F 	and	otherwise	

to	continue.3		

The	theory	of	clock	auctions	of	this	sort,	for	problems	with	hard	computations,	has	been	

developed	by	Milgrom	and	Segal	(2017),	who	also	report	simulations	showing	high	

performance	in	terms	of	efficiency	and	remarkably	low	costs	of	procuring	TV	broadcast	rights.		

The	performance	of	this	descending	auction	design	depends	deeply	on	the	quality	of	the	

feasibility	checker.	Based	on	early	simulations,	our	rough	estimate	was	the	each	1%	of	failures	

in	feasibility	checking	would	add	about	1.5%	–	or	about	$150	million	–	to	the	cost	of	procuring	

the	broadcast	rights.	So,	solving	most	of	the	problems	very	fast	became	a	high	priority	for	the	

auction	design	team.		

As	a	theoretical	proposition,	any	known	algorithm	for	feasibility	checking	in	the	spectrum	

packing	problem	has	worst-case	performance	that	grows	exponentially	in	the	size	of	the	

problem.	Nevertheless,	if	we	know	the	distribution	of	likely	problems,	there	can	still	be	

algorithms	that	are	fast	with	high	probability.	But	how	can	we	know	the	distribution	and	how	

can	such	an	algorithm	be	found?		

The	FCC	auction	used	a	feasibility	checker	developed	by	a	team	of	Auctionomics	researchers	

at	the	University	of	British	Columbia,	led	by	Professor	Kevin	Leyton-Brown.	There	were	many	

steps	in	the	development,	as	reported	by	Newman,	Frechette	and	Leyton-Brown	(2017),	but	

here	we	emphasize	the	role	of	machine	learning.	Auctionomics’	goal	was	to	be	able	to	solve	

99%	of	the	problem	instances	in	one	minute	or	less.		

																																																								
3	The	pricing	formula	that	the	FCC	used	for	each	station	was	𝑝F 𝑡 = 𝑃𝑜𝑝F𝐿𝑖𝑛𝑘𝑠F P.Q𝑞(𝑡).	In	this	formula,	𝑞(𝑡)	is	
the	“base	clock	price”	that	scaled	the	price	offers	to	all	the	bidders.	This	price	began	at	a	high	level	𝑞(0)	to	
encourage	participation,	and	it	declined	round-by-round	during	the	auction.	𝑃𝑜𝑝F	denotes	the	population	of	the	
area	served	by	the	station,	which	stands	in	for	the	value	of	the	station.	By	linking	prices	to	population	served,	the	
auctioneer	is	able	to	offer	higher	prices	to	valuable	stations	in	high	population	areas	that	it	might	need	to	acquire	
for	a	successful	auction.	𝐿𝑖𝑛𝑘𝑠F	measured	the	number	of	other	stations	to	which	station	𝑖	was	linked	in	the	
interference	graph.	It	was	hope	that,	by	including	this	term	in	the	pricing	formula,	the	auction	would	be	able	to	
offer	higher	prices	to	and	buy	the	rights	of	stations	that	pose	particularly	difficult	problems	by	interfering	with	
many	other	stations.			
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The	development	effort	began	by	simulating	the	planned	auction	to	generate	feasibility	

problems	like	those	that	might	be	encountered	in	a	real	auction.	Running	many	simulations	

generated	about	1.4	million	problem	instances	that	could	be	used	for	training	and	testing	a	

feasibility	checking	algorithm.	The	first	step	of	the	analysis	was	to	formulate	the	problem	as	

mixed	integer	programs	and	test	standard	commercial	software	–	CPLEX	and	Gurobi	–	to	see	

how	close	those	could	come	to	meeting	the	performance	objectives.	The	answer	was:	not	

close.	Using	a	100	seconds	cutoff,	Gurobi	could	solve	only	about	10%	of	the	problems	and	

CPLEX	only	about	25%.	These	were	not	nearly	good	enough	for	decent	performance	in	a	real-

time	auction.	

Next,	the	same	problems	were	formulated	as	satisfiability	problems	and	tested	using	

seventeen	research	solvers	that	had	participated	in	recent	SAT-solving	tournaments.	These	

were	better,	but	none	could	solve	as	many	as	2/3	of	the	problems	within	the	same	100	second	

cutoff.	The	goal	remained	99%	in	60	seconds.	

The	next	step	was	to	use	automated	algorithm	configuration,	a	procedure	developed	by	

Hutter,	Hoos	and	Leyton-Brown	(2011)	and	applied	in	this	setting	by	Leyton-Brown	and	his	

students	at	the	University	of	British	Columbia.	The	idea	is	to	start	with	a	highly-parameterized	

algorithm	for	solving	satisfiability	problems4	and	to	train	a	random	forest	model	of	the	

algorithm	performance,	given	the	parameters.	To	do	that,	we	first	ran	simulated	auctions	with	

what	we	regarded	as	plausible	behavior	by	the	bidders,	to	generate	a	large	dataset	of	

representative	problems.	Then,	we	solved	those	problems	using	a	variety	of	different	

parameter	settings	to	determine	the	distribution	of	solution	times	for	each	vector	of	

parameters.	This	generated	a	dataset	with	parameters	and	performance	measures.	Two	of	the	

most	interesting	performance	characteristics	were	the	median	run	time	and	the	fraction	of	

instances	solves	within	one	minute.	Then,	using	a	Bayesian	model,	we	incorporated	uncertainty	

																																																								
4	There	are	no	known	algorithms	for	NP-complete	problems	that	are	guaranteed	to	be	fast,	so	the	best	existing	
algorithms	are	all	heuristics.	These	algorithms	weight	various	characteristics	of	the	problem	to	decide	about	such	
things	as	the	order	in	which	to	check	different	branches	of	a	search	tree.	These	weights	are	among	the	parameters	
that	can	be	set	and	adapted	to	work	well	for	a	particular	class	of	problems,	such	as	those	that	arise	in	the	incentive	
auction	application.		The	particular	software	algorithm	that	we	used	was	CLASP,	which	had	more	than	100	exposed	
parameters	that	could	be	modified.		
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in	which	the	experimenter	“believes”	that	the	actual	performance	is	normally	distributed	with	a	

mean	determined	by	the	random	forest	and	a	variance	that	depends	on	the	distance	of	the	

parameter	vector	from	the	nearest	points	in	the	dataset.	Next,	the	system	identifies	the	

parameter	vector	that	maximizes	the	expected	improvement	in	performance,	given	the	mean	

and	variance	of	the	prior	and	the	performance	of	the	best-known	parameter	vector.	Finally,	the	

system	tests	the	actual	performance	for	the	identified	parameters	and	adds	that	as	an	

observation	to	the	dataset.	Proceeding	iteratively,	the	system	identifies	more	parameters	to	

test,	investigates	them,	and	adds	them	to	the	data	to	improve	the	model	accuracy	until	the	

time	budget	is	exhausted.		

Eventually,	this	machine	learning	method	leads	to	diminishing	returns	to	time	invested.	One	

can	then	create	a	new	dataset	from	the	instances	on	which	the	parameterized	algorithm	was	

“slow,”	for	example	taking	more	than	15	seconds	to	solve.	By	training	a	new	algorithm	on	those	

instances,	and	running	the	two	parameterized	algorithms	in	parallel,	the	machine	learning	

techniques	led	to	dramatic	improvements	in	performance.	

For	the	actual	auction,	several	other	problem-specific	tricks	were	also	applied	to	contribute	

to	the	speed-up.	For	example,	to	some	extent,	it	proved	possible	to	decompose	the	full	

problem	into	smaller	problems,	to	reuse	old	solutions	as	starting	points	for	a	search,	to	store	

partial	solutions	that	might	help	guide	solutions	of	further	problems,	and	so	on.	In	the	end,	the	

full	set	of	techniques	and	tricks	resulted	in	a	very	fast	feasibility	checker	that	solved	all	but	tiny	

fraction	of	the	relevant	problems	within	the	allotted	time.		

	

	

III. Using	AI	to	Promote	Trust	in	Online	Marketplaces	

	

Online	marketplaces	such	as	eBay,	Taobao,	Airbnb,	and	many	others	have	grown	dramatically	

since	their	inception	just	over	two	decades	ago,	providing	businesses	and	individuals	with	

previously	unavailable	opportunities	to	purchase	or	profit	from	online	trading.	Wholesalers	and	

retailers	can	market	their	goods	or	get	rid	of	excess	inventory;	consumers	can	easily	search	

marketplaces	for	whatever	is	on	their	mind,	alleviating	the	need	for	businesses	to	invest	in	their	
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own	e-commerce	website;	individuals	transform	items	they	no	longer	use	into	cash;	and	more	

recently,	the	so	called	“gig	economy”	is	comprised	of	marketplaces	that	allow	individuals	to	

share	their	time	or	assets	across	different	productive	activities	and	earn	extra	income.		

	

The	amazing	success	of	online	marketplaces	was	not	fully	anticipated,	primarily	because	of	the	

hazards	of	anonymous	trade	and	asymmetric	information.	Namely,	how	can	strangers	who	

have	never	transacted	with	one	another,	and	who	may	be	thousands	of	miles	apart,	be	willing	

to	trust	each	other?	Trust	on	both	sides	of	the	market	is	essential	for	parties	to	be	willing	to	

transact	and	for	a	marketplace	to	succeed.	The	early	success	of	eBay	is	often	attributed	to	the	

innovation	of	introducing	its	famous	feedback	and	reputation	mechanism,	which	was	adopted	

in	one	form	or	another	by	practically	every	other	marketplace	that	came	after	eBay.	These	

online	feedback	and	reputation	mechanisms	provide	a	modern-day	version	of	more	ancient	

reputation	mechanisms	used	in	the	physical	marketplaces	that	were	the	medieval	trade	fairs	of	

Europe	(see	Milgrom	et	al.,	1990).		

	

Still,	recent	studies	have	shown	that	online	reputation	measures	of	marketplace	sellers,	which	

are	based	on	buyer-generated	feedback,	don’t	accurately	reflect	their	actual	performance.	

Indeed,	a	growing	literature	has	shown	that	user-generated	feedback	mechanisms	are	often	

biased,	suffer	from	“grade	inflation,”	and	can	be	prone	to	manipulation	by	sellers.5	For	

example,	the	average	percent	positive	for	sellers	on	eBay	is	about	99.4%,	with	a	median	of	

100%.	This	causes	a	challenge	to	interpret	the	true	levels	of	satisfaction	on	online	marketplaces.		

	

A	natural	question	emerges:	can	online	marketplaces	use	the	treasure	trove	of	data	it	collects	

to	measure	the	quality	of	a	transaction	and	predict	which	sellers	will	provide	a	better	service	to	

their	buyers?	It	has	become	widely	known	that	all	online	marketplaces,	as	well	as	other	web-

based	services,	collect	vast	amounts	of	data	as	part	of	the	process	of	trade.	Some	refer	to	this	

as	the	“exhausts	data”	generated	by	the	millions	of	transactions,	searches	and	browsing	that	

																																																								
5	On	bias	and	grade	inflation	see,	e.g.,	Nosko	and	Tadelis	(2015),	Zervas	et	al.	(2015)	and	Filippas	et	al.	(2017).	On	
seller	manipulation	of	feedback	scores	see,	e.g.,	Mayzlin	et	al.	(2015)	and	Xu	et	al.	(2015).	
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occur	on	these	marketplaces	daily.	By	leveraging	this	data,	marketplaces	can	create	an	

environment	that	would	promote	trust,	not	unlike	the	ways	in	which	institutions	emerged	in	

the	medieval	trade	fairs	of	Europe	that	helped	foster	trust.	The	scope	for	market	design	goes	

far	beyond	the	more	mainstream	application	like	setting	rules	of	bidding	and	reserve	prices	for	

auctions,	or	designing	tiers	of	services,	and	in	our	view,	includes	the	design	of	mechanisms	that	

help	foster	trust	in	marketplaces.	What	follows	are	two	examples	from	recent	research	that	

show	some	of	the	many	ways	that	marketplaces	can	apply	AI	to	the	data	they	generate	to	help	

create	more	trust	and	better	experiences	for	their	customers.		

	

A. Using	AI	to	assess	the	quality	of	sellers	

	

One	of	the	ways	that	online	marketplaces	help	participants	build	trust	is	by	letting	them	

communicate	through	online	messaging	platforms.	For	example,	on	eBay,	buyers	can	contact	

sellers	to	ask	them	questions	about	their	products,	which	may	be	particularly	useful	for	used	or	

unique	products	for	which	buyers	may	want	to	get	more	refined	information	than	is	listed.	

Similarly,	Airbnb	allows	potential	renters	to	send	messages	to	hosts	and	ask	questions	about	

the	property	that	may	not	be	answered	in	the	original	listing.	

		

Using	Natural	Language	Processing	(NLP),	a	mature	area	in	AI,	marketplaces	can	mine	the	data	

generated	by	these	messages	in	order	to	better	predict	the	kind	of	features	that	customers	

value.	However,	there	may	also	be	subtler	ways	to	apply	AI	to	manage	the	quality	of	

marketplaces.	The	messaging	platforms	are	not	restricted	to	pre-transaction	inquiries,	but	also	

offer	the	parties	to	send	messages	to	each	other	after	the	transaction	has	been	completed.		An	

obvious	question	then	emerges:	how	could	a	marketplace	analyze	the	messages	sent	between	

buyers	and	sellers	post	the	transaction	to	infer	something	about	the	quality	of	the	transaction	

that	feedback	doesn't	seem	to	capture?		

	

This	question	was	posed	and	answered	in	a	recent	paper	by	Masterov	et	al.	(2015)	using	

internal	data	from	eBay’s	marketplace.	The	analysis	they	performed	was	divided	into	two	
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stages.	In	the	first	stage,	the	goal	was	to	see	if	NLP	can	identify	transactions	that	went	bad	

when	there	was	an	independent	indication	that	the	buyer	was	unhappy.	To	do	this,	they	

collected	internal	data	from	transactions	in	which	messages	were	sent	from	the	buyer	to	the	

seller	after	the	transaction	was	completed,	and	matched	it	with	another	internal	data	source	

that	recorded	actions	by	buyers	indicating	that	the	buyer	had	a	poor	experience	with	the	

transactions.	Actions	that	indicate	an	unhappy	buyer	include	a	buyer	claiming	that	the	item	was	

not	received,	or	that	the	item	was	significantly	not	as	described,	or	leaves	negative	or	neutral	

feedback,	to	name	a	few.		

	

The	simple	NLP	approach	they	use	creates	a	“poor-experience”	indicator	as	the	target	

(dependent	variable)	that	the	machine	learning	model	will	try	to	predict,	and	uses	the	

messages’	content	as	the	independent	variables.	In	its	simplest	form	and	as	a	proof	of	concept,	

a	regular	expression	search	was	used	that	included	a	standard	list	of	negative	words	such	as	

“annoyed,”	“dissatisfied,”	“damaged,”	or	“negative	feedback”	to	identify	a	message	as	

negative.	If	none	of	the	designated	terms	appeared	then	the	message	was	considered	neutral.	

Using	this	classification,	they	grouped	transactions	into	3	distinct	types:	(1)	No	post-transaction	

messages	from	buyer	to	seller;	(2)	One	or	more	negative	messages;	or	(3)	One	or	more	neutral	

messages	with	no	negative	messages.		

	

Figure	2,	which	appears	in	Masterov	et	al.	(2016),	describes	the	distribution	of	transactions	with	

the	different	message	classifications	together	with	their	association	with	poor	experiences.	The	

x-axis	of	Figure	1	shows	that	approximately	85%	of	transactions	fall	into	the	benign	first	

category	of	no	post-transaction	messages.	Buyers	sent	at	least	one	message	in	the	remaining	

15%	of	all	transactions,	evenly	split	between	negative	and	neutral	messages.	The	top	of	the	y-

axis	shows	the	poor	experience	rate	for	each	message	type.	When	no	messages	are	exchanged,	

only	4%	of	buyers	report	a	poor	experience.	Whenever	a	neutral	message	is	sent,	the	rate	of	

poor	experiences	jumps	to	13%,	and	if	the	message’s	content	was	negative,	over	a	third	of	

buyers	express	a	poor	experience.	
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Figure	2:	Message	Content	and	Poor	Experiences	on	eBay	

	

In	the	second	stage	of	the	analysis,	Masterov	et	al.	(2016)	used	the	fact	that	negative	messages	

are	associated	with	poor	experiences	to	construct	a	novel	measure	of	seller	quality	based	on	

the	idea	that	sellers	who	receive	a	higher	frequency	of	negative	messages	are	worse	sellers.	For	

example,	imagine	that	seller	A	and	seller	B	both	sold	100	items	and	that	seller	A	had	five	

transactions	with	at	least	one	negative	message,	while	seller	B	there	had	eight	such	

transactions.	The	implied	quality	score	of	seller	A	is	then	0.05	while	that	of	seller	B	is	0.08	and	

the	premise	is	that	seller	B	is	a	worse	seller	than	seller	A.	Masterov	et	al.	(2016)	show	that	the	

relationship	between	this	ratio,	which	is	calculated	for	every	seller	at	any	point	in	time	using	

aggregated	negative	messages	from	past	sales,	and	the	likelihood	that	a	current	transaction	will	

result	in	a	poor	experience,	is	monotonically	increasing.		

	

This	simple	exercise	is	a	proof	of	concept	that	shows	that	using	the	message	data	and	a	simple	

natural	language	processing	AI	procedure,	they	were	able	to	better	predict	which	sellers	will	

create	poor	experiences	than	one	can	infer	from	the	very	inflated	feedback	data.	eBay	is	not	

unique	in	allowing	the	parties	to	exchange	messages	and	the	lessons	from	this	research	are	

easily	generalizable	to	other	marketplaces.	The	key	is	that	there	is	information	in	
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communication	between	market	participants,	and	past	communication	can	help	identify	and	

predict	the	sellers	or	products	that	will	cause	buyers	poor	experiences	and	negatively	impact	

the	overall	trust	in	the	marketplace.		

	

B. Using	AI	to	create	a	market	for	feedback	

	

Aside	from	the	fact	that	feedback	is	often	inflated	as	described	earlier,	another	problem	with	

feedback	is	that	not	all	buyers	choose	not	to	leave	feedback	at	all.	In	fact,	through	the	lens	of	

mainstream	economic	theory,	it	is	surprising	that	a	significant	fraction	of	online	consumers	

leave	feedback.	After	all,	it	is	a	selfless	act	that	requires	time,	and	it	creates	a	classic	free-rider	

problem.	Furthermore,	because	potential	buyers	are	attracted	to	buy	from	sellers,	or	products,	

that	already	have	an	established	good	track	record,	this	creates	a	“cold	start”	problem:	new	

sellers	(or	products)	with	no	feedback	will	face	a	barrier-to-entry	in	that	buyers	will	be	hesitant	

to	give	them	a	fair	shot.	How	could	we	solve	these	free-rider	and	cold-start	problems?			

	

These	questions	were	analyzed	in	a	recent	paper	by	Li	et	al.	(2017)	using	a	unique	and	novel	

implementation	of	a	market	for	feedback	on	the	huge	Chinese	marketplace	Taobao	where	they	

let	sellers	pay	buyers	to	leave	them	feedback.	Naturally,	one	may	be	concerned	about	allowing	

sellers	to	pay	for	feedback	as	it	seems	like	a	practice	in	which	they	will	only	pay	for	good	

feedback	and	suppress	any	bad	feedback,	which	would	not	add	any	value	in	promoting	trust.	

However,	Taobao	implemented	a	clever	use	of	NLP	to	solve	this	problem:	it	is	the	platform,	

using	an	NLP	AI	model,	that	decides	whether	feedback	is	relevant	and	not	the	seller	who	pays	

for	the	feedback.	Hence,	the	reward	to	the	buyer	for	leaving	feedback	was	actually	managed	by	

the	marketplace,	and	was	handed	out	for	informative	feedback	rather	than	for	positive	

feedback.	

	

Specifically,	in	March	2012,	Taobao	launched	a	“Rebate-for-Feedback”	(RFF)	feature	through	

which	sellers	can	set	a	rebate	value	for	any	item	they	sell	(cash-back	or	store	coupon)	as	a	

reward	for	a	buyer's	feedback.	If	a	seller	chooses	this	option	then	Taobao	guarantees	that	the	
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rebate	will	be	transferred	from	the	seller's	account	to	a	buyer	who	leaves	high-quality	

feedback.	Importantly,	feedback	quality	only	depends	on	how	informative	it	is,	rather	than	

whether	the	feedback	is	positive	or	negative.	Taobao	measures	the	quality	of	feedback	with	a	

NLP	algorithm	that	examines	the	comment's	content	and	length	and	finds	out	whether	key	

features	of	the	item	are	mentioned.	Hence,	the	marketplace	manages	the	market	for	feedback	

by	forcing	the	seller	to	deposit	at	Taobao	a	certain	amount	for	a	chosen	period,	so	that	funds	

are	guaranteed	for	buyers	who	meet	the	rebate	criterion,	which	itself	is	determined	by	

Taobao.6	

	

Taobao’s	motivation	behind	the	RFF	mechanism	was	to	promote	more	informative	feedback,	

but	as	Li	et	al.	(2017)	noted,	economic	theory	offers	some	insights	into	how	the	RFF	feature	can	

act	as	a	potent	signaling	mechanism	that	will	further	separate	higher	from	lower	quality	sellers	

and	products.	To	see	this,	recall	the	literature	launched	by	Nelson	(1970)	who	suggested	that	

advertising	acts	as	a	signal	of	quality.	According	to	the	theory,	advertising—which	is	a	form	of	

burning	money—acts	as	a	signal	that	attracts	buyers	who	correctly	believe	that	only	high-

quality	sellers	will	choose	to	advertise.	Incentive	compatibility	is	achieved	through	repeat	

purchases:	buyers	who	purchase	and	experience	the	products	of	advertisers	will	return	in	the	

future	only	if	the	goods	sold	are	of	high	enough	quality.	The	cost	of	advertising	can	be	high	

enough	to	deter	low	quality	sellers	from	being	willing	to	spend	the	money	and	sell	only	once,	

because	those	sellers	will	not	attract	repeat	customers,	and	still	low	enough	to	leave	profits	for	

higher	quality	sellers.	Hence,	ads	act	as	signals	that	separate	high	quality	sellers,	and	in	turn	

attract	buyers	to	their	products.	

	

As	Li	et	al.	(2017)	argue,	the	RFF	mechanism	plays	a	similar	signaling	role	as	ads	do.	Assuming	

that	consumers	express	their	experiences	truthfully	in	written	feedback,	any	consumer	who	

																																																								
6	According	to	a	Taobao	survey	(published	in	March	2012),	64.8%	of	buyers	believed	that	they	will	be	more	willing	
to	buy	items	that	have	the	RFF	feature,	and	84.2%	of	buyers	believed	that	the	RFF	option	will	make	them	more	
likely	to	write	detailed	comments.	
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buys	a	product	and	is	given	incentives	to	leave	feedback,	will	leave	positive	feedback	only	if	the	

buying	experience	was	satisfactory.	Hence,	a	seller	will	offer	RFF	incentives	to	buyers	only	if	the	

seller	expects	to	receive	positive	feedback,	and	this	will	happen	only	if	the	seller	will	provide	

high	quality.	If	a	seller	knows	that	their	goods	and	services	are	unsatisfactory,	then	paying	for	

feedback	will	generate	negative	feedback	that	will	harm	the	low-quality	seller.	Equilibrium	

behavior	then	implies	that	RFF,	as	a	signal	of	high	quality,	will	attract	more	buyers	and	result	in	

more	sales.	The	role	of	AI	was	precisely	to	reward	buyers	for	information,	not	for	positive	

feedback.		

	

Li	et	al.	(2017)	proceeded	to	analyze	data	from	the	period	where	the	RFF	mechanism	was	

featured,	and	confirmed	that	first,	as	expected,	more	feedback	was	left	in	response	to	the	

incentives	provided	by	the	RFF	feature.	More	importantly,	the	additional	feedback	did	not	

exhibit	any	biases,	suggesting	that	the	NLP	algorithms	used	were	able	to	create	the	kind	of	

screening	needed	to	select	informative	feedback.	Also,	the	predictions	of	the	simple	signaling	

story	were	borne	out	in	the	data,	suggesting	that	using	NLP	to	support	a	novel	market	for	

feedback	did	indeed	solve	both	the	free-rider	problem	and	the	cold-start	problem	that	can	

hamper	the	growth	of	online	marketplaces.		

	

	

IV. Using	AI	to	Reduce	Search	Frictions	

	

An	important	application	of	AI	and	machine	learning	in	online	marketplaces	is	to	the	way	in	

which	potential	buyers	engage	with	the	site	and	proceed	to	search	for	products	or	services.	

Search	engines	that	power	the	search	of	products	online	are	based	on	a	variety	of	AI	algorithms	

that	are	trained	to	maximize	what	the	provider	believes	to	be	the	right	objective.	Often	this	

boils	down	to	conversion,	under	the	belief	that	the	sooner	a	consumer	converts	a	search	to	a	

purchase,	the	happier	the	consumer	is	both	in	the	short	and	the	long	run.	The	rationale	is	

simply	that	search	itself	is	a	friction,	and	hence,	maximizing	the	successful	conversion	of	search	

activity	to	a	purchase	reduces	this	friction.		
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This	is	not	inconsistent	with	economic	theory,	that	has	modeled	search	as	an	inevitable	costly	

process	that	separates	consumers	from	the	products	they	want.	The	canonical	search	models	in	

economics	either	build	on	the	seminal	work	of	Stigler	(1961),	who	assumes	that	consumers	

sample	a	fixed	number	of	stores	and	choose	to	buy	the	lowest	priced	item,	or	more	often,	on	

the	models	of	McCall	(1970)	and	Mortensen	(1970),	who	posit	that	a	model	of	

sequential	search	is	a	better	description	of	consumer	search	behavior.	In	both	modeling	

approaches,	consumers	know	exactly	what	they	wish	to	buy.		

	

However,	it	turns	out	that	unlike	the	simplistic	models	of	search	employed	in	economic	theory,	

where	consumers	know	what	they	are	looking	for	and	the	activity	of	search	is	just	a	costly	

friction,	in	reality,	people’s	search	behavior	is	rich	and	varied.	A	recent	paper	by	Blake	et	al.	

(2016)	uses	comprehensive	data	from	eBay	to	shed	light	on	the	search	process	with	minimal	

modeling	assumptions.	Their	data	show	that	consumers	search	significantly	more	than	other	

studies—which	had	limited	access	to	search	behavior	over	time—have	suggested.		

	

Furthermore,	search	often	proceeds	from	the	vague	to	the	specific.	For	example,	

early	in	a	search	a	user	may	use	the	query	“watch”,	then	refine	it	to	“men’s	watch”	and	

later	add	further	qualifying	words	such	as	color,	shape,	strap	type,	and	more.	This	suggests	that	

consumers	often	learn	about	their	own	tastes,	and	what	product	characteristics	exist,	as	part	of	

the	search	process.	Indeed,	Blake	et	al.	(2016)	show	that	the	average	number	of	terms	in	the	

query	rises	over	time,	and	the	propensity	to	use	the	default	ranking	algorithm	declines	over	

time	as	users	move	to	more	focused	searches	like	price	sorting.		

	

These	observations	suggest	that	marketplaces	and	retailers	alike	could	design	their	online	

search	algorithms	to	understand	search	intent	so	as	to	better	serve	their	consumers.	If	a	

consumer	is	in	the	earlier,	exploratory	phases	of	the	search	process,	then	offering	some	

breadth	will	help	the	consumer	better	learn	their	tastes	and	the	options	available	in	the	

market.	But	when	the	consumer	is	driven	to	purchase	something	particular,	the	offering	a	
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narrower	set	of	products	that	match	the	consumer’s	preferences	would	be	better.	Hence,	

machine	learning	and	AI	can	play	an	instrumental	role	in	recognizing	customer	intent.		

	

AI	and	machine	learning	can	not	only	help	predict	a	customer’s	intent,	but	given	the	large	

heterogeneity	on	consumer	tastes,	AI	can	help	a	marketplace	or	retailer	better	segment	the	

many	customers	into	groups	that	can	be	better	served	with	tailored	information.	Of	course,	the	

idea	of	using	AI	for	more	refined	customer	segmentation,	or	even	personalized	experiences,	

also	raises	concerns	about	price	discrimination.	For	example,	in	2012	the	Wall	Street	Journal	

reported	that	“Orbitz	Worldwide	Inc.	has	found	that	people	who	use…	Mac	computers	spend	as	

much	as	30%	more	a	night	on	hotels,	so	the	online	travel	agency	is	starting	to	show	them	

different,	and	sometimes	costlier,	travel	options	than	Windows	visitors	see.	The	Orbitz	effort,	

which	is	in	its	early	stages,	demonstrates	how	tracking	people's	online	activities	can	use	even	

seemingly	innocuous	information—in	this	case,	the	fact	that	customers	are	visiting	Orbitz.com	

from	a	Mac—to	start	predicting	their	tastes	and	spending	habits.”7		

	

Whether	these	practices	of	employing	consumer	data	and	AI	will	help	or	harm	consumers	is	not	

obvious,	as	it	is	well	known	from	economic	theory	that	price	discrimination	can	either	increase	

or	reduce	consumer	welfare.	If	on	average	Mac	users	prefer	staying	at	fancier	and	more	

expensive	hotels	because	owning	a	Mac	is	correlated	with	higher	income	and	tastes	for	luxury,	

then	Orbitz	practice	is	beneficial	because	it	shows	people	what	they	want	to	see	and	reduces	

search	frictions.	However,	if	this	is	just	a	way	to	extract	more	surplus	from	consumers	who	are	

less	price	sensitive,	but	do	not	necessarily	care	for	the	snazzier	hotel	rooms,	then	it	harms	these	

consumers.		

	

There	is	currently	a	lot	of	interest	in	policy	circles	regarding	the	potential	harms	to	consumers	

from	AI-based	price	discrimination	and	market	segmentation.	McSweeny	and	O’dea	(2017)	

suggest	that	once	AI	is	used	to	create	more	targeted	market	segments,	this	may	not	only	have	

																																																								
7	See	“On	Orbitz,	Mac	Users	Steered	to	Pricier	Hotels,”	The	Wall	Street	Journal,	By	Dana	Mattioli,	August	23,	2012,	
https://www.wsj.com/articles/SB10001424052702304458604577488822667325882		
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implications	only	for	consumer	welfare,	but	for	antitrust	policy	and	market	definitions	for	

mergers.	But,	as	Gal	and	Elkin-Koren	(2017)	suggest,	the	same	AI	targeting	tools	used	by	

retailers	and	marketplaces	to	better	segment	consumers,	may	be	developed	into	tools	for	

consumers	that	will	help	them	shop	for	better	deals	and	limit	the	ways	in	which	marketplaces	

and	retailers	can	engage	in	price	discrimination.	

	

V. Concluding	Remarks	

	

In	its	early	years,	classical	economic	theory	paid	little	attention	to	market	frictions,	and	treated	

information	and	computation	as	free.	That	theory	led	to	conclusions	about	efficiency,	

competitive	prices	for	most	goods,	and	full	employment	of	valuable	resources.	To	address	the	

failures	of	that	theory,	economists	began	to	study	model	with	search	frictions,	which	predicted	

that	price	competition	would	be	attenuated,	that	some	workers	and	resources	could	remain	

unemployed,	and	that	it	could	be	costly	to	distinguish	reliable	trading	partners	from	others.	

They	also	built	markets	for	complex	resource	allocation	problems	in	which	computations	and	

some	communications	were	centralized,	lifting	the	burden	of	coordination	from	individual	

market	participants.		

	

With	these	as	the	key	frictions	in	the	traditional	economy,	AI	holds	enormous	potential	to	

improve	efficiency.	In	this	paper,	we	have	described	some	of	the	ways	that	AI	can	overcome	

computational	barriers,	reduce	search	frictions,	and	distinguish	reliable	partners.	These	are	

among	the	most	important	causes	of	inefficiency	in	traditional	economies,	and	there	is	no	

longer	any	question	that	AI	is	helping	to	overcome	them,	with	the	promise	of	widespread	

benefits	for	all	of	us.			
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